// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_HEAP_SPACES_H_ #define V8_HEAP_SPACES_H_ #include "src/allocation.h" #include "src/base/atomicops.h" #include "src/base/bits.h" #include "src/base/platform/mutex.h" #include "src/hashmap.h" #include "src/list.h" #include "src/log.h" #include "src/utils.h" namespace v8 { namespace internal { class Isolate; // ----------------------------------------------------------------------------- // Heap structures: // // A JS heap consists of a young generation, an old generation, and a large // object space. The young generation is divided into two semispaces. A // scavenger implements Cheney's copying algorithm. The old generation is // separated into a map space and an old object space. The map space contains // all (and only) map objects, the rest of old objects go into the old space. // The old generation is collected by a mark-sweep-compact collector. // // The semispaces of the young generation are contiguous. The old and map // spaces consists of a list of pages. A page has a page header and an object // area. // // There is a separate large object space for objects larger than // Page::kMaxHeapObjectSize, so that they do not have to move during // collection. The large object space is paged. Pages in large object space // may be larger than the page size. // // A store-buffer based write barrier is used to keep track of intergenerational // references. See heap/store-buffer.h. // // During scavenges and mark-sweep collections we sometimes (after a store // buffer overflow) iterate intergenerational pointers without decoding heap // object maps so if the page belongs to old pointer space or large object // space it is essential to guarantee that the page does not contain any // garbage pointers to new space: every pointer aligned word which satisfies // the Heap::InNewSpace() predicate must be a pointer to a live heap object in // new space. Thus objects in old pointer and large object spaces should have a // special layout (e.g. no bare integer fields). This requirement does not // apply to map space which is iterated in a special fashion. However we still // require pointer fields of dead maps to be cleaned. // // To enable lazy cleaning of old space pages we can mark chunks of the page // as being garbage. Garbage sections are marked with a special map. These // sections are skipped when scanning the page, even if we are otherwise // scanning without regard for object boundaries. Garbage sections are chained // together to form a free list after a GC. Garbage sections created outside // of GCs by object trunctation etc. may not be in the free list chain. Very // small free spaces are ignored, they need only be cleaned of bogus pointers // into new space. // // Each page may have up to one special garbage section. The start of this // section is denoted by the top field in the space. The end of the section // is denoted by the limit field in the space. This special garbage section // is not marked with a free space map in the data. The point of this section // is to enable linear allocation without having to constantly update the byte // array every time the top field is updated and a new object is created. The // special garbage section is not in the chain of garbage sections. // // Since the top and limit fields are in the space, not the page, only one page // has a special garbage section, and if the top and limit are equal then there // is no special garbage section. // Some assertion macros used in the debugging mode. #define DCHECK_PAGE_ALIGNED(address) \ DCHECK((OffsetFrom(address) & Page::kPageAlignmentMask) == 0) #define DCHECK_OBJECT_ALIGNED(address) \ DCHECK((OffsetFrom(address) & kObjectAlignmentMask) == 0) #define DCHECK_OBJECT_SIZE(size) \ DCHECK((0 < size) && (size <= Page::kMaxRegularHeapObjectSize)) #define DCHECK_PAGE_OFFSET(offset) \ DCHECK((Page::kObjectStartOffset <= offset) && (offset <= Page::kPageSize)) #define DCHECK_MAP_PAGE_INDEX(index) \ DCHECK((0 <= index) && (index <= MapSpace::kMaxMapPageIndex)) class PagedSpace; class MemoryAllocator; class AllocationInfo; class Space; class FreeList; class MemoryChunk; class MarkBit { public: typedef uint32_t CellType; inline MarkBit(CellType* cell, CellType mask, bool data_only) : cell_(cell), mask_(mask), data_only_(data_only) {} inline CellType* cell() { return cell_; } inline CellType mask() { return mask_; } #ifdef DEBUG bool operator==(const MarkBit& other) { return cell_ == other.cell_ && mask_ == other.mask_; } #endif inline void Set() { *cell_ |= mask_; } inline bool Get() { return (*cell_ & mask_) != 0; } inline void Clear() { *cell_ &= ~mask_; } inline bool data_only() { return data_only_; } inline MarkBit Next() { CellType new_mask = mask_ << 1; if (new_mask == 0) { return MarkBit(cell_ + 1, 1, data_only_); } else { return MarkBit(cell_, new_mask, data_only_); } } private: CellType* cell_; CellType mask_; // This boolean indicates that the object is in a data-only space with no // pointers. This enables some optimizations when marking. // It is expected that this field is inlined and turned into control flow // at the place where the MarkBit object is created. bool data_only_; }; // Bitmap is a sequence of cells each containing fixed number of bits. class Bitmap { public: static const uint32_t kBitsPerCell = 32; static const uint32_t kBitsPerCellLog2 = 5; static const uint32_t kBitIndexMask = kBitsPerCell - 1; static const uint32_t kBytesPerCell = kBitsPerCell / kBitsPerByte; static const uint32_t kBytesPerCellLog2 = kBitsPerCellLog2 - kBitsPerByteLog2; static const size_t kLength = (1 << kPageSizeBits) >> (kPointerSizeLog2); static const size_t kSize = (1 << kPageSizeBits) >> (kPointerSizeLog2 + kBitsPerByteLog2); static int CellsForLength(int length) { return (length + kBitsPerCell - 1) >> kBitsPerCellLog2; } int CellsCount() { return CellsForLength(kLength); } static int SizeFor(int cells_count) { return sizeof(MarkBit::CellType) * cells_count; } INLINE(static uint32_t IndexToCell(uint32_t index)) { return index >> kBitsPerCellLog2; } INLINE(static uint32_t CellToIndex(uint32_t index)) { return index << kBitsPerCellLog2; } INLINE(static uint32_t CellAlignIndex(uint32_t index)) { return (index + kBitIndexMask) & ~kBitIndexMask; } INLINE(MarkBit::CellType* cells()) { return reinterpret_cast(this); } INLINE(Address address()) { return reinterpret_cast
(this); } INLINE(static Bitmap* FromAddress(Address addr)) { return reinterpret_cast(addr); } inline MarkBit MarkBitFromIndex(uint32_t index, bool data_only = false) { MarkBit::CellType mask = 1 << (index & kBitIndexMask); MarkBit::CellType* cell = this->cells() + (index >> kBitsPerCellLog2); return MarkBit(cell, mask, data_only); } static inline void Clear(MemoryChunk* chunk); static void PrintWord(uint32_t word, uint32_t himask = 0) { for (uint32_t mask = 1; mask != 0; mask <<= 1) { if ((mask & himask) != 0) PrintF("["); PrintF((mask & word) ? "1" : "0"); if ((mask & himask) != 0) PrintF("]"); } } class CellPrinter { public: CellPrinter() : seq_start(0), seq_type(0), seq_length(0) {} void Print(uint32_t pos, uint32_t cell) { if (cell == seq_type) { seq_length++; return; } Flush(); if (IsSeq(cell)) { seq_start = pos; seq_length = 0; seq_type = cell; return; } PrintF("%d: ", pos); PrintWord(cell); PrintF("\n"); } void Flush() { if (seq_length > 0) { PrintF("%d: %dx%d\n", seq_start, seq_type == 0 ? 0 : 1, seq_length * kBitsPerCell); seq_length = 0; } } static bool IsSeq(uint32_t cell) { return cell == 0 || cell == 0xFFFFFFFF; } private: uint32_t seq_start; uint32_t seq_type; uint32_t seq_length; }; void Print() { CellPrinter printer; for (int i = 0; i < CellsCount(); i++) { printer.Print(i, cells()[i]); } printer.Flush(); PrintF("\n"); } bool IsClean() { for (int i = 0; i < CellsCount(); i++) { if (cells()[i] != 0) { return false; } } return true; } }; class SkipList; class SlotsBuffer; // MemoryChunk represents a memory region owned by a specific space. // It is divided into the header and the body. Chunk start is always // 1MB aligned. Start of the body is aligned so it can accommodate // any heap object. class MemoryChunk { public: // Only works if the pointer is in the first kPageSize of the MemoryChunk. static MemoryChunk* FromAddress(Address a) { return reinterpret_cast(OffsetFrom(a) & ~kAlignmentMask); } static const MemoryChunk* FromAddress(const byte* a) { return reinterpret_cast(OffsetFrom(a) & ~kAlignmentMask); } // Only works for addresses in pointer spaces, not data or code spaces. static inline MemoryChunk* FromAnyPointerAddress(Heap* heap, Address addr); Address address() { return reinterpret_cast
(this); } bool is_valid() { return address() != NULL; } MemoryChunk* next_chunk() const { return reinterpret_cast(base::Acquire_Load(&next_chunk_)); } MemoryChunk* prev_chunk() const { return reinterpret_cast(base::Acquire_Load(&prev_chunk_)); } void set_next_chunk(MemoryChunk* next) { base::Release_Store(&next_chunk_, reinterpret_cast(next)); } void set_prev_chunk(MemoryChunk* prev) { base::Release_Store(&prev_chunk_, reinterpret_cast(prev)); } Space* owner() const { if ((reinterpret_cast(owner_) & kPageHeaderTagMask) == kPageHeaderTag) { return reinterpret_cast(reinterpret_cast(owner_) - kPageHeaderTag); } else { return NULL; } } void set_owner(Space* space) { DCHECK((reinterpret_cast(space) & kPageHeaderTagMask) == 0); owner_ = reinterpret_cast
