// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_MIPS64 #include "src/codegen.h" #include "src/ic/ic.h" #include "src/ic/ic-compiler.h" #include "src/ic/stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type, Label* global_object) { // Register usage: // type: holds the receiver instance type on entry. __ Branch(global_object, eq, type, Operand(JS_GLOBAL_OBJECT_TYPE)); __ Branch(global_object, eq, type, Operand(JS_BUILTINS_OBJECT_TYPE)); __ Branch(global_object, eq, type, Operand(JS_GLOBAL_PROXY_TYPE)); } // Helper function used from LoadIC GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // result: Register for the result. It is only updated if a jump to the miss // label is not done. Can be the same as elements or name clobbering // one of these in the case of not jumping to the miss label. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. // The address returned from GenerateStringDictionaryProbes() in scratch2 // is used. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss, Register elements, Register name, Register result, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry check that the value is a normal // property. __ bind(&done); // scratch2 == elements + 4 * index. const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ ld(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ And(at, scratch1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask))); __ Branch(miss, ne, at, Operand(zero_reg)); // Get the value at the masked, scaled index and return. __ ld(result, FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize)); } // Helper function used from StoreIC::GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // value: The value to store. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. // The address returned from GenerateStringDictionaryProbes() in scratch2 // is used. static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss, Register elements, Register name, Register value, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry in the dictionary check that the value // is a normal property that is not read only. __ bind(&done); // scratch2 == elements + 4 * index. const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; const int kTypeAndReadOnlyMask = (PropertyDetails::TypeField::kMask | PropertyDetails::AttributesField::encode(READ_ONLY)); __ ld(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ And(at, scratch1, Operand(Smi::FromInt(kTypeAndReadOnlyMask))); __ Branch(miss, ne, at, Operand(zero_reg)); // Store the value at the masked, scaled index and return. const int kValueOffset = kElementsStartOffset + kPointerSize; __ Daddu(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag)); __ sd(value, MemOperand(scratch2)); // Update the write barrier. Make sure not to clobber the value. __ mov(scratch1, value); __ RecordWrite(elements, scratch2, scratch1, kRAHasNotBeenSaved, kDontSaveFPRegs); } // Checks the receiver for special cases (value type, slow case bits). // Falls through for regular JS object. static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm, Register receiver, Register map, Register scratch, int interceptor_bit, Label* slow) { // Check that the object isn't a smi. __ JumpIfSmi(receiver, slow); // Get the map of the receiver. __ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check bit field. __ lbu(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); __ And(at, scratch, Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit))); __ Branch(slow, ne, at, Operand(zero_reg)); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing into string // objects work as intended. DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Branch(slow, lt, scratch, Operand(JS_OBJECT_TYPE)); } // Loads an indexed element from a fast case array. // If not_fast_array is NULL, doesn't perform the elements map check. static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver, Register key, Register elements, Register scratch1, Register scratch2, Register result, Label* not_fast_array, Label* out_of_range) { // Register use: // // receiver - holds the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // elements - holds the elements of the receiver on exit. // // result - holds the result on exit if the load succeeded. // Allowed to be the the same as 'receiver' or 'key'. // Unchanged on bailout so 'receiver' and 'key' can be safely // used by further computation. // // Scratch registers: // // scratch1 - used to hold elements map and elements length. // Holds the