// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <stdlib.h> #include <limits> #include "src/v8.h" #include "src/accessors.h" #include "src/allocation-site-scopes.h" #include "src/api.h" #include "src/arguments.h" #include "src/bailout-reason.h" #include "src/base/cpu.h" #include "src/base/platform/platform.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/compiler.h" #include "src/conversions.h" #include "src/cpu-profiler.h" #include "src/date.h" #include "src/dateparser-inl.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/execution.h" #include "src/full-codegen.h" #include "src/global-handles.h" #include "src/isolate-inl.h" #include "src/json-parser.h" #include "src/json-stringifier.h" #include "src/jsregexp-inl.h" #include "src/jsregexp.h" #include "src/liveedit.h" #include "src/misc-intrinsics.h" #include "src/parser.h" #include "src/prototype.h" #include "src/runtime.h" #include "src/runtime-profiler.h" #include "src/scopeinfo.h" #include "src/smart-pointers.h" #include "src/string-search.h" #include "src/uri.h" #include "src/utils.h" #include "src/v8threads.h" #include "src/vm-state-inl.h" #include "third_party/fdlibm/fdlibm.h" #ifdef V8_I18N_SUPPORT #include "src/i18n.h" #include "unicode/brkiter.h" #include "unicode/calendar.h" #include "unicode/coll.h" #include "unicode/curramt.h" #include "unicode/datefmt.h" #include "unicode/dcfmtsym.h" #include "unicode/decimfmt.h" #include "unicode/dtfmtsym.h" #include "unicode/dtptngen.h" #include "unicode/locid.h" #include "unicode/numfmt.h" #include "unicode/numsys.h" #include "unicode/rbbi.h" #include "unicode/smpdtfmt.h" #include "unicode/timezone.h" #include "unicode/uchar.h" #include "unicode/ucol.h" #include "unicode/ucurr.h" #include "unicode/uloc.h" #include "unicode/unum.h" #include "unicode/uversion.h" #endif #ifndef _STLP_VENDOR_CSTD // STLPort doesn't import fpclassify and isless into the std namespace. using std::fpclassify; using std::isless; #endif namespace v8 { namespace internal { #define RUNTIME_ASSERT(value) \ if (!(value)) return isolate->ThrowIllegalOperation(); #define RUNTIME_ASSERT_HANDLIFIED(value, T) \ if (!(value)) { \ isolate->ThrowIllegalOperation(); \ return MaybeHandle<T>(); \ } // Cast the given object to a value of the specified type and store // it in a variable with the given name. If the object is not of the // expected type call IllegalOperation and return. #define CONVERT_ARG_CHECKED(Type, name, index) \ RUNTIME_ASSERT(args[index]->Is##Type()); \ Type* name = Type::cast(args[index]); #define CONVERT_ARG_HANDLE_CHECKED(Type, name, index) \ RUNTIME_ASSERT(args[index]->Is##Type()); \ Handle<Type> name = args.at<Type>(index); #define CONVERT_NUMBER_ARG_HANDLE_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsNumber()); \ Handle<Object> name = args.at<Object>(index); // Cast the given object to a boolean and store it in a variable with // the given name. If the object is not a boolean call IllegalOperation // and return. #define CONVERT_BOOLEAN_ARG_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsBoolean()); \ bool name = args[index]->IsTrue(); // Cast the given argument to a Smi and store its value in an int variable // with the given name. If the argument is not a Smi call IllegalOperation // and return. #define CONVERT_SMI_ARG_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsSmi()); \ int name = args.smi_at(index); // Cast the given argument to a double and store it in a variable with // the given name. If the argument is not a number (as opposed to // the number not-a-number) call IllegalOperation and return. #define CONVERT_DOUBLE_ARG_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsNumber()); \ double name = args.number_at(index); // Call the specified converter on the object *comand store the result in // a variable of the specified type with the given name. If the // object is not a Number call IllegalOperation and return. #define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \ RUNTIME_ASSERT(obj->IsNumber()); \ type name = NumberTo##Type(obj); // Cast the given argument to PropertyDetails and store its value in a // variable with the given name. If the argument is not a Smi call // IllegalOperation and return. #define CONVERT_PROPERTY_DETAILS_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsSmi()); \ PropertyDetails name = PropertyDetails(Smi::cast(args[index])); // Assert that the given argument has a valid value for a StrictMode // and store it in a StrictMode variable with the given name. #define CONVERT_STRICT_MODE_ARG_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsSmi()); \ RUNTIME_ASSERT(args.smi_at(index) == STRICT || \ args.smi_at(index) == SLOPPY); \ StrictMode name = static_cast<StrictMode>(args.smi_at(index)); // Assert that the given argument is a number within the Int32 range // and convert it to int32_t. If the argument is not an Int32 call // IllegalOperation and return. #define CONVERT_INT32_ARG_CHECKED(name, index) \ RUNTIME_ASSERT(args[index]->IsNumber()); \ int32_t name = 0; \ RUNTIME_ASSERT(args[index]->ToInt32(&name)); static Handle<Map> ComputeObjectLiteralMap( Handle<Context> context, Handle<FixedArray> constant_properties, bool* is_result_from_cache) { Isolate* isolate = context->GetIsolate(); int properties_length = constant_properties->length(); int number_of_properties = properties_length / 2; // Check that there are only internal strings and array indices among keys. int number_of_string_keys = 0; for (int p = 0; p != properties_length; p += 2) { Object* key = constant_properties->get(p); uint32_t element_index = 0; if (key->IsInternalizedString()) { number_of_string_keys++; } else if (key->ToArrayIndex(&element_index)) { // An index key does not require space in the property backing store. number_of_properties--; } else { // Bail out as a non-internalized-string non-index key makes caching // impossible. // DCHECK to make sure that the if condition after the loop is false. DCHECK(number_of_string_keys != number_of_properties); break; } } // If we only have internalized strings and array indices among keys then we // can use the map cache in the native context. const int kMaxKeys = 10; if ((number_of_string_keys == number_of_properties) && (number_of_string_keys < kMaxKeys)) { // Create the fixed array with the key. Handle<FixedArray> keys = isolate->factory()->NewFixedArray(number_of_string_keys); if (number_of_string_keys > 0) { int index = 0; for (int p = 0; p < properties_length; p += 2) { Object* key = constant_properties->get(p); if (key->IsInternalizedString()) { keys->set(index++, key); } } DCHECK(index == number_of_string_keys); } *is_result_from_cache = true; return isolate->factory()->ObjectLiteralMapFromCache(context, keys); } *is_result_from_cache = false; return Map::Create(isolate, number_of_properties); } MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> constant_properties); MUST_USE_RESULT static MaybeHandle<Object> CreateObjectLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> constant_properties, bool should_have_fast_elements, bool has_function_literal) { // Get the native context from the literals array. This is the // context in which the function was created and we use the object // function from this context to create the object literal. We do // not use the object function from the current native context // because this might be the object function from another context // which we should not have access to. Handle<Context> context = Handle<Context>(JSFunction::NativeContextFromLiterals(*literals)); // In case we have function literals, we want the object to be in // slow properties mode for now. We don't go in the map cache because // maps with constant functions can't be shared if the functions are // not the same (which is the common case). bool is_result_from_cache = false; Handle<Map> map = has_function_literal ? Handle<Map>(context->object_function()->initial_map()) : ComputeObjectLiteralMap(context, constant_properties, &is_result_from_cache); PretenureFlag pretenure_flag = isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED; Handle<JSObject> boilerplate = isolate->factory()->NewJSObjectFromMap(map, pretenure_flag); // Normalize the elements of the boilerplate to save space if needed. if (!should_have_fast_elements) JSObject::NormalizeElements(boilerplate); // Add the constant properties to the boilerplate. int length = constant_properties->length(); bool should_transform = !is_result_from_cache && boilerplate->HasFastProperties(); bool should_normalize = should_transform || has_function_literal; if (should_normalize) { // TODO(verwaest): We might not want to ever normalize here. JSObject::NormalizeProperties( boilerplate, KEEP_INOBJECT_PROPERTIES, length / 2); } // TODO(verwaest): Support tracking representations in the boilerplate. for (int index = 0; index < length; index +=2) { Handle<Object> key(constant_properties->get(index+0), isolate); Handle<Object> value(constant_properties->get(index+1), isolate); if (value->IsFixedArray()) { // The value contains the constant_properties of a // simple object or array literal. Handle<FixedArray> array = Handle<FixedArray>::cast(value); ASSIGN_RETURN_ON_EXCEPTION( isolate, value, CreateLiteralBoilerplate(isolate, literals, array), Object); } MaybeHandle<Object> maybe_result; uint32_t element_index = 0; if (key->IsInternalizedString()) { if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) { // Array index as string (uint32). if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate); maybe_result = JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY); } else { Handle<String> name(String::cast(*key)); DCHECK(!name->AsArrayIndex(&element_index)); maybe_result = JSObject::SetOwnPropertyIgnoreAttributes( boilerplate, name, value, NONE); } } else if (key->ToArrayIndex(&element_index)) { // Array index (uint32). if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate); maybe_result = JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY); } else { // Non-uint32 number. DCHECK(key->IsNumber()); double num = key->Number(); char arr[100]; Vector<char> buffer(arr, arraysize(arr)); const char* str = DoubleToCString(num, buffer); Handle<String> name = isolate->factory()->NewStringFromAsciiChecked(str); maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(boilerplate, name, value, NONE); } // If setting the property on the boilerplate throws an // exception, the exception is converted to an empty handle in // the handle based operations. In that case, we need to // convert back to an exception. RETURN_ON_EXCEPTION(isolate, maybe_result, Object); } // Transform to fast properties if necessary. For object literals with // containing function literals we defer this operation until after all // computed properties have been assigned so that we can generate // constant function properties. if (should_transform && !has_function_literal) { JSObject::MigrateSlowToFast( boilerplate, boilerplate->map()->unused_property_fields()); } return boilerplate; } MUST_USE_RESULT static MaybeHandle<Object> TransitionElements( Handle<Object> object, ElementsKind to_kind, Isolate* isolate) { HandleScope scope(isolate); if (!object->IsJSObject()) { isolate->ThrowIllegalOperation(); return MaybeHandle<Object>(); } ElementsKind from_kind = Handle<JSObject>::cast(object)->map()->elements_kind(); if (Map::IsValidElementsTransition(from_kind, to_kind)) { JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), to_kind); return object; } isolate->ThrowIllegalOperation(); return MaybeHandle<Object>(); } MaybeHandle<Object> Runtime::CreateArrayLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> elements) { // Create the JSArray. Handle<JSFunction> constructor( JSFunction::NativeContextFromLiterals(*literals)->array_function()); PretenureFlag pretenure_flag = isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED; Handle<JSArray> object = Handle<JSArray>::cast( isolate->factory()->NewJSObject(constructor, pretenure_flag)); ElementsKind constant_elements_kind = static_cast<ElementsKind>(Smi::cast(elements->get(0))->value()); Handle<FixedArrayBase> constant_elements_values( FixedArrayBase::cast(elements->get(1))); { DisallowHeapAllocation no_gc; DCHECK(IsFastElementsKind(constant_elements_kind)); Context* native_context = isolate->context()->native_context(); Object* maps_array = native_context->js_array_maps(); DCHECK(!maps_array->IsUndefined()); Object* map = FixedArray::cast(maps_array)->get(constant_elements_kind); object->set_map(Map::cast(map)); } Handle<FixedArrayBase> copied_elements_values; if (IsFastDoubleElementsKind(constant_elements_kind)) { copied_elements_values = isolate->factory()->CopyFixedDoubleArray( Handle<FixedDoubleArray>::cast(constant_elements_values)); } else { DCHECK(IsFastSmiOrObjectElementsKind(constant_elements_kind)); const bool is_cow = (constant_elements_values->map() == isolate->heap()->fixed_cow_array_map()); if (is_cow) { copied_elements_values = constant_elements_values; #if DEBUG Handle<FixedArray> fixed_array_values = Handle<FixedArray>::cast(copied_elements_values); for (int i = 0; i < fixed_array_values->length(); i++) { DCHECK(!fixed_array_values->get(i)->IsFixedArray()); } #endif } else { Handle<FixedArray> fixed_array_values = Handle<FixedArray>::cast(constant_elements_values); Handle<FixedArray> fixed_array_values_copy = isolate->factory()->CopyFixedArray(fixed_array_values); copied_elements_values = fixed_array_values_copy; for (int i = 0; i < fixed_array_values->length(); i++) { if (fixed_array_values->get(i)->IsFixedArray()) { // The value contains the constant_properties of a // simple object or array literal. Handle<FixedArray> fa(FixedArray::cast(fixed_array_values->get(i))); Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, CreateLiteralBoilerplate(isolate, literals, fa), Object); fixed_array_values_copy->set(i, *result); } } } } object->set_elements(*copied_elements_values); object->set_length(Smi::FromInt(copied_elements_values->length())); JSObject::ValidateElements(object); return object; } MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate( Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> array) { Handle<FixedArray> elements = CompileTimeValue::GetElements(array); const bool kHasNoFunctionLiteral = false; switch (CompileTimeValue::GetLiteralType(array)) { case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS: return CreateObjectLiteralBoilerplate(isolate, literals, elements, true, kHasNoFunctionLiteral); case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS: return CreateObjectLiteralBoilerplate(isolate, literals, elements, false, kHasNoFunctionLiteral); case CompileTimeValue::ARRAY_LITERAL: return Runtime::CreateArrayLiteralBoilerplate( isolate, literals, elements); default: UNREACHABLE(); return MaybeHandle<Object>(); } } RUNTIME_FUNCTION(Runtime_CreateObjectLiteral) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); CONVERT_SMI_ARG_CHECKED(literals_index, 1); CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2); CONVERT_SMI_ARG_CHECKED(flags, 3); bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0; bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0; RUNTIME_ASSERT(literals_index >= 0 && literals_index < literals->length()); // Check if boilerplate exists. If not, create it first. Handle<Object> literal_site(literals->get(literals_index), isolate); Handle<AllocationSite> site; Handle<JSObject> boilerplate; if (*literal_site == isolate->heap()->undefined_value()) { Handle<Object> raw_boilerplate; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, raw_boilerplate, CreateObjectLiteralBoilerplate( isolate, literals, constant_properties, should_have_fast_elements, has_function_literal)); boilerplate = Handle<JSObject>::cast(raw_boilerplate); AllocationSiteCreationContext creation_context(isolate); site = creation_context.EnterNewScope(); RETURN_FAILURE_ON_EXCEPTION( isolate, JSObject::DeepWalk(boilerplate, &creation_context)); creation_context.ExitScope(site, boilerplate); // Update the functions literal and return the boilerplate. literals->set(literals_index, *site); } else { site = Handle<AllocationSite>::cast(literal_site); boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()), isolate); } AllocationSiteUsageContext usage_context(isolate, site, true); usage_context.EnterNewScope(); MaybeHandle<Object> maybe_copy = JSObject::DeepCopy( boilerplate, &usage_context); usage_context.ExitScope(site, boilerplate); Handle<Object> copy; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, copy, maybe_copy); return *copy; } MUST_USE_RESULT static MaybeHandle<AllocationSite> GetLiteralAllocationSite( Isolate* isolate, Handle<FixedArray> literals, int literals_index, Handle<FixedArray> elements) { // Check