(space) + kPageHeaderTag; DCHECK((reinterpret_cast(owner_) & kPageHeaderTagMask) == kPageHeaderTag); } base::VirtualMemory* reserved_memory() { return &reservation_; } void InitializeReservedMemory() { reservation_.Reset(); } void set_reserved_memory(base::VirtualMemory* reservation) { DCHECK_NOT_NULL(reservation); reservation_.TakeControl(reservation); } bool scan_on_scavenge() { return IsFlagSet(SCAN_ON_SCAVENGE); } void initialize_scan_on_scavenge(bool scan) { if (scan) { SetFlag(SCAN_ON_SCAVENGE); } else { ClearFlag(SCAN_ON_SCAVENGE); } } inline void set_scan_on_scavenge(bool scan); int store_buffer_counter() { return store_buffer_counter_; } void set_store_buffer_counter(int counter) { store_buffer_counter_ = counter; } bool Contains(Address addr) { return addr >= area_start() && addr < area_end(); } // Checks whether addr can be a limit of addresses in this page. // It's a limit if it's in the page, or if it's just after the // last byte of the page. bool ContainsLimit(Address addr) { return addr >= area_start() && addr <= area_end(); } // Every n write barrier invocations we go to runtime even though // we could have handled it in generated code. This lets us check // whether we have hit the limit and should do some more marking. static const int kWriteBarrierCounterGranularity = 500; enum MemoryChunkFlags { IS_EXECUTABLE, ABOUT_TO_BE_FREED, POINTERS_TO_HERE_ARE_INTERESTING, POINTERS_FROM_HERE_ARE_INTERESTING, SCAN_ON_SCAVENGE, IN_FROM_SPACE, // Mutually exclusive with IN_TO_SPACE. IN_TO_SPACE, // All pages in new space has one of these two set. NEW_SPACE_BELOW_AGE_MARK, CONTAINS_ONLY_DATA, EVACUATION_CANDIDATE, RESCAN_ON_EVACUATION, // WAS_SWEPT indicates that marking bits have been cleared by the sweeper, // otherwise marking bits are still intact. WAS_SWEPT, // Large objects can have a progress bar in their page header. These object // are scanned in increments and will be kept black while being scanned. // Even if the mutator writes to them they will be kept black and a white // to grey transition is performed in the value. HAS_PROGRESS_BAR, // Last flag, keep at bottom. NUM_MEMORY_CHUNK_FLAGS }; static const int kPointersToHereAreInterestingMask = 1 << POINTERS_TO_HERE_ARE_INTERESTING; static const int kPointersFromHereAreInterestingMask = 1 << POINTERS_FROM_HERE_ARE_INTERESTING; static const int kEvacuationCandidateMask = 1 << EVACUATION_CANDIDATE; static const int kSkipEvacuationSlotsRecordingMask = (1 << EVACUATION_CANDIDATE) | (1 << RESCAN_ON_EVACUATION) | (1 << IN_FROM_SPACE) | (1 << IN_TO_SPACE); void SetFlag(int flag) { flags_ |= static_cast(1) << flag; } void ClearFlag(int flag) { flags_ &= ~(static_cast(1) << flag); } void SetFlagTo(int flag, bool value) { if (value) { SetFlag(flag); } else { ClearFlag(flag); } } bool IsFlagSet(int flag) { return (flags_ & (static_cast(1) << flag)) != 0; } // Set or clear multiple flags at a time. The flags in the mask // are set to the value in "flags", the rest retain the current value // in flags_. void SetFlags(intptr_t flags, intptr_t mask) { flags_ = (flags_ & ~mask) | (flags & mask); } // Return all current flags. intptr_t GetFlags() { return flags_; } // SWEEPING_DONE - The page state when sweeping is complete or sweeping must // not be performed on that page. // SWEEPING_FINALIZE - A sweeper thread is done sweeping this page and will // not touch the page memory anymore. // SWEEPING_IN_PROGRESS - This page is currently swept by a sweeper thread. // SWEEPING_PENDING - This page is ready for parallel sweeping. enum ParallelSweepingState { SWEEPING_DONE, SWEEPING_FINALIZE, SWEEPING_IN_PROGRESS, SWEEPING_PENDING }; ParallelSweepingState parallel_sweeping() { return static_cast( base::Acquire_Load(¶llel_sweeping_)); } void set_parallel_sweeping(ParallelSweepingState state) { base::Release_Store(¶llel_sweeping_, state); } bool TryParallelSweeping() { return base::Acquire_CompareAndSwap(¶llel_sweeping_, SWEEPING_PENDING, SWEEPING_IN_PROGRESS) == SWEEPING_PENDING; } bool SweepingCompleted() { return parallel_sweeping() <= SWEEPING_FINALIZE; } // Manage live byte count (count of bytes known to be live, // because they are marked black). void ResetLiveBytes() { if (FLAG_gc_verbose) { PrintF("ResetLiveBytes:%p:%x->0\n", static_cast(this), live_byte_count_); } live_byte_count_ = 0; } void IncrementLiveBytes(int by) { if (FLAG_gc_verbose) { printf("UpdateLiveBytes:%p:%x%c=%x->%x\n", static_cast(this), live_byte_count_, ((by < 0) ? '-' : '+'), ((by < 0) ? -by : by), live_byte_count_ + by); } live_byte_count_ += by; DCHECK_LE(static_cast(live_byte_count_), size_); } int LiveBytes() { DCHECK(static_cast(live_byte_count_) <= size_); return live_byte_count_; } int write_barrier_counter() { return static_cast(write_barrier_counter_); } void set_write_barrier_counter(int counter) { write_barrier_counter_ = counter; } int progress_bar() { DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); return progress_bar_; } void set_progress_bar(int progress_bar) { DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); progress_bar_ = progress_bar; } void ResetProgressBar() { if (IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) { set_progress_bar(0); ClearFlag(MemoryChunk::HAS_PROGRESS_BAR); } } bool IsLeftOfProgressBar(Object** slot) { Address slot_address = reinterpret_cast
(slot); DCHECK(slot_address > this->address()); return (slot_address - (this->address() + kObjectStartOffset)) < progress_bar(); } static void IncrementLiveBytesFromGC(Address address, int by) { MemoryChunk::FromAddress(address)->IncrementLiveBytes(by); } static void IncrementLiveBytesFromMutator(Address address, int by); static const intptr_t kAlignment = (static_cast(1) << kPageSizeBits); static const intptr_t kAlignmentMask = kAlignment - 1; static const intptr_t kSizeOffset = 0; static const intptr_t kLiveBytesOffset = kSizeOffset + kPointerSize + kPointerSize + kPointerSize + kPointerSize + kPointerSize + kPointerSize + kPointerSize + kPointerSize + kIntSize; static const size_t kSlotsBufferOffset = kLiveBytesOffset + kIntSize; static const size_t kWriteBarrierCounterOffset = kSlotsBufferOffset + kPointerSize + kPointerSize; static const size_t kHeaderSize = kWriteBarrierCounterOffset + kPointerSize + kIntSize + kIntSize + kPointerSize + 5 * kPointerSize + kPointerSize + kPointerSize; static const int kBodyOffset = CODE_POINTER_ALIGN(kHeaderSize + Bitmap::kSize); // The start offset of the object area in a page. Aligned to both maps and // code alignment to be suitable for both. Also aligned to 32 words because // the marking bitmap is arranged in 32 bit chunks. static const int kObjectStartAlignment = 32 * kPointerSize; static const int kObjectStartOffset = kBodyOffset - 1 + (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment); size_t size() const { return size_; } void set_size(size_t size) { size_ = size; } void SetArea(Address area_start, Address area_end) { area_start_ = area_start; area_end_ = area_end; } Executability executable() { return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE; } bool ContainsOnlyData() { return IsFlagSet(CONTAINS_ONLY_DATA); } bool InNewSpace() { return (flags_ & ((1 << IN_FROM_SPACE) | (1 << IN_TO_SPACE))) != 0; } bool InToSpace() { return IsFlagSet(IN_TO_SPACE); } bool InFromSpace() { return IsFlagSet(IN_FROM_SPACE); } // --------------------------------------------------------------------- // Markbits support inline Bitmap* markbits() { return Bitmap::FromAddress(address() + kHeaderSize); } void PrintMarkbits() { markbits()->Print(); } inline uint32_t AddressToMarkbitIndex(Address addr) { return static_cast(addr - this->address()) >> kPointerSizeLog2; } inline static uint32_t FastAddressToMarkbitIndex(Address addr) { const intptr_t offset = reinterpret_cast(addr) & kAlignmentMask; return static_cast(offset) >> kPointerSizeLog2; } inline Address MarkbitIndexToAddress(uint32_t index) { return this->address() + (index << kPointerSizeLog2); } void InsertAfter(MemoryChunk* other); void Unlink(); inline Heap* heap() const { return heap_; } static const int kFlagsOffset = kPointerSize; bool IsEvacuationCandidate() { return IsFlagSet(EVACUATION_CANDIDATE); } bool ShouldSkipEvacuationSlotRecording() { return (flags_ & kSkipEvacuationSlotsRecordingMask) != 0; } inline SkipList* skip_list() { return skip_list_; } inline void set_skip_list(SkipList* skip_list) { skip_list_ = skip_list; } inline SlotsBuffer* slots_buffer() { return slots_buffer_; } inline SlotsBuffer** slots_buffer_address() { return &slots_buffer_; } void MarkEvacuationCandidate() { DCHECK(slots_buffer_ == NULL); SetFlag(EVACUATION_CANDIDATE); } void ClearEvacuationCandidate() { DCHECK(slots_buffer_ == NULL); ClearFlag(EVACUATION_CANDIDATE); } Address area_start() { return area_start_; } Address area_end() { return area_end_; } int area_size() { return static_cast(area_end() - area_start()); } bool CommitArea(size_t requested); // Approximate amount of physical memory committed for this chunk. size_t CommittedPhysicalMemory() { return high_water_mark_; } static inline void UpdateHighWaterMark(Address mark); protected: size_t size_; intptr_t flags_; // Start and end of allocatable memory on this chunk. Address area_start_; Address area_end_; // If the chunk needs to remember its memory reservation, it is stored here. base::VirtualMemory reservation_; // The identity of the owning space. This is tagged as a failure pointer, but // no failure can be in an object, so this can be distinguished from any entry // in a fixed array. Address owner_; Heap* heap_; // Used by the store buffer to keep track of which pages to mark scan-on- // scavenge. int store_buffer_counter_; // Count of bytes marked black on page. int live_byte_count_; SlotsBuffer* slots_buffer_; SkipList* skip_list_; intptr_t write_barrier_counter_; // Used by the incremental marker to keep track of the scanning progress in // large objects that have a progress bar and are scanned in increments. int progress_bar_; // Assuming the initial allocation on a page is sequential, // count highest number of bytes ever allocated on the page. int high_water_mark_; base::AtomicWord parallel_sweeping_; // PagedSpace free-list statistics. intptr_t available_in_small_free_list_; intptr_t available_in_medium_free_list_; intptr_t available_in_large_free_list_; intptr_t available_in_huge_free_list_; intptr_t non_available_small_blocks_; static MemoryChunk* Initialize(Heap* heap, Address base, size_t size, Address area_start, Address area_end, Executability executable, Space* owner); private: // next_chunk_ holds a pointer of type MemoryChunk base::AtomicWord next_chunk_; // prev_chunk_ holds a pointer of type MemoryChunk base::AtomicWord prev_chunk_; friend class MemoryAllocator; }; STATIC_ASSERT(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize); // ----------------------------------------------------------------------------- // A page is a memory chunk of a size 1MB. Large object pages may be larger. // // The only way to get a page pointer is by calling factory methods: // Page* p = Page::FromAddress(addr); or // Page* p = Page::FromAllocationTop(top); class Page : public MemoryChunk { public: // Returns the page containing a given address. The address ranges // from [page_addr .. page_addr + kPageSize[ // This only works if the object is in fact in a page. See also MemoryChunk:: // FromAddress() and FromAnyAddress(). INLINE(static Page* FromAddress(Address a)) { return reinterpret_cast(OffsetFrom(a) & ~kPageAlignmentMask); } // Returns the page containing an allocation top. Because an allocation // top address can be the upper bound of the page, we need to subtract // it with kPointerSize first. The address ranges from // [page_addr + kObjectStartOffset .. page_addr + kPageSize]. INLINE(static Page* FromAllocationTop(Address top)) { Page* p = FromAddress(top - kPointerSize); return p; } // Returns the next page in the chain of pages owned by a space. inline Page* next_page(); inline Page* prev_page(); inline void set_next_page(Page* page); inline void set_prev_page(Page* page); // Checks whether an address is page aligned. static bool IsAlignedToPageSize(Address a) { return 0 == (OffsetFrom(a) & kPageAlignmentMask); } // Returns the offset of a given address to this page. INLINE(int Offset(Address a)) { int offset = static_cast(a - address()); return offset; } // Returns the address for a given offset to the this page. Address OffsetToAddress(int