elements map if not_fast_array branch is taken. // // scratch2 - used to hold the loaded value. __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); if (not_fast_array != NULL) { // Check that the object is in fast mode (not dictionary). __ ld(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kFixedArrayMapRootIndex); __ Branch(not_fast_array, ne, scratch1, Operand(at)); } else { __ AssertFastElements(elements); } // Check that the key (index) is within bounds. __ ld(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ Branch(out_of_range, hs, key, Operand(scratch1)); // Fast case: Do the load. __ Daddu(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // The key is a smi. STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); __ SmiScale(at, key, kPointerSizeLog2); __ daddu(at, at, scratch1); __ ld(scratch2, MemOperand(at)); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); // In case the loaded value is the_hole we have to consult GetProperty // to ensure the prototype chain is searched. __ Branch(out_of_range, eq, scratch2, Operand(at)); __ mov(result, scratch2); } // Checks whether a key is an array index string or a unique name. // Falls through if a key is a unique name. static void GenerateKeyNameCheck(MacroAssembler* masm, Register key, Register map, Register hash, Label* index_string, Label* not_unique) { // The key is not a smi. Label unique; // Is it a name? __ GetObjectType(key, map, hash); __ Branch(not_unique, hi, hash, Operand(LAST_UNIQUE_NAME_TYPE)); STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE); __ Branch(&unique, eq, hash, Operand(LAST_UNIQUE_NAME_TYPE)); // Is the string an array index, with cached numeric value? __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ And(at, hash, Operand(Name::kContainsCachedArrayIndexMask)); __ Branch(index_string, eq, at, Operand(zero_reg)); // Is the string internalized? We know it's a string, so a single // bit test is enough. // map: key map __ lbu(hash, FieldMemOperand(map, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0); __ And(at, hash, Operand(kIsNotInternalizedMask)); __ Branch(not_unique, ne, at, Operand(zero_reg)); __ bind(&unique); } void LoadIC::GenerateNormal(MacroAssembler* masm) { Register dictionary = a0; DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister())); DCHECK(!dictionary.is(LoadDescriptor::NameRegister())); Label slow; __ ld(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(), JSObject::kPropertiesOffset)); GenerateDictionaryLoad(masm, &slow, dictionary, LoadDescriptor::NameRegister(), v0, a3, a4); __ Ret(); // Dictionary load failed, go slow (but don't miss). __ bind(&slow); GenerateRuntimeGetProperty(masm); } // A register that isn't one of the parameters to the load ic. static const Register LoadIC_TempRegister() { return a3; } void LoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is on the stack. Isolate* isolate = masm->isolate(); __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a3, a4); __ mov(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister()); __ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister()); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), isolate); __ TailCallExternalReference(ref, 2, 1); } void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // The return address is in ra. __ mov(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister()); __ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister()); __ TailCallRuntime(Runtime::kGetProperty, 2, 1); } static MemOperand GenerateMappedArgumentsLookup( MacroAssembler* masm, Register object, Register key, Register scratch1, Register scratch2, Register scratch3, Label* unmapped_case, Label* slow_case) { Heap* heap = masm->isolate()->heap(); // Check that the receiver is a JSObject. Because of the map check // later, we do not need to check for interceptors or whether it // requires access checks. __ JumpIfSmi(object, slow_case); // Check that the object is some kind of JSObject. __ GetObjectType(object, scratch1, scratch2); __ Branch(slow_case, lt, scratch2, Operand(FIRST_JS_RECEIVER_TYPE)); // Check that the key is a positive smi. __ NonNegativeSmiTst(key, scratch1); __ Branch(slow_case, ne, scratch1, Operand(zero_reg)); // Load the elements into scratch1 and check its map. Handle arguments_map(heap->sloppy_arguments_elements_map()); __ ld(scratch1, FieldMemOperand(object, JSObject::kElementsOffset)); __ CheckMap(scratch1, scratch2, arguments_map, slow_case, DONT_DO_SMI_CHECK); // Check if element is in the