if boilerplate exists. If not, create it first. Handle<Object> literal_site(literals->get(literals_index), isolate); Handle<AllocationSite> site; if (*literal_site == isolate->heap()->undefined_value()) { DCHECK(*elements != isolate->heap()->empty_fixed_array()); Handle<Object> boilerplate; ASSIGN_RETURN_ON_EXCEPTION( isolate, boilerplate, Runtime::CreateArrayLiteralBoilerplate(isolate, literals, elements), AllocationSite); AllocationSiteCreationContext creation_context(isolate); site = creation_context.EnterNewScope(); if (JSObject::DeepWalk(Handle<JSObject>::cast(boilerplate), &creation_context).is_null()) { return Handle<AllocationSite>::null(); } creation_context.ExitScope(site, Handle<JSObject>::cast(boilerplate)); literals->set(literals_index, *site); } else { site = Handle<AllocationSite>::cast(literal_site); } return site; } static MaybeHandle<JSObject> CreateArrayLiteralImpl(Isolate* isolate, Handle<FixedArray> literals, int literals_index, Handle<FixedArray> elements, int flags) { RUNTIME_ASSERT_HANDLIFIED(literals_index >= 0 && literals_index < literals->length(), JSObject); Handle<AllocationSite> site; ASSIGN_RETURN_ON_EXCEPTION( isolate, site, GetLiteralAllocationSite(isolate, literals, literals_index, elements), JSObject); bool enable_mementos = (flags & ArrayLiteral::kDisableMementos) == 0; Handle<JSObject> boilerplate(JSObject::cast(site->transition_info())); AllocationSiteUsageContext usage_context(isolate, site, enable_mementos); usage_context.EnterNewScope(); JSObject::DeepCopyHints hints = (flags & ArrayLiteral::kShallowElements) == 0 ? JSObject::kNoHints : JSObject::kObjectIsShallow; MaybeHandle<JSObject> copy = JSObject::DeepCopy(boilerplate, &usage_context, hints); usage_context.ExitScope(site, boilerplate); return copy; } RUNTIME_FUNCTION(Runtime_CreateArrayLiteral) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); CONVERT_SMI_ARG_CHECKED(literals_index, 1); CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2); CONVERT_SMI_ARG_CHECKED(flags, 3); Handle<JSObject> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, CreateArrayLiteralImpl(isolate, literals, literals_index, elements, flags)); return *result; } RUNTIME_FUNCTION(Runtime_CreateArrayLiteralStubBailout) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); CONVERT_SMI_ARG_CHECKED(literals_index, 1); CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2); Handle<JSObject> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, CreateArrayLiteralImpl(isolate, literals, literals_index, elements, ArrayLiteral::kShallowElements)); return *result; } RUNTIME_FUNCTION(Runtime_CreateSymbol) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, name, 0); RUNTIME_ASSERT(name->IsString() || name->IsUndefined()); Handle<Symbol> symbol = isolate->factory()->NewSymbol(); if (name->IsString()) symbol->set_name(*name); return *symbol; } RUNTIME_FUNCTION(Runtime_CreatePrivateSymbol) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, name, 0); RUNTIME_ASSERT(name->IsString() || name->IsUndefined()); Handle<Symbol> symbol = isolate->factory()->NewPrivateSymbol(); if (name->IsString()) symbol->set_name(*name); return *symbol; } RUNTIME_FUNCTION(Runtime_CreatePrivateOwnSymbol) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, name, 0); RUNTIME_ASSERT(name->IsString() || name->IsUndefined()); Handle<Symbol> symbol = isolate->factory()->NewPrivateOwnSymbol(); if (name->IsString()) symbol->set_name(*name); return *symbol; } RUNTIME_FUNCTION(Runtime_CreateGlobalPrivateOwnSymbol) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, name, 0); Handle<JSObject> registry = isolate->GetSymbolRegistry(); Handle<String> part = isolate->factory()->private_intern_string(); Handle<Object> privates; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, privates, Object::GetPropertyOrElement(registry, part)); Handle<Object> symbol; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, symbol, Object::GetPropertyOrElement(privates, name)); if (!symbol->IsSymbol()) { DCHECK(symbol->IsUndefined()); symbol = isolate->factory()->NewPrivateSymbol(); Handle<Symbol>::cast(symbol)->set_name(*name); Handle<Symbol>::cast(symbol)->set_is_own(true); JSObject::SetProperty(Handle<JSObject>::cast(privates), name, symbol, STRICT).Assert(); } return *symbol; } RUNTIME_FUNCTION(Runtime_NewSymbolWrapper) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Symbol, symbol, 0); return *Object::ToObject(isolate, symbol).ToHandleChecked(); } RUNTIME_FUNCTION(Runtime_SymbolDescription) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Symbol, symbol, 0); return symbol->name(); } RUNTIME_FUNCTION(Runtime_SymbolRegistry) { HandleScope scope(isolate); DCHECK(args.length() == 0); return *isolate->GetSymbolRegistry(); } RUNTIME_FUNCTION(Runtime_SymbolIsPrivate) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Symbol, symbol, 0); return isolate->heap()->ToBoolean(symbol->is_private()); } RUNTIME_FUNCTION(Runtime_CreateJSProxy) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0); CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1); if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value(); return *isolate->factory()->NewJSProxy(handler, prototype); } RUNTIME_FUNCTION(Runtime_CreateJSFunctionProxy) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0); CONVERT_ARG_HANDLE_CHECKED(Object, call_trap, 1); RUNTIME_ASSERT(call_trap->IsJSFunction() || call_trap->IsJSFunctionProxy()); CONVERT_ARG_HANDLE_CHECKED(JSFunction, construct_trap, 2); CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 3); if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value(); return *isolate->factory()->NewJSFunctionProxy( handler, call_trap, construct_trap, prototype); } RUNTIME_FUNCTION(Runtime_IsJSProxy) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsJSProxy()); } RUNTIME_FUNCTION(Runtime_IsJSFunctionProxy) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsJSFunctionProxy()); } RUNTIME_FUNCTION(Runtime_GetHandler) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSProxy, proxy, 0); return proxy->handler(); } RUNTIME_FUNCTION(Runtime_GetCallTrap) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0); return proxy->call_trap(); } RUNTIME_FUNCTION(Runtime_GetConstructTrap) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0); return proxy->construct_trap(); } RUNTIME_FUNCTION(Runtime_Fix) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSProxy, proxy, 0); JSProxy::Fix(proxy); return isolate->heap()->undefined_value(); } void Runtime::FreeArrayBuffer(Isolate* isolate, JSArrayBuffer* phantom_array_buffer) { if (phantom_array_buffer->should_be_freed()) { DCHECK(phantom_array_buffer->is_external()); free(phantom_array_buffer->backing_store()); } if (phantom_array_buffer->is_external()) return; size_t allocated_length = NumberToSize( isolate, phantom_array_buffer->byte_length()); reinterpret_cast<v8::Isolate*>(isolate) ->AdjustAmountOfExternalAllocatedMemory( -static_cast<int64_t>(allocated_length)); CHECK(V8::ArrayBufferAllocator() != NULL); V8::ArrayBufferAllocator()->Free( phantom_array_buffer->backing_store(), allocated_length); } void Runtime::SetupArrayBuffer(Isolate* isolate, Handle<JSArrayBuffer> array_buffer, bool is_external, void* data, size_t allocated_length) { DCHECK(array_buffer->GetInternalFieldCount() == v8::ArrayBuffer::kInternalFieldCount); for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) { array_buffer->SetInternalField(i, Smi::FromInt(0)); } array_buffer->set_backing_store(data); array_buffer->set_flag(Smi::FromInt(0)); array_buffer->set_is_external(is_external); Handle<Object> byte_length = isolate->factory()->NewNumberFromSize(allocated_length); CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber()); array_buffer->set_byte_length(*byte_length); array_buffer->set_weak_next(isolate->heap()->array_buffers_list()); isolate->heap()->set_array_buffers_list(*array_buffer); array_buffer->set_weak_first_view(isolate->heap()->undefined_value()); } bool Runtime::SetupArrayBufferAllocatingData( Isolate* isolate, Handle<JSArrayBuffer> array_buffer, size_t allocated_length, bool initialize) { void* data; CHECK(V8::ArrayBufferAllocator() != NULL); if (allocated_length != 0) { if (initialize) { data = V8::ArrayBufferAllocator()->Allocate(allocated_length); } else { data = V8::ArrayBufferAllocator()->AllocateUninitialized(allocated_length); } if (data == NULL) return false; } else { data = NULL; } SetupArrayBuffer(isolate, array_buffer, false, data, allocated_length); reinterpret_cast<v8::Isolate*>(isolate) ->AdjustAmountOfExternalAllocatedMemory(allocated_length); return true; } void Runtime::NeuterArrayBuffer(Handle<JSArrayBuffer> array_buffer) { Isolate* isolate = array_buffer->GetIsolate(); for (Handle<Object> view_obj(array_buffer->weak_first_view(), isolate); !view_obj->IsUndefined();) { Handle<JSArrayBufferView> view(JSArrayBufferView::cast(*view_obj)); if (view->IsJSTypedArray()) { JSTypedArray::cast(*view)->Neuter(); } else if (view->IsJSDataView()) { JSDataView::cast(*view)->Neuter(); } else { UNREACHABLE(); } view_obj = handle(view->weak_next(), isolate); } array_buffer->Neuter(); } RUNTIME_FUNCTION(Runtime_ArrayBufferInitialize) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, holder, 0); CONVERT_NUMBER_ARG_HANDLE_CHECKED(byteLength, 1); if (!holder->byte_length()->IsUndefined()) { // ArrayBuffer is already initialized; probably a fuzz test. return *holder; } size_t allocated_length = 0; if (!TryNumberToSize(isolate, *byteLength, &allocated_length)) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError("invalid_array_buffer_length", HandleVector<Object>(NULL, 0))); } if (!Runtime::SetupArrayBufferAllocatingData(isolate, holder, allocated_length)) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError("invalid_array_buffer_length", HandleVector<Object>(NULL, 0))); } return *holder; } RUNTIME_FUNCTION(Runtime_ArrayBufferGetByteLength) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSArrayBuffer, holder, 0); return holder->byte_length(); } RUNTIME_FUNCTION(Runtime_ArrayBufferSliceImpl) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, source, 0); CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, target, 1); CONVERT_NUMBER_ARG_HANDLE_CHECKED(first, 2); RUNTIME_ASSERT(!source.is_identical_to(target)); size_t start = 0; RUNTIME_ASSERT(TryNumberToSize(isolate, *first, &start)); size_t target_length = NumberToSize(isolate, target->byte_length()); if (target_length == 0) return isolate->heap()->undefined_value(); size_t source_byte_length = NumberToSize(isolate, source->byte_length()); RUNTIME_ASSERT(start <= source_byte_length); RUNTIME_ASSERT(source_byte_length - start >= target_length); uint8_t* source_data = reinterpret_cast<uint8_t*>(source->backing_store()); uint8_t* target_data = reinterpret_cast<uint8_t*>(target->backing_store()); CopyBytes(target_data, source_data + start, target_length); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_ArrayBufferIsView) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, object, 0); return isolate->heap()->ToBoolean(object->IsJSArrayBufferView()); } RUNTIME_FUNCTION(Runtime_ArrayBufferNeuter) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, array_buffer, 0); if (array_buffer->backing_store() == NULL) { CHECK(Smi::FromInt(0) == array_buffer->byte_length()); return isolate->heap()->undefined_value(); } DCHECK(!array_buffer->is_external()); void* backing_store = array_buffer->backing_store(); size_t byte_length = NumberToSize(isolate, array_buffer->byte_length()); array_buffer->set_is_external(true); Runtime::NeuterArrayBuffer(array_buffer); V8::ArrayBufferAllocator()->Free(backing_store, byte_length); return isolate->heap()->undefined_value(); } void Runtime::ArrayIdToTypeAndSize( int arrayId, ExternalArrayType* array_type, ElementsKind* external_elements_kind, ElementsKind* fixed_elements_kind, size_t* element_size) { switch (arrayId) { #define ARRAY_ID_CASE(Type, type, TYPE, ctype, size) \ case ARRAY_ID_##TYPE: \ *array_type = kExternal##Type##Array; \ *external_elements_kind = EXTERNAL_##TYPE##_ELEMENTS; \ *fixed_elements_kind = TYPE##_ELEMENTS; \ *element_size = size; \ break; TYPED_ARRAYS(ARRAY_ID_CASE) #undef ARRAY_ID_CASE default: UNREACHABLE(); } } RUNTIME_FUNCTION(Runtime_TypedArrayInitialize) { HandleScope scope(isolate); DCHECK(args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0); CONVERT_SMI_ARG_CHECKED(arrayId, 1); CONVERT_ARG_HANDLE_CHECKED(Object, maybe_buffer, 2); CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset_object, 3); CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length_object, 4); RUNTIME_ASSERT(arrayId >= Runtime::ARRAY_ID_FIRST && arrayId <= Runtime::ARRAY_ID_LAST); ExternalArrayType array_type = kExternalInt8Array; // Bogus initialization. size_t element_size = 1; // Bogus initialization. ElementsKind external_elements_kind = EXTERNAL_INT8_ELEMENTS; // Bogus initialization. ElementsKind fixed_elements_kind = INT8_ELEMENTS; // Bogus initialization. Runtime::ArrayIdToTypeAndSize(arrayId, &array_type, &external_elements_kind, &fixed_elements_kind, &element_size); RUNTIME_ASSERT(holder->map()->elements_kind() == fixed_elements_kind); size_t byte_offset = 0; size_t byte_length = 0; RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_offset_object, &byte_offset)); RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_length_object, &byte_length)); if (maybe_buffer->IsJSArrayBuffer()) { Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer); size_t array_buffer_byte_length = NumberToSize(isolate, buffer->byte_length()); RUNTIME_ASSERT(byte_offset <= array_buffer_byte_length); RUNTIME_ASSERT(array_buffer_byte_length - byte_offset >= byte_length); } else { RUNTIME_ASSERT(maybe_buffer->IsNull()); } RUNTIME_ASSERT(byte_length % element_size == 0); size_t length = byte_length / element_size; if (length > static_cast<unsigned>(Smi::kMaxValue)) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError("invalid_typed_array_length", HandleVector<Object>(NULL, 0))); } // All checks are done, now we can modify objects. DCHECK(holder->GetInternalFieldCount() == v8::ArrayBufferView::kInternalFieldCount); for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) { holder->SetInternalField(i, Smi::FromInt(0)); } Handle<Object> length_obj = isolate->factory()->NewNumberFromSize(length); holder->set_length(*length_obj); holder->set_byte_offset(*byte_offset_object); holder->set_byte_length(*byte_length_object); if (!maybe_buffer->IsNull()) { Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer); holder->set_buffer(*buffer); holder->set_weak_next(buffer->weak_first_view()); buffer->set_weak_first_view(*holder); Handle<ExternalArray> elements = isolate->factory()->NewExternalArray( static_cast<int>(length), array_type, static_cast<uint8_t*>(buffer->backing_store()) + byte_offset); Handle<Map> map = JSObject::GetElementsTransitionMap(holder, external_elements_kind); JSObject::SetMapAndElements(holder, map, elements); DCHECK(IsExternalArrayElementsKind(holder->map()->elements_kind())); } else { holder->set_buffer(Smi::FromInt(0)); holder->set_weak_next(isolate->heap()->undefined_value()); Handle<FixedTypedArrayBase> elements = isolate->factory()->NewFixedTypedArray( static_cast<int>(length), array_type); holder->set_elements(*elements); } return isolate->heap()->undefined_value(); } // Initializes a typed array from an array-like object. // If an array-like object happens to be a typed array of the same type, // initializes backing store using memove. // // Returns true if backing store was initialized or false otherwise. RUNTIME_FUNCTION(Runtime_TypedArrayInitializeFromArrayLike) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0); CONVERT_SMI_ARG_CHECKED(arrayId, 1); CONVERT_ARG_HANDLE_CHECKED(Object, source, 2); CONVERT_NUMBER_ARG_HANDLE_CHECKED(length_obj, 3); RUNTIME_ASSERT(arrayId >= Runtime::ARRAY_ID_FIRST && arrayId <= Runtime::ARRAY_ID_LAST); ExternalArrayType array_type = kExternalInt8Array; // Bogus initialization. size_t element_size = 1; // Bogus initialization. ElementsKind external_elements_kind = EXTERNAL_INT8_ELEMENTS; // Bogus intialization. ElementsKind fixed_elements_kind = INT8_ELEMENTS; // Bogus initialization. Runtime::ArrayIdToTypeAndSize(arrayId, &array_type, &external_elements_kind, &fixed_elements_kind, &element_size); RUNTIME_ASSERT(holder->map()->elements_kind() == fixed_elements_kind); Handle<JSArrayBuffer> buffer = isolate->factory()->NewJSArrayBuffer(); if (source->IsJSTypedArray() && JSTypedArray::cast(*source)->type() == array_type) { length_obj = Handle<Object>(JSTypedArray::cast(*source)->length(), isolate); } size_t length = 0; RUNTIME_ASSERT(TryNumberToSize(isolate, *length_obj, &length)); if ((length > static_cast<unsigned>(Smi::kMaxValue)) || (length > (kMaxInt / element_size))) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError("invalid_typed_array_length", HandleVector<Object>(NULL, 0))); } size_t byte_length = length * element_size; DCHECK(holder->GetInternalFieldCount() == v8::ArrayBufferView::kInternalFieldCount); for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) { holder->SetInternalField(i, Smi::FromInt(0)); } // NOTE: not initializing backing store. // We assume that the caller of this function will initialize holder // with the loop // for(i = 0; i < length; i++) { holder[i] = source[i]; } // We assume that the caller of this function is always a typed array // constructor. // If source is a typed array, this loop will always run to completion, // so we are sure that the backing store will be initialized. // Otherwise, the indexing operation might throw, so the loop will not // run to completion and the typed array might remain partly initialized. // However we further assume that the caller of this function is a typed array // constructor, and the exception will propagate out of the constructor, // therefore uninitialized memory will not be accessible by a user program. // // TODO(dslomov): revise this once we support subclassing. if (!Runtime::SetupArrayBufferAllocatingData( isolate, buffer, byte_length, false)) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError("invalid_array_buffer_length", HandleVector<Object>(NULL, 0))); } holder->set_buffer(*buffer); holder->set_byte_offset(Smi::FromInt(0)); Handle<Object> byte_length_obj( isolate->factory()->NewNumberFromSize(byte_length)); holder->set_byte_length(*byte_length_obj); holder->set_length(*length_obj); holder->set_weak_next(buffer->weak_first_view()); buffer->set_weak_first_view(*holder); Handle<ExternalArray> elements = isolate->factory()->NewExternalArray( static_cast<int>(length), array_type, static_cast<uint8_t*>(buffer->backing_store())); Handle<Map> map = JSObject::GetElementsTransitionMap( holder, external_elements_kind); JSObject::SetMapAndElements(holder, map, elements); if (source->IsJSTypedArray()) { Handle<JSTypedArray> typed_array(JSTypedArray::cast(*source)); if (typed_array->type() == holder->type()) { uint8_t* backing_store = static_cast<uint8_t*>( typed_array->GetBuffer()->backing_store()); size_t source_byte_offset = NumberToSize(isolate, typed_array->byte_offset()); memcpy( buffer->backing_store(), backing_store + source_byte_offset, byte_length); return isolate->heap()->true_value(); } } return isolate->heap()->false_value(); } #define BUFFER_VIEW_GETTER(Type, getter, accessor) \ RUNTIME_FUNCTION(Runtime_##Type##Get##getter) { \ HandleScope scope(isolate); \ DCHECK(args.length() == 1); \ CONVERT_ARG_HANDLE_CHECKED(JS##Type, holder, 0); \ return holder->accessor(); \ } BUFFER_VIEW_GETTER(ArrayBufferView, ByteLength, byte_length) BUFFER_VIEW_GETTER(ArrayBufferView, ByteOffset, byte_offset) BUFFER_VIEW_GETTER(TypedArray, Length, length) BUFFER_VIEW_GETTER(DataView, Buffer, buffer) #undef BUFFER_VIEW_GETTER RUNTIME_FUNCTION(Runtime_TypedArrayGetBuffer) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0); return *holder->GetBuffer(); } // Return codes for Runtime_TypedArraySetFastCases. // Should be synchronized with typedarray.js natives. enum TypedArraySetResultCodes { // Set from typed array of the same type. // This is processed by TypedArraySetFastCases TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE = 0, // Set from typed array of the different type, overlapping in memory. TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING = 1, // Set from typed array of the different type, non-overlapping. TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING = 2, // Set from non-typed array. TYPED_ARRAY_SET_NON_TYPED_ARRAY = 3 }; RUNTIME_FUNCTION(Runtime_TypedArraySetFastCases) { HandleScope scope(isolate); DCHECK(args.length() == 3); if (!args[0]->IsJSTypedArray()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError("not_typed_array", HandleVector<Object>(NULL, 0))); } if (!args[1]->IsJSTypedArray()) return Smi::FromInt(TYPED_ARRAY_SET_NON_TYPED_ARRAY); CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, target_obj, 0); CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, source_obj, 1); CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset_obj, 2); Handle<JSTypedArray> target(JSTypedArray::cast(*target_obj)); Handle<JSTypedArray> source(JSTypedArray::cast(*source_obj)); size_t offset = 0; RUNTIME_ASSERT(TryNumberToSize(isolate, *offset_obj, &offset)); size_t target_length = NumberToSize(isolate, target->length()); size_t source_length = NumberToSize(isolate, source->length()); size_t target_byte_length = NumberToSize(isolate, target->byte_length()); size_t source_byte_length = NumberToSize(isolate, source->byte_length()); if (offset > target_length || offset + source_length > target_length || offset + source_length < offset) { // overflow THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError("typed_array_set_source_too_large", HandleVector<Object>(NULL, 0))); } size_t target_offset = NumberToSize(isolate, target->byte_offset()); size_t source_offset = NumberToSize(isolate, source->byte_offset()); uint8_t* target_base = static_cast<uint8_t*>( target->GetBuffer()->backing_store()) + target_offset; uint8_t* source_base = static_cast<uint8_t*>( source->GetBuffer()->backing_store()) + source_offset; // Typed arrays of the same type: use memmove. if (target->type() == source->type()) { memmove(target_base + offset * target->element_size(), source_base, source_byte_length); return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE); } // Typed arrays of different types over the same backing store if ((source_base <= target_base && source_base + source_byte_length > target_base) || (target_base <= source_base && target_base + target_byte_length > source_base)) { // We do not support overlapping ArrayBuffers DCHECK( target->GetBuffer()->backing_store() == source->GetBuffer()->backing_store()); return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING); } else { // Non-overlapping typed arrays return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING); } } RUNTIME_FUNCTION(Runtime_TypedArrayMaxSizeInHeap) { DCHECK(args.length() == 0); DCHECK_OBJECT_SIZE( FLAG_typed_array_max_size_in_heap + FixedTypedArrayBase::kDataOffset); return Smi::FromInt(FLAG_typed_array_max_size_in_heap); } RUNTIME_FUNCTION(Runtime_DataViewInitialize) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, buffer, 1); CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset, 2); CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length, 3); DCHECK(holder->GetInternalFieldCount() == v8::ArrayBufferView::kInternalFieldCount); for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) { holder->SetInternalField(i, Smi::FromInt(0)); } size_t buffer_length = 0; size_t offset = 0; size_t length = 0; RUNTIME_ASSERT( TryNumberToSize(isolate, buffer->byte_length(), &buffer_length)); RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_offset, &offset)); RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_length, &length)); // TODO(jkummerow): When we have a "safe numerics" helper class, use it here. // Entire range [offset, offset + length] must be in bounds. RUNTIME_ASSERT(offset <= buffer_length); RUNTIME_ASSERT(offset + length <= buffer_length); // No overflow. RUNTIME_ASSERT(offset + length >= offset); holder->set_buffer(*buffer); holder->set_byte_offset(*byte_offset); holder->set_byte_length(*byte_length); holder->set_weak_next(buffer->weak_first_view()); buffer->set_weak_first_view(*holder); return isolate->heap()->undefined_value(); } inline static bool NeedToFlipBytes(bool is_little_endian) { #ifdef V8_TARGET_LITTLE_ENDIAN return !is_little_endian; #else return is_little_endian; #endif } template<int n> inline void CopyBytes(uint8_t* target, uint8_t* source) { for (int i = 0; i < n; i++) { *(target++) = *(source++); } } template<int n> inline void FlipBytes(uint8_t* target, uint8_t* source) { source = source + (n-1); for (int i = 0; i < n; i++) { *(target++) = *(source--); } } template<typename T> inline static bool DataViewGetValue( Isolate* isolate, Handle<JSDataView> data_view, Handle<Object> byte_offset_obj, bool is_little_endian, T* result) { size_t byte_offset = 0; if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) { return false; } Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer())); size_t data_view_byte_offset = NumberToSize(isolate, data_view->byte_offset()); size_t data_view_byte_length = NumberToSize(isolate, data_view->byte_length()); if (byte_offset + sizeof(T) > data_view_byte_length || byte_offset + sizeof(T) < byte_offset) { // overflow return false; } union Value { T data; uint8_t bytes[sizeof(T)]; }; Value value; size_t buffer_offset = data_view_byte_offset + byte_offset; DCHECK( NumberToSize(isolate, buffer->byte_length()) >= buffer_offset + sizeof(T)); uint8_t* source = static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset; if (NeedToFlipBytes(is_little_endian)) { FlipBytes<sizeof(T)>(value.bytes, source); } else { CopyBytes<sizeof(T)>(value.bytes, source); } *result = value.data; return true; } template<typename T> static bool DataViewSetValue( Isolate* isolate, Handle<JSDataView> data_view, Handle<Object> byte_offset_obj, bool is_little_endian, T data) { size_t byte_offset = 0; if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) { return false; } Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer())); size_t data_view_byte_offset = NumberToSize(isolate, data_view->byte_offset()); size_t data_view_byte_length = NumberToSize(isolate, data_view->byte_length()); if (byte_offset + sizeof(T) > data_view_byte_length || byte_offset + sizeof(T) < byte_offset) { // overflow return false; } union Value { T data; uint8_t bytes[sizeof(T)]; }; Value value; value.data = data; size_t buffer_offset = data_view_byte_offset + byte_offset; DCHECK( NumberToSize(isolate, buffer->byte_length()) >= buffer_offset + sizeof(T)); uint8_t* target = static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset; if (NeedToFlipBytes(is_little_endian)) { FlipBytes<sizeof(T)>(target, value.bytes); } else { CopyBytes<sizeof(T)>(target, value.bytes); } return true; } #define DATA_VIEW_GETTER(TypeName, Type, Converter) \ RUNTIME_FUNCTION(Runtime_DataViewGet##TypeName) { \ HandleScope scope(isolate); \ DCHECK(args.length() == 3); \ CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \ CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1); \ CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 2); \ Type result; \ if (DataViewGetValue(isolate, holder, offset, is_little_endian, \ &result)) { \ return *isolate->factory()->Converter(result); \ } else { \ THROW_NEW_ERROR_RETURN_FAILURE( \ isolate, NewRangeError("invalid_data_view_accessor_offset", \ HandleVector<Object>(NULL, 0))); \ } \ } DATA_VIEW_GETTER(Uint8, uint8_t, NewNumberFromUint) DATA_VIEW_GETTER(Int8, int8_t, NewNumberFromInt) DATA_VIEW_GETTER(Uint16, uint16_t, NewNumberFromUint) DATA_VIEW_GETTER(Int16, int16_t, NewNumberFromInt) DATA_VIEW_GETTER(Uint32, uint32_t, NewNumberFromUint) DATA_VIEW_GETTER(Int32, int32_t, NewNumberFromInt) DATA_VIEW_GETTER(Float32, float, NewNumber) DATA_VIEW_GETTER(Float64, double, NewNumber) #undef DATA_VIEW_GETTER template <typename T> static T DataViewConvertValue(double value); template <> int8_t DataViewConvertValue<int8_t>(double value) { return static_cast<int8_t>(DoubleToInt32(value)); } template <> int16_t DataViewConvertValue<int16_t>(double value) { return static_cast<int16_t>(DoubleToInt32(value)); } template <> int32_t DataViewConvertValue<int32_t>(double value) { return DoubleToInt32(value); } template <> uint8_t DataViewConvertValue<uint8_t>(double value) { return static_cast<uint8_t>(DoubleToUint32(value)); } template <> uint16_t DataViewConvertValue<uint16_t>(double value) { return static_cast<uint16_t>(DoubleToUint32(value)); } template <> uint32_t DataViewConvertValue<uint32_t>(double value) { return DoubleToUint32(value); } template <> float DataViewConvertValue<float>(double value) { return static_cast<float>(value); } template <> double DataViewConvertValue<double>(double value) { return value; } #define DATA_VIEW_SETTER(TypeName, Type) \ RUNTIME_FUNCTION(Runtime_DataViewSet##TypeName) { \ HandleScope scope(isolate); \ DCHECK(args.length() == 4); \ CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \ CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1); \ CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2); \ CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 3); \ Type v = DataViewConvertValue<Type>(value->Number()); \ if (DataViewSetValue(isolate, holder, offset, is_little_endian, v)) { \ return isolate->heap()->undefined_value(); \ } else { \ THROW_NEW_ERROR_RETURN_FAILURE( \ isolate, NewRangeError("invalid_data_view_accessor_offset", \ HandleVector<Object>(NULL, 0))); \ } \ } DATA_VIEW_SETTER(Uint8, uint8_t) DATA_VIEW_SETTER(Int8, int8_t) DATA_VIEW_SETTER(Uint16, uint16_t) DATA_VIEW_SETTER(Int16, int16_t) DATA_VIEW_SETTER(Uint32, uint32_t) DATA_VIEW_SETTER(Int32, int32_t) DATA_VIEW_SETTER(Float32, float) DATA_VIEW_SETTER(Float64, double) #undef DATA_VIEW_SETTER RUNTIME_FUNCTION(Runtime_SetInitialize) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); Handle<OrderedHashSet> table = isolate->factory()->NewOrderedHashSet(); holder->set_table(*table); return *holder; } RUNTIME_FUNCTION(Runtime_SetAdd) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table())); table = OrderedHashSet::Add(table, key); holder->set_table(*table); return *holder; } RUNTIME_FUNCTION(Runtime_SetHas) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table())); return isolate->heap()->ToBoolean(table->Contains(key)); } RUNTIME_FUNCTION(Runtime_SetDelete) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table())); bool was_present = false; table = OrderedHashSet::Remove(table, key, &was_present); holder->set_table(*table); return isolate->heap()->ToBoolean(was_present); } RUNTIME_FUNCTION(Runtime_SetClear) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table())); table = OrderedHashSet::Clear(table); holder->set_table(*table); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_SetGetSize) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0); Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table())); return Smi::FromInt(table->NumberOfElements()); } RUNTIME_FUNCTION(Runtime_SetIteratorInitialize) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSSetIterator, holder, 0); CONVERT_ARG_HANDLE_CHECKED(JSSet, set, 1); CONVERT_SMI_ARG_CHECKED(kind, 2) RUNTIME_ASSERT(kind == JSSetIterator::kKindValues || kind == JSSetIterator::kKindEntries); Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table())); holder->set_table(*table); holder->set_index(Smi::FromInt(0)); holder->set_kind(Smi::FromInt(kind)); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_SetIteratorNext) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(JSSetIterator, holder, 0); CONVERT_ARG_CHECKED(JSArray, value_array, 1); return holder->Next(value_array); } RUNTIME_FUNCTION(Runtime_MapInitialize) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); Handle<OrderedHashMap> table = isolate->factory()->NewOrderedHashMap(); holder->set_table(*table); return *holder; } RUNTIME_FUNCTION(Runtime_MapGet) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table())); Handle<Object> lookup(table->Lookup(key), isolate); return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup; } RUNTIME_FUNCTION(Runtime_MapHas) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table())); Handle<Object> lookup(table->Lookup(key), isolate); return isolate->heap()->ToBoolean(!lookup->IsTheHole()); } RUNTIME_FUNCTION(Runtime_MapDelete) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table())); bool was_present = false; Handle<OrderedHashMap> new_table = OrderedHashMap::Remove(table, key, &was_present); holder->set_table(*new_table); return isolate->heap()->ToBoolean(was_present); } RUNTIME_FUNCTION(Runtime_MapClear) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table())); table = OrderedHashMap::Clear(table); holder->set_table(*table); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_MapSet) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table())); Handle<OrderedHashMap> new_table = OrderedHashMap::Put(table, key, value); holder->set_table(*new_table); return *holder; } RUNTIME_FUNCTION(Runtime_MapGetSize) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0); Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table())); return