// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_X87 #include "src/ic/call-optimization.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void NamedLoadHandlerCompiler::GenerateLoadViaGetter( MacroAssembler* masm, Handle type, Register receiver, Handle getter) { { FrameScope scope(masm, StackFrame::INTERNAL); if (!getter.is_null()) { // Call the JavaScript getter with the receiver on the stack. if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ mov(receiver, FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset)); } __ push(receiver); ParameterCount actual(0); ParameterCount expected(getter); __ InvokeFunction(getter, expected, actual, CALL_FUNCTION, NullCallWrapper()); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset()); } // Restore context register. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); } __ ret(0); } void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup( MacroAssembler* masm, Label* miss_label, Register receiver, Handle name, Register scratch0, Register scratch1) { DCHECK(name->IsUniqueName()); DCHECK(!receiver.is(scratch0)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1); __ IncrementCounter(counters->negative_lookups_miss(), 1); __ mov(scratch0, FieldOperand(receiver, HeapObject::kMapOffset)); const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. __ test_b(FieldOperand(scratch0, Map::kBitFieldOffset), kInterceptorOrAccessCheckNeededMask); __ j(not_zero, miss_label); // Check that receiver is a JSObject. __ CmpInstanceType(scratch0, FIRST_SPEC_OBJECT_TYPE); __ j(below, miss_label); // Load properties array. Register properties = scratch0; __ mov(properties, FieldOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ cmp(FieldOperand(properties, HeapObject::kMapOffset), Immediate(masm->isolate()->factory()->hash_table_map())); __ j(not_equal, miss_label); Label done; NameDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done, properties, name, scratch1); __ bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1); } void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register prototype, Label* miss) { // Get the global function with the given index. Handle function( JSFunction::cast(masm->isolate()->native_context()->get(index))); // Check we're still in the same context. Register scratch = prototype; const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX); __ mov(scratch, Operand(esi, offset)); __ mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset)); __ cmp(Operand(scratch, Context::SlotOffset(index)), function); __ j(not_equal, miss); // Load its initial map. The global functions all have initial maps. __ Move(prototype, Immediate(Handle(function->initial_map()))); // Load the prototype from the initial map. __ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset)); } void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype( MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss_label) { __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label); __ mov(eax, scratch1); __ ret(0); } // Generate call to api function. // This function uses push() to generate smaller, faster code than // the version above. It is an optimization that should will be removed // when api call ICs are generated in hydrogen. void PropertyHandlerCompiler::GenerateFastApiCall( MacroAssembler* masm, const CallOptimization& optimization, Handle receiver_map, Register receiver, Register scratch_in, bool is_store, int argc, Register* values) { // Copy return value. __ pop(scratch_in); // receiver __ push(receiver); // Write the arguments to stack frame. for (int i = 0; i < argc; i++) { Register arg = values[argc - 1 - i]; DCHECK(!receiver.is(arg)); DCHECK(!scratch_in.is(arg)); __ push(arg); } __ push(scratch_in); // Stack now matches JSFunction abi. DCHECK(optimization.is_simple_api_call()); // Abi for CallApiFunctionStub. Register callee = eax; Register call_data = ebx; Register holder = ecx; Register api_function_address = edx; Register scratch = edi; // scratch_in is no longer valid. // Put holder in place. CallOptimization::HolderLookup holder_lookup; Handle api_holder = optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup); switch (holder_lookup) { case CallOptimization::kHolderIsReceiver: __ Move(holder, receiver); break; case CallOptimization::kHolderFound: __ LoadHeapObject(holder, api_holder); break; case CallOptimization::kHolderNotFound: UNREACHABLE(); break; } Isolate* isolate = masm->isolate(); Handle function = optimization.constant_function(); Handle api_call_info = optimization.api_call_info(); Handle call_data_obj(api_call_info->data(), isolate); // Put callee in place. __ LoadHeapObject(callee, function); bool call_data_undefined = false; // Put call_data in place. if (isolate->heap()->InNewSpace(*call_data_obj)) { __ mov(scratch, api_call_info); __ mov(call_data, FieldOperand(scratch, CallHandlerInfo::kDataOffset)); } else if (call_data_obj->IsUndefined()) { call_data_undefined = true; __ mov(call_data, Immediate(isolate->factory()->undefined_value())); } else { __ mov(call_data, call_data_obj); } // Put api_function_address in place. Address function_address = v8::ToCData