range of mapped arguments. If not, jump // to the unmapped lookup with the parameter map in scratch1. __ ld(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset)); __ Dsubu(scratch2, scratch2, Operand(Smi::FromInt(2))); __ Branch(unmapped_case, Ugreater_equal, key, Operand(scratch2)); // Load element index and check whether it is the hole. const int kOffset = FixedArray::kHeaderSize + 2 * kPointerSize - kHeapObjectTag; __ SmiUntag(scratch3, key); __ dsll(scratch3, scratch3, kPointerSizeLog2); __ Daddu(scratch3, scratch3, Operand(kOffset)); __ Daddu(scratch2, scratch1, scratch3); __ ld(scratch2, MemOperand(scratch2)); __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex); __ Branch(unmapped_case, eq, scratch2, Operand(scratch3)); // Load value from context and return it. We can reuse scratch1 because // we do not jump to the unmapped lookup (which requires the parameter // map in scratch1). __ ld(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); __ SmiUntag(scratch3, scratch2); __ dsll(scratch3, scratch3, kPointerSizeLog2); __ Daddu(scratch3, scratch3, Operand(Context::kHeaderSize - kHeapObjectTag)); __ Daddu(scratch2, scratch1, scratch3); return MemOperand(scratch2); } static MemOperand GenerateUnmappedArgumentsLookup(MacroAssembler* masm, Register key, Register parameter_map, Register scratch, Label* slow_case) { // Element is in arguments backing store, which is referenced by the // second element of the parameter_map. The parameter_map register // must be loaded with the parameter map of the arguments object and is // overwritten. const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize; Register backing_store = parameter_map; __ ld(backing_store, FieldMemOperand(parameter_map, kBackingStoreOffset)); __ CheckMap(backing_store, scratch, Heap::kFixedArrayMapRootIndex, slow_case, DONT_DO_SMI_CHECK); __ ld(scratch, FieldMemOperand(backing_store, FixedArray::kLengthOffset)); __ Branch(slow_case, Ugreater_equal, key, Operand(scratch)); __ SmiUntag(scratch, key); __ dsll(scratch, scratch, kPointerSizeLog2); __ Daddu(scratch, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ Daddu(scratch, backing_store, scratch); return MemOperand(scratch); } void KeyedStoreIC::GenerateSloppyArguments(MacroAssembler* masm) { Register receiver = StoreDescriptor::ReceiverRegister(); Register key = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); DCHECK(value.is(a0)); Label slow, notin; // Store address is returned in register (of MemOperand) mapped_location. MemOperand mapped_location = GenerateMappedArgumentsLookup( masm, receiver, key, a3, a4, a5, ¬in, &slow); __ sd(value, mapped_location); __ mov(t1, value); DCHECK_EQ(mapped_location.offset(), 0); __ RecordWrite(a3, mapped_location.rm(), t1, kRAHasNotBeenSaved, kDontSaveFPRegs); __ Ret(USE_DELAY_SLOT); __ mov(v0, value); // (In delay slot) return the value stored in v0. __ bind(¬in); // The unmapped lookup expects that the parameter map is in a3. // Store address is returned in register (of MemOperand) unmapped_location. MemOperand unmapped_location = GenerateUnmappedArgumentsLookup(masm, key, a3, a4, &slow); __ sd(value, unmapped_location); __ mov(t1, value); DCHECK_EQ(unmapped_location.offset(), 0); __ RecordWrite(a3, unmapped_location.rm(), t1, kRAHasNotBeenSaved, kDontSaveFPRegs); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); // (In delay slot) return the value stored in v0. __ bind(&slow); GenerateMiss(masm); } void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is in ra. Isolate* isolate = masm->isolate(); __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a3, a4); __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister()); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadIC_Miss), isolate); __ TailCallExternalReference(ref, 2, 1); } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // The return address is in ra. __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister()); __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); } void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { // The return address is in ra. Label slow, check_name, index_smi, index_name, property_array_property; Label probe_dictionary, check_number_dictionary; Register key = LoadDescriptor::NameRegister(); Register receiver = LoadDescriptor::ReceiverRegister(); DCHECK(key.is(a2)); DCHECK(receiver.is(a1)); Isolate* isolate = masm->isolate(); // Check that the key is a smi. __ JumpIfNotSmi(key, &check_name); __ bind(&index_smi); // Now the key is known to be a