offset) { DCHECK_PAGE_OFFSET(offset); return address() + offset; } // --------------------------------------------------------------------- // Page size in bytes. This must be a multiple of the OS page size. static const int kPageSize = 1 << kPageSizeBits; // Maximum object size that fits in a page. Objects larger than that size // are allocated in large object space and are never moved in memory. This // also applies to new space allocation, since objects are never migrated // from new space to large object space. Takes double alignment into account. static const int kMaxRegularHeapObjectSize = kPageSize - kObjectStartOffset; // Page size mask. static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1; inline void ClearGCFields(); static inline Page* Initialize(Heap* heap, MemoryChunk* chunk, Executability executable, PagedSpace* owner); void InitializeAsAnchor(PagedSpace* owner); bool WasSwept() { return IsFlagSet(WAS_SWEPT); } void SetWasSwept() { SetFlag(WAS_SWEPT); } void ClearWasSwept() { ClearFlag(WAS_SWEPT); } void ResetFreeListStatistics(); #define FRAGMENTATION_STATS_ACCESSORS(type, name) \ type name() { return name##_; } \ void set_##name(type name) { name##_ = name; } \ void add_##name(type name) { name##_ += name; } FRAGMENTATION_STATS_ACCESSORS(intptr_t, non_available_small_blocks) FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_small_free_list) FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_medium_free_list) FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_large_free_list) FRAGMENTATION_STATS_ACCESSORS(intptr_t, available_in_huge_free_list) #undef FRAGMENTATION_STATS_ACCESSORS #ifdef DEBUG void Print(); #endif // DEBUG friend class MemoryAllocator; }; STATIC_ASSERT(sizeof(Page) <= MemoryChunk::kHeaderSize); class LargePage : public MemoryChunk { public: HeapObject* GetObject() { return HeapObject::FromAddress(area_start()); } inline LargePage* next_page() const { return static_cast(next_chunk()); } inline void set_next_page(LargePage* page) { set_next_chunk(page); } private: static inline LargePage* Initialize(Heap* heap, MemoryChunk* chunk); friend class MemoryAllocator; }; STATIC_ASSERT(sizeof(LargePage) <= MemoryChunk::kHeaderSize); // ---------------------------------------------------------------------------- // Space is the abstract superclass for all allocation spaces. class Space : public Malloced { public: Space(Heap* heap, AllocationSpace id, Executability executable) : heap_(heap), id_(id), executable_(executable) {} virtual ~Space() {} Heap* heap() const { return heap_; } // Does the space need executable memory? Executability executable() { return executable_; } // Identity used in error reporting. AllocationSpace identity() { return id_; } // Returns allocated size. virtual intptr_t Size() = 0; // Returns size of objects. Can differ from the allocated size // (e.g. see LargeObjectSpace). virtual intptr_t SizeOfObjects() { return Size(); } virtual int RoundSizeDownToObjectAlignment(int size) { if (id_ == CODE_SPACE) { return RoundDown(size, kCodeAlignment); } else { return RoundDown(size, kPointerSize); } } #ifdef DEBUG virtual void Print() = 0; #endif private: Heap* heap_; AllocationSpace id_; Executability executable_; }; // ---------------------------------------------------------------------------- // All heap objects containing executable code (code objects) must be allocated // from a 2 GB range of memory, so that they can call each other using 32-bit // displacements. This happens automatically on 32-bit platforms, where 32-bit // displacements cover the entire 4GB virtual address space. On 64-bit // platforms, we support this using the CodeRange object, which reserves and // manages a range of virtual memory. class CodeRange { public: explicit CodeRange(Isolate* isolate); ~CodeRange() { TearDown(); } // Reserves a range of virtual memory, but does not commit any of it. // Can only be called once, at heap initialization time. // Returns false on failure. bool SetUp(size_t requested_size); // Frees the range of virtual memory, and frees the data structures used to // manage it. void TearDown(); bool valid() { return code_range_ != NULL; } Address start() { DCHECK(valid()); return static_cast
(code_range_->address()); } bool contains(Address address) { if (!valid()) return false; Address start = static_cast
(code_range_->address()); return start <= address && address < start + code_range_->size(); } // Allocates a chunk of memory from the large-object portion of // the code range. On platforms with no separate code range, should // not be called. MUST_USE_RESULT Address AllocateRawMemory(const size_t requested_size, const size_t commit_size, size_t* allocated); bool CommitRawMemory(Address start, size_t length); bool UncommitRawMemory(Address start, size_t length); void FreeRawMemory(Address buf, size_t length); private: Isolate* isolate_; // The reserved range of virtual memory that all code objects are put in. base::VirtualMemory* code_range_; // Plain old data class, just a struct plus a constructor. class FreeBlock { public: FreeBlock(Address start_arg, size_t size_arg) : start(start_arg), size(size_arg) { DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); DCHECK(size >= static_cast(Page::kPageSize)); } FreeBlock(void* start_arg, size_t size_arg) : start(static_cast
(start_arg)), size(size_arg) { DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); DCHECK(size >= static_cast(Page::kPageSize)); } Address start; size_t size; }; // Freed blocks of memory are added to the free list. When the allocation // list is exhausted, the free list is sorted and merged to make the new // allocation list. List free_list_; // Memory is allocated from the free blocks on the allocation list. // The block at current_allocation_block_index_ is the current block. List allocation_list_; int current_allocation_block_index_; // Finds a block on the allocation list that contains at least the // requested amount of memory. If none is found, sorts and merges // the existing free memory blocks, and searches again. // If none can be found, returns false. bool GetNextAllocationBlock(size_t requested); // Compares the start addresses of two free blocks. static int CompareFreeBlockAddress(const FreeBlock* left, const FreeBlock* right); DISALLOW_COPY_AND_ASSIGN(CodeRange); }; class SkipList { public: SkipList() { Clear(); } void Clear() { for (int idx = 0; idx < kSize; idx++) { starts_[idx] = reinterpret_cast
(-1); } } Address StartFor(Address addr) { return starts_[RegionNumber(addr)]; } void AddObject(Address addr, int size) { int start_region = RegionNumber(addr); int end_region = RegionNumber(addr + size - kPointerSize); for (int idx = start_region; idx <= end_region; idx++) { if (starts_[idx] > addr) starts_[idx] = addr; } } static inline int RegionNumber(Address addr) { return (OffsetFrom(addr) & Page::kPageAlignmentMask) >> kRegionSizeLog2; } static void Update(Address addr, int size) { Page* page = Page::FromAddress(addr); SkipList* list = page->skip_list(); if (list == NULL) { list = new SkipList(); page->set_skip_list(list); } list->AddObject(addr, size); } private: static const int kRegionSizeLog2 = 13; static const int kRegionSize = 1 << kRegionSizeLog2; static const int kSize = Page::kPageSize / kRegionSize; STATIC_ASSERT(Page::kPageSize % kRegionSize == 0); Address starts_[kSize]; }; // ---------------------------------------------------------------------------- // A space acquires chunks of memory from the operating system. The memory // allocator allocated and deallocates pages for the paged heap spaces and large // pages for large object space. // // Each space has to manage it's own pages. // class MemoryAllocator { public: explicit MemoryAllocator(Isolate* isolate); // Initializes its internal bookkeeping structures. // Max capacity of the total space and executable memory limit. bool SetUp(intptr_t max_capacity, intptr_t capacity_executable); void TearDown(); Page* AllocatePage(intptr_t size, PagedSpace* owner, Executability executable); LargePage* AllocateLargePage(intptr_t object_size, Space* owner, Executability executable); void Free(MemoryChunk* chunk); // Returns the maximum available bytes of heaps. intptr_t Available() { return capacity_ < size_ ? 0 : capacity_ - size_; } // Returns allocated spaces in bytes. intptr_t Size() { return size_; } // Returns the maximum available executable bytes of heaps. intptr_t AvailableExecutable() { if (capacity_executable_ < size_executable_) return 0; return capacity_executable_ - size_executable_; } // Returns allocated executable spaces in bytes. intptr_t SizeExecutable() { return size_executable_; } // Returns maximum available bytes that the old space can have. intptr_t MaxAvailable() { return (Available() / Page::kPageSize) * Page::kMaxRegularHeapObjectSize; } // Returns an indication of whether a pointer is in a space that has // been allocated by this MemoryAllocator. V8_INLINE bool IsOutsideAllocatedSpace(const void* address) const { return address < lowest_ever_allocated_ || address >= highest_ever_allocated_; } #ifdef DEBUG // Reports statistic info of the space. void ReportStatistics(); #endif // Returns a MemoryChunk in which the memory region from commit_area_size to // reserve_area_size of the chunk area is reserved but not committed, it // could be committed later by calling MemoryChunk::CommitArea. MemoryChunk* AllocateChunk(intptr_t reserve_area_size, intptr_t commit_area_size, Executability executable, Space* space); Address ReserveAlignedMemory(size_t requested, size_t alignment, base::VirtualMemory* controller); Address AllocateAlignedMemory(size_t reserve_size, size_t commit_size, size_t alignment, Executability executable, base::VirtualMemory* controller); bool CommitMemory(Address addr, size_t size, Executability executable); void FreeMemory(base::VirtualMemory* reservation, Executability executable); void FreeMemory(Address addr, size_t size, Executability executable); // Commit a contiguous block of memory from the initial chunk. Assumes that // the address is not NULL, the size is greater than zero, and that the // block is contained in the initial chunk. Returns true if it succeeded // and false otherwise. bool CommitBlock(Address start, size_t size, Executability executable); // Uncommit a contiguous block of memory [start..(start+size)[. // start is not NULL, the size is greater than zero, and the // block is contained in the initial chunk. Returns true if it succeeded // and false otherwise. bool UncommitBlock(Address start, size_t size); // Zaps a contiguous block of memory [start..