(api_call_info->callback()); __ mov(api_function_address, Immediate(function_address)); // Jump to stub. CallApiFunctionStub stub(isolate, is_store, call_data_undefined, argc); __ TailCallStub(&stub); } // Generate code to check that a global property cell is empty. Create // the property cell at compilation time if no cell exists for the // property. void PropertyHandlerCompiler::GenerateCheckPropertyCell( MacroAssembler* masm, Handle global, Handle name, Register scratch, Label* miss) { Handle cell = JSGlobalObject::EnsurePropertyCell(global, name); DCHECK(cell->value()->IsTheHole()); Handle the_hole = masm->isolate()->factory()->the_hole_value(); if (masm->serializer_enabled()) { __ mov(scratch, Immediate(cell)); __ cmp(FieldOperand(scratch, PropertyCell::kValueOffset), Immediate(the_hole)); } else { __ cmp(Operand::ForCell(cell), Immediate(the_hole)); } __ j(not_equal, miss); } void NamedStoreHandlerCompiler::GenerateStoreViaSetter( MacroAssembler* masm, Handle type, Register receiver, Handle setter) { // ----------- S t a t e ------------- // -- esp[0] : return address // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Save value register, so we can restore it later. __ push(value()); if (!setter.is_null()) { // Call the JavaScript setter with receiver and value on the stack. if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ mov(receiver, FieldOperand(receiver, JSGlobalObject::kGlobalProxyOffset)); } __ push(receiver); __ push(value()); ParameterCount actual(1); ParameterCount expected(setter); __ InvokeFunction(setter, expected, actual, CALL_FUNCTION, NullCallWrapper()); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset()); } // We have to return the passed value, not the return value of the setter. __ pop(eax); // Restore context register. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); } __ ret(0); } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj) { STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex == 1); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 2); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 3); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 4); __ push(name); Handle interceptor(holder_obj->GetNamedInterceptor()); DCHECK(!masm->isolate()->heap()->InNewSpace(*interceptor)); Register scratch = name; __ mov(scratch, Immediate(interceptor)); __ push(scratch); __ push(receiver); __ push(holder); } static void CompileCallLoadPropertyWithInterceptor( MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj, IC::UtilityId id) { PushInterceptorArguments(masm, receiver, holder, name, holder_obj); __ CallExternalReference(ExternalReference(IC_Utility(id), masm->isolate()), NamedLoadHandlerCompiler::kInterceptorArgsLength); } static void StoreIC_PushArgs(MacroAssembler* masm) { Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); DCHECK(!ebx.is(receiver) && !ebx.is(name) && !ebx.is(value)); __ pop(ebx); __ push(receiver); __ push(name); __ push(value); __ push(ebx); } void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) { // Return address is on the stack. StoreIC_PushArgs(masm); // Do tail-call to runtime routine. ExternalReference ref(IC_Utility(IC::kStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) { // Return address is on the stack. StoreIC_PushArgs(masm); // Do tail-call to runtime routine. ExternalReference ref(IC_Utility(IC::kKeyedStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } #undef __ #define __ ACCESS_MASM(masm()) void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label, Handle name) { if (!label->is_unused()) { __ bind(label); __ mov(this->name(), Immediate(name)); } } // Receiver_reg is preserved on jumps to miss_label, but may be destroyed if // store is successful. void NamedStoreHandlerCompiler::GenerateStoreTransition( Handle transition, Handle name, Register receiver_reg, Register storage_reg, Register value_reg, Register scratch1, Register scratch2, Register unused, Label* miss_label, Label* slow) { int descriptor = transition->LastAdded(); DescriptorArray* descriptors = transition->instance_descriptors(); PropertyDetails details = descriptors->GetDetails(descriptor); Representation representation = details.representation(); DCHECK(!representation.IsNone()); if (details.type() == CONSTANT) { Handle constant(descriptors->GetValue(descriptor), isolate()); __ CmpObject(value_reg, constant); __ j(not_equal, miss_label); } else if (representation.IsSmi()) { __ JumpIfNotSmi(value_reg, miss_label); } else