smi. This place is also jumped to from below // where a numeric string is converted to a smi. GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3, Map::kHasIndexedInterceptor, &slow); // Check the receiver's map to see if it has fast elements. __ CheckFastElements(a0, a3, &check_number_dictionary); GenerateFastArrayLoad(masm, receiver, key, a0, a3, a4, v0, NULL, &slow); __ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, a4, a3); __ Ret(); __ bind(&check_number_dictionary); __ ld(a4, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ ld(a3, FieldMemOperand(a4, JSObject::kMapOffset)); // Check whether the elements is a number dictionary. // a3: elements map // a4: elements __ LoadRoot(at, Heap::kHashTableMapRootIndex); __ Branch(&slow, ne, a3, Operand(at)); __ dsra32(a0, key, 0); __ LoadFromNumberDictionary(&slow, a4, key, v0, a0, a3, a5); __ Ret(); // Slow case, key and receiver still in a2 and a1. __ bind(&slow); __ IncrementCounter(isolate->counters()->keyed_load_generic_slow(), 1, a4, a3); GenerateRuntimeGetProperty(masm); __ bind(&check_name); GenerateKeyNameCheck(masm, key, a0, a3, &index_name, &slow); GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3, Map::kHasNamedInterceptor, &slow); // If the receiver is a fast-case object, check the keyed lookup // cache. Otherwise probe the dictionary. __ ld(a3, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ ld(a4, FieldMemOperand(a3, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHashTableMapRootIndex); __ Branch(&probe_dictionary, eq, a4, Operand(at)); // Load the map of the receiver, compute the keyed lookup cache hash // based on 32 bits of the map pointer and the name hash. __ ld(a0, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ dsll32(a3, a0, 0); __ dsrl32(a3, a3, 0); __ dsra(a3, a3, KeyedLookupCache::kMapHashShift); __ lwu(a4, FieldMemOperand(key, Name::kHashFieldOffset)); __ dsra(at, a4, Name::kHashShift); __ xor_(a3, a3, at); int mask = KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask; __ And(a3, a3, Operand(mask)); // Load the key (consisting of map and unique name) from the cache and // check for match. Label load_in_object_property; static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket; Label hit_on_nth_entry[kEntriesPerBucket]; ExternalReference cache_keys = ExternalReference::keyed_lookup_cache_keys(isolate); __ li(a4, Operand(cache_keys)); __ dsll(at, a3, kPointerSizeLog2 + 1); __ daddu(a4, a4, at); for (int i = 0; i < kEntriesPerBucket - 1; i++) { Label try_next_entry; __ ld(a5, MemOperand(a4, kPointerSize * i * 2)); __ Branch(&try_next_entry, ne, a0, Operand(a5)); __ ld(a5, MemOperand(a4, kPointerSize * (i * 2 + 1))); __ Branch(&hit_on_nth_entry[i], eq, key, Operand(a5)); __ bind(&try_next_entry); } __ ld(a5, MemOperand(a4, kPointerSize * (kEntriesPerBucket - 1) * 2)); __ Branch(&slow, ne, a0, Operand(a5)); __ ld(a5, MemOperand(a4, kPointerSize * ((kEntriesPerBucket - 1) * 2 + 1))); __ Branch(&slow, ne, key, Operand(a5)); // Get field offset. // a0 : receiver's map // a3 : lookup cache index ExternalReference cache_field_offsets = ExternalReference::keyed_lookup_cache_field_offsets(isolate); // Hit on nth entry. for (int i = kEntriesPerBucket - 1; i >= 0; i--) { __ bind(&hit_on_nth_entry[i]); __ li(a4, Operand(cache_field_offsets)); // TODO(yy) This data structure does NOT follow natural pointer size. __ dsll(at, a3, kPointerSizeLog2 - 1); __ daddu(at, a4, at); __ lwu(a5, MemOperand(at, kPointerSize / 2 * i)); __ lbu(a6, FieldMemOperand(a0, Map::kInObjectPropertiesOffset)); __ Dsubu(a5, a5, a6); __ Branch(&property_array_property, ge, a5, Operand(zero_reg)); if (i != 0) { __ Branch(&load_in_object_property); } } // Load in-object property. __ bind(&load_in_object_property); __ lbu(a6, FieldMemOperand(a0, Map::kInstanceSizeOffset)); // Index from start of object. __ daddu(a6, a6, a5); // Remove the heap tag. __ Dsubu(receiver, receiver, Operand(kHeapObjectTag)); __ dsll(at, a6, kPointerSizeLog2); __ daddu(at, receiver, at); __ ld(v0, MemOperand(at)); __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1, a4, a3); __ Ret(); // Load property array property. __ bind(&property_array_property); __ ld(receiver, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ Daddu(receiver, receiver, FixedArray::kHeaderSize - kHeapObjectTag); __ dsll(v0, a5, kPointerSizeLog2); __ Daddu(v0, v0, a1); __ ld(v0, MemOperand(v0)); __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1, a4, a3); __ Ret(); // Do a quick inline probe of the receiver's