// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_ #define V8_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_ #include "src/macro-assembler.h" #include "src/mips64/assembler-mips64-inl.h" #include "src/mips64/assembler-mips64.h" #include "src/mips64/macro-assembler-mips64.h" namespace v8 { namespace internal { #ifndef V8_INTERPRETED_REGEXP class RegExpMacroAssemblerMIPS: public NativeRegExpMacroAssembler { public: RegExpMacroAssemblerMIPS(Mode mode, int registers_to_save, Zone* zone); virtual ~RegExpMacroAssemblerMIPS(); virtual int stack_limit_slack(); virtual void AdvanceCurrentPosition(int by); virtual void AdvanceRegister(int reg, int by); virtual void Backtrack(); virtual void Bind(Label* label); virtual void CheckAtStart(Label* on_at_start); virtual void CheckCharacter(uint32_t c, Label* on_equal); virtual void CheckCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_equal); virtual void CheckCharacterGT(uc16 limit, Label* on_greater); virtual void CheckCharacterLT(uc16 limit, Label* on_less); // A "greedy loop" is a loop that is both greedy and with a simple // body. It has a particularly simple implementation. virtual void CheckGreedyLoop(Label* on_tos_equals_current_position); virtual void CheckNotAtStart(Label* on_not_at_start); virtual void CheckNotBackReference(int start_reg, Label* on_no_match); virtual void CheckNotBackReferenceIgnoreCase(int start_reg, Label* on_no_match); virtual void CheckNotCharacter(uint32_t c, Label* on_not_equal); virtual void CheckNotCharacterAfterAnd(uint32_t c, uint32_t mask, Label* on_not_equal); virtual void CheckNotCharacterAfterMinusAnd(uc16 c, uc16 minus, uc16 mask, Label* on_not_equal); virtual void CheckCharacterInRange(uc16 from, uc16 to, Label* on_in_range); virtual void CheckCharacterNotInRange(uc16 from, uc16 to, Label* on_not_in_range); virtual void CheckBitInTable(Handle table, Label* on_bit_set); // Checks whether the given offset from the current position is before // the end of the string. virtual void CheckPosition(int cp_offset, Label* on_outside_input); virtual bool CheckSpecialCharacterClass(uc16 type, Label* on_no_match); virtual void Fail(); virtual Handle GetCode(Handle source); virtual void GoTo(Label* label); virtual void IfRegisterGE(int reg, int comparand, Label* if_ge); virtual void IfRegisterLT(int reg, int comparand, Label* if_lt); virtual void IfRegisterEqPos(int reg, Label* if_eq); virtual IrregexpImplementation Implementation(); virtual void LoadCurrentCharacter(int cp_offset, Label* on_end_of_input, bool check_bounds = true, int characters = 1); virtual void PopCurrentPosition(); virtual void PopRegister(int register_index); virtual void PushBacktrack(Label* label); virtual void PushCurrentPosition(); virtual void PushRegister(int register_index, StackCheckFlag check_stack_limit); virtual void ReadCurrentPositionFromRegister(int reg); virtual void ReadStackPointerFromRegister(int reg); virtual void SetCurrentPositionFromEnd(int by); virtual void SetRegister(int register_index, int to); virtual bool Succeed(); virtual void WriteCurrentPositionToRegister(int reg, int cp_offset); virtual void ClearRegisters(int reg_from, int reg_to); virtual void WriteStackPointerToRegister(int reg); virtual bool CanReadUnaligned(); // Called from RegExp if the stack-guard is triggered. // If the code object is relocated, the return address is fixed before // returning. static int CheckStackGuardState(Address* return_address, Code* re_code, Address re_frame); void print_regexp_frame_constants(); private: #if defined(MIPS_ABI_N64) // Offsets from frame_pointer() of function parameters and stored registers. static const int kFramePointer = 0; // Above the frame pointer - Stored registers and stack passed parameters. // Registers s0 to s7, fp, and ra. static const int kStoredRegisters = kFramePointer; // Return address (stored from link register, read into pc on return). // TODO(plind): This 9 - is 8 s-regs (s0..s7) plus fp. static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize; static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize; // Stack frame header. static const int kStackFrameHeader = kSecondaryReturnAddress; // Stack parameters placed by caller. static const int kIsolate = kStackFrameHeader + kPointerSize; // Below the frame pointer. // Register parameters stored by setup code. static const int kDirectCall = kFramePointer - kPointerSize; static const int kStackHighEnd = kDirectCall - kPointerSize; static const int kNumOutputRegisters = kStackHighEnd - kPointerSize; static const int kRegisterOutput = kNumOutputRegisters - kPointerSize; static const int kInputEnd = kRegisterOutput - kPointerSize; static const int kInputStart = kInputEnd - kPointerSize; static const int kStartIndex = kInputStart - kPointerSize; static const int kInputString = kStartIndex - kPointerSize; // When adding local variables remember to push space for them in // the frame in GetCode. static const int kSuccessfulCaptures = kInputString - kPointerSize; static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize; // First register address. Following registers are below it on the stack. static const int kRegisterZero = kInputStartMinusOne - kPointerSize; #elif defined(MIPS_ABI_O32) // Offsets from frame_pointer() of function parameters and stored registers. static const int kFramePointer = 0; // Above the frame pointer - Stored registers and stack passed parameters. // Registers s0 to s7, fp, and ra. static const int kStoredRegisters = kFramePointer; // Return address (stored from link register, read into pc on return). static const int kReturnAddress = kStoredRegisters + 9 * kPointerSize; static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize; // Stack frame header. static const int kStackFrameHeader = kReturnAddress + kPointerSize; // Stack parameters placed by caller. static const int kRegisterOutput = kStackFrameHeader + 4 * kPointerSize + kPointerSize; static const int kNumOutputRegisters = kRegisterOutput + kPointerSize; static const int kStackHighEnd = kNumOutputRegisters + kPointerSize; static const int kDirectCall = kStackHighEnd + kPointerSize; static const int kIsolate = kDirectCall + kPointerSize; // Below the frame pointer. // Register parameters stored by setup code. static const int kInputEnd = kFramePointer - kPointerSize; static const int kInputStart = kInputEnd - kPointerSize; static const int kStartIndex = kInputStart - kPointerSize; static const int kInputString = kStartIndex - kPointerSize; // When adding local variables remember to push space for them in // the frame in GetCode. static const int kSuccessfulCaptures = kInputString - kPointerSize; static const int kInputStartMinusOne = kSuccessfulCaptures - kPointerSize; // First register address. Following registers are below it on the stack. static const int kRegisterZero = kInputStartMinusOne - kPointerSize; #else # error "undefined MIPS ABI" #endif // Initial size of code buffer. static const size_t kRegExpCodeSize = 1024; // Load a number of characters at the given offset from the // current position, into the current-character register. void LoadCurrentCharacterUnchecked(int cp_offset, int character_count); // Check whether preemption has been requested. void CheckPreemption(); // Check whether we are exceeding the stack limit on the backtrack stack. void CheckStackLimit(); // Generate a call to CheckStackGuardState. void CallCheckStackGuardState(Register scratch); // The ebp-relative location of a regexp register. MemOperand register_location(int register_index); // Register holding the current input position as negative offset from // the end of the string. inline Register current_input_offset() { return a6; } // The register containing the current character after LoadCurrentCharacter. inline Register current_character() { return a7; } // Register holding address of the end of the input string. inline Register end_of_input_address() { return t2; } // Register holding the frame address. Local variables, parameters and // regexp registers are addressed relative to this. inline Register frame_pointer() { return fp; } // The register containing the backtrack stack top. Provides a meaningful // name to the register. inline Register backtrack_stackpointer() { return t0; } // Register holding pointer to the current code object. inline Register code_pointer() { return a5; } // Byte size of chars in the string to match (decided by the Mode argument). inline int char_size() { return static_cast(mode_); } // Equivalent to a conditional branch to the label, unless the label // is NULL, in which case it is a conditional Backtrack. void BranchOrBacktrack(Label* to, Condition condition, Register rs, const Operand& rt); // Call and return internally in the generated code in a way that // is GC-safe (i.e., doesn't leave absolute code addresses on the stack) inline void SafeCall(Label* to, Condition cond, Register rs, const Operand& rt); inline void SafeReturn(); inline void SafeCallTarget(Label* name); // Pushes the value of a register on the backtrack stack. Decrements the // stack pointer by a word size and stores the register's value there. inline void Push(Register source); // Pops a value from the backtrack stack. Reads the word at the stack pointer // and increments it by a word size. inline void Pop(Register target); Isolate* isolate() const { return masm_->isolate(); } MacroAssembler* masm_; // Which mode to generate code for (Latin1 or UC16). Mode mode_; // One greater than maximal register index actually used. int num_registers_; // Number of registers to output at the end (the saved registers // are always 0..num_saved_registers_-1). int num_saved_registers_; // Labels used internally. Label entry_label_; Label start_label_; Label success_label_; Label backtrack_label_; Label exit_label_; Label check_preempt_label_; Label stack_overflow_label_; Label internal_failure_label_; }; #endif // V8_INTERPRETED_REGEXP }} // namespace v8::internal #endif // V8_MIPS_REGEXP_MACRO_ASSEMBLER_MIPS_H_