(start+size)[ thus // filling it up with a recognizable non-NULL bit pattern. void ZapBlock(Address start, size_t size); void PerformAllocationCallback(ObjectSpace space, AllocationAction action, size_t size); void AddMemoryAllocationCallback(MemoryAllocationCallback callback, ObjectSpace space, AllocationAction action); void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback); bool MemoryAllocationCallbackRegistered(MemoryAllocationCallback callback); static int CodePageGuardStartOffset(); static int CodePageGuardSize(); static int CodePageAreaStartOffset(); static int CodePageAreaEndOffset(); static int CodePageAreaSize() { return CodePageAreaEndOffset() - CodePageAreaStartOffset(); } MUST_USE_RESULT bool CommitExecutableMemory(base::VirtualMemory* vm, Address start, size_t commit_size, size_t reserved_size); private: Isolate* isolate_; // Maximum space size in bytes. size_t capacity_; // Maximum subset of capacity_ that can be executable size_t capacity_executable_; // Allocated space size in bytes. size_t size_; // Allocated executable space size in bytes. size_t size_executable_; // We keep the lowest and highest addresses allocated as a quick way // of determining that pointers are outside the heap. The estimate is // conservative, i.e. not all addrsses in 'allocated' space are allocated // to our heap. The range is [lowest, highest[, inclusive on the low end // and exclusive on the high end. void* lowest_ever_allocated_; void* highest_ever_allocated_; struct MemoryAllocationCallbackRegistration { MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback, ObjectSpace space, AllocationAction action) : callback(callback), space(space), action(action) {} MemoryAllocationCallback callback; ObjectSpace space; AllocationAction action; }; // A List of callback that are triggered when memory is allocated or free'd List memory_allocation_callbacks_; // Initializes pages in a chunk. Returns the first page address. // This function and GetChunkId() are provided for the mark-compact // collector to rebuild page headers in the from space, which is // used as a marking stack and its page headers are destroyed. Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk, PagedSpace* owner); void UpdateAllocatedSpaceLimits(void* low, void* high) { lowest_ever_allocated_ = Min(lowest_ever_allocated_, low); highest_ever_allocated_ = Max(highest_ever_allocated_, high); } DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator); }; // ----------------------------------------------------------------------------- // Interface for heap object iterator to be implemented by all object space // object iterators. // // NOTE: The space specific object iterators also implements the own next() // method which is used to avoid using virtual functions // iterating a specific space. class ObjectIterator : public Malloced { public: virtual ~ObjectIterator() {} virtual HeapObject* next_object() = 0; }; // ----------------------------------------------------------------------------- // Heap object iterator in new/old/map spaces. // // A HeapObjectIterator iterates objects from the bottom of the given space // to its top or from the bottom of the given page to its top. // // If objects are allocated in the page during iteration the iterator may // or may not iterate over those objects. The caller must create a new // iterator in order to be sure to visit these new objects. class HeapObjectIterator : public ObjectIterator { public: // Creates a new object iterator in a given space. // If the size function is not given, the iterator calls the default // Object::Size(). explicit HeapObjectIterator(PagedSpace* space); HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func); HeapObjectIterator(Page* page, HeapObjectCallback size_func); // Advance to the next object, skipping free spaces and other fillers and // skipping the special garbage section of which there is one per space. // Returns NULL when the iteration has ended. inline HeapObject* Next() { do { HeapObject* next_obj = FromCurrentPage(); if (next_obj != NULL) return next_obj; } while (AdvanceToNextPage()); return NULL; } virtual HeapObject* next_object() { return Next(); } private: enum PageMode { kOnePageOnly, kAllPagesInSpace }; Address cur_addr_; // Current iteration point. Address cur_end_; // End iteration point. HeapObjectCallback size_func_; // Size function or NULL. PagedSpace* space_; PageMode page_mode_; // Fast (inlined) path of next(). inline HeapObject* FromCurrentPage(); // Slow path of next(), goes into the next page. Returns false if the // iteration has ended. bool AdvanceToNextPage(); // Initializes fields. inline void Initialize(PagedSpace* owner, Address start, Address end, PageMode mode, HeapObjectCallback size_func); }; // ----------------------------------------------------------------------------- // A PageIterator iterates the pages in a paged space. class PageIterator BASE_EMBEDDED { public: explicit inline PageIterator(PagedSpace* space); inline bool has_next(); inline Page* next(); private: PagedSpace* space_; Page* prev_page_; // Previous page returned. // Next page that will be returned. Cached here so that we can use this // iterator for operations that deallocate pages. Page* next_page_; }; // ----------------------------------------------------------------------------- // A space has a circular list of pages. The next page can be accessed via // Page::next_page() call. // An abstraction of allocation and relocation pointers in a page-structured // space. class AllocationInfo { public: AllocationInfo() : top_(NULL), limit_(NULL) {} INLINE(void set_top(Address top)) { SLOW_DCHECK(top == NULL || (reinterpret_cast(top) & HeapObjectTagMask()) == 0); top_ = top; } INLINE(Address top()) const { SLOW_DCHECK(top_ == NULL || (reinterpret_cast(top_) & HeapObjectTagMask()) == 0); return top_; } Address* top_address() { return &top_; } INLINE(void set_limit(Address limit)) { SLOW_DCHECK(limit == NULL || (reinterpret_cast(limit) & HeapObjectTagMask()) == 0); limit_ = limit; } INLINE(Address limit()) const { SLOW_DCHECK(limit_ == NULL || (reinterpret_cast(limit_) & HeapObjectTagMask()) == 0); return limit_; } Address* limit_address() { return &limit_; } #ifdef DEBUG bool VerifyPagedAllocation() { return (Page::FromAllocationTop(top_) == Page::FromAllocationTop(limit_)) && (top_ <= limit_); } #endif private: // Current allocation top. Address top_; // Current allocation limit. Address limit_; }; // An abstraction of the accounting statistics of a page-structured space. // The 'capacity' of a space is the number of object-area bytes (i.e., not // including page bookkeeping structures) currently in the space. The 'size' // of a space is the number of allocated bytes, the 'waste' in the space is // the number of bytes that are not allocated and not available to // allocation without reorganizing the space via a GC (e.g. small blocks due // to internal fragmentation, top of page areas in map space), and the bytes // 'available' is the number of unallocated bytes that are not waste. The // capacity is the sum of size, waste, and available. // // The stats are only set by functions that ensure they stay balanced. These // functions increase or decrease one of the non-capacity stats in // conjunction with capacity, or else they always balance increases and // decreases to the non-capacity stats. class AllocationStats BASE_EMBEDDED { public: AllocationStats() { Clear(); } // Zero out all the allocation statistics (i.e., no capacity). void Clear() { capacity_ = 0; max_capacity_ = 0; size_ = 0; waste_ = 0; } void ClearSizeWaste() { size_ = capacity_; waste_ = 0; } // Reset the allocation statistics (i.e., available = capacity with no // wasted or allocated bytes). void Reset() { size_ = 0; waste_ = 0; } // Accessors for the allocation statistics. intptr_t Capacity() { return capacity_; } intptr_t MaxCapacity() { return max_capacity_; } intptr_t Size() { return size_; } intptr_t Waste() { return waste_; } // Grow the space by adding available bytes. They are initially marked as // being in use (part of the size), but will normally be immediately freed, // putting them on the free list and removing them from size_. void ExpandSpace(int size_in_bytes) { capacity_ += size_in_bytes; size_ += size_in_bytes; if (capacity_ > max_capacity_) { max_capacity_ = capacity_; } DCHECK(size_ >= 0); } // Shrink the space by removing available bytes. Since shrinking is done // during sweeping, bytes have been marked as being in use (part of the size) // and are hereby freed. void ShrinkSpace(int size_in_bytes) { capacity_ -= size_in_bytes; size_ -= size_in_bytes; DCHECK(size_ >= 0); } // Allocate from available bytes (available -> size). void AllocateBytes(intptr_t size_in_bytes) { size_ += size_in_bytes; DCHECK(size_ >= 0); } // Free allocated bytes, making them available (size -> available). void DeallocateBytes(intptr_t size_in_bytes) { size_ -= size_in_bytes; DCHECK(size_ >= 0); } // Waste free bytes (available -> waste). void WasteBytes(int size_in_bytes) { DCHECK(size_in_bytes >= 0); waste_ += size_in_bytes; } private: intptr_t capacity_; intptr_t max_capacity_; intptr_t size_; intptr_t waste_; }; // ----------------------------------------------------------------------------- // Free lists for old object spaces // // Free-list nodes are free blocks in the heap. They look like heap objects // (free-list node pointers have the heap object tag, and they have a map like // a heap object). They have a size and a next pointer. The next pointer is // the raw address of the next free list node (or NULL). class FreeListNode : public HeapObject { public: // Obtain a free-list node from a raw address. This is not a cast because // it does not check nor require that the first word at the address is a map // pointer. static FreeListNode* FromAddress(Address address) { return reinterpret_cast(HeapObject::FromAddress(address)); } static inline bool IsFreeListNode(HeapObject* object); // Set the size in bytes, which can be read with HeapObject::Size(). This // function also writes a map to the first word of the block so that it // looks like a heap object to the garbage collector and heap iteration // functions. void set_size(Heap* heap, int size_in_bytes); // Accessors for the next field. inline FreeListNode* next(); inline FreeListNode** next_address(); inline void set_next(FreeListNode* next); inline void Zap(); static inline FreeListNode* cast(Object* object) { return reinterpret_cast(object); } private: static const int kNextOffset = POINTER_SIZE_ALIGN(FreeSpace::kHeaderSize); DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode); }; // The free list category holds a pointer to the top element and a pointer to // the end element of the linked list of free memory blocks. class FreeListCategory { public: FreeListCategory() : top_(0), end_(NULL), available_(0) {} intptr_t Concatenate(FreeListCategory* category); void Reset(); void Free(FreeListNode* node, int size_in_bytes); FreeListNode* PickNodeFromList(int* node_size); FreeListNode* PickNodeFromList(int size_in_bytes, int* node_size); intptr_t EvictFreeListItemsInList(Page* p); bool ContainsPageFreeListItemsInList(Page* p); void RepairFreeList(Heap* heap); FreeListNode* top() const { return reinterpret_cast(base::NoBarrier_Load(&top_)); } void set_top(FreeListNode* top) { base::NoBarrier_Store(&top_, reinterpret_cast(top)); } FreeListNode** GetEndAddress() { return &end_; } FreeListNode* end() const { return end_; } void set_end(FreeListNode* end) { end_ = end; } int* GetAvailableAddress() { return &available_; } int available() const { return available_; } void set_available(int available) { available_ = available; } base::Mutex* mutex() { return &mutex_; } bool IsEmpty() { return top() == 0; } #ifdef DEBUG intptr_t SumFreeList(); int FreeListLength(); #endif private: // top_ points to the top FreeListNode* in the free list category. base::AtomicWord top_; FreeListNode* end_; base::Mutex mutex_; // Total available bytes in all blocks of this free list category. int available_; }; // The free list for the old space. The free list is organized in such a way // as to encourage objects allocated around the same time to be near each // other. The normal way to allocate is intended to be by bumping a 'top' // pointer until it hits a 'limit' pointer. When the limit is hit we need to // find a new space to allocate from. This is done with the free list, which // is divided up into rough categories to cut down on waste. Having finer // categories would scatter allocation more. // The old space free list is organized in categories. // 1-31 words: Such small free areas are discarded for efficiency reasons. // They can be reclaimed by the compactor. However the distance between top // and limit may be this small. // 32-255 words: There is a list of spaces this large. It is used for top and // limit when the object we need to allocate is 1-31 words in size. These // spaces are called small. // 256-2047 words: There is a list of spaces this large. It is used for top and // limit when the object we need to allocate is 32-255 words in size. These // spaces are called medium. // 1048-16383 words: There is a list of spaces this large. It is used for top // and limit when the object we need to allocate is 256-2047 words in size. // These spaces are call large. // At least 16384 words. This list is for objects of 2048 words or larger. // Empty pages are added to this list. These spaces are called huge. class FreeList { public: explicit FreeList(PagedSpace* owner); intptr_t Concatenate(FreeList* free_list); // Clear the free list. void Reset(); // Return the number of bytes available on the free list. intptr_t available() { return small_list_.available() + medium_list_.available() + large_list_.available() + huge_list_.available(); } // Place a node on the free list. The block of size 'size_in_bytes' // starting at 'start' is placed on the free list. The return value is the // number of bytes that have been lost due to internal fragmentation by // freeing the block. Bookkeeping information will be written to the block, // i.e., its contents will be destroyed. The start address should be word // aligned, and the size should be a non-zero multiple of the word size. int Free(Address start, int size_in_bytes); // This method returns how much memory can be allocated after freeing // maximum_freed memory. static inline int GuaranteedAllocatable(int maximum_freed) { if (maximum_freed < kSmallListMin) { return 0; } else if (maximum_freed <= kSmallListMax) { return kSmallAllocationMax; } else if (maximum_freed <= kMediumListMax) { return kMediumAllocationMax; } else if (maximum_freed <= kLargeListMax) { return kLargeAllocationMax; } return maximum_freed; } // Allocate a block of size 'size_in_bytes' from the free list. The block // is unitialized. A failure is returned if no block is available. The // number of bytes lost to fragmentation is returned in the output parameter // 'wasted_bytes'. The size should be a non-zero multiple of the word size. MUST_USE_RESULT HeapObject* Allocate(int size_in_bytes); bool IsEmpty() { return small_list_.IsEmpty() && medium_list_.IsEmpty() && large_list_.IsEmpty() && huge_list_.IsEmpty(); } #ifdef DEBUG void Zap(); intptr_t SumFreeLists(); bool IsVeryLong(); #endif // Used after booting the VM. void RepairLists(Heap* heap); intptr_t EvictFreeListItems(Page* p); bool ContainsPageFreeListItems(Page* p); FreeListCategory* small_list() { return &small_list_; } FreeListCategory* medium_list() { return &medium_list_; } FreeListCategory* large_list() { return &large_list_; } FreeListCategory* huge_list() { return &huge_list_; } private: // The size range of blocks, in bytes. static const int kMinBlockSize = 3 * kPointerSize; static const int kMaxBlockSize = Page::kMaxRegularHeapObjectSize; FreeListNode* FindNodeFor(int size_in_bytes, int* node_size); PagedSpace* owner_; Heap* heap_; static const int kSmallListMin = 0x20 * kPointerSize; static const int kSmallListMax = 0xff * kPointerSize; static const int kMediumListMax = 0x7ff * kPointerSize; static const int kLargeListMax = 0x3fff * kPointerSize; static const int kSmallAllocationMax = kSmallListMin - kPointerSize; static const int kMediumAllocationMax = kSmallListMax; static const int kLargeAllocationMax = kMediumListMax; FreeListCategory small_list_; FreeListCategory medium_list_; FreeListCategory large_list_; FreeListCategory huge_list_; DISALLOW_IMPLICIT_CONSTRUCTORS(FreeList); }; class AllocationResult { public: // Implicit constructor from Object*. AllocationResult(Object* object) // NOLINT : object_(object), retry_space_(INVALID_SPACE) {} AllocationResult() : object_(NULL), retry_space_(INVALID_SPACE) {} static inline AllocationResult Retry(AllocationSpace space = NEW_SPACE) { return AllocationResult(space); } inline bool IsRetry() { return retry_space_ != INVALID_SPACE; } template bool To(T** obj) { if (IsRetry()) return false; *obj = T::cast(object_); return true; } Object* ToObjectChecked() { CHECK(!IsRetry()); return object_; } AllocationSpace RetrySpace() { DCHECK(IsRetry()); return retry_space_; } private: explicit AllocationResult(AllocationSpace space) : object_(NULL), retry_space_(space) {} Object* object_; AllocationSpace retry_space_; }; class PagedSpace : public Space { public: // Creates a space with a maximum capacity, and an id. PagedSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id, Executability executable); virtual ~PagedSpace() {} // Set up the space using the given address range of virtual memory (from // the memory allocator's initial chunk) if possible. If the block of // addresses is not big enough to contain a single page-aligned page, a // fresh chunk will be allocated. bool SetUp(); // Returns true if the space has been successfully set up and not // subsequently torn down. bool HasBeenSetUp(); // Cleans up the space, frees all pages in this space except those belonging // to the initial chunk, uncommits addresses in the initial chunk. void TearDown(); // Checks whether an object/address is in this space. inline bool Contains(Address a); bool Contains(HeapObject* o) { return Contains(o->address()); } // Given an address occupied by a live object, return that object if it is // in this space, or a Smi if it is not. The implementation iterates over // objects in the page containing the address, the cost is linear in the // number of objects in the page. It may be slow. Object* FindObject(Address addr); // During boot the free_space_map is created, and afterwards we may need // to write it into the free list nodes that were already created. void RepairFreeListsAfterBoot(); // Prepares for a mark-compact GC. void PrepareForMarkCompact(); // Current capacity without growing (Size() + Available()). intptr_t Capacity() { return accounting_stats_.Capacity(); } // Total amount of memory committed for this space. For paged // spaces this equals the capacity. intptr_t CommittedMemory() { return Capacity(); } // The maximum amount of memory ever committed for this space. intptr_t MaximumCommittedMemory() { return accounting_stats_.MaxCapacity(); } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory(); struct SizeStats { intptr_t Total() { return small_size_ + medium_size_ + large_size_ + huge_size_; } intptr_t small_size_; intptr_t medium_size_; intptr_t large_size_; intptr_t huge_size_; }; void ObtainFreeListStatistics(Page* p, SizeStats* sizes); void ResetFreeListStatistics(); // Sets the capacity, the available space and the wasted space to zero. // The stats are rebuilt during sweeping by adding each page to the // capacity and the size when it is encountered. As free spaces are // discovered during the sweeping they are subtracted from the size and added // to the available and wasted totals. void ClearStats() { accounting_stats_.ClearSizeWaste(); ResetFreeListStatistics(); } // Increases the number of available bytes of that space. void AddToAccountingStats(intptr_t bytes) { accounting_stats_.DeallocateBytes(bytes); } // Available bytes without growing. These are the bytes on the free list. // The bytes in the linear allocation area are not included in this total // because updating the stats would slow down allocation. New pages are // immediately added to the free list so they show up here. intptr_t Available() { return free_list_.available(); } // Allocated bytes in this space. Garbage bytes that were not found due to // concurrent sweeping are counted as being allocated! The bytes in the // current linear allocation area (between top and limit) are also counted // here. virtual intptr_t Size() { return accounting_stats_.Size(); } // As size, but the bytes in lazily swept pages are estimated and the bytes // in the current linear allocation area are not included. virtual intptr_t SizeOfObjects(); // Wasted bytes in this space. These are just the bytes that were thrown away // due to being too small to use for allocation. They do not include the // free bytes that were not found at all due to lazy sweeping. virtual intptr_t Waste() { return accounting_stats_.Waste(); } // Returns the allocation pointer in this space. Address top() { return allocation_info_.top(); } Address limit() { return allocation_info_.limit(); } // The allocation top address. Address* allocation_top_address() { return allocation_info_.top_address(); } // The allocation limit address. Address* allocation_limit_address() { return allocation_info_.limit_address(); } // Allocate the requested number of bytes in the space if possible, return a // failure object if not. MUST_USE_RESULT inline AllocationResult AllocateRaw(int size_in_bytes); // Give a block of memory to the space's free list. It might be added to // the free list or accounted as waste. // If add_to_freelist is false then just accounting stats are updated and // no attempt to add area to free list is made. int Free(Address start, int size_in_bytes) { int wasted = free_list_.Free(start, size_in_bytes); accounting_stats_.DeallocateBytes(size_in_bytes); accounting_stats_.WasteBytes(wasted); return size_in_bytes - wasted; } void ResetFreeList() { free_list_.Reset(); } // Set space allocation info. void SetTopAndLimit(Address top, Address limit) { DCHECK(top == limit || Page::FromAddress(top) == Page::FromAddress(limit - 1)); MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); allocation_info_.set_top(top); allocation_info_.set_limit(limit); } // Empty space allocation info, returning unused area to free list. void EmptyAllocationInfo() { // Mark the old linear allocation area with a free space map so it can be // skipped when scanning the heap. int old_linear_size = static_cast(limit() - top()); Free(top(), old_linear_size); SetTopAndLimit(NULL, NULL); } void Allocate(int bytes) { accounting_stats_.AllocateBytes(bytes); } void IncreaseCapacity(int size); // Releases an unused page and shrinks the space. void ReleasePage(Page* page); // The dummy page that anchors the linked list of pages. Page* anchor() { return &anchor_; } #ifdef VERIFY_HEAP // Verify integrity of this space. virtual void Verify(ObjectVisitor* visitor); // Overridden by subclasses to verify space-specific object // properties (e.g., only maps or free-list nodes are in map space). virtual void VerifyObject(HeapObject* obj) {} #endif #ifdef DEBUG // Print meta info and objects in this space. virtual void Print(); // Reports statistics for the space void ReportStatistics(); // Report code object related statistics void CollectCodeStatistics(); static void ReportCodeStatistics(Isolate* isolate); static void ResetCodeStatistics(Isolate* isolate); #endif // Evacuation candidates are swept by evacuator. Needs to return a valid // result before _and_ after evacuation has finished. static bool ShouldBeSweptBySweeperThreads(Page* p) { return !p->IsEvacuationCandidate() && !p->IsFlagSet(Page::RESCAN_ON_EVACUATION) && !p->WasSwept(); } void IncrementUnsweptFreeBytes(intptr_t by) { unswept_free_bytes_ += by; } void IncreaseUnsweptFreeBytes(Page* p) { DCHECK(ShouldBeSweptBySweeperThreads(p)); unswept_free_bytes_ += (p->area_size() - p->LiveBytes()); } void DecrementUnsweptFreeBytes(intptr_t by) { unswept_free_bytes_ -= by; } void DecreaseUnsweptFreeBytes(Page* p) { DCHECK(ShouldBeSweptBySweeperThreads(p)); unswept_free_bytes_ -= (p->area_size() - p->LiveBytes()); } void ResetUnsweptFreeBytes() { unswept_free_bytes_ = 0; } // This function tries to steal size_in_bytes memory from the sweeper threads // free-lists. If it does not succeed stealing enough memory, it will wait // for the sweeper threads to finish sweeping. // It returns true when sweeping is completed and false otherwise. bool EnsureSweeperProgress(intptr_t size_in_bytes); void set_end_of_unswept_pages(Page* page) { end_of_unswept_pages_ = page; } Page* end_of_unswept_pages() { return end_of_unswept_pages_; } Page* FirstPage() { return anchor_.next_page(); } Page* LastPage() { return anchor_.prev_page(); } void EvictEvacuationCandidatesFromFreeLists(); bool CanExpand(); // Returns the number of total pages in this space. int CountTotalPages(); // Return size of allocatable area on a page in this space. inline int AreaSize() { return area_size_; } void CreateEmergencyMemory(); void FreeEmergencyMemory(); void UseEmergencyMemory(); bool HasEmergencyMemory() { return emergency_memory_ != NULL; } protected: FreeList* free_list() { return &free_list_; } int area_size_; // Maximum capacity of this space. intptr_t max_capacity_; intptr_t SizeOfFirstPage(); // Accounting information for this space. AllocationStats accounting_stats_; // The dummy page that anchors the double linked list of pages. Page anchor_; // The space's free list. FreeList free_list_; // Normal allocation information. AllocationInfo allocation_info_; // The number of free bytes which could be reclaimed by advancing the // concurrent sweeper threads. intptr_t unswept_free_bytes_; // The sweeper threads iterate over the list of pointer and data space pages // and sweep these pages concurrently. They will stop sweeping after the // end_of_unswept_pages_ page. Page* end_of_unswept_pages_; // Emergency memory is the memory of a full page for a given space, allocated // conservatively before evacuating a page. If compaction fails due to out // of memory error the emergency memory can be used to complete compaction. // If not used, the emergency memory is released after compaction. MemoryChunk* emergency_memory_; // Expands the space by allocating a fixed number of pages. Returns false if // it cannot allocate requested number of pages from OS, or if the hard heap // size limit has been hit. bool Expand(); // Generic fast case allocation function that tries linear allocation at the // address denoted by top in allocation_info_. inline HeapObject* AllocateLinearly(int size_in_bytes); // If sweeping is still in progress try to sweep unswept pages. If that is // not successful, wait for the sweeper threads and re-try free-list // allocation. MUST_USE_RESULT HeapObject* WaitForSweeperThreadsAndRetryAllocation( int size_in_bytes); // Slow path of AllocateRaw. This function is space-dependent. MUST_USE_RESULT HeapObject* SlowAllocateRaw(int size_in_bytes); friend class PageIterator; friend class MarkCompactCollector; }; class NumberAndSizeInfo BASE_EMBEDDED { public: NumberAndSizeInfo() : number_(0), bytes_(0) {} int number() const { return number_; } void increment_number(int num) { number_ += num; } int bytes() const { return bytes_; } void increment_bytes(int size) { bytes_ += size; } void clear() { number_ = 0; bytes_ = 0; } private: int number_; int bytes_; }; // HistogramInfo class for recording a single "bar" of a histogram. This // class is used for collecting statistics to print to the log file. class HistogramInfo : public NumberAndSizeInfo { public: HistogramInfo() : NumberAndSizeInfo() {} const char* name() { return name_; } void set_name(const char* name) { name_ = name; } private: const char* name_; }; enum SemiSpaceId { kFromSpace = 0, kToSpace = 1 }; class SemiSpace; class NewSpacePage : public MemoryChunk { public: // GC related flags copied from from-space to to-space when // flipping semispaces. static const intptr_t kCopyOnFlipFlagsMask = (1 << MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) | (1 << MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING) | (1 << MemoryChunk::SCAN_ON_SCAVENGE); static const int kAreaSize = Page::kMaxRegularHeapObjectSize; inline NewSpacePage* next_page() const { return static_cast(next_chunk()); } inline void set_next_page(NewSpacePage* page) { set_next_chunk(page); } inline NewSpacePage* prev_page() const { return static_cast(prev_chunk()); } inline void set_prev_page(NewSpacePage* page) { set_prev_chunk(page); } SemiSpace* semi_space() { return reinterpret_cast(owner()); } bool is_anchor() { return !this->InNewSpace(); } static bool IsAtStart(Address addr) { return (reinterpret_cast(addr) & Page::kPageAlignmentMask) == kObjectStartOffset; } static bool IsAtEnd(Address addr) { return (reinterpret_cast(addr) & Page::kPageAlignmentMask) == 0; } Address address() { return reinterpret_cast
(this); } // Finds the NewSpacePage containing the given address. static inline NewSpacePage* FromAddress(Address address_in_page) { Address page_start = reinterpret_cast
(reinterpret_cast(address_in_page) & ~Page::kPageAlignmentMask); NewSpacePage* page = reinterpret_cast(page_start); return page; } // Find the page for a limit address. A limit address is either an address // inside a page, or the address right after the last byte of a page. static inline NewSpacePage* FromLimit(Address address_limit) { return NewSpacePage::FromAddress(address_limit - 1); } // Checks if address1 and address2 are on the same new space page. static inline bool OnSamePage(Address address1, Address address2) { return NewSpacePage::FromAddress(address1) == NewSpacePage::FromAddress(address2); } private: // Create a NewSpacePage object that is only used as anchor // for the doubly-linked list of real pages. explicit NewSpacePage(SemiSpace* owner) { InitializeAsAnchor(owner); } static NewSpacePage* Initialize(Heap* heap, Address start, SemiSpace* semi_space); // Intialize a fake NewSpacePage used as sentinel at the ends // of a doubly-linked list of real NewSpacePages. // Only uses the prev/next links, and sets flags to not be in new-space. void InitializeAsAnchor(SemiSpace* owner); friend class SemiSpace; friend class SemiSpaceIterator; }; // ----------------------------------------------------------------------------- // SemiSpace in young generation // // A semispace is a contiguous chunk of memory holding page-like memory // chunks. The mark-compact collector uses the memory of the first page in // the from space as a marking stack when tracing live objects. class SemiSpace : public Space { public: // Constructor. SemiSpace(Heap* heap, SemiSpaceId semispace) : Space(heap, NEW_SPACE, NOT_EXECUTABLE), start_(NULL), age_mark_(NULL), id_(semispace), anchor_(this), current_page_(NULL) {} // Sets up the semispace using the given chunk. void SetUp(Address start, int initial_capacity, int maximum_capacity); // Tear down the space. Heap memory was not allocated by the space, so it // is not deallocated here. void TearDown(); // True if the space has been set up but not torn down. bool HasBeenSetUp() { return start_ != NULL; } // Grow the semispace to the new capacity. The new capacity // requested must be larger than the current capacity and less than // the maximum capacity. bool GrowTo(int new_capacity); // Shrinks the semispace to the new capacity. The new capacity // requested must be more than the amount of used memory in the // semispace and less than the current capacity. bool ShrinkTo(int new_capacity); // Returns the start address of the first page of the space. Address space_start() { DCHECK(anchor_.next_page() != &anchor_); return anchor_.next_page()->area_start(); } // Returns the start address of the current page of the space. Address page_low() { return current_page_->area_start(); } // Returns one past the end address of the space. Address space_end() { return anchor_.prev_page()->area_end(); } // Returns one past the end address of the current page of the space. Address page_high() { return current_page_->area_end(); } bool AdvancePage() { NewSpacePage* next_page = current_page_->next_page(); if (next_page == anchor()) return false; current_page_ = next_page; return true; } // Resets the space to using the first page. void Reset(); // Age mark accessors. Address age_mark() { return age_mark_; } void set_age_mark(Address mark); // True if the address is in the address range of this semispace (not // necessarily below the allocation pointer). bool Contains(Address a) { return (reinterpret_cast(a) & address_mask_) == reinterpret_cast(start_); } // True if the object is a heap object in the address range of this // semispace (not necessarily below the allocation pointer). bool Contains(Object* o) { return (reinterpret_cast(o) & object_mask_) == object_expected_; } // If we don't have these here then SemiSpace will be abstract. However // they should never be called. virtual intptr_t Size() { UNREACHABLE(); return 0; } bool is_committed() { return committed_; } bool Commit(); bool Uncommit(); NewSpacePage* first_page() { return anchor_.next_page(); } NewSpacePage* current_page() { return current_page_; } #ifdef VERIFY_HEAP virtual void Verify(); #endif #ifdef DEBUG virtual void Print(); // Validate a range of of addresses in a SemiSpace. // The "from" address must be on a page prior to the "to" address, // in the linked page order, or it must be earlier on the same page. static void AssertValidRange(Address from, Address to); #else // Do nothing. inline static void AssertValidRange(Address from, Address to) {} #endif // Returns the current total capacity of the semispace. int TotalCapacity() { return total_capacity_; } // Returns the maximum total capacity of the semispace. int MaximumTotalCapacity() { return maximum_total_capacity_; } // Returns the initial capacity of the semispace. int InitialTotalCapacity() { return initial_total_capacity_; } SemiSpaceId id() { return id_; } static void Swap(SemiSpace* from, SemiSpace* to); // Returns the maximum amount of memory ever committed by the semi space. size_t MaximumCommittedMemory() { return maximum_committed_; } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory(); private: // Flips the semispace between being from-space and to-space. // Copies the flags into the masked positions on all pages in the space. void FlipPages(intptr_t flags, intptr_t flag_mask); // Updates Capacity and MaximumCommitted based on new capacity. void SetCapacity(int new_capacity); NewSpacePage* anchor() { return &anchor_; } // The current and maximum total capacity of the space. int total_capacity_; int maximum_total_capacity_; int initial_total_capacity_; intptr_t maximum_committed_; // The start address of the space. Address start_; // Used to govern object promotion during mark-compact collection. Address age_mark_; // Masks and comparison values to test for containment in this semispace. uintptr_t address_mask_; uintptr_t object_mask_; uintptr_t object_expected_; bool committed_; SemiSpaceId id_; NewSpacePage anchor_; NewSpacePage* current_page_; friend class SemiSpaceIterator; friend class NewSpacePageIterator; public: TRACK_MEMORY("SemiSpace") }; // A SemiSpaceIterator is an ObjectIterator that iterates over the active // semispace of the heap's new space. It iterates over the objects in the // semispace from a given start address (defaulting to the bottom of the // semispace) to the top of the semispace. New objects allocated after the // iterator is created are not iterated. class SemiSpaceIterator : public ObjectIterator { public: // Create an iterator over the objects in the given space. If no start // address is given, the iterator starts from the bottom of the space. If // no size function is given, the iterator calls Object::Size(). // Iterate over all of allocated to-space. explicit SemiSpaceIterator(NewSpace* space); // Iterate over all of allocated to-space, with a custome size function. SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func); // Iterate over part of allocated to-space, from start to the end // of allocation. SemiSpaceIterator(NewSpace* space, Address start); // Iterate from one address to another in the same semi-space. SemiSpaceIterator(Address from, Address to); HeapObject* Next() { if (current_ == limit_) return NULL; if (NewSpacePage::IsAtEnd(current_)) { NewSpacePage* page = NewSpacePage::FromLimit(current_); page = page->next_page(); DCHECK(!page->is_anchor()); current_ = page->area_start(); if (current_ == limit_) return NULL; } HeapObject* object = HeapObject::FromAddress(current_); int size = (size_func_ == NULL) ? object->Size() : size_func_(object); current_ += size; return object; } // Implementation of the ObjectIterator functions. virtual HeapObject* next_object() { return Next(); } private: void Initialize(Address start, Address end, HeapObjectCallback size_func); // The current iteration point. Address current_; // The end of iteration. Address limit_; // The callback function. HeapObjectCallback size_func_; }; // ----------------------------------------------------------------------------- // A PageIterator iterates the pages in a semi-space. class NewSpacePageIterator BASE_EMBEDDED { public: // Make an iterator that runs over all pages in to-space. explicit inline NewSpacePageIterator(NewSpace* space); // Make an iterator that runs over all pages in the given semispace, // even those not used in allocation. explicit inline NewSpacePageIterator(SemiSpace* space); // Make iterator that iterates from the page containing start // to the page that contains limit in the same semispace. inline NewSpacePageIterator(Address start, Address limit); inline bool has_next(); inline NewSpacePage* next(); private: NewSpacePage* prev_page_; // Previous page returned. // Next page that will be returned. Cached here so that we can use this // iterator for operations that deallocate pages. NewSpacePage* next_page_; // Last page returned. NewSpacePage* last_page_; }; // ----------------------------------------------------------------------------- // The young generation space. // // The new space consists of a contiguous pair of semispaces. It simply // forwards most functions to the appropriate semispace. class NewSpace : public Space { public: // Constructor. explicit NewSpace(Heap* heap) : Space(heap, NEW_SPACE, NOT_EXECUTABLE), to_space_(heap, kToSpace), from_space_(heap, kFromSpace), reservation_(), inline_allocation_limit_step_(0) {} // Sets up the new space using the given chunk. bool SetUp(int reserved_semispace_size_, int max_semi_space_size); // Tears down the space. Heap memory was not allocated by the space, so it // is not deallocated here. void TearDown(); // True if the space has been set up but not torn down. bool HasBeenSetUp() { return to_space_.HasBeenSetUp() && from_space_.HasBeenSetUp(); } // Flip the pair of spaces. void Flip(); // Grow the capacity of the semispaces. Assumes that they are not at // their maximum capacity. void Grow(); // Shrink the capacity of the semispaces. void Shrink(); // True if the address or object lies in the address range of either // semispace (not necessarily below the allocation pointer). bool Contains(Address a) { return (reinterpret_cast(a) & address_mask_) == reinterpret_cast(start_); } bool Contains(Object* o) { Address a = reinterpret_cast
(o); return (reinterpret_cast(a) & object_mask_) == object_expected_; } // Return the allocated bytes in the active semispace. virtual intptr_t Size() { return pages_used_ * NewSpacePage::kAreaSize + static_cast(top() - to_space_.page_low()); } // The same, but returning an int. We have to have the one that returns // intptr_t because it is inherited, but if we know we are dealing with the // new space, which can't get as big as the other spaces then this is useful: int SizeAsInt() { return static_cast(Size()); } // Return the allocatable capacity of a semispace. intptr_t Capacity() { SLOW_DCHECK(to_space_.TotalCapacity() == from_space_.TotalCapacity()); return (to_space_.TotalCapacity() / Page::kPageSize) * NewSpacePage::kAreaSize; } // Return the current size of a semispace, allocatable and non-allocatable // memory. intptr_t TotalCapacity() { DCHECK(to_space_.TotalCapacity() == from_space_.TotalCapacity()); return to_space_.TotalCapacity(); } // Return the total amount of memory committed for new space. intptr_t CommittedMemory() { if (from_space_.is_committed()) return 2 * Capacity(); return TotalCapacity(); } // Return the total amount of memory committed for new space. intptr_t MaximumCommittedMemory() { return to_space_.MaximumCommittedMemory() + from_space_.MaximumCommittedMemory(); } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory(); // Return the available bytes without growing. intptr_t Available() { return Capacity() - Size(); } // Return the maximum capacity of a semispace. int MaximumCapacity() { DCHECK(to_space_.MaximumTotalCapacity() == from_space_.MaximumTotalCapacity()); return to_space_.MaximumTotalCapacity(); } bool IsAtMaximumCapacity() { return TotalCapacity() == MaximumCapacity(); } // Returns the initial capacity of a semispace. int InitialTotalCapacity() { DCHECK(to_space_.InitialTotalCapacity() == from_space_.InitialTotalCapacity()); return to_space_.InitialTotalCapacity(); } // Return the address of the allocation pointer in the active semispace. Address top() { DCHECK(to_space_.current_page()->ContainsLimit(allocation_info_.top())); return allocation_info_.top(); } void set_top(Address top) { DCHECK(to_space_.current_page()->ContainsLimit(top)); allocation_info_.set_top(top); } // Return the address of the allocation pointer limit in the active semispace. Address limit() { DCHECK(to_space_.current_page()->ContainsLimit(allocation_info_.limit())); return allocation_info_.limit(); } // Return the address of the first object in the active semispace. Address bottom() { return to_space_.space_start(); } // Get the age mark of the inactive semispace. Address age_mark() { return from_space_.age_mark(); } // Set the age mark in the active semispace. void set_age_mark(Address mark) { to_space_.set_age_mark(mark); } // The start address of the space and a bit mask. Anding an address in the // new space with the mask will result in the start address. Address start() { return start_; } uintptr_t mask() { return address_mask_; } INLINE(uint32_t AddressToMarkbitIndex(Address addr)) { DCHECK(Contains(addr)); DCHECK(IsAligned(OffsetFrom(addr), kPointerSize) || IsAligned(OffsetFrom(addr) - 1, kPointerSize)); return static_cast(addr - start_) >> kPointerSizeLog2; } INLINE(Address MarkbitIndexToAddress(uint32_t index)) { return reinterpret_cast