if (representation.IsHeapObject()) { __ JumpIfSmi(value_reg, miss_label); HeapType* field_type = descriptors->GetFieldType(descriptor); HeapType::Iterator it = field_type->Classes(); if (!it.Done()) { Label do_store; while (true) { __ CompareMap(value_reg, it.Current()); it.Advance(); if (it.Done()) { __ j(not_equal, miss_label); break; } __ j(equal, &do_store, Label::kNear); } __ bind(&do_store); } } else if (representation.IsDouble()) { Label do_store, heap_number; __ AllocateHeapNumber(storage_reg, scratch1, scratch2, slow, MUTABLE); __ JumpIfNotSmi(value_reg, &heap_number); __ SmiUntag(value_reg); __ push(value_reg); __ fild_s(Operand(esp, 0)); __ pop(value_reg); __ SmiTag(value_reg); __ jmp(&do_store); __ bind(&heap_number); __ CheckMap(value_reg, isolate()->factory()->heap_number_map(), miss_label, DONT_DO_SMI_CHECK); __ fld_d(FieldOperand(value_reg, HeapNumber::kValueOffset)); __ bind(&do_store); __ fstp_d(FieldOperand(storage_reg, HeapNumber::kValueOffset)); } // Stub never generated for objects that require access checks. DCHECK(!transition->is_access_check_needed()); // Perform map transition for the receiver if necessary. if (details.type() == FIELD && Map::cast(transition->GetBackPointer())->unused_property_fields() == 0) { // The properties must be extended before we can store the value. // We jump to a runtime call that extends the properties array. __ pop(scratch1); // Return address. __ push(receiver_reg); __ push(Immediate(transition)); __ push(value_reg); __ push(scratch1); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage), isolate()), 3, 1); return; } // Update the map of the object. __ mov(scratch1, Immediate(transition)); __ mov(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch1); // Update the write barrier for the map field. __ RecordWriteField(receiver_reg, HeapObject::kMapOffset, scratch1, scratch2, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); if (details.type() == CONSTANT) { DCHECK(value_reg.is(eax)); __ ret(0); return; } int index = transition->instance_descriptors()->GetFieldIndex( transition->LastAdded()); // Adjust for the number of properties stored in the object. Even in the // face of a transition we can use the old map here because the size of the // object and the number of in-object properties is not going to change. index -= transition->inobject_properties(); SmiCheck smi_check = representation.IsTagged() ? INLINE_SMI_CHECK : OMIT_SMI_CHECK; // TODO(verwaest): Share this code as a code stub. if (index < 0) { // Set the property straight into the object. int offset = transition->instance_size() + (index * kPointerSize); if (representation.IsDouble()) { __ mov(FieldOperand(receiver_reg, offset), storage_reg); } else { __ mov(FieldOperand(receiver_reg, offset), value_reg); } if (!representation.IsSmi()) { // Update the write barrier for the array address. if (!representation.IsDouble()) { __ mov(storage_reg, value_reg); } __ RecordWriteField(receiver_reg, offset, storage_reg, scratch1, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } else { // Write to the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; // Get the properties array (optimistically). __ mov(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset)); if (representation.IsDouble()) { __ mov(FieldOperand(scratch1, offset), storage_reg); } else { __ mov(FieldOperand(scratch1, offset), value_reg); } if (!representation.IsSmi()) { // Update the write barrier for the array address. if (!representation.IsDouble()) { __ mov(storage_reg, value_reg); } __ RecordWriteField(scratch1, offset, storage_reg, receiver_reg, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } // Return the value (register eax). DCHECK(value_reg.is(eax)); __ ret(0); } void NamedStoreHandlerCompiler::GenerateStoreField(LookupIterator* lookup, Register value_reg, Label* miss_label) { DCHECK(lookup->representation().IsHeapObject()); __ JumpIfSmi(value_reg, miss_label); HeapType::Iterator it = lookup->GetFieldType()->Classes(); Label do_store; while (true) { __ CompareMap(value_reg, it.Current()); it.Advance(); if (it.Done()) { __ j(not_equal, miss_label); break; } __ j(equal, &do_store, Label::kNear); } __ bind(&do_store); StoreFieldStub stub(isolate(), lookup->GetFieldIndex(), lookup->representation()); GenerateTailCall(masm(), stub.GetCode()); } Register PropertyHandlerCompiler::CheckPrototypes( Register object_reg, Register holder_reg, Register scratch1, Register scratch2, Handle name, Label* miss, PrototypeCheckType check) { Handle receiver_map(IC::TypeToMap(*type(), isolate())); // Make sure there's no overlap between holder and object registers. DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); // Keep track of the current object in register reg. Register reg = object_reg; int depth = 0; Handle current = Handle::null(); if (type()->IsConstant()) current = Handle::cast(type()->AsConstant()->Value()); Handle prototype = Handle::null(); Handle current_map = receiver_map; Handle holder_map(holder()->map()); // Traverse the prototype chain and check the maps in the prototype chain for // fast and global objects or do negative lookup for normal objects. while (!current_map.is_identical_to(holder_map)) { ++depth; // Only global objects and objects that do not require access // checks are allowed in stubs. DCHECK(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); prototype = handle(JSObject::cast(current_map->prototype())); if (current_map->is_dictionary_map() && !current_map->IsJSGlobalObjectMap()) { DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast. if (!name->IsUniqueName()) { DCHECK(name->IsString()); name = factory()->InternalizeString(Handle::cast(name)); } DCHECK(current.is_null() || current->property_dictionary()->FindEntry(name) == NameDictionary::kNotFound); GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); __ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); reg = holder_reg; // From now on the object will be in holder_reg. __ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else { bool in_new_space = heap()->InNewSpace(*prototype); // Two possible reasons for loading the prototype from the map: // (1) Can't store references to new space in code. // (2) Handler is shared for all receivers with the same prototype // map (but not necessarily the same prototype instance). bool load_prototype_from_map = in_new_space || depth == 1; if (depth != 1 || check == CHECK_ALL_MAPS) { __ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK); } // Check access rights to the global object. This has to happen after // the map check so that we know that the object is actually a global // object. // This allows us to install generated handlers for accesses to the // global proxy (as opposed to using slow ICs). See corresponding code // in LookupForRead(). if (current_map->IsJSGlobalProxyMap()) { __ CheckAccessGlobalProxy(reg, scratch1, scratch2, miss); } else if (current_map->IsJSGlobalObjectMap()) { GenerateCheckPropertyCell(masm(), Handle::cast(current), name, scratch2, miss); } if (load_prototype_from_map) { // Save the map in scratch1 for later. __ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); } reg = holder_reg; // From now on the object will be in holder_reg. if (load_prototype_from_map) { __ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else { __ mov(reg, prototype); } } // Go to the next object in the prototype chain. current = prototype; current_map = handle(current->map()); } // Log the check depth. LOG(isolate(), IntEvent("check-maps-depth", depth + 1)); if (depth != 0 || check == CHECK_ALL_MAPS) { // Check the holder map. __ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK); } // Perform security check for access to the global object. DCHECK(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); if (current_map->IsJSGlobalProxyMap()) { __ CheckAccessGlobalProxy(reg, scratch1, scratch2, miss); } // Return the register containing the holder. return reg; } void NamedLoadHandlerCompiler::FrontendFooter(Handle name, Label* miss) { if (!miss->is_unused()) { Label success; __ jmp(&success); __ bind(miss); TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } void NamedStoreHandlerCompiler::FrontendFooter(Handle name, Label* miss) { if (!miss->is_unused()) { Label success; __ jmp(&success); GenerateRestoreName(miss, name); TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } void NamedLoadHandlerCompiler::GenerateLoadCallback( Register reg, Handle callback) { // Insert additional parameters into the stack frame above return address. DCHECK(!scratch3().is(reg)); __ pop(scratch3()); // Get return address to place it below. STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5); __ push(receiver()); // receiver // Push data from ExecutableAccessorInfo. if (isolate()->heap()->InNewSpace(callback->data())) { DCHECK(!scratch2().is(reg)); __ mov(scratch2(), Immediate(callback)); __ push(FieldOperand(scratch2(), ExecutableAccessorInfo::kDataOffset)); } else { __ push(Immediate(Handle(callback->data(), isolate()))); } __ push(Immediate(isolate()->factory()->undefined_value())); // ReturnValue // ReturnValue default value __ push(Immediate(isolate()->factory()->undefined_value())); __ push(Immediate(reinterpret_cast(isolate()))); __ push(reg); // holder // Save a pointer to where we pushed the arguments. This will be // passed as the const PropertyAccessorInfo& to the C++ callback. __ push(esp); __ push(name()); // name __ push(scratch3()); // Restore return address. // Abi for CallApiGetter Register getter_address = ApiGetterDescriptor::function_address(); Address function_address = v8::ToCData