Smi::FromInt(table->NumberOfElements()); } RUNTIME_FUNCTION(Runtime_MapIteratorInitialize) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSMapIterator, holder, 0); CONVERT_ARG_HANDLE_CHECKED(JSMap, map, 1); CONVERT_SMI_ARG_CHECKED(kind, 2) RUNTIME_ASSERT(kind == JSMapIterator::kKindKeys || kind == JSMapIterator::kKindValues || kind == JSMapIterator::kKindEntries); Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table())); holder->set_table(*table); holder->set_index(Smi::FromInt(0)); holder->set_kind(Smi::FromInt(kind)); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_GetWeakMapEntries) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, holder, 0); Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table())); Handle<FixedArray> entries = isolate->factory()->NewFixedArray(table->NumberOfElements() * 2); { DisallowHeapAllocation no_gc; int number_of_non_hole_elements = 0; for (int i = 0; i < table->Capacity(); i++) { Handle<Object> key(table->KeyAt(i), isolate); if (table->IsKey(*key)) { entries->set(number_of_non_hole_elements++, *key); Object* value = table->Lookup(key); entries->set(number_of_non_hole_elements++, value); } } DCHECK_EQ(table->NumberOfElements() * 2, number_of_non_hole_elements); } return *isolate->factory()->NewJSArrayWithElements(entries); } RUNTIME_FUNCTION(Runtime_MapIteratorNext) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(JSMapIterator, holder, 0); CONVERT_ARG_CHECKED(JSArray, value_array, 1); return holder->Next(value_array); } static Handle<JSWeakCollection> WeakCollectionInitialize( Isolate* isolate, Handle<JSWeakCollection> weak_collection) { DCHECK(weak_collection->map()->inobject_properties() == 0); Handle<ObjectHashTable> table = ObjectHashTable::New(isolate, 0); weak_collection->set_table(*table); return weak_collection; } RUNTIME_FUNCTION(Runtime_WeakCollectionInitialize) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0); return *WeakCollectionInitialize(isolate, weak_collection); } RUNTIME_FUNCTION(Runtime_WeakCollectionGet) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol()); Handle<ObjectHashTable> table( ObjectHashTable::cast(weak_collection->table())); RUNTIME_ASSERT(table->IsKey(*key)); Handle<Object> lookup(table->Lookup(key), isolate); return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup; } RUNTIME_FUNCTION(Runtime_WeakCollectionHas) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol()); Handle<ObjectHashTable> table( ObjectHashTable::cast(weak_collection->table())); RUNTIME_ASSERT(table->IsKey(*key)); Handle<Object> lookup(table->Lookup(key), isolate); return isolate->heap()->ToBoolean(!lookup->IsTheHole()); } RUNTIME_FUNCTION(Runtime_WeakCollectionDelete) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol()); Handle<ObjectHashTable> table(ObjectHashTable::cast( weak_collection->table())); RUNTIME_ASSERT(table->IsKey(*key)); bool was_present = false; Handle<ObjectHashTable> new_table = ObjectHashTable::Remove(table, key, &was_present); weak_collection->set_table(*new_table); return isolate->heap()->ToBoolean(was_present); } RUNTIME_FUNCTION(Runtime_WeakCollectionSet) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol()); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); Handle<ObjectHashTable> table( ObjectHashTable::cast(weak_collection->table())); RUNTIME_ASSERT(table->IsKey(*key)); Handle<ObjectHashTable> new_table = ObjectHashTable::Put(table, key, value); weak_collection->set_table(*new_table); return *weak_collection; } RUNTIME_FUNCTION(Runtime_GetWeakSetValues) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, holder, 0); Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table())); Handle<FixedArray> values = isolate->factory()->NewFixedArray(table->NumberOfElements()); { DisallowHeapAllocation no_gc; int number_of_non_hole_elements = 0; for (int i = 0; i < table->Capacity(); i++) { Handle<Object> key(table->KeyAt(i), isolate); if (table->IsKey(*key)) { values->set(number_of_non_hole_elements++, *key); } } DCHECK_EQ(table->NumberOfElements(), number_of_non_hole_elements); } return *isolate->factory()->NewJSArrayWithElements(values); } RUNTIME_FUNCTION(Runtime_GetPrototype) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0); // We don't expect access checks to be needed on JSProxy objects. DCHECK(!obj->IsAccessCheckNeeded() || obj->IsJSObject()); PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER); do { if (PrototypeIterator::GetCurrent(iter)->IsAccessCheckNeeded() && !isolate->MayNamedAccess( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), isolate->factory()->proto_string(), v8::ACCESS_GET)) { isolate->ReportFailedAccessCheck( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), v8::ACCESS_GET); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); return isolate->heap()->undefined_value(); } iter.AdvanceIgnoringProxies(); if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) { return *PrototypeIterator::GetCurrent(iter); } } while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)); return *PrototypeIterator::GetCurrent(iter); } static inline Handle<Object> GetPrototypeSkipHiddenPrototypes( Isolate* isolate, Handle<Object> receiver) { PrototypeIterator iter(isolate, receiver); while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) { if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) { return PrototypeIterator::GetCurrent(iter); } iter.Advance(); } return PrototypeIterator::GetCurrent(iter); } RUNTIME_FUNCTION(Runtime_InternalSetPrototype) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1); DCHECK(!obj->IsAccessCheckNeeded()); DCHECK(!obj->map()->is_observed()); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::SetPrototype(obj, prototype, false)); return *result; } RUNTIME_FUNCTION(Runtime_SetPrototype) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1); if (obj->IsAccessCheckNeeded() && !isolate->MayNamedAccess( obj, isolate->factory()->proto_string(), v8::ACCESS_SET)) { isolate->ReportFailedAccessCheck(obj, v8::ACCESS_SET); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); return isolate->heap()->undefined_value(); } if (obj->map()->is_observed()) { Handle<Object> old_value = GetPrototypeSkipHiddenPrototypes(isolate, obj); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::SetPrototype(obj, prototype, true)); Handle<Object> new_value = GetPrototypeSkipHiddenPrototypes(isolate, obj); if (!new_value->SameValue(*old_value)) { JSObject::EnqueueChangeRecord(obj, "setPrototype", isolate->factory()->proto_string(), old_value); } return *result; } Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::SetPrototype(obj, prototype, true)); return *result; } RUNTIME_FUNCTION(Runtime_IsInPrototypeChain) { HandleScope shs(isolate); DCHECK(args.length() == 2); // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8). CONVERT_ARG_HANDLE_CHECKED(Object, O, 0); CONVERT_ARG_HANDLE_CHECKED(Object, V, 1); PrototypeIterator iter(isolate, V, PrototypeIterator::START_AT_RECEIVER); while (true) { iter.AdvanceIgnoringProxies(); if (iter.IsAtEnd()) return isolate->heap()->false_value(); if (iter.IsAtEnd(O)) return isolate->heap()->true_value(); } } // Enumerator used as indices into the array returned from GetOwnProperty enum PropertyDescriptorIndices { IS_ACCESSOR_INDEX, VALUE_INDEX, GETTER_INDEX, SETTER_INDEX, WRITABLE_INDEX, ENUMERABLE_INDEX, CONFIGURABLE_INDEX, DESCRIPTOR_SIZE }; MUST_USE_RESULT static MaybeHandle<Object> GetOwnProperty(Isolate* isolate, Handle<JSObject> obj, Handle<Name> name) { Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); PropertyAttributes attrs; uint32_t index = 0; Handle<Object> value; MaybeHandle<AccessorPair> maybe_accessors; // TODO(verwaest): Unify once indexed properties can be handled by the // LookupIterator. if (name->AsArrayIndex(&index)) { // Get attributes. Maybe<PropertyAttributes> maybe = JSReceiver::GetOwnElementAttribute(obj, index); if (!maybe.has_value) return MaybeHandle<Object>(); attrs = maybe.value; if (attrs == ABSENT) return factory->undefined_value(); // Get AccessorPair if present. maybe_accessors = JSObject::GetOwnElementAccessorPair(obj, index); // Get value if not an AccessorPair. if (maybe_accessors.is_null()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, value, Runtime::GetElementOrCharAt(isolate, obj, index), Object); } } else { // Get attributes. LookupIterator it(obj, name, LookupIterator::HIDDEN); Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(&it); if (!maybe.has_value) return MaybeHandle<Object>(); attrs = maybe.value; if (attrs == ABSENT) return factory->undefined_value(); // Get AccessorPair if present. if (it.state() == LookupIterator::ACCESSOR && it.GetAccessors()->IsAccessorPair()) { maybe_accessors = Handle<AccessorPair>::cast(it.GetAccessors()); } // Get value if not an AccessorPair. if (maybe_accessors.is_null()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, value, Object::GetProperty(&it), Object); } } DCHECK(!isolate->has_pending_exception()); Handle<FixedArray> elms = factory->NewFixedArray(DESCRIPTOR_SIZE); elms->set(ENUMERABLE_INDEX, heap->ToBoolean((attrs & DONT_ENUM) == 0)); elms->set(CONFIGURABLE_INDEX, heap->ToBoolean((attrs & DONT_DELETE) == 0)); elms->set(IS_ACCESSOR_INDEX, heap->ToBoolean(!maybe_accessors.is_null())); Handle<AccessorPair> accessors; if (maybe_accessors.ToHandle(&accessors)) { Handle<Object> getter(accessors->GetComponent(ACCESSOR_GETTER), isolate); Handle<Object> setter(accessors->GetComponent(ACCESSOR_SETTER), isolate); elms->set(GETTER_INDEX, *getter); elms->set(SETTER_INDEX, *setter); } else { elms->set(WRITABLE_INDEX, heap->ToBoolean((attrs & READ_ONLY) == 0)); elms->set(VALUE_INDEX, *value); } return factory->NewJSArrayWithElements(elms); } // Returns an array with the property description: // if args[1] is not a property on args[0] // returns undefined // if args[1] is a data property on args[0] // [false, value, Writeable, Enumerable, Configurable] // if args[1] is an accessor on args[0] // [true, GetFunction, SetFunction, Enumerable, Configurable] RUNTIME_FUNCTION(Runtime_GetOwnProperty) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, GetOwnProperty(isolate, obj, name)); return *result; } RUNTIME_FUNCTION(Runtime_PreventExtensions) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::PreventExtensions(obj)); return *result; } RUNTIME_FUNCTION(Runtime_ToMethod) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1); Handle<JSFunction> clone = JSFunction::CloneClosure(fun); Handle<Symbol> home_object_symbol(isolate->heap()->home_object_symbol()); JSObject::SetOwnPropertyIgnoreAttributes(clone, home_object_symbol, home_object, DONT_ENUM).Assert(); return *clone; } RUNTIME_FUNCTION(Runtime_HomeObjectSymbol) { DCHECK(args.length() == 0); return isolate->heap()->home_object_symbol(); } RUNTIME_FUNCTION(Runtime_LoadFromSuper) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 0); CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 1); CONVERT_ARG_HANDLE_CHECKED(Name, name, 2); if (home_object->IsAccessCheckNeeded() && !isolate->MayNamedAccess(home_object, name, v8::ACCESS_GET)) { isolate->ReportFailedAccessCheck(home_object, v8::ACCESS_GET); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); } PrototypeIterator iter(isolate, home_object); Handle<Object> proto = PrototypeIterator::GetCurrent(iter); if (!proto->IsJSReceiver()) return isolate->heap()->undefined_value(); LookupIterator it(receiver, name, Handle<JSReceiver>::cast(proto)); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it)); return *result; } RUNTIME_FUNCTION(Runtime_IsExtensible) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSObject, obj, 0); if (obj->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, obj); if (iter.IsAtEnd()) return isolate->heap()->false_value(); DCHECK(iter.GetCurrent()->IsJSGlobalObject()); obj = JSObject::cast(iter.GetCurrent()); } return isolate->heap()->ToBoolean(obj->map()->is_extensible()); } RUNTIME_FUNCTION(Runtime_RegExpCompile) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, re, 0); CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1); CONVERT_ARG_HANDLE_CHECKED(String, flags, 2); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, RegExpImpl::Compile(re, pattern, flags)); return *result; } RUNTIME_FUNCTION(Runtime_CreateApiFunction) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(FunctionTemplateInfo, data, 0); CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1); return *isolate->factory()->CreateApiFunction(data, prototype); } RUNTIME_FUNCTION(Runtime_IsTemplate) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, arg, 0); bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo(); return isolate->heap()->ToBoolean(result); } RUNTIME_FUNCTION(Runtime_GetTemplateField) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(HeapObject, templ, 0); CONVERT_SMI_ARG_CHECKED(index, 1); int offset = index * kPointerSize + HeapObject::kHeaderSize; InstanceType type = templ->map()->instance_type(); RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE || type == OBJECT_TEMPLATE_INFO_TYPE); RUNTIME_ASSERT(offset > 0); if (type == FUNCTION_TEMPLATE_INFO_TYPE) { RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize); } else { RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize); } return *HeapObject::RawField(templ, offset); } RUNTIME_FUNCTION(Runtime_DisableAccessChecks) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(HeapObject, object, 0); Handle<Map> old_map(object->map()); bool needs_access_checks = old_map->is_access_check_needed(); if (needs_access_checks) { // Copy map so it won't interfere constructor's initial map. Handle<Map> new_map = Map::Copy(old_map); new_map->set_is_access_check_needed(false); JSObject::MigrateToMap(Handle<JSObject>::cast(object), new_map); } return isolate->heap()->ToBoolean(needs_access_checks); } RUNTIME_FUNCTION(Runtime_EnableAccessChecks) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); Handle<Map> old_map(object->map()); RUNTIME_ASSERT(!old_map->is_access_check_needed()); // Copy map so it won't interfere constructor's initial map. Handle<Map> new_map = Map::Copy(old_map); new_map->set_is_access_check_needed(true); JSObject::MigrateToMap(object, new_map); return isolate->heap()->undefined_value(); } static Object* ThrowRedeclarationError(Isolate* isolate, Handle<String> name) { HandleScope scope(isolate); Handle<Object> args[1] = { name }; THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError("var_redeclaration", HandleVector(args, 1))); } // May throw a RedeclarationError. static Object* DeclareGlobals(Isolate* isolate, Handle<GlobalObject> global, Handle<String> name, Handle<Object> value, PropertyAttributes attr, bool is_var, bool is_const, bool is_function) { // Do the lookup own properties only, see ES5 erratum. LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR); Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it); if (!maybe.has_value) return isolate->heap()->exception(); if (it.IsFound()) { PropertyAttributes old_attributes = maybe.value; // The name was declared before; check for conflicting re-declarations. if (is_const) return ThrowRedeclarationError(isolate, name); // Skip var re-declarations. if (is_var) return isolate->heap()->undefined_value(); DCHECK(is_function); if ((old_attributes & DONT_DELETE) != 0) { // Only allow reconfiguring globals to functions in user code (no // natives, which are marked as read-only). DCHECK((attr & READ_ONLY) == 0); // Check whether we can reconfigure the existing property into a // function. PropertyDetails old_details = it.property_details(); // TODO(verwaest): CALLBACKS invalidly includes ExecutableAccessInfo, // which are actually data properties, not accessor properties. if (old_details.IsReadOnly() || old_details.IsDontEnum() || old_details.type() == CALLBACKS) { return ThrowRedeclarationError(isolate, name); } // If the existing property is not configurable, keep its attributes. Do attr = old_attributes; } } // Define or redefine own property. RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes( global, name, value, attr)); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DeclareGlobals) { HandleScope scope(isolate); DCHECK(args.length() == 3); Handle<GlobalObject> global(isolate->global_object()); CONVERT_ARG_HANDLE_CHECKED(Context, context, 0); CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1); CONVERT_SMI_ARG_CHECKED(flags, 2); // Traverse the name/value pairs and set the properties. int length = pairs->length(); for (int i = 0; i < length; i += 2) { HandleScope scope(isolate); Handle<String> name(String::cast(pairs->get(i))); Handle<Object> initial_value(pairs->get(i + 1), isolate); // We have to declare a global const property. To capture we only // assign to it when evaluating the assignment for "const x = // <expr>" the initial value is the hole. bool is_var = initial_value->IsUndefined(); bool is_const = initial_value->IsTheHole(); bool is_function = initial_value->IsSharedFunctionInfo(); DCHECK(is_var + is_const + is_function == 1); Handle<Object> value; if (is_function) { // Copy the function and update its context. Use it as value. Handle<SharedFunctionInfo> shared = Handle<SharedFunctionInfo>::cast(initial_value); Handle<JSFunction> function = isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context, TENURED); value = function; } else { value = isolate->factory()->undefined_value(); } // Compute the property attributes. According to ECMA-262, // the property must be non-configurable except in eval. bool is_native = DeclareGlobalsNativeFlag::decode(flags); bool is_eval = DeclareGlobalsEvalFlag::decode(flags); int attr = NONE; if (is_const) attr |= READ_ONLY; if (is_function && is_native) attr |= READ_ONLY; if (!is_const && !is_eval) attr |= DONT_DELETE; Object* result = DeclareGlobals(isolate, global, name, value, static_cast<PropertyAttributes>(attr), is_var, is_const, is_function); if (isolate->has_pending_exception()) return result; } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_InitializeVarGlobal) { HandleScope scope(isolate); // args[0] == name // args[1] == language_mode // args[2] == value (optional) // Determine if we need to assign to the variable if it already // exists (based on the number of arguments). RUNTIME_ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, name, 0); CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); Handle<GlobalObject> global(isolate->context()->global_object()); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Object::SetProperty(global, name, value, strict_mode)); return *result; } RUNTIME_FUNCTION(Runtime_InitializeConstGlobal) { HandleScope handle_scope(isolate); // All constants are declared with an initial value. The name // of the constant is the first argument and the initial value // is the second. RUNTIME_ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, name, 0); CONVERT_ARG_HANDLE_CHECKED(Object, value, 1); Handle<GlobalObject> global = isolate->global_object(); // Lookup the property as own on the global object. LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR); Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it); DCHECK(maybe.has_value); PropertyAttributes old_attributes = maybe.value; PropertyAttributes attr = static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY); // Set the value if the property is either missing, or the property attributes // allow setting the value without invoking an accessor. if (it.IsFound()) { // Ignore if we can't reconfigure the value. if ((old_attributes & DONT_DELETE) != 0) { if ((old_attributes & READ_ONLY) != 0 || it.state() == LookupIterator::ACCESSOR) { return *value; } attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY); } } RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes( global, name, value, attr)); return *value; } RUNTIME_FUNCTION(Runtime_DeclareLookupSlot) { HandleScope scope(isolate); DCHECK(args.length() == 4); // Declarations are always made in a function, native, or global context. In // the case of eval code, the context passed is the context of the caller, // which may be some nested context and not the declaration context. CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 0); Handle<Context> context(context_arg->declaration_context()); CONVERT_ARG_HANDLE_CHECKED(String, name, 1); CONVERT_SMI_ARG_CHECKED(attr_arg, 2); PropertyAttributes attr = static_cast<PropertyAttributes>(attr_arg); RUNTIME_ASSERT(attr == READ_ONLY || attr == NONE); CONVERT_ARG_HANDLE_CHECKED(Object, initial_value, 3); // TODO(verwaest): Unify the encoding indicating "var" with DeclareGlobals. bool is_var = *initial_value == NULL; bool is_const = initial_value->IsTheHole(); bool is_function = initial_value->IsJSFunction(); DCHECK(is_var + is_const + is_function == 1); int index; PropertyAttributes attributes; ContextLookupFlags flags = DONT_FOLLOW_CHAINS; BindingFlags binding_flags; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes, &binding_flags); Handle<JSObject> object; Handle<Object> value = is_function ? initial_value : Handle<Object>::cast(isolate->factory()->undefined_value()); // TODO(verwaest): This case should probably not be covered by this function, // but by DeclareGlobals instead. if ((attributes != ABSENT && holder->IsJSGlobalObject()) || (context_arg->has_extension() && context_arg->extension()->IsJSGlobalObject())) { return DeclareGlobals(isolate, Handle<JSGlobalObject>::cast(holder), name, value, attr, is_var, is_const, is_function); } if (attributes != ABSENT) { // The name was declared before; check for conflicting re-declarations. if (is_const || (attributes & READ_ONLY) != 0) { return ThrowRedeclarationError(isolate, name); } // Skip var re-declarations. if (is_var) return isolate->heap()->undefined_value(); DCHECK(is_function); if (index >= 0) { DCHECK(holder.is_identical_to(context)); context->set(index, *initial_value); return isolate->heap()->undefined_value(); } object = Handle<JSObject>::cast(holder); } else if (context->has_extension()) { object = handle(JSObject::cast(context->extension())); DCHECK(object->IsJSContextExtensionObject() || object->IsJSGlobalObject()); } else { DCHECK(context->IsFunctionContext()); object = isolate->factory()->NewJSObject(isolate->context_extension_function()); context->set_extension(*object); } RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes( object, name, value, attr)); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_InitializeLegacyConstLookupSlot) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(Object, value, 0); DCHECK(!value->IsTheHole()); // Initializations are always done in a function or native context. CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 1); Handle<Context> context(context_arg->declaration_context()); CONVERT_ARG_HANDLE_CHECKED(String, name, 2); int index; PropertyAttributes attributes; ContextLookupFlags flags = DONT_FOLLOW_CHAINS; BindingFlags binding_flags; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes, &binding_flags); if (index >= 0) { DCHECK(holder->IsContext()); // Property was found in a context. Perform the assignment if the constant // was uninitialized. Handle<Context> context = Handle<Context>::cast(holder); DCHECK((attributes & READ_ONLY) != 0); if (context->get(index)->IsTheHole()) context->set(index, *value); return *value; } PropertyAttributes attr = static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY); // Strict mode handling not needed (legacy const is disallowed in strict // mode). // The declared const was configurable, and may have been deleted in the // meanwhile. If so, re-introduce the variable in the context extension. DCHECK(context_arg->has_extension()); if (attributes == ABSENT) { holder = handle(context_arg->extension(), isolate); } else { // For JSContextExtensionObjects, the initializer can be run multiple times // if in a for loop: for (var i = 0; i < 2; i++) { const x = i; }. Only the // first assignment should go through. For JSGlobalObjects, additionally any // code can run in between that modifies the declared property. DCHECK(holder->IsJSGlobalObject() || holder->IsJSContextExtensionObject()); LookupIterator it(holder, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR); Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it); if (!maybe.has_value) return isolate->heap()->exception(); PropertyAttributes old_attributes = maybe.value; // Ignore if we can't reconfigure the value. if ((old_attributes & DONT_DELETE) != 0) { if ((old_attributes & READ_ONLY) != 0 || it.state() == LookupIterator::ACCESSOR) { return *value; } attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY); } } RETURN_FAILURE_ON_EXCEPTION( isolate, JSObject::SetOwnPropertyIgnoreAttributes( Handle<JSObject>::cast(holder), name, value, attr)); return *value; } RUNTIME_FUNCTION(Runtime_OptimizeObjectForAddingMultipleProperties) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_SMI_ARG_CHECKED(properties, 1); // Conservative upper limit to prevent fuzz tests from going OOM. RUNTIME_ASSERT(properties <= 100000); if (object->HasFastProperties() && !object->IsJSGlobalProxy()) { JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties); } return *object; } RUNTIME_FUNCTION(Runtime_RegExpExecRT) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0); CONVERT_ARG_HANDLE_CHECKED(String, subject, 1); CONVERT_INT32_ARG_CHECKED(index, 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3); // Due to the way the JS calls are constructed this must be less than the // length of a string, i.e. it is always a Smi. We check anyway for security. RUNTIME_ASSERT(index >= 0); RUNTIME_ASSERT(index <= subject->length()); isolate->counters()->regexp_entry_runtime()->Increment(); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, RegExpImpl::Exec(regexp, subject, index, last_match_info)); return *result; } RUNTIME_FUNCTION(Runtime_RegExpConstructResult) { HandleScope handle_scope(isolate); DCHECK(args.length() == 3); CONVERT_SMI_ARG_CHECKED(size, 0); RUNTIME_ASSERT(size >= 0 && size <= FixedArray::kMaxLength); CONVERT_ARG_HANDLE_CHECKED(Object, index, 1); CONVERT_ARG_HANDLE_CHECKED(Object, input, 2); Handle<FixedArray> elements = isolate->factory()->NewFixedArray(size); Handle<Map> regexp_map(isolate->native_context()->regexp_result_map()); Handle<JSObject> object = isolate->factory()->NewJSObjectFromMap(regexp_map, NOT_TENURED, false); Handle<JSArray> array = Handle<JSArray>::cast(object); array->set_elements(*elements); array->set_length(Smi::FromInt(size)); // Write in-object properties after the length of the array. array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, *index); array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, *input); return *array; } RUNTIME_FUNCTION(Runtime_RegExpInitializeObject) { HandleScope scope(isolate); DCHECK(args.length() == 6); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0); CONVERT_ARG_HANDLE_CHECKED(String, source, 1); // If source is the empty string we set it to "(?:)" instead as // suggested by ECMA-262, 5th, section 15.10.4.1. if (source->length() == 0) source = isolate->factory()->query_colon_string(); CONVERT_ARG_HANDLE_CHECKED(Object, global, 2); if (!global->IsTrue()) global = isolate->factory()->false_value(); CONVERT_ARG_HANDLE_CHECKED(Object, ignoreCase, 3); if (!ignoreCase->IsTrue()) ignoreCase = isolate->factory()->false_value(); CONVERT_ARG_HANDLE_CHECKED(Object, multiline, 4); if (!multiline->IsTrue()) multiline = isolate->factory()->false_value(); CONVERT_ARG_HANDLE_CHECKED(Object, sticky, 5); if (!sticky->IsTrue()) sticky = isolate->factory()->false_value(); Map* map = regexp->map(); Object* constructor = map->constructor(); if (!FLAG_harmony_regexps && constructor->IsJSFunction() && JSFunction::cast(constructor)->initial_map() == map) { // If we still have the original map, set in-object properties directly. regexp->InObjectPropertyAtPut(JSRegExp::kSourceFieldIndex, *source); // Both true and false are immovable immortal objects so no need for write // barrier. regexp->InObjectPropertyAtPut( JSRegExp::kGlobalFieldIndex, *global, SKIP_WRITE_BARRIER); regexp->InObjectPropertyAtPut( JSRegExp::kIgnoreCaseFieldIndex, *ignoreCase, SKIP_WRITE_BARRIER); regexp->InObjectPropertyAtPut( JSRegExp::kMultilineFieldIndex, *multiline, SKIP_WRITE_BARRIER); regexp->InObjectPropertyAtPut( JSRegExp::kLastIndexFieldIndex, Smi::FromInt(0), SKIP_WRITE_BARRIER); return *regexp; } // Map has changed, so use generic, but slower, method. We also end here if // the --harmony-regexp flag is set, because the initial map does not have // space for the 'sticky' flag, since it is from the snapshot, but must work // both with and without --harmony-regexp. When sticky comes out from under // the flag, we will be able to use the fast initial map. PropertyAttributes final = static_cast<PropertyAttributes>(READ_ONLY | DONT_ENUM | DONT_DELETE); PropertyAttributes writable = static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE); Handle<Object> zero(Smi::FromInt(0), isolate); Factory* factory = isolate->factory(); JSObject::SetOwnPropertyIgnoreAttributes( regexp, factory->source_string(), source, final).Check(); JSObject::SetOwnPropertyIgnoreAttributes( regexp, factory->global_string(), global, final).Check(); JSObject::SetOwnPropertyIgnoreAttributes( regexp, factory->ignore_case_string(), ignoreCase, final).Check(); JSObject::SetOwnPropertyIgnoreAttributes( regexp, factory->multiline_string(), multiline, final).Check(); if (FLAG_harmony_regexps) { JSObject::SetOwnPropertyIgnoreAttributes( regexp, factory->sticky_string(), sticky, final).Check(); } JSObject::SetOwnPropertyIgnoreAttributes( regexp, factory->last_index_string(), zero, writable).Check(); return *regexp; } RUNTIME_FUNCTION(Runtime_FinishArrayPrototypeSetup) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0); Object* length = prototype->length(); RUNTIME_ASSERT(length->IsSmi() && Smi::cast(length)->value() == 0); RUNTIME_ASSERT(prototype->HasFastSmiOrObjectElements()); // This is necessary to enable fast checks for absence of elements // on Array.prototype and below. prototype->set_elements(isolate->heap()->empty_fixed_array()); return Smi::FromInt(0); } static void InstallBuiltin(Isolate* isolate, Handle<JSObject> holder, const char* name, Builtins::Name builtin_name) { Handle<String> key = isolate->factory()->InternalizeUtf8String(name); Handle<Code> code(isolate->builtins()->builtin(builtin_name)); Handle<JSFunction> optimized = isolate->factory()->NewFunctionWithoutPrototype(key, code); optimized->shared()->DontAdaptArguments(); JSObject::AddProperty(holder, key, optimized, NONE); } RUNTIME_FUNCTION(Runtime_SpecialArrayFunctions) { HandleScope scope(isolate); DCHECK(args.length() == 0); Handle<JSObject> holder = isolate->factory()->NewJSObject(isolate->object_function()); InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop); InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush); InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift); InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift); InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice); InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice); InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat); return *holder; } RUNTIME_FUNCTION(Runtime_IsSloppyModeFunction) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSReceiver, callable, 0); if (!callable->IsJSFunction()) { HandleScope scope(isolate); Handle<Object> delegate; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, delegate, Execution::TryGetFunctionDelegate( isolate, Handle<JSReceiver>(callable))); callable = JSFunction::cast(*delegate); } JSFunction* function = JSFunction::cast(callable); SharedFunctionInfo* shared = function->shared(); return isolate->heap()->ToBoolean(shared->strict_mode() == SLOPPY); } RUNTIME_FUNCTION(Runtime_GetDefaultReceiver) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSReceiver, callable, 0); if (!callable->IsJSFunction()) { HandleScope scope(isolate); Handle<Object> delegate; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, delegate, Execution::TryGetFunctionDelegate( isolate, Handle<JSReceiver>(callable))); callable = JSFunction::cast(*delegate); } JSFunction* function = JSFunction::cast(callable); SharedFunctionInfo* shared = function->shared(); if (shared->native() || shared->strict_mode() == STRICT) { return isolate->heap()->undefined_value(); } // Returns undefined for strict or native functions, or // the associated global receiver for "normal" functions. return function->global_proxy(); } RUNTIME_FUNCTION(Runtime_MaterializeRegExpLiteral) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0); CONVERT_SMI_ARG_CHECKED(index, 1); CONVERT_ARG_HANDLE_CHECKED(String, pattern, 2); CONVERT_ARG_HANDLE_CHECKED(String, flags, 3); // Get the RegExp function from the context in the literals array. // This is the RegExp function from the context in which the // function was created. We do not use the RegExp function from the // current native context because this might be the RegExp function // from another context which we should not have access to. Handle<JSFunction> constructor = Handle<JSFunction>( JSFunction::NativeContextFromLiterals(*literals)->regexp_function()); // Compute the regular expression literal. Handle<Object> regexp; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, regexp, RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags)); literals->set(index, *regexp); return *regexp; } RUNTIME_FUNCTION(Runtime_FunctionGetName) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return