dictionary, if it // exists. __ bind(&probe_dictionary); // a3: elements __ ld(a0, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); GenerateGlobalInstanceTypeCheck(masm, a0, &slow); // Load the property to v0. GenerateDictionaryLoad(masm, &slow, a3, key, v0, a5, a4); __ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(), 1, a4, a3); __ Ret(); __ bind(&index_name); __ IndexFromHash(a3, key); // Now jump to the place where smi keys are handled. __ Branch(&index_smi); } void KeyedLoadIC::GenerateString(MacroAssembler* masm) { // Return address is in ra. Label miss; Register receiver = LoadDescriptor::ReceiverRegister(); Register index = LoadDescriptor::NameRegister(); Register scratch = a3; Register result = v0; DCHECK(!scratch.is(receiver) && !scratch.is(index)); StringCharAtGenerator char_at_generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. &miss, // When index out of range. STRING_INDEX_IS_ARRAY_INDEX); char_at_generator.GenerateFast(masm); __ Ret(); StubRuntimeCallHelper call_helper; char_at_generator.GenerateSlow(masm, call_helper); __ bind(&miss); GenerateMiss(masm); } static void KeyedStoreGenerateGenericHelper( MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow, KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length, Register value, Register key, Register receiver, Register receiver_map, Register elements_map, Register elements) { Label transition_smi_elements; Label finish_object_store, non_double_value, transition_double_elements; Label fast_double_without_map_check; // Fast case: Do the store, could be either Object or double. __ bind(fast_object); Register scratch_value = a4; Register address = a5; if (check_map == kCheckMap) { __ ld(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset)); __ Branch(fast_double, ne, elements_map, Operand(masm->isolate()->factory()->fixed_array_map())); } // HOLECHECK: guards "A[i] = V" // We have to go to the runtime if the current value is the hole because // there may be a callback on the element. Label holecheck_passed1; __ Daddu(address, elements, FixedArray::kHeaderSize - kHeapObjectTag); __ SmiScale(at, key, kPointerSizeLog2); __ daddu(address, address, at); __ ld(scratch_value, MemOperand(address)); __ Branch(&holecheck_passed1, ne, scratch_value, Operand(masm->isolate()->factory()->the_hole_value())); __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value, slow); __ bind(&holecheck_passed1); // Smi stores don't require further checks. Label non_smi_value; __ JumpIfNotSmi(value, &non_smi_value); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ Daddu(scratch_value, key, Operand(Smi::FromInt(1))); __ sd(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset)); } // It's irrelevant whether array is smi-only or not when writing a smi. __ Daddu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiScale(scratch_value, key, kPointerSizeLog2); __ Daddu(address, address, scratch_value); __ sd(value, MemOperand(address)); __ Ret(); __ bind(&non_smi_value); // Escape to elements kind transition case. __ CheckFastObjectElements(receiver_map, scratch_value, &transition_smi_elements); // Fast elements array, store the value to the elements backing store. __ bind(&finish_object_store); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ Daddu(scratch_value, key, Operand(Smi::FromInt(1))); __ sd(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset)); } __ Daddu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiScale(scratch_value, key, kPointerSizeLog2); __ Daddu(address, address, scratch_value); __ sd(value, MemOperand(address)); // Update write barrier for the elements array address. __ mov(scratch_value, value); // Preserve the value which is returned. __ RecordWrite(elements, address, scratch_value, kRAHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Ret(); __ bind(fast_double); if (check_map == kCheckMap) { // Check for fast double array case. If this fails, call through to the // runtime. __ LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex); __ Branch(slow, ne, elements_map, Operand(at)); } // HOLECHECK: guards "A[i] double hole?" // We have to see if the double version of the hole is present. If so // go to the runtime. __ Daddu(address, elements, Operand(FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32) - kHeapObjectTag)); __ SmiScale(at, key, kPointerSizeLog2); __ daddu(address, address, at); __ lw(scratch_value, MemOperand(address)); __ Branch(&fast_double_without_map_check, ne, scratch_value, Operand(kHoleNanUpper32)); __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value, slow); __ bind(&fast_double_without_map_check); __ StoreNumberToDoubleElements(value, key, elements, // Overwritten. a3, // Scratch regs... a4, a5, &transition_double_elements); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ Daddu(scratch_value, key, Operand(Smi::FromInt(1))); __ sd(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset)); } __ Ret(); __ bind(&transition_smi_elements); // Transition the array appropriately depending on the value type. __ ld(a4, FieldMemOperand(value, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); __ Branch(&non_double_value, ne, a4, Operand(at)); // Value is a double. Transition FAST_SMI_ELEMENTS -> // FAST_DOUBLE_ELEMENTS and complete the store. __ LoadTransitionedArrayMapConditional( FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, a4, slow); AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS); ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value, receiver_map, mode, slow); __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ jmp(&fast_double_without_map_check); __ bind(&non_double_value); // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, receiver_map, a4, slow); mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateMapChangeElementsTransition( masm, receiver, key, value, receiver_map, mode, slow); __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ jmp(&finish_object_store); __ bind(&transition_double_elements); // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS, receiver_map, a4, slow); mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateDoubleToObject( masm, receiver, key, value, receiver_map, mode, slow); __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ jmp(&finish_object_store); } void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm, StrictMode strict_mode) { // ---------- S t a t e -------------- // -- a0 : value // -- a1 : key // -- a2 : receiver // -- ra : return address // ----------------------------------- Label slow, fast_object, fast_object_grow; Label fast_double, fast_double_grow; Label array, extra, check_if_double_array; // Register usage. Register value = StoreDescriptor::ValueRegister(); Register key = StoreDescriptor::NameRegister(); Register receiver = StoreDescriptor::ReceiverRegister(); DCHECK(value.is(a0)); Register receiver_map = a3; Register elements_map = a6; Register elements = a7; // Elements array of the receiver. // a4 and a5 are used as general scratch registers. // Check that the key is a smi. __ JumpIfNotSmi(key, &slow); // Check that the object isn't a smi. __ JumpIfSmi(receiver, &slow); // Get the map of the object. __ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check that the receiver does not require access checks and is not observed. // The generic stub does not perform map checks or handle observed objects. __ lbu(a4, FieldMemOperand(receiver_map, Map::kBitFieldOffset)); __ And(a4, a4, Operand(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved)); __ Branch(&slow, ne, a4, Operand(zero_reg)); // Check if the object is a JS array or not. __ lbu(a4, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset)); __ Branch(&array, eq, a4, Operand(JS_ARRAY_TYPE)); // Check that the object is some kind of JSObject. __ Branch(&slow, lt, a4, Operand(FIRST_JS_OBJECT_TYPE)); // Object case: Check key against length in the elements array. __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check array bounds. Both the key and the length of FixedArray are smis. __ ld(a4, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ Branch(&fast_object, lo, key, Operand(a4)); // Slow case, handle jump to runtime. __ bind(&slow); // Entry registers are intact. // a0: value. // a1: key. // a2: receiver. PropertyICCompiler::GenerateRuntimeSetProperty(masm, strict_mode); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // Condition code from comparing key and array length is still available. // Only support writing to array[array.length]. __ Branch(&slow, ne, key, Operand(a4)); // Check for room in the elements backing store. // Both the key and the length of FixedArray are smis. __ ld(a4, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ Branch(&slow, hs, key, Operand(a4)); __ ld(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset)); __ Branch(&check_if_double_array, ne, elements_map, Heap::kFixedArrayMapRootIndex); __ jmp(&fast_object_grow); __ bind(&check_if_double_array); __ Branch(&slow, ne, elements_map, Heap::kFixedDoubleArrayMapRootIndex); __ jmp(&fast_double_grow); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode (and writable); if it // is the length is always a smi. __ bind(&array); __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check the key against the length in the array. __ ld(a4, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ Branch(&extra, hs, key, Operand(a4)); KeyedStoreGenerateGenericHelper( masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength, value, key, receiver, receiver_map, elements_map, elements); KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow, &slow, kDontCheckMap, kIncrementLength, value, key, receiver, receiver_map, elements_map, elements); } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { // Push receiver, key and value for runtime call. __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(), StoreDescriptor::ValueRegister()); ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); DCHECK(receiver.is(a1)); DCHECK(name.is(a2)); DCHECK(StoreDescriptor::ValueRegister().is(a0)); // Get the receiver from the stack and probe the stub cache. Code::Flags flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::STORE_IC)); masm->isolate()->stub_cache()->GenerateProbe(masm, flags, false, receiver, name, a3, a4, a5, a6); // Cache miss: Jump to runtime. GenerateMiss(masm); } void StoreIC::GenerateMiss(MacroAssembler* masm) { __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(), StoreDescriptor::ValueRegister()); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void StoreIC::GenerateNormal(MacroAssembler* masm) { Label miss; Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); Register dictionary = a3; DCHECK(!AreAliased(value, receiver, name, dictionary, a4, a5)); __ ld(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); GenerateDictionaryStore(masm, &miss, a3, name, value, a4, a5); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->store_normal_hit(), 1, a4, a5); __ Ret(); __ bind(&miss); __ IncrementCounter(counters->store_normal_miss(), 1, a4, a5); GenerateMiss(masm); } #undef __ Condition CompareIC::ComputeCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } bool CompareIC::HasInlinedSmiCode(Address address) { // The address of the instruction following the call. Address andi_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a andi at, rx, #yyy, nothing // was inlined. Instr instr = Assembler::instr_at(andi_instruction_address); return Assembler::IsAndImmediate(instr) && Assembler::GetRt(instr) == static_cast(zero_reg.code()); } void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) { Address andi_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a andi at, rx, #yyy, nothing // was inlined. Instr instr = Assembler::instr_at(andi_instruction_address); if (!(Assembler::IsAndImmediate(instr) && Assembler::GetRt(instr) == static_cast(zero_reg.code()))) { return; } // The delta to the start of the map check instruction and the // condition code uses at the patched jump. int delta = Assembler::GetImmediate16(instr); delta += Assembler::GetRs(instr) * kImm16Mask; // If the delta is 0 the instruction is andi at, zero_reg, #0 which also // signals that nothing was inlined. if (delta == 0) { return; } if (FLAG_trace_ic) { PrintF("[ patching ic at %p, andi=%p, delta=%d\n", address, andi_instruction_address, delta); } Address patch_address = andi_instruction_address - delta * Instruction::kInstrSize; Instr instr_at_patch = Assembler::instr_at(patch_address); Instr branch_instr = Assembler::instr_at(patch_address + Instruction::kInstrSize); // This is patching a conditional "jump if not smi/jump if smi" site. // Enabling by changing from // andi at, rx, 0 // Branch , eq, at, Operand(zero_reg) // to: // andi at, rx, #kSmiTagMask // Branch , ne, at, Operand(zero_reg) // and vice-versa to be disabled again. CodePatcher patcher(patch_address, 2); Register reg = Register::from_code(Assembler::GetRs(instr_at_patch)); if (check == ENABLE_INLINED_SMI_CHECK) { DCHECK(Assembler::IsAndImmediate(instr_at_patch)); DCHECK_EQ(0, Assembler::GetImmediate16(instr_at_patch)); patcher.masm()->andi(at, reg, kSmiTagMask); } else { DCHECK(check == DISABLE_INLINED_SMI_CHECK); DCHECK(Assembler::IsAndImmediate(instr_at_patch)); patcher.masm()->andi(at, reg, 0); } DCHECK(Assembler::IsBranch(branch_instr)); if (Assembler::IsBeq(branch_instr)) { patcher.ChangeBranchCondition(ne); } else { DCHECK(Assembler::IsBne(branch_instr)); patcher.ChangeBranchCondition(eq); } } } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS64