// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_HEAP_INL_H_ #define V8_HEAP_HEAP_INL_H_ #include #include "src/base/platform/platform.h" #include "src/cpu-profiler.h" #include "src/heap/heap.h" #include "src/heap/store-buffer.h" #include "src/heap/store-buffer-inl.h" #include "src/heap-profiler.h" #include "src/isolate.h" #include "src/list-inl.h" #include "src/msan.h" #include "src/objects.h" namespace v8 { namespace internal { void PromotionQueue::insert(HeapObject* target, int size) { if (emergency_stack_ != NULL) { emergency_stack_->Add(Entry(target, size)); return; } if (NewSpacePage::IsAtStart(reinterpret_cast
(rear_))) { NewSpacePage* rear_page = NewSpacePage::FromAddress(reinterpret_cast
(rear_)); DCHECK(!rear_page->prev_page()->is_anchor()); rear_ = reinterpret_cast(rear_page->prev_page()->area_end()); } if ((rear_ - 2) < limit_) { RelocateQueueHead(); emergency_stack_->Add(Entry(target, size)); return; } *(--rear_) = reinterpret_cast(target); *(--rear_) = size; // Assert no overflow into live objects. #ifdef DEBUG SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(), reinterpret_cast
(rear_)); #endif } template <> bool inline Heap::IsOneByte(Vector str, int chars) { // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported? return chars == str.length(); } template <> bool inline Heap::IsOneByte(String* str, int chars) { return str->IsOneByteRepresentation(); } AllocationResult Heap::AllocateInternalizedStringFromUtf8( Vector str, int chars, uint32_t hash_field) { if (IsOneByte(str, chars)) { return AllocateOneByteInternalizedString(Vector::cast(str), hash_field); } return AllocateInternalizedStringImpl(str, chars, hash_field); } template AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field) { if (IsOneByte(t, chars)) { return AllocateInternalizedStringImpl(t, chars, hash_field); } return AllocateInternalizedStringImpl(t, chars, hash_field); } AllocationResult Heap::AllocateOneByteInternalizedString( Vector str, uint32_t hash_field) { CHECK_GE(String::kMaxLength, str.length()); // Compute map and object size. Map* map = one_byte_internalized_string_map(); int size = SeqOneByteString::SizeFor(str.length()); AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED); // Allocate string. HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); if (!allocation.To(&result)) return allocation; } // String maps are all immortal immovable objects. result->set_map_no_write_barrier(map); // Set length and hash fields of the allocated string. String* answer = String::cast(result); answer->set_length(str.length()); answer->set_hash_field(hash_field); DCHECK_EQ(size, answer->Size()); // Fill in the characters. MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(), str.length()); return answer; } AllocationResult Heap::AllocateTwoByteInternalizedString(Vector str, uint32_t hash_field) { CHECK_GE(String::kMaxLength, str.length()); // Compute map and object size. Map* map = internalized_string_map(); int size = SeqTwoByteString::SizeFor(str.length()); AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED); // Allocate string. HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map(map); // Set length and hash fields of the allocated string. String* answer = String::cast(result); answer->set_length(str.length()); answer->set_hash_field(hash_field); DCHECK_EQ(size, answer->Size()); // Fill in the characters. MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(), str.length() * kUC16Size); return answer; } AllocationResult Heap::CopyFixedArray(FixedArray* src) { if (src->length() == 0) return src; return CopyFixedArrayWithMap(src, src->map()); } AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) { if (src->length() == 0) return src; return CopyFixedDoubleArrayWithMap(src, src->map()); } AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) { if (src->length() == 0) return src; return CopyConstantPoolArrayWithMap(src, src->map()); } AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space, AllocationSpace retry_space) { DCHECK(AllowHandleAllocation::IsAllowed()); DCHECK(AllowHeapAllocation::IsAllowed()); DCHECK(gc_state_ == NOT_IN_GC); #ifdef DEBUG if (FLAG_gc_interval >= 0 && AllowAllocationFailure::IsAllowed(isolate_) && Heap::allocation_timeout_-- <= 0) { return AllocationResult::Retry(space); } isolate_->counters()->objs_since_last_full()->Increment(); isolate_->counters()->objs_since_last_young()->Increment(); #endif HeapObject* object; AllocationResult allocation; if (NEW_SPACE == space) { allocation = new_space_.AllocateRaw(size_in_bytes); if (always_allocate() && allocation.IsRetry() && retry_space != NEW_SPACE) { space = retry_space; } else { if (allocation.To(&object)) { OnAllocationEvent(object, size_in_bytes); } return allocation; } } if (OLD_POINTER_SPACE == space) { allocation = old_pointer_space_->AllocateRaw(size_in_bytes); } else if (OLD_DATA_SPACE == space) { allocation = old_data_space_->AllocateRaw(size_in_bytes); } else if (CODE_SPACE == space) { if (size_in_bytes <= code_space()->AreaSize()) { allocation = code_space_->AllocateRaw(size_in_bytes); } else { // Large code objects are allocated in large object space. allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE); } } else if (LO_SPACE == space) { allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE); } else if (CELL_SPACE == space) { allocation = cell_space_->AllocateRaw(size_in_bytes); } else if (PROPERTY_CELL_SPACE == space) { allocation = property_cell_space_->AllocateRaw(size_in_bytes); } else { DCHECK(MAP_SPACE == space); allocation = map_space_->AllocateRaw(size_in_bytes); } if (allocation.To(&object)) { OnAllocationEvent(object, size_in_bytes); } else { old_gen_exhausted_ = true; } return allocation; } void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) { HeapProfiler* profiler = isolate_->heap_profiler(); if (profiler->is_tracking_allocations()) { profiler->AllocationEvent(object->address(), size_in_bytes); } if (FLAG_verify_predictable) { ++allocations_count_; UpdateAllocationsHash(object); UpdateAllocationsHash(size_in_bytes); if ((FLAG_dump_allocations_digest_at_alloc > 0) && (--dump_allocations_hash_countdown_ == 0)) { dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc; PrintAlloctionsHash(); } } } void Heap::OnMoveEvent(HeapObject* target, HeapObject* source, int size_in_bytes) { HeapProfiler* heap_profiler = isolate_->heap_profiler(); if (heap_profiler->is_tracking_object_moves()) { heap_profiler->ObjectMoveEvent(source->address(), target->address(), size_in_bytes); } if (isolate_->logger()->is_logging_code_events() || isolate_->cpu_profiler()->is_profiling()) { if (target->IsSharedFunctionInfo()) { PROFILE(isolate_, SharedFunctionInfoMoveEvent(source->address(), target->address())); } } if (FLAG_verify_predictable) { ++allocations_count_; UpdateAllocationsHash(source); UpdateAllocationsHash(target); UpdateAllocationsHash(size_in_bytes); if ((FLAG_dump_allocations_digest_at_alloc > 0) && (--dump_allocations_hash_countdown_ == 0)) { dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc; PrintAlloctionsHash(); } } } void Heap::UpdateAllocationsHash(HeapObject* object) { Address object_address = object->address(); MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address); AllocationSpace allocation_space = memory_chunk->owner()->identity(); STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32); uint32_t value = static_cast(object_address - memory_chunk->address()) | (static_cast(allocation_space) << kPageSizeBits); UpdateAllocationsHash(value); } void Heap::UpdateAllocationsHash(uint32_t value) { uint16_t c1 = static_cast(value); uint16_t c2 = static_cast(value >> 16); raw_allocations_hash_ = StringHasher::AddCharacterCore(raw_allocations_hash_, c1); raw_allocations_hash_ = StringHasher::AddCharacterCore(raw_allocations_hash_, c2); } void Heap::PrintAlloctionsHash() { uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_); PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count_, hash); } void Heap::FinalizeExternalString(String* string) { DCHECK(string->IsExternalString()); v8::String::ExternalStringResourceBase** resource_addr = reinterpret_cast( reinterpret_cast(string) + ExternalString::kResourceOffset - kHeapObjectTag); // Dispose of the C++ object if it has not already been disposed. if (*resource_addr != NULL) { (*resource_addr)->Dispose(); *resource_addr = NULL; } } bool Heap::InNewSpace(Object* object) { bool result = new_space_.Contains(object); DCHECK(!result || // Either not in new space gc_state_ != NOT_IN_GC || // ... or in the middle of GC InToSpace(object)); // ... or in to-space (where we allocate). return result; } bool Heap::InNewSpace(Address address) { return new_space_.Contains(address); } bool Heap::InFromSpace(Object* object) { return new_space_.FromSpaceContains(object); } bool Heap::InToSpace(Object* object) { return new_space_.ToSpaceContains(object); } bool Heap::InOldPointerSpace(Address address) { return old_pointer_space_->Contains(address); } bool Heap::InOldPointerSpace(Object* object) { return InOldPointerSpace(reinterpret_cast