f->shared()->name(); } RUNTIME_FUNCTION(Runtime_FunctionSetName) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(JSFunction, f, 0); CONVERT_ARG_CHECKED(String, name, 1); f->shared()->set_name(name); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_FunctionNameShouldPrintAsAnonymous) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return isolate->heap()->ToBoolean( f->shared()->name_should_print_as_anonymous()); } RUNTIME_FUNCTION(Runtime_FunctionMarkNameShouldPrintAsAnonymous) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); f->shared()->set_name_should_print_as_anonymous(true); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_FunctionIsGenerator) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return isolate->heap()->ToBoolean(f->shared()->is_generator()); } RUNTIME_FUNCTION(Runtime_FunctionIsArrow) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return isolate->heap()->ToBoolean(f->shared()->is_arrow()); } RUNTIME_FUNCTION(Runtime_FunctionIsConciseMethod) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return isolate->heap()->ToBoolean(f->shared()->is_concise_method()); } RUNTIME_FUNCTION(Runtime_FunctionRemovePrototype) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); RUNTIME_ASSERT(f->RemovePrototype()); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_FunctionGetScript) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, fun, 0); Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate); if (!script->IsScript()) return isolate->heap()->undefined_value(); return *Script::GetWrapper(Handle<Script>::cast(script)); } RUNTIME_FUNCTION(Runtime_FunctionGetSourceCode) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, f, 0); Handle<SharedFunctionInfo> shared(f->shared()); return *shared->GetSourceCode(); } RUNTIME_FUNCTION(Runtime_FunctionGetScriptSourcePosition) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, fun, 0); int pos = fun->shared()->start_position(); return Smi::FromInt(pos); } RUNTIME_FUNCTION(Runtime_FunctionGetPositionForOffset) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(Code, code, 0); CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]); RUNTIME_ASSERT(0 <= offset && offset < code->Size()); Address pc = code->address() + offset; return Smi::FromInt(code->SourcePosition(pc)); } RUNTIME_FUNCTION(Runtime_FunctionSetInstanceClassName) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(JSFunction, fun, 0); CONVERT_ARG_CHECKED(String, name, 1); fun->SetInstanceClassName(name); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_FunctionSetLength) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(JSFunction, fun, 0); CONVERT_SMI_ARG_CHECKED(length, 1); RUNTIME_ASSERT((length & 0xC0000000) == 0xC0000000 || (length & 0xC0000000) == 0x0); fun->shared()->set_length(length); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_FunctionSetPrototype) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); CONVERT_ARG_HANDLE_CHECKED(Object, value, 1); RUNTIME_ASSERT(fun->should_have_prototype()); Accessors::FunctionSetPrototype(fun, value); return args[0]; // return TOS } RUNTIME_FUNCTION(Runtime_FunctionIsAPIFunction) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return isolate->heap()->ToBoolean(f->shared()->IsApiFunction()); } RUNTIME_FUNCTION(Runtime_FunctionIsBuiltin) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return isolate->heap()->ToBoolean(f->IsBuiltin()); } RUNTIME_FUNCTION(Runtime_SetCode) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0); CONVERT_ARG_HANDLE_CHECKED(JSFunction, source, 1); Handle<SharedFunctionInfo> target_shared(target->shared()); Handle<SharedFunctionInfo> source_shared(source->shared()); RUNTIME_ASSERT(!source_shared->bound()); if (!Compiler::EnsureCompiled(source, KEEP_EXCEPTION)) { return isolate->heap()->exception(); } // Mark both, the source and the target, as un-flushable because the // shared unoptimized code makes them impossible to enqueue in a list. DCHECK(target_shared->code()->gc_metadata() == NULL); DCHECK(source_shared->code()->gc_metadata() == NULL); target_shared->set_dont_flush(true); source_shared->set_dont_flush(true); // Set the code, scope info, formal parameter count, and the length // of the target shared function info. target_shared->ReplaceCode(source_shared->code()); target_shared->set_scope_info(source_shared->scope_info()); target_shared->set_length(source_shared->length()); target_shared->set_feedback_vector(source_shared->feedback_vector()); target_shared->set_formal_parameter_count( source_shared->formal_parameter_count()); target_shared->set_script(source_shared->script()); target_shared->set_start_position_and_type( source_shared->start_position_and_type()); target_shared->set_end_position(source_shared->end_position()); bool was_native = target_shared->native(); target_shared->set_compiler_hints(source_shared->compiler_hints()); target_shared->set_native(was_native); target_shared->set_profiler_ticks(source_shared->profiler_ticks()); // Set the code of the target function. target->ReplaceCode(source_shared->code()); DCHECK(target->next_function_link()->IsUndefined()); // Make sure we get a fresh copy of the literal vector to avoid cross // context contamination. Handle<Context> context(source->context()); int number_of_literals = source->NumberOfLiterals(); Handle<FixedArray> literals = isolate->factory()->NewFixedArray(number_of_literals, TENURED); if (number_of_literals > 0) { literals->set(JSFunction::kLiteralNativeContextIndex, context->native_context()); } target->set_context(*context); target->set_literals(*literals); if (isolate->logger()->is_logging_code_events() || isolate->cpu_profiler()->is_profiling()) { isolate->logger()->LogExistingFunction( source_shared, Handle<Code>(source_shared->code())); } return *target; } RUNTIME_FUNCTION(Runtime_CreateJSGeneratorObject) { HandleScope scope(isolate); DCHECK(args.length() == 0); JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); Handle<JSFunction> function(frame->function()); RUNTIME_ASSERT(function->shared()->is_generator()); Handle<JSGeneratorObject> generator; if (frame->IsConstructor()) { generator = handle(JSGeneratorObject::cast(frame->receiver())); } else { generator = isolate->factory()->NewJSGeneratorObject(function); } generator->set_function(*function); generator->set_context(Context::cast(frame->context())); generator->set_receiver(frame->receiver()); generator->set_continuation(0); generator->set_operand_stack(isolate->heap()->empty_fixed_array()); generator->set_stack_handler_index(-1); return *generator; } RUNTIME_FUNCTION(Runtime_SuspendJSGeneratorObject) { HandleScope handle_scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator_object, 0); JavaScriptFrameIterator stack_iterator(isolate); JavaScriptFrame* frame = stack_iterator.frame(); RUNTIME_ASSERT(frame->function()->shared()->is_generator()); DCHECK_EQ(frame->function(), generator_object->function()); // The caller should have saved the context and continuation already. DCHECK_EQ(generator_object->context(), Context::cast(frame->context())); DCHECK_LT(0, generator_object->continuation()); // We expect there to be at least two values on the operand stack: the return // value of the yield expression, and the argument to this runtime call. // Neither of those should be saved. int operands_count = frame->ComputeOperandsCount(); DCHECK_GE(operands_count, 2); operands_count -= 2; if (operands_count == 0) { // Although it's semantically harmless to call this function with an // operands_count of zero, it is also unnecessary. DCHECK_EQ(generator_object->operand_stack(), isolate->heap()->empty_fixed_array()); DCHECK_EQ(generator_object->stack_handler_index(), -1); // If there are no operands on the stack, there shouldn't be a handler // active either. DCHECK(!frame->HasHandler()); } else { int stack_handler_index = -1; Handle<FixedArray> operand_stack = isolate->factory()->NewFixedArray(operands_count); frame->SaveOperandStack(*operand_stack, &stack_handler_index); generator_object->set_operand_stack(*operand_stack); generator_object->set_stack_handler_index(stack_handler_index); } return isolate->heap()->undefined_value(); } // Note that this function is the slow path for resuming generators. It is only // called if the suspended activation had operands on the stack, stack handlers // needing rewinding, or if the resume should throw an exception. The fast path // is handled directly in FullCodeGenerator::EmitGeneratorResume(), which is // inlined into GeneratorNext and GeneratorThrow. EmitGeneratorResumeResume is // called in any case, as it needs to reconstruct the stack frame and make space // for arguments and operands. RUNTIME_FUNCTION(Runtime_ResumeJSGeneratorObject) { SealHandleScope shs(isolate); DCHECK(args.length() == 3); CONVERT_ARG_CHECKED(JSGeneratorObject, generator_object, 0); CONVERT_ARG_CHECKED(Object, value, 1); CONVERT_SMI_ARG_CHECKED(resume_mode_int, 2); JavaScriptFrameIterator stack_iterator(isolate); JavaScriptFrame* frame = stack_iterator.frame(); DCHECK_EQ(frame->function(), generator_object->function()); DCHECK(frame->function()->is_compiled()); STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0); STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0); Address pc = generator_object->function()->code()->instruction_start(); int offset = generator_object->continuation(); DCHECK(offset > 0); frame->set_pc(pc + offset); if (FLAG_enable_ool_constant_pool) { frame->set_constant_pool( generator_object->function()->code()->constant_pool()); } generator_object->set_continuation(JSGeneratorObject::kGeneratorExecuting); FixedArray* operand_stack = generator_object->operand_stack(); int operands_count = operand_stack->length(); if (operands_count != 0) { frame->RestoreOperandStack(operand_stack, generator_object->stack_handler_index()); generator_object->set_operand_stack(isolate->heap()->empty_fixed_array()); generator_object->set_stack_handler_index(-1); } JSGeneratorObject::ResumeMode resume_mode = static_cast<JSGeneratorObject::ResumeMode>(resume_mode_int); switch (resume_mode) { case JSGeneratorObject::NEXT: return value; case JSGeneratorObject::THROW: return isolate->Throw(value); } UNREACHABLE(); return isolate->ThrowIllegalOperation(); } RUNTIME_FUNCTION(Runtime_ThrowGeneratorStateError) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0); int continuation = generator->continuation(); const char* message = continuation == JSGeneratorObject::kGeneratorClosed ? "generator_finished" : "generator_running"; Vector< Handle<Object> > argv = HandleVector<Object>(NULL, 0); THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewError(message, argv)); } RUNTIME_FUNCTION(Runtime_ObjectFreeze) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); // %ObjectFreeze is a fast path and these cases are handled elsewhere. RUNTIME_ASSERT(!object->HasSloppyArgumentsElements() && !object->map()->is_observed() && !object->IsJSProxy()); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, JSObject::Freeze(object)); return *result; } RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) { HandleScope handle_scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]); // Flatten the string. If someone wants to get a char at an index // in a cons string, it is likely that more indices will be // accessed. subject = String::Flatten(subject); if (i >= static_cast<uint32_t>(subject->length())) { return isolate->heap()->nan_value(); } return Smi::FromInt(subject->Get(i)); } RUNTIME_FUNCTION(Runtime_CharFromCode) { HandleScope handlescope(isolate); DCHECK(args.length() == 1); if (args[0]->IsNumber()) { CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]); code &= 0xffff; return *isolate->factory()->LookupSingleCharacterStringFromCode(code); } return isolate->heap()->empty_string(); } class FixedArrayBuilder { public: explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity) : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)), length_(0), has_non_smi_elements_(false) { // Require a non-zero initial size. Ensures that doubling the size to // extend the array will work. DCHECK(initial_capacity > 0); } explicit FixedArrayBuilder(Handle<FixedArray> backing_store) : array_(backing_store), length_(0), has_non_smi_elements_(false) { // Require a non-zero initial size. Ensures that doubling the size to // extend the array will work. DCHECK(backing_store->length() > 0); } bool HasCapacity(int elements) { int length = array_->length(); int required_length = length_ + elements; return (length >= required_length); } void EnsureCapacity(int elements) { int length = array_->length(); int required_length = length_ + elements; if (length < required_length) { int new_length = length; do { new_length *= 2; } while (new_length < required_length); Handle<FixedArray> extended_array = array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length); array_->CopyTo(0, *extended_array, 0, length_); array_ = extended_array; } } void Add(Object* value) { DCHECK(!value->IsSmi()); DCHECK(length_ < capacity()); array_->set(length_, value); length_++; has_non_smi_elements_ = true; } void Add(Smi* value) { DCHECK(value->IsSmi()); DCHECK(length_ < capacity()); array_->set(length_, value); length_++; } Handle<FixedArray> array() { return array_; } int length() { return length_; } int capacity() { return array_->length(); } Handle<JSArray> ToJSArray(Handle<JSArray> target_array) { JSArray::SetContent(target_array, array_); target_array->set_length(Smi::FromInt(length_)); return target_array; } private: Handle<FixedArray> array_; int length_; bool has_non_smi_elements_; }; // Forward declarations. const int kStringBuilderConcatHelperLengthBits = 11; const int kStringBuilderConcatHelperPositionBits = 19; template <typename schar> static inline void StringBuilderConcatHelper(String*, schar*, FixedArray*, int); typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits> StringBuilderSubstringLength; typedef BitField<int, kStringBuilderConcatHelperLengthBits, kStringBuilderConcatHelperPositionBits> StringBuilderSubstringPosition; class ReplacementStringBuilder { public: ReplacementStringBuilder(Heap* heap, Handle<String> subject, int estimated_part_count) : heap_(heap), array_builder_(heap->isolate(), estimated_part_count), subject_(subject), character_count_(0), is_one_byte_(subject->IsOneByteRepresentation()) { // Require a non-zero initial size. Ensures that doubling the size to // extend the array will work. DCHECK(estimated_part_count > 0); } static inline void AddSubjectSlice(FixedArrayBuilder* builder, int from, int to) { DCHECK(from >= 0); int length = to - from; DCHECK(length > 0); if (StringBuilderSubstringLength::is_valid(length) && StringBuilderSubstringPosition::is_valid(from)) { int encoded_slice = StringBuilderSubstringLength::encode(length) | StringBuilderSubstringPosition::encode(from); builder->Add(Smi::FromInt(encoded_slice)); } else { // Otherwise encode as two smis. builder->Add(Smi::FromInt(-length)); builder->Add(Smi::FromInt(from)); } } void EnsureCapacity(int elements) { array_builder_.EnsureCapacity(elements); } void AddSubjectSlice(int from, int to) { AddSubjectSlice(&array_builder_, from, to); IncrementCharacterCount(to - from); } void AddString(Handle<String> string) { int length = string->length(); DCHECK(length > 0); AddElement(*string); if (!string->IsOneByteRepresentation()) { is_one_byte_ = false; } IncrementCharacterCount(length); } MaybeHandle<String> ToString() { Isolate* isolate = heap_->isolate(); if (array_builder_.length() == 0) { return isolate->factory()->empty_string(); } Handle<String> joined_string; if (is_one_byte_) { Handle<SeqOneByteString> seq; ASSIGN_RETURN_ON_EXCEPTION( isolate, seq, isolate->factory()->NewRawOneByteString(character_count_), String); DisallowHeapAllocation no_gc; uint8_t* char_buffer = seq->GetChars(); StringBuilderConcatHelper(*subject_, char_buffer, *array_builder_.array(), array_builder_.length()); joined_string = Handle<String>::cast(seq); } else { // Two-byte. Handle<SeqTwoByteString> seq; ASSIGN_RETURN_ON_EXCEPTION( isolate, seq, isolate->factory()->NewRawTwoByteString(character_count_), String); DisallowHeapAllocation no_gc; uc16* char_buffer = seq->GetChars(); StringBuilderConcatHelper(*subject_, char_buffer, *array_builder_.array(), array_builder_.length()); joined_string = Handle<String>::cast(seq); } return joined_string; } void IncrementCharacterCount(int by) { if (character_count_ > String::kMaxLength - by) { STATIC_ASSERT(String::kMaxLength < kMaxInt); character_count_ = kMaxInt; } else { character_count_ += by; } } private: void