(callback->getter()); __ mov(getter_address, Immediate(function_address)); CallApiGetterStub stub(isolate()); __ TailCallStub(&stub); } void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle value) { // Return the constant value. __ LoadObject(eax, value); __ ret(0); } void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup( LookupIterator* it, Register holder_reg) { DCHECK(holder()->HasNamedInterceptor()); DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined()); // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1())); // Preserve the receiver register explicitly whenever it is different from the // holder and it is needed should the interceptor return without any result. // The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD // case might cause a miss during the prototype check. bool must_perform_prototype_check = !holder().is_identical_to(it->GetHolder()); bool must_preserve_receiver_reg = !receiver().is(holder_reg) && (it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. { FrameScope frame_scope(masm(), StackFrame::INTERNAL); if (must_preserve_receiver_reg) { __ push(receiver()); } __ push(holder_reg); __ push(this->name()); // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor( masm(), receiver(), holder_reg, this->name(), holder(), IC::kLoadPropertyWithInterceptorOnly); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ cmp(eax, factory()->no_interceptor_result_sentinel()); __ j(equal, &interceptor_failed); frame_scope.GenerateLeaveFrame(); __ ret(0); // Clobber registers when generating debug-code to provoke errors. __ bind(&interceptor_failed); if (FLAG_debug_code) { __ mov(receiver(), Immediate(bit_cast(kZapValue))); __ mov(holder_reg, Immediate(bit_cast(kZapValue))); __ mov(this->name(), Immediate(bit_cast(kZapValue))); } __ pop(this->name()); __ pop(holder_reg); if (must_preserve_receiver_reg) { __ pop(receiver()); } // Leave the internal frame. } GenerateLoadPostInterceptor(it, holder_reg); } void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) { DCHECK(holder()->HasNamedInterceptor()); DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined()); // Call the runtime system to load the interceptor. __ pop(scratch2()); // save old return address PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(), holder()); __ push(scratch2()); // restore old return address ExternalReference ref = ExternalReference( IC_Utility(IC::kLoadPropertyWithInterceptor), isolate()); __ TailCallExternalReference( ref, NamedLoadHandlerCompiler::kInterceptorArgsLength, 1); } Handle NamedStoreHandlerCompiler::CompileStoreCallback( Handle object, Handle name, Handle callback) { Register holder_reg = Frontend(receiver(), name); __ pop(scratch1()); // remove the return address __ push(receiver()); __ push(holder_reg); __ Push(callback); __ Push(name); __ push(value()); __ push(scratch1()); // restore return address // Do tail-call to the runtime system. ExternalReference store_callback_property = ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate()); __ TailCallExternalReference(store_callback_property, 5, 1); // Return the generated code. return GetCode(kind(), Code::FAST, name); } Handle NamedStoreHandlerCompiler::CompileStoreInterceptor( Handle name) { __ pop(scratch1()); // remove the return address __ push(receiver()); __ push(this->name()); __ push(value()); __ push(scratch1()); // restore return address // Do tail-call to the runtime system. ExternalReference store_ic_property = ExternalReference( IC_Utility(IC::kStorePropertyWithInterceptor), isolate()); __ TailCallExternalReference(store_ic_property, 3, 1); // Return the generated code. return GetCode(kind(), Code::FAST, name); } Register NamedStoreHandlerCompiler::value() { return StoreDescriptor::ValueRegister(); } Handle NamedLoadHandlerCompiler::CompileLoadGlobal( Handle cell, Handle name, bool is_configurable) { Label miss; FrontendHeader(receiver(), name, &miss); // Get the value from the cell. Register result = StoreDescriptor::ValueRegister(); if (masm()->serializer_enabled()) { __ mov(result, Immediate(cell)); __ mov(result, FieldOperand(result, PropertyCell::kValueOffset)); } else { __ mov(result, Operand::ForCell(cell)); } // Check for deleted property if property can actually be deleted. if (is_configurable) { __ cmp(result, factory()->the_hole_value()); __ j(equal, &miss); } else if (FLAG_debug_code) { __ cmp(result, factory()->the_hole_value()); __ Check(not_equal, kDontDeleteCellsCannotContainTheHole); } Counters* counters = isolate()->counters(); __ IncrementCounter(counters->named_load_global_stub(), 1); // The code above already loads the result into the return register. __ ret(0); FrontendFooter(name, &miss); // Return the generated code. return GetCode(kind(), Code::NORMAL, name); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X87