(index << kPointerSizeLog2); } // The allocation top and limit address. Address* allocation_top_address() { return allocation_info_.top_address(); } // The allocation limit address. Address* allocation_limit_address() { return allocation_info_.limit_address(); } MUST_USE_RESULT INLINE(AllocationResult AllocateRaw(int size_in_bytes)); // Reset the allocation pointer to the beginning of the active semispace. void ResetAllocationInfo(); void UpdateInlineAllocationLimit(int size_in_bytes); void LowerInlineAllocationLimit(intptr_t step) { inline_allocation_limit_step_ = step; UpdateInlineAllocationLimit(0); top_on_previous_step_ = allocation_info_.top(); } // Get the extent of the inactive semispace (for use as a marking stack, // or to zap it). Notice: space-addresses are not necessarily on the // same page, so FromSpaceStart() might be above FromSpaceEnd(). Address FromSpacePageLow() { return from_space_.page_low(); } Address FromSpacePageHigh() { return from_space_.page_high(); } Address FromSpaceStart() { return from_space_.space_start(); } Address FromSpaceEnd() { return from_space_.space_end(); } // Get the extent of the active semispace's pages' memory. Address ToSpaceStart() { return to_space_.space_start(); } Address ToSpaceEnd() { return to_space_.space_end(); } inline bool ToSpaceContains(Address address) { return to_space_.Contains(address); } inline bool FromSpaceContains(Address address) { return from_space_.Contains(address); } // True if the object is a heap object in the address range of the // respective semispace (not necessarily below the allocation pointer of the // semispace). inline bool ToSpaceContains(Object* o) { return to_space_.Contains(o); } inline bool FromSpaceContains(Object* o) { return from_space_.Contains(o); } // Try to switch the active semispace to a new, empty, page. // Returns false if this isn't possible or reasonable (i.e., there // are no pages, or the current page is already empty), or true // if successful. bool AddFreshPage(); #ifdef VERIFY_HEAP // Verify the active semispace. virtual void Verify(); #endif #ifdef DEBUG // Print the active semispace. virtual void Print() { to_space_.Print(); } #endif // Iterates the active semispace to collect statistics. void CollectStatistics(); // Reports previously collected statistics of the active semispace. void ReportStatistics(); // Clears previously collected statistics. void ClearHistograms(); // Record the allocation or promotion of a heap object. Note that we don't // record every single allocation, but only those that happen in the // to space during a scavenge GC. void RecordAllocation(HeapObject* obj); void RecordPromotion(HeapObject* obj); // Return whether the operation succeded. bool CommitFromSpaceIfNeeded() { if (from_space_.is_committed()) return true; return from_space_.Commit(); } bool UncommitFromSpace() { if (!from_space_.is_committed()) return true; return from_space_.Uncommit(); } inline intptr_t inline_allocation_limit_step() { return inline_allocation_limit_step_; } SemiSpace* active_space() { return &to_space_; } private: // Update allocation info to match the current to-space page. void UpdateAllocationInfo(); Address chunk_base_; uintptr_t chunk_size_; // The semispaces. SemiSpace to_space_; SemiSpace from_space_; base::VirtualMemory reservation_; int pages_used_; // Start address and bit mask for containment testing. Address start_; uintptr_t address_mask_; uintptr_t object_mask_; uintptr_t object_expected_; // Allocation pointer and limit for normal allocation and allocation during // mark-compact collection. AllocationInfo allocation_info_; // When incremental marking is active we will set allocation_info_.limit // to be lower than actual limit and then will gradually increase it // in steps to guarantee that we do incremental marking steps even // when all allocation is performed from inlined generated code. intptr_t inline_allocation_limit_step_; Address top_on_previous_step_; HistogramInfo* allocated_histogram_; HistogramInfo* promoted_histogram_; MUST_USE_RESULT AllocationResult SlowAllocateRaw(int size_in_bytes); friend class SemiSpaceIterator; public: TRACK_MEMORY("NewSpace") }; // ----------------------------------------------------------------------------- // Old object space (excluding map objects) class OldSpace : public PagedSpace { public: // Creates an old space object with a given maximum capacity. // The constructor does not allocate pages from OS. OldSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id, Executability executable) : PagedSpace(heap, max_capacity, id, executable) {} public: TRACK_MEMORY("OldSpace") }; // For contiguous spaces, top should be in the space (or at the end) and limit // should be the end of the space. #define DCHECK_SEMISPACE_ALLOCATION_INFO(info, space) \ SLOW_DCHECK((space).page_low() <= (info).top() && \ (info).top() <= (space).page_high() && \ (info).limit() <= (space).page_high()) // ----------------------------------------------------------------------------- // Old space for all map objects class MapSpace : public PagedSpace { public: // Creates a map space object with a maximum capacity. MapSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id) : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE), max_map_space_pages_(kMaxMapPageIndex - 1) {} // Given an index, returns the page address. // TODO(1600): this limit is artifical just to keep code compilable static const int kMaxMapPageIndex = 1 << 16; virtual int RoundSizeDownToObjectAlignment(int size) { if (base::bits::IsPowerOfTwo32(Map::kSize)) { return RoundDown(size, Map::kSize); } else { return (size / Map::kSize) * Map::kSize; } } protected: virtual void VerifyObject(HeapObject* obj); private: static const int kMapsPerPage = Page::kMaxRegularHeapObjectSize / Map::kSize; // Do map space compaction if there is a page gap. int CompactionThreshold() { return kMapsPerPage * (max_map_space_pages_ - 1); } const int max_map_space_pages_; public: TRACK_MEMORY("MapSpace") }; // ----------------------------------------------------------------------------- // Old space for simple property cell objects class CellSpace : public PagedSpace { public: // Creates a property cell space object with a maximum capacity. CellSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id) : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE) {} virtual int RoundSizeDownToObjectAlignment(int size) { if (base::bits::IsPowerOfTwo32(Cell::kSize)) { return RoundDown(size, Cell::kSize); } else { return (size / Cell::kSize) * Cell::kSize; } } protected: virtual void VerifyObject(HeapObject* obj); public: TRACK_MEMORY("CellSpace") }; // ----------------------------------------------------------------------------- // Old space for all global object property cell objects class PropertyCellSpace : public PagedSpace { public: // Creates a property cell space object with a maximum capacity. PropertyCellSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id) : PagedSpace(heap, max_capacity, id, NOT_EXECUTABLE) {} virtual int RoundSizeDownToObjectAlignment(int size) { if (base::bits::IsPowerOfTwo32(PropertyCell::kSize)) { return RoundDown(size, PropertyCell::kSize); } else { return (size / PropertyCell::kSize) * PropertyCell::kSize; } } protected: virtual void VerifyObject(HeapObject* obj); public: TRACK_MEMORY("PropertyCellSpace") }; // ----------------------------------------------------------------------------- // Large objects ( > Page::kMaxHeapObjectSize ) are allocated and managed by // the large object space. A large object is allocated from OS heap with // extra padding bytes (Page::kPageSize + Page::kObjectStartOffset). // A large object always starts at Page::kObjectStartOffset to a page. // Large objects do not move during garbage collections. class LargeObjectSpace : public Space { public: LargeObjectSpace(Heap* heap, intptr_t max_capacity, AllocationSpace id); virtual ~LargeObjectSpace() {} // Initializes internal data structures. bool SetUp(); // Releases internal resources, frees objects in this space. void TearDown(); static intptr_t ObjectSizeFor(intptr_t chunk_size) { if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0; return chunk_size - Page::kPageSize - Page::kObjectStartOffset; } // Shared implementation of AllocateRaw, AllocateRawCode and // AllocateRawFixedArray. MUST_USE_RESULT AllocationResult AllocateRaw(int object_size, Executability executable); // Available bytes for objects in this space. inline intptr_t Available(); virtual intptr_t Size() { return size_; } virtual intptr_t SizeOfObjects() { return objects_size_; } intptr_t MaximumCommittedMemory() { return maximum_committed_; } intptr_t CommittedMemory() { return Size(); } // Approximate amount of physical memory committed for this space. size_t CommittedPhysicalMemory(); int PageCount() { return page_count_; } // Finds an object for a given address, returns a Smi if it is not found. // The function iterates through all objects in this space, may be slow. Object* FindObject(Address a); // Finds a large object page containing the given address, returns NULL // if such a page doesn't exist. LargePage* FindPage(Address a); // Frees unmarked objects. void FreeUnmarkedObjects(); // Checks whether a heap object is in this space; O(1). bool Contains(HeapObject* obj); // Checks whether the space is empty. bool IsEmpty() { return first_page_ == NULL; } LargePage* first_page() { return first_page_; } #ifdef VERIFY_HEAP virtual void Verify(); #endif #ifdef DEBUG virtual void Print(); void ReportStatistics(); void CollectCodeStatistics(); #endif // Checks whether an address is in the object area in this space. It // iterates all objects in the space. May be slow. bool SlowContains(Address addr) { return FindObject(addr)->IsHeapObject(); } private: intptr_t max_capacity_; intptr_t maximum_committed_; // The head of the linked list of large object chunks. LargePage* first_page_; intptr_t size_; // allocated bytes int page_count_; // number of chunks intptr_t objects_size_; // size of objects // Map MemoryChunk::kAlignment-aligned chunks to large pages covering them HashMap chunk_map_; friend class LargeObjectIterator; public: TRACK_MEMORY("LargeObjectSpace") }; class LargeObjectIterator : public ObjectIterator { public: explicit LargeObjectIterator(LargeObjectSpace* space); LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func); HeapObject* Next(); // implementation of ObjectIterator. virtual HeapObject* next_object() { return Next(); } private: LargePage* current_; HeapObjectCallback size_func_; }; // Iterates over the chunks (pages and large object pages) that can contain // pointers to new space. class PointerChunkIterator BASE_EMBEDDED { public: inline explicit PointerChunkIterator(Heap* heap); // Return NULL when the iterator is done. MemoryChunk* next() { switch (state_) { case kOldPointerState: { if (old_pointer_iterator_.has_next()) { return old_pointer_iterator_.next(); } state_ = kMapState; // Fall through. } case kMapState: { if (map_iterator_.has_next()) { return map_iterator_.next(); } state_ = kLargeObjectState; // Fall through. } case kLargeObjectState: { HeapObject* heap_object; do { heap_object = lo_iterator_.Next(); if (heap_object == NULL) { state_ = kFinishedState; return NULL; } // Fixed arrays are the only pointer-containing objects in large // object space. } while (!heap_object->IsFixedArray()); MemoryChunk* answer = MemoryChunk::FromAddress(heap_object->address()); return answer; } case kFinishedState: return NULL; default: break; } UNREACHABLE(); return NULL; } private: enum State { kOldPointerState, kMapState, kLargeObjectState, kFinishedState }; State state_; PageIterator old_pointer_iterator_; PageIterator map_iterator_; LargeObjectIterator lo_iterator_; }; #ifdef DEBUG struct CommentStatistic { const char* comment; int size; int count; void Clear() { comment = NULL; size = 0; count = 0; } // Must be small, since an iteration is used for lookup. static const int kMaxComments = 64; }; #endif } } // namespace v8::internal #endif // V8_HEAP_SPACES_H_