(object)); } bool Heap::InOldDataSpace(Address address) { return old_data_space_->Contains(address); } bool Heap::InOldDataSpace(Object* object) { return InOldDataSpace(reinterpret_cast
(object)); } bool Heap::OldGenerationAllocationLimitReached() { if (!incremental_marking()->IsStopped()) return false; return OldGenerationSpaceAvailable() < 0; } bool Heap::ShouldBePromoted(Address old_address, int object_size) { NewSpacePage* page = NewSpacePage::FromAddress(old_address); Address age_mark = new_space_.age_mark(); return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) && (!page->ContainsLimit(age_mark) || old_address < age_mark); } void Heap::RecordWrite(Address address, int offset) { if (!InNewSpace(address)) store_buffer_.Mark(address + offset); } void Heap::RecordWrites(Address address, int start, int len) { if (!InNewSpace(address)) { for (int i = 0; i < len; i++) { store_buffer_.Mark(address + start + i * kPointerSize); } } } OldSpace* Heap::TargetSpace(HeapObject* object) { InstanceType type = object->map()->instance_type(); AllocationSpace space = TargetSpaceId(type); return (space == OLD_POINTER_SPACE) ? old_pointer_space_ : old_data_space_; } AllocationSpace Heap::TargetSpaceId(InstanceType type) { // Heap numbers and sequential strings are promoted to old data space, all // other object types are promoted to old pointer space. We do not use // object->IsHeapNumber() and object->IsSeqString() because we already // know that object has the heap object tag. // These objects are never allocated in new space. DCHECK(type != MAP_TYPE); DCHECK(type != CODE_TYPE); DCHECK(type != ODDBALL_TYPE); DCHECK(type != CELL_TYPE); DCHECK(type != PROPERTY_CELL_TYPE); if (type <= LAST_NAME_TYPE) { if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE; DCHECK(type < FIRST_NONSTRING_TYPE); // There are four string representations: sequential strings, external // strings, cons strings, and sliced strings. // Only the latter two contain non-map-word pointers to heap objects. return ((type & kIsIndirectStringMask) == kIsIndirectStringTag) ? OLD_POINTER_SPACE : OLD_DATA_SPACE; } else { return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE; } } bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) { // Object migration is governed by the following rules: // // 1) Objects in new-space can be migrated to one of the old spaces // that matches their target space or they stay in new-space. // 2) Objects in old-space stay in the same space when migrating. // 3) Fillers (two or more words) can migrate due to left-trimming of // fixed arrays in new-space, old-data-space and old-pointer-space. // 4) Fillers (one word) can never migrate, they are skipped by // incremental marking explicitly to prevent invalid pattern. // 5) Short external strings can end up in old pointer space when a cons // string in old pointer space is made external (String::MakeExternal). // // Since this function is used for debugging only, we do not place // asserts here, but check everything explicitly. if (obj->map() == one_pointer_filler_map()) return false; InstanceType type = obj->map()->instance_type(); MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); AllocationSpace src = chunk->owner()->identity(); switch (src) { case NEW_SPACE: return dst == src || dst == TargetSpaceId(type); case OLD_POINTER_SPACE: return dst == src && (dst == TargetSpaceId(type) || obj->IsFiller() || obj->IsExternalString()); case OLD_DATA_SPACE: return dst == src && dst == TargetSpaceId(type); case CODE_SPACE: return dst == src && type == CODE_TYPE; case MAP_SPACE: case CELL_SPACE: case PROPERTY_CELL_SPACE: case LO_SPACE: return false; case INVALID_SPACE: break; } UNREACHABLE(); return false; } void Heap::CopyBlock(Address dst, Address src, int byte_size) { CopyWords(reinterpret_cast(dst), reinterpret_cast(src), static_cast(byte_size / kPointerSize)); } void Heap::MoveBlock(Address dst, Address src, int byte_size) { DCHECK(IsAligned(byte_size, kPointerSize)); int size_in_words = byte_size / kPointerSize; if ((dst < src) || (dst >= (src + byte_size))) { Object** src_slot = reinterpret_cast(src); Object** dst_slot = reinterpret_cast(dst); Object** end_slot = src_slot + size_in_words; while (src_slot != end_slot) { *dst_slot++ = *src_slot++; } } else { MemMove(dst, src, static_cast(byte_size)); } } void Heap::ScavengePointer(HeapObject** p) { ScavengeObject(p, *p); } AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) { // Check if there is potentially a memento behind the object. If // the last word of the memento is on another page we return // immediately. Address object_address = object->address(); Address memento_address = object_address + object->Size(); Address last_memento_word_address = memento_address + kPointerSize; if (!NewSpacePage::OnSamePage(object_address, last_memento_word_address)) { return NULL; } HeapObject* candidate = HeapObject::FromAddress(memento_address); Map* candidate_map = candidate->map(); // This fast check may peek at an uninitialized word. However, the slow check // below (memento_address == top) ensures that this is safe. Mark the word as // initialized to silence MemorySanitizer warnings. MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map)); if (candidate_map != allocation_memento_map()) return NULL; // Either the object is the last object in the new space, or there is another // object of at least word size (the header map word) following it, so // suffices to compare ptr and top here. Note that technically we do not have // to compare with the current top pointer of the from space page during GC, // since we always install filler objects above the top pointer of a from // space page when performing a garbage collection. However, always performing // the test makes it possible to have a single, unified version of // FindAllocationMemento that is used both by the GC and the mutator. Address top = NewSpaceTop(); DCHECK(memento_address == top || memento_address + HeapObject::kHeaderSize <= top || !NewSpacePage::OnSamePage(memento_address, top)); if (memento_address == top) return NULL; AllocationMemento* memento = AllocationMemento::cast(candidate); if (!memento->IsValid()) return NULL; return memento; } void Heap::UpdateAllocationSiteFeedback(HeapObject* object, ScratchpadSlotMode mode) { Heap* heap = object->GetHeap(); DCHECK(heap->InFromSpace(object)); if (!FLAG_allocation_site_pretenuring || !AllocationSite::CanTrack(object->map()->instance_type())) return; AllocationMemento* memento = heap->FindAllocationMemento(object); if (memento == NULL) return; if (memento->GetAllocationSite()->IncrementMementoFoundCount()) { heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode); } } void Heap::ScavengeObject(HeapObject** p, HeapObject* object) { DCHECK(object->GetIsolate()->heap()->InFromSpace(object)); // We use the first word (where the map pointer usually is) of a heap // object to record the forwarding pointer. A forwarding pointer can // point to an old space, the code space, or the to space of the new // generation. MapWord first_word = object->map_word(); // If the first word is a forwarding address, the object has already been // copied. if (first_word.IsForwardingAddress()) { HeapObject* dest = first_word.ToForwardingAddress(); DCHECK(object->GetIsolate()->heap()->InFromSpace(*p)); *p = dest; return; } UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT); // AllocationMementos are unrooted and shouldn't survive a scavenge DCHECK(object->map() != object->GetHeap()->allocation_memento_map()); // Call the slow part of scavenge object. return ScavengeObjectSlow(p, object); } bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason, const v8::GCCallbackFlags callbackFlags) { const char* collector_reason = NULL; GarbageCollector collector = SelectGarbageCollector(space, &collector_reason); return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags); } Isolate* Heap::isolate() { return reinterpret_cast( reinterpret_cast(this) - reinterpret_cast(reinterpret_cast(4)->heap()) + 4); } // Calls the FUNCTION_CALL function and retries it up to three times // to guarantee that any allocations performed during the call will // succeed if there's enough memory. // Warning: Do not use the identifiers __object__, __maybe_object__ or // __scope__ in a call to this macro. #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \ if (__allocation__.To(&__object__)) { \ DCHECK(__object__ != (ISOLATE)->heap()->exception()); \ RETURN_VALUE; \ } #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \ do { \ AllocationResult __allocation__ = FUNCTION_CALL; \ Object* __object__ = NULL; \ RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \ (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(), \ "allocation failure"); \ __allocation__ = FUNCTION_CALL; \ RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \ (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \ (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc"); \ { \ AlwaysAllocateScope __scope__(ISOLATE); \ __allocation__ = FUNCTION_CALL; \ } \ RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \ /* TODO(1181417): Fix this. */ \ v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \ RETURN_EMPTY; \ } while (false) #define CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, RETURN_VALUE, \ RETURN_EMPTY) \ CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \ CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, \ return Handle(TYPE::cast(__object__), ISOLATE), \ return Handle()) #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \ CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return) void ExternalStringTable::AddString(String* string) { DCHECK(string->IsExternalString()); if (heap_->InNewSpace(string)) { new_space_strings_.Add(string); } else { old_space_strings_.Add(string); } } void ExternalStringTable::Iterate(ObjectVisitor* v) { if (!new_space_strings_.is_empty()) { Object** start = &new_space_strings_[0]; v->VisitPointers(start, start + new_space_strings_.length()); } if (!old_space_strings_.is_empty()) { Object** start = &old_space_strings_[0]; v->VisitPointers(start, start + old_space_strings_.length()); } } // Verify() is inline to avoid ifdef-s around its calls in release // mode. void ExternalStringTable::Verify() { #ifdef DEBUG for (int i = 0; i < new_space_strings_.length(); ++i) { Object* obj = Object::cast(new_space_strings_[i]); DCHECK(heap_->InNewSpace(obj)); DCHECK(obj != heap_->the_hole_value()); } for (int i = 0; i < old_space_strings_.length(); ++i) { Object* obj = Object::cast(old_space_strings_[i]); DCHECK(!heap_->InNewSpace(obj)); DCHECK(obj != heap_->the_hole_value()); } #endif } void ExternalStringTable::AddOldString(String* string) { DCHECK(string->IsExternalString()); DCHECK(!heap_->InNewSpace(string)); old_space_strings_.Add(string); } void ExternalStringTable::ShrinkNewStrings(int position) { new_space_strings_.Rewind(position); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } void Heap::ClearInstanceofCache() { set_instanceof_cache_function(the_hole_value()); } Object* Heap::ToBoolean(bool condition) { return condition ? true_value() : false_value(); } void Heap::CompletelyClearInstanceofCache() { set_instanceof_cache_map(the_hole_value()); set_instanceof_cache_function(the_hole_value()); } AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate) : heap_(isolate->heap()), daf_(isolate) { // We shouldn't hit any nested scopes, because that requires // non-handle code to call handle code. The code still works but // performance will degrade, so we want to catch this situation // in debug mode. DCHECK(heap_->always_allocate_scope_depth_ == 0); heap_->always_allocate_scope_depth_++; } AlwaysAllocateScope::~AlwaysAllocateScope() { heap_->always_allocate_scope_depth_--; DCHECK(heap_->always_allocate_scope_depth_ == 0); } #ifdef VERIFY_HEAP NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() { Isolate* isolate = Isolate::Current(); isolate->heap()->no_weak_object_verification_scope_depth_++; } NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() { Isolate* isolate = Isolate::Current(); isolate->heap()->no_weak_object_verification_scope_depth_--; } #endif GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) { heap_->gc_callbacks_depth_++; } GCCallbacksScope::~GCCallbacksScope() { heap_->gc_callbacks_depth_--; } bool GCCallbacksScope::CheckReenter() { return heap_->gc_callbacks_depth_ == 1; } void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { HeapObject* object = HeapObject::cast(*current); CHECK(object->GetIsolate()->heap()->Contains(object)); CHECK(object->map()->IsMap()); } } } void VerifySmisVisitor::VisitPointers(Object** start, Object** end) { for (Object** current = start; current < end; current++) { CHECK((*current)->IsSmi()); } } } } // namespace v8::internal #endif // V8_HEAP_HEAP_INL_H_