AddElement(Object* element) { DCHECK(element->IsSmi() || element->IsString()); DCHECK(array_builder_.capacity() > array_builder_.length()); array_builder_.Add(element); } Heap* heap_; FixedArrayBuilder array_builder_; Handle<String> subject_; int character_count_; bool is_one_byte_; }; class CompiledReplacement { public: explicit CompiledReplacement(Zone* zone) : parts_(1, zone), replacement_substrings_(0, zone), zone_(zone) {} // Return whether the replacement is simple. bool Compile(Handle<String> replacement, int capture_count, int subject_length); // Use Apply only if Compile returned false. void Apply(ReplacementStringBuilder* builder, int match_from, int match_to, int32_t* match); // Number of distinct parts of the replacement pattern. int parts() { return parts_.length(); } Zone* zone() const { return zone_; } private: enum PartType { SUBJECT_PREFIX = 1, SUBJECT_SUFFIX, SUBJECT_CAPTURE, REPLACEMENT_SUBSTRING, REPLACEMENT_STRING, NUMBER_OF_PART_TYPES }; struct ReplacementPart { static inline ReplacementPart SubjectMatch() { return ReplacementPart(SUBJECT_CAPTURE, 0); } static inline ReplacementPart SubjectCapture(int capture_index) { return ReplacementPart(SUBJECT_CAPTURE, capture_index); } static inline ReplacementPart SubjectPrefix() { return ReplacementPart(SUBJECT_PREFIX, 0); } static inline ReplacementPart SubjectSuffix(int subject_length) { return ReplacementPart(SUBJECT_SUFFIX, subject_length); } static inline ReplacementPart ReplacementString() { return ReplacementPart(REPLACEMENT_STRING, 0); } static inline ReplacementPart ReplacementSubString(int from, int to) { DCHECK(from >= 0); DCHECK(to > from); return ReplacementPart(-from, to); } // If tag <= 0 then it is the negation of a start index of a substring of // the replacement pattern, otherwise it's a value from PartType. ReplacementPart(int tag, int data) : tag(tag), data(data) { // Must be non-positive or a PartType value. DCHECK(tag < NUMBER_OF_PART_TYPES); } // Either a value of PartType or a non-positive number that is // the negation of an index into the replacement string. int tag; // The data value's interpretation depends on the value of tag: // tag == SUBJECT_PREFIX || // tag == SUBJECT_SUFFIX: data is unused. // tag == SUBJECT_CAPTURE: data is the number of the capture. // tag == REPLACEMENT_SUBSTRING || // tag == REPLACEMENT_STRING: data is index into array of substrings // of the replacement string. // tag <= 0: Temporary representation of the substring of the replacement // string ranging over -tag .. data. // Is replaced by REPLACEMENT_{SUB,}STRING when we create the // substring objects. int data; }; template<typename Char> bool ParseReplacementPattern(ZoneList<ReplacementPart>* parts, Vector<Char> characters, int capture_count, int subject_length, Zone* zone) { int length = characters.length(); int last = 0; for (int i = 0; i < length; i++) { Char c = characters[i]; if (c == '$') { int next_index = i + 1; if (next_index == length) { // No next character! break; } Char c2 = characters[next_index]; switch (c2) { case '$': if (i > last) { // There is a substring before. Include the first "$". parts->Add(ReplacementPart::ReplacementSubString(last, next_index), zone); last = next_index + 1; // Continue after the second "$". } else { // Let the next substring start with the second "$". last = next_index; } i = next_index; break; case '`': if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i), zone); } parts->Add(ReplacementPart::SubjectPrefix(), zone); i = next_index; last = i + 1; break; case '\'': if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i), zone); } parts->Add(ReplacementPart::SubjectSuffix(subject_length), zone); i = next_index; last = i + 1; break; case '&': if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i), zone); } parts->Add(ReplacementPart::SubjectMatch(), zone); i = next_index; last = i + 1; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { int capture_ref = c2 - '0'; if (capture_ref > capture_count) { i = next_index; continue; } int second_digit_index = next_index + 1; if (second_digit_index < length) { // Peek ahead to see if we have two digits. Char c3 = characters[second_digit_index]; if ('0' <= c3 && c3 <= '9') { // Double digits. int double_digit_ref = capture_ref * 10 + c3 - '0'; if (double_digit_ref <= capture_count) { next_index = second_digit_index; capture_ref = double_digit_ref; } } } if (capture_ref > 0) { if (i > last) { parts->Add(ReplacementPart::ReplacementSubString(last, i), zone); } DCHECK(capture_ref <= capture_count); parts->Add(ReplacementPart::SubjectCapture(capture_ref), zone); last = next_index + 1; } i = next_index; break; } default: i = next_index; break; } } } if (length > last) { if (last == 0) { // Replacement is simple. Do not use Apply to do the replacement. return true; } else { parts->Add(ReplacementPart::ReplacementSubString(last, length), zone); } } return false; } ZoneList<ReplacementPart> parts_; ZoneList<Handle<String> > replacement_substrings_; Zone* zone_; }; bool CompiledReplacement::Compile(Handle<String> replacement, int capture_count, int subject_length) { { DisallowHeapAllocation no_gc; String::FlatContent content = replacement->GetFlatContent(); DCHECK(content.IsFlat()); bool simple = false; if (content.IsOneByte()) { simple = ParseReplacementPattern(&parts_, content.ToOneByteVector(), capture_count, subject_length, zone()); } else { DCHECK(content.IsTwoByte()); simple = ParseReplacementPattern(&parts_, content.ToUC16Vector(), capture_count, subject_length, zone()); } if (simple) return true; } Isolate* isolate = replacement->GetIsolate(); // Find substrings of replacement string and create them as String objects. int substring_index = 0; for (int i = 0, n = parts_.length(); i < n; i++) { int tag = parts_[i].tag; if (tag <= 0) { // A replacement string slice. int from = -tag; int to = parts_[i].data; replacement_substrings_.Add( isolate->factory()->NewSubString(replacement, from, to), zone()); parts_[i].tag = REPLACEMENT_SUBSTRING; parts_[i].data = substring_index; substring_index++; } else if (tag == REPLACEMENT_STRING) { replacement_substrings_.Add(replacement, zone()); parts_[i].data = substring_index; substring_index++; } } return false; } void CompiledReplacement::Apply(ReplacementStringBuilder* builder, int match_from, int match_to, int32_t* match) { DCHECK_LT(0, parts_.length()); for (int i = 0, n = parts_.length(); i < n; i++) { ReplacementPart part = parts_[i]; switch (part.tag) { case SUBJECT_PREFIX: if (match_from > 0) builder->AddSubjectSlice(0, match_from); break; case SUBJECT_SUFFIX: { int subject_length = part.data; if (match_to < subject_length) { builder->AddSubjectSlice(match_to, subject_length); } break; } case SUBJECT_CAPTURE: { int capture = part.data; int from = match[capture * 2]; int to = match[capture * 2 + 1]; if (from >= 0 && to > from) { builder->AddSubjectSlice(from, to); } break; } case REPLACEMENT_SUBSTRING: case REPLACEMENT_STRING: builder->AddString(replacement_substrings_[part.data]); break; default: UNREACHABLE(); } } } void FindOneByteStringIndices(Vector<const uint8_t> subject, char pattern, ZoneList<int>* indices, unsigned int limit, Zone* zone) { DCHECK(limit > 0); // Collect indices of pattern in subject using memchr. // Stop after finding at most limit values. const uint8_t* subject_start = subject.start(); const uint8_t* subject_end = subject_start + subject.length(); const uint8_t* pos = subject_start; while (limit > 0) { pos = reinterpret_cast<const uint8_t*>( memchr(pos, pattern, subject_end - pos)); if (pos == NULL) return; indices->Add(static_cast<int>(pos - subject_start), zone); pos++; limit--; } } void FindTwoByteStringIndices(const Vector<const uc16> subject, uc16 pattern, ZoneList<int>* indices, unsigned int limit, Zone* zone) { DCHECK(limit > 0); const uc16* subject_start = subject.start(); const uc16* subject_end = subject_start + subject.length(); for (const uc16* pos = subject_start; pos < subject_end && limit > 0; pos++) { if (*pos == pattern) { indices->Add(static_cast<int>(pos - subject_start), zone); limit--; } } } template <typename SubjectChar, typename PatternChar> void FindStringIndices(Isolate* isolate, Vector<const SubjectChar> subject, Vector<const PatternChar> pattern, ZoneList<int>* indices, unsigned int limit, Zone* zone) { DCHECK(limit > 0); // Collect indices of pattern in subject. // Stop after finding at most limit values. int pattern_length = pattern.length(); int index = 0; StringSearch<PatternChar, SubjectChar> search(isolate, pattern); while (limit > 0) { index = search.Search(subject, index); if (index < 0) return; indices->Add(index, zone); index += pattern_length; limit--; } } void FindStringIndicesDispatch(Isolate* isolate, String* subject, String* pattern, ZoneList<int>* indices, unsigned int limit, Zone* zone) { { DisallowHeapAllocation no_gc; String::FlatContent subject_content = subject->GetFlatContent(); String::FlatContent pattern_content = pattern->GetFlatContent(); DCHECK(subject_content.IsFlat()); DCHECK(pattern_content.IsFlat()); if (subject_content.IsOneByte()) { Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector(); if (pattern_content.IsOneByte()) { Vector<const uint8_t> pattern_vector = pattern_content.ToOneByteVector(); if (pattern_vector.length() == 1) { FindOneByteStringIndices(subject_vector, pattern_vector[0], indices, limit, zone); } else { FindStringIndices(isolate, subject_vector, pattern_vector, indices, limit, zone); } } else { FindStringIndices(isolate, subject_vector, pattern_content.ToUC16Vector(), indices, limit, zone); } } else { Vector<const uc16> subject_vector = subject_content.ToUC16Vector(); if (pattern_content.IsOneByte()) { Vector<const uint8_t> pattern_vector = pattern_content.ToOneByteVector(); if (pattern_vector.length() == 1) { FindTwoByteStringIndices(subject_vector, pattern_vector[0], indices, limit, zone); } else { FindStringIndices(isolate, subject_vector, pattern_vector, indices, limit, zone); } } else { Vector<const uc16> pattern_vector = pattern_content.ToUC16Vector(); if (pattern_vector.length() == 1) { FindTwoByteStringIndices(subject_vector, pattern_vector[0], indices, limit, zone); } else { FindStringIndices(isolate, subject_vector, pattern_vector, indices, limit, zone); } } } } } template<typename ResultSeqString> MUST_USE_RESULT static Object* StringReplaceGlobalAtomRegExpWithString( Isolate* isolate, Handle<String> subject, Handle<JSRegExp> pattern_regexp, Handle<String> replacement, Handle<JSArray> last_match_info) { DCHECK(subject->IsFlat()); DCHECK(replacement->IsFlat()); ZoneScope zone_scope(isolate->runtime_zone()); ZoneList<int> indices(8, zone_scope.zone()); DCHECK_EQ(JSRegExp::ATOM, pattern_regexp->TypeTag()); String* pattern = String::cast(pattern_regexp->DataAt(JSRegExp::kAtomPatternIndex)); int subject_len = subject->length(); int pattern_len = pattern->length(); int replacement_len = replacement->length(); FindStringIndicesDispatch( isolate, *subject, pattern, &indices, 0xffffffff, zone_scope.zone()); int matches = indices.length(); if (matches == 0) return *subject; // Detect integer overflow. int64_t result_len_64 = (static_cast<int64_t>(replacement_len) - static_cast<int64_t>(pattern_len)) * static_cast<int64_t>(matches) + static_cast<int64_t>(subject_len); int result_len; if (result_len_64 > static_cast<int64_t>(String::kMaxLength)) { STATIC_ASSERT(String::kMaxLength < kMaxInt); result_len = kMaxInt; // Provoke exception. } else { result_len = static_cast<int>(result_len_64); } int subject_pos = 0; int result_pos = 0; MaybeHandle<SeqString> maybe_res; if (ResultSeqString::kHasOneByteEncoding) { maybe_res = isolate->factory()->NewRawOneByteString(result_len); } else { maybe_res = isolate->factory()->NewRawTwoByteString(result_len); } Handle<SeqString> untyped_res; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, untyped_res, maybe_res); Handle<ResultSeqString> result = Handle<ResultSeqString>::cast(untyped_res); for (int i = 0; i < matches; i++) { // Copy non-matched subject content. if (subject_pos < indices.at(i)) { String::WriteToFlat(*subject, result->GetChars() + result_pos, subject_pos, indices.at(i)); result_pos += indices.at(i) - subject_pos; } // Replace match. if (replacement_len > 0) { String::WriteToFlat(*replacement, result->GetChars() + result_pos, 0, replacement_len); result_pos += replacement_len; } subject_pos = indices.at(i) + pattern_len; } // Add remaining subject content at the end. if (subject_pos < subject_len) { String::WriteToFlat(*subject, result->GetChars() + result_pos, subject_pos, subject_len); } int32_t match_indices[] = { indices.at(matches - 1), indices.at(matches - 1) + pattern_len }; RegExpImpl::SetLastMatchInfo(last_match_info, subject, 0, match_indices); return *result; } MUST_USE_RESULT static Object* StringReplaceGlobalRegExpWithString( Isolate* isolate, Handle<String> subject, Handle<JSRegExp> regexp, Handle<String> replacement, Handle<JSArray> last_match_info) { DCHECK(subject->IsFlat()); DCHECK(replacement->IsFlat()); int capture_count = regexp->CaptureCount(); int subject_length = subject->length(); // CompiledReplacement uses zone allocation. ZoneScope zone_scope(isolate->runtime_zone()); CompiledReplacement compiled_replacement(zone_scope.zone()); bool simple_replace = compiled_replacement.Compile(replacement, capture_count, subject_length); // Shortcut for simple non-regexp global replacements if (regexp->TypeTag() == JSRegExp::ATOM && simple_replace) { if (subject->HasOnlyOneByteChars() && replacement->HasOnlyOneByteChars()) { return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>( isolate, subject, regexp, replacement, last_match_info); } else { return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>( isolate, subject, regexp, replacement, last_match_info); } } RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate); if (global_cache.HasException()) return isolate->heap()->exception(); int32_t* current_match = global_cache.FetchNext(); if (current_match == NULL) { if (global_cache.HasException()) return isolate->heap()->exception(); return *subject; } // Guessing the number of parts that the final result string is built // from. Global regexps can match any number of times, so we guess // conservatively. int expected_parts = (compiled_replacement.parts() + 1) * 4 + 1; ReplacementStringBuilder builder(isolate->heap(), subject, expected_parts); // Number of parts added by compiled replacement plus preceeding // string and possibly suffix after last match. It is possible for // all components to use two elements when encoded as two smis. const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2); int prev = 0; do { builder.EnsureCapacity(parts_added_per_loop); int start = current_match[0]; int end = current_match[1]; if (prev < start) { builder.AddSubjectSlice(prev, start); } if (simple_replace) { builder.AddString(replacement); } else { compiled_replacement.Apply(&builder, start, end, current_match); } prev = end; current_match = global_cache.FetchNext(); } while (current_match != NULL); if (global_cache.HasException()) return isolate->heap()->exception(); if (prev < subject_length) { builder.EnsureCapacity(2); builder.AddSubjectSlice(prev, subject_length); } RegExpImpl::SetLastMatchInfo(last_match_info, subject, capture_count, global_cache.LastSuccessfulMatch()); Handle<String> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, builder.ToString()); return *result; } template <typename ResultSeqString> MUST_USE_RESULT static Object* StringReplaceGlobalRegExpWithEmptyString( Isolate* isolate, Handle<String> subject, Handle<JSRegExp> regexp, Handle<JSArray> last_match_info) { DCHECK(subject->IsFlat()); // Shortcut for simple non-regexp global replacements if (regexp->TypeTag() == JSRegExp::ATOM) { Handle<String> empty_string = isolate->factory()->empty_string(); if (subject->IsOneByteRepresentation()) { return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>( isolate, subject, regexp, empty_string, last_match_info); } else { return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>( isolate, subject, regexp, empty_string, last_match_info); } } RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate); if (global_cache.HasException()) return isolate->heap()->exception(); int32_t* current_match = global_cache.FetchNext(); if (current_match == NULL) { if (global_cache.HasException()) return isolate->heap()->exception(); return *subject; } int start = current_match[0]; int end = current_match[1]; int capture_count = regexp->CaptureCount(); int subject_length = subject->length(); int new_length = subject_length - (end - start); if (new_length == 0) return isolate->heap()->empty_string(); Handle<ResultSeqString> answer; if (ResultSeqString::kHasOneByteEncoding) { answer = Handle<ResultSeqString>::cast( isolate->factory()->NewRawOneByteString(new_length).ToHandleChecked()); } else { answer = Handle<ResultSeqString>::cast( isolate->factory()->NewRawTwoByteString(new_length).ToHandleChecked()); } int prev = 0; int position = 0; do { start = current_match[0]; end = current_match[1]; if (prev < start) { // Add substring subject[prev;start] to answer string. String::WriteToFlat(*subject, answer->GetChars() + position, prev, start); position += start - prev; } prev = end; current_match = global_cache.FetchNext(); } while (current_match != NULL); if (global_cache.HasException()) return isolate->heap()->exception(); RegExpImpl::SetLastMatchInfo(last_match_info, subject, capture_count, global_cache.LastSuccessfulMatch()); if (prev < subject_length) { // Add substring subject[prev;length] to answer string. String::WriteToFlat( *subject, answer->GetChars() + position, prev, subject_length); position += subject_length - prev; } if (position == 0) return isolate->heap()->empty_string(); // Shorten string and fill int string_size = ResultSeqString::SizeFor(position); int allocated_string_size = ResultSeqString::SizeFor(new_length); int delta = allocated_string_size - string_size; answer->set_length(position); if (delta == 0) return *answer; Address end_of_string = answer->address() + string_size; Heap* heap = isolate->heap(); // The trimming is performed on a newly allocated object, which is on a // fresly allocated page or on an already swept page. Hence, the sweeper // thread can not get confused with the filler creation. No synchronization // needed. heap->CreateFillerObjectAt(end_of_string, delta); heap->AdjustLiveBytes(answer->address(), -delta, Heap::FROM_MUTATOR); return *answer; } RUNTIME_FUNCTION(Runtime_StringReplaceGlobalRegExpWithString) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_ARG_HANDLE_CHECKED(String, replacement, 2); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3); RUNTIME_ASSERT(regexp->GetFlags().is_global()); RUNTIME_ASSERT(last_match_info->HasFastObjectElements()); subject = String::Flatten(subject); if (replacement->length() == 0) { if (subject->HasOnlyOneByteChars()) { return StringReplaceGlobalRegExpWithEmptyString<SeqOneByteString>( isolate, subject, regexp, last_match_info); } else { return StringReplaceGlobalRegExpWithEmptyString<SeqTwoByteString>( isolate, subject, regexp, last_match_info); } } replacement = String::Flatten(replacement); return StringReplaceGlobalRegExpWithString( isolate, subject, regexp, replacement, last_match_info); } // This may return an empty MaybeHandle if an exception is thrown or // we abort due to reaching the recursion limit. MaybeHandle<String> StringReplaceOneCharWithString(Isolate* isolate, Handle<String> subject, Handle<String> search, Handle<String> replace, bool* found, int recursion_limit) { StackLimitCheck stackLimitCheck(isolate); if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) { return MaybeHandle<String>(); } recursion_limit--; if (subject->IsConsString()) { ConsString* cons = ConsString::cast(*subject); Handle<String> first = Handle<String>(cons->first()); Handle<String> second = Handle<String>(cons->second()); Handle<String> new_first; if (!StringReplaceOneCharWithString( isolate, first, search, replace, found, recursion_limit) .ToHandle(&new_first)) { return MaybeHandle<String>(); } if (*found) return isolate->factory()->NewConsString(new_first, second); Handle<String> new_second; if (!StringReplaceOneCharWithString( isolate, second, search, replace, found, recursion_limit) .ToHandle(&new_second)) { return MaybeHandle<String>(); } if (*found) return isolate->factory()->NewConsString(first, new_second); return subject; } else { int index = Runtime::StringMatch(isolate, subject, search, 0); if (index == -1) return subject; *found = true; Handle<String> first = isolate->factory()->NewSubString(subject, 0, index); Handle<String> cons1; ASSIGN_RETURN_ON_EXCEPTION( isolate, cons1, isolate->factory()->NewConsString(first, replace), String); Handle<String> second = isolate->factory()->NewSubString(subject, index + 1, subject->length()); return isolate->factory()->NewConsString(cons1, second); } } RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_ARG_HANDLE_CHECKED(String, search, 1); CONVERT_ARG_HANDLE_CHECKED(String, replace, 2); // If the cons string tree is too deep, we simply abort the recursion and // retry with a flattened subject string. const int kRecursionLimit = 0x1000; bool found = false; Handle<String> result; if (StringReplaceOneCharWithString( isolate, subject, search, replace, &found, kRecursionLimit) .ToHandle(&result)) { return *result; } if (isolate->has_pending_exception()) return isolate->heap()->exception(); subject = String::Flatten(subject); ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, StringReplaceOneCharWithString( isolate, subject, search, replace, &found, kRecursionLimit)); return *result; } // Perform string match of pattern on subject, starting at start index. // Caller must ensure that 0 <= start_index <= sub->length(), // and should check that pat->length() + start_index <= sub->length(). int Runtime::StringMatch(Isolate* isolate, Handle<String> sub, Handle<String> pat, int start_index) { DCHECK(0 <= start_index); DCHECK(start_index <= sub->length()); int pattern_length = pat->length(); if (pattern_length == 0) return start_index; int subject_length = sub->length(); if (start_index + pattern_length > subject_length) return -1; sub = String::Flatten(sub); pat = String::Flatten(pat); DisallowHeapAllocation no_gc; // ensure vectors stay valid // Extract flattened substrings of cons strings before getting encoding. String::FlatContent seq_sub = sub->GetFlatContent(); String::FlatContent seq_pat = pat->GetFlatContent(); // dispatch on type of strings if (seq_pat.IsOneByte()) { Vector<const uint8_t> pat_vector = seq_pat.ToOneByteVector(); if (seq_sub.IsOneByte()) { return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector, start_index); } return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector, start_index); } Vector<const uc16> pat_vector = seq_pat.ToUC16Vector(); if (seq_sub.IsOneByte()) { return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector, start_index); } return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector, start_index); } RUNTIME_FUNCTION(Runtime_StringIndexOf) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, sub, 0); CONVERT_ARG_HANDLE_CHECKED(String, pat, 1); CONVERT_ARG_HANDLE_CHECKED(Object, index, 2); uint32_t start_index; if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1); RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length())); int position = Runtime::StringMatch(isolate, sub, pat, start_index); return Smi::FromInt(position); } template <typename schar, typename pchar> static int StringMatchBackwards(Vector<const schar> subject, Vector<const pchar> pattern, int idx) { int pattern_length = pattern.length(); DCHECK(pattern_length >= 1); DCHECK(idx + pattern_length <= subject.length()); if (sizeof(schar) == 1 && sizeof(pchar) > 1) { for (int i = 0; i < pattern_length; i++) { uc16 c = pattern[i]; if (c > String::kMaxOneByteCharCode) { return -1; } } } pchar pattern_first_char = pattern[0]; for (int i = idx; i >= 0; i--) { if (subject[i] != pattern_first_char) continue; int j = 1; while (j < pattern_length) { if (pattern[j] != subject[i+j]) { break; } j++; } if (j == pattern_length) { return i; } } return -1; } RUNTIME_FUNCTION(Runtime_StringLastIndexOf) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, sub, 0); CONVERT_ARG_HANDLE_CHECKED(String, pat, 1); CONVERT_ARG_HANDLE_CHECKED(Object, index, 2); uint32_t start_index; if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1); uint32_t pat_length = pat->length(); uint32_t sub_length = sub->length(); if (start_index + pat_length > sub_length) { start_index = sub_length - pat_length; } if (pat_length == 0) { return Smi::FromInt(start_index); } sub = String::Flatten(sub); pat = String::Flatten(pat); int position = -1; DisallowHeapAllocation no_gc; // ensure vectors stay valid String::FlatContent sub_content = sub->GetFlatContent(); String::FlatContent pat_content = pat->GetFlatContent(); if (pat_content.IsOneByte()) { Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector(); if (sub_content.IsOneByte()) { position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector, start_index); } else { position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector, start_index); } } else { Vector<const uc16> pat_vector = pat_content.ToUC16Vector(); if (sub_content.IsOneByte()) { position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector, start_index); } else { position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector, start_index); } } return Smi::FromInt(position); } RUNTIME_FUNCTION(Runtime_StringLocaleCompare) { HandleScope handle_scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, str1, 0); CONVERT_ARG_HANDLE_CHECKED(String, str2, 1); if (str1.is_identical_to(str2)) return Smi::FromInt(0); // Equal. int str1_length = str1->length(); int str2_length = str2->length(); // Decide trivial cases without flattening. if (str1_length == 0) { if (str2_length == 0) return Smi::FromInt(0); // Equal. return Smi::FromInt(-str2_length); } else { if (str2_length == 0) return Smi::FromInt(str1_length); } int end = str1_length < str2_length ? str1_length : str2_length; // No need to flatten if we are going to find the answer on the first // character. At this point we know there is at least one character // in each string, due to the trivial case handling above. int d = str1->Get(0) - str2->Get(0); if (d != 0) return Smi::FromInt(d); str1 = String::Flatten(str1); str2 = String::Flatten(str2); DisallowHeapAllocation no_gc; String::FlatContent flat1 = str1->GetFlatContent(); String::FlatContent flat2 = str2->GetFlatContent(); for (int i = 0; i < end; i++) { if (flat1.Get(i) != flat2.Get(i)) { return Smi::FromInt(flat1.Get(i) - flat2.Get(i)); } } return Smi::FromInt(str1_length - str2_length); } RUNTIME_FUNCTION(Runtime_SubString) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, string, 0); int start, end; // We have a fast integer-only case here to avoid a conversion to double in // the common case where from and to are Smis. if (args[1]->IsSmi() && args[2]->IsSmi()) { CONVERT_SMI_ARG_CHECKED(from_number, 1); CONVERT_SMI_ARG_CHECKED(to_number, 2); start = from_number; end = to_number; } else { CONVERT_DOUBLE_ARG_CHECKED(from_number, 1); CONVERT_DOUBLE_ARG_CHECKED(to_number, 2); start = FastD2IChecked(from_number); end = FastD2IChecked(to_number); } RUNTIME_ASSERT(end >= start); RUNTIME_ASSERT(start >= 0); RUNTIME_ASSERT(end <= string->length()); isolate->counters()->sub_string_runtime()->Increment(); return *isolate->factory()->NewSubString(string, start, end); } RUNTIME_FUNCTION(Runtime_InternalizeString) { HandleScope handles(isolate); RUNTIME_ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, string, 0); return *isolate->factory()->InternalizeString(string); } RUNTIME_FUNCTION(Runtime_StringMatch) { HandleScope handles(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2); RUNTIME_ASSERT(regexp_info->HasFastObjectElements()); RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate); if (global_cache.HasException()) return isolate->heap()->exception(); int capture_count = regexp->CaptureCount(); ZoneScope zone_scope(isolate->runtime_zone()); ZoneList<int> offsets(8, zone_scope.zone()); while (true) { int32_t* match = global_cache.FetchNext(); if (match == NULL) break; offsets.Add(match[0], zone_scope.zone()); // start offsets.Add(match[1], zone_scope.zone()); // end } if (global_cache.HasException()) return isolate->heap()->exception(); if (offsets.length() == 0) { // Not a single match. return isolate->heap()->null_value(); } RegExpImpl::SetLastMatchInfo(regexp_info, subject, capture_count, global_cache.LastSuccessfulMatch()); int matches = offsets.length() / 2; Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches); Handle<String> substring = isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1)); elements->set(0, *substring); for (int i = 1; i < matches; i++) { HandleScope temp_scope(isolate); int from = offsets.at(i * 2); int to = offsets.at(i * 2 + 1); Handle<String> substring = isolate->factory()->NewProperSubString(subject, from, to); elements->set(i, *substring); } Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements); result->set_length(Smi::FromInt(matches)); return *result; } // Only called from Runtime_RegExpExecMultiple so it doesn't need to maintain // separate last match info. See comment on that function. template<bool has_capture> static Object* SearchRegExpMultiple( Isolate* isolate, Handle<String> subject, Handle<JSRegExp> regexp, Handle<JSArray> last_match_array, Handle<JSArray> result_array) { DCHECK(subject->IsFlat()); DCHECK_NE(has_capture, regexp->CaptureCount() == 0); int capture_count = regexp->CaptureCount(); int subject_length = subject->length(); static const int kMinLengthToCache = 0x1000; if (subject_length > kMinLengthToCache) { Handle<Object> cached_answer(RegExpResultsCache::Lookup( isolate->heap(), *subject, regexp->data(), RegExpResultsCache::REGEXP_MULTIPLE_INDICES), isolate); if (*cached_answer != Smi::FromInt(0)) { Handle<FixedArray> cached_fixed_array = Handle<FixedArray>(FixedArray::cast(*cached_answer)); // The cache FixedArray is a COW-array and can therefore be reused. JSArray::SetContent(result_array, cached_fixed_array); // The actual length of the result array is stored in the last element of // the backing store (the backing FixedArray may have a larger capacity). Object* cached_fixed_array_last_element = cached_fixed_array->get(cached_fixed_array->length() - 1); Smi* js_array_length = Smi::cast(cached_fixed_array_last_element); result_array->set_length(js_array_length); RegExpImpl::SetLastMatchInfo( last_match_array, subject, capture_count, NULL); return *result_array; } } RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate); if (global_cache.HasException()) return isolate->heap()->exception(); // Ensured in Runtime_RegExpExecMultiple. DCHECK(result_array->HasFastObjectElements()); Handle<FixedArray> result_elements( FixedArray::cast(result_array->elements())); if (result_elements->length() < 16) { result_elements = isolate->factory()->NewFixedArrayWithHoles(16); } FixedArrayBuilder builder(result_elements); // Position to search from. int match_start = -1; int match_end = 0; bool first = true; // Two smis before and after the match, for very long strings. static const int kMaxBuilderEntriesPerRegExpMatch = 5; while (true) { int32_t* current_match = global_cache.FetchNext(); if (current_match == NULL) break; match_start = current_match[0]; builder.EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch); if (match_end < match_start) { ReplacementStringBuilder::AddSubjectSlice(&builder, match_end, match_start); } match_end = current_match[1]; { // Avoid accumulating new handles inside loop. HandleScope temp_scope(isolate); Handle<String> match; if (!first) { match = isolate->factory()->NewProperSubString(subject, match_start, match_end); } else { match = isolate->factory()->NewSubString(subject, match_start, match_end); first = false; } if (has_capture) { // Arguments array to replace function is match, captures, index and // subject, i.e., 3 + capture count in total. Handle<FixedArray> elements = isolate->factory()->NewFixedArray(3 + capture_count); elements->set(0, *match); for (int i = 1; i <= capture_count; i++) { int start = current_match[i * 2]; if (start >= 0) { int end = current_match[i * 2 + 1]; DCHECK(start <= end); Handle<String> substring = isolate->factory()->NewSubString(subject, start, end); elements->set(i, *substring); } else { DCHECK(current_match[i * 2 + 1] < 0); elements->set(i, isolate->heap()->undefined_value()); } } elements->set(capture_count + 1, Smi::FromInt(match_start)); elements->set(capture_count + 2, *subject); builder.Add(*isolate->factory()->NewJSArrayWithElements(elements)); } else { builder.Add(*match); } } } if (global_cache.HasException()) return isolate->heap()->exception(); if (match_start >= 0) { // Finished matching, with at least one match. if (match_end < subject_length) { ReplacementStringBuilder::AddSubjectSlice(&builder, match_end, subject_length); } RegExpImpl::SetLastMatchInfo( last_match_array, subject, capture_count, NULL); if (subject_length > kMinLengthToCache) { // Store the length of the result array into the last element of the // backing FixedArray. builder.EnsureCapacity(1); Handle<FixedArray> fixed_array = builder.array(); fixed_array->set(fixed_array->length() - 1, Smi::FromInt(builder.length())); // Cache the result and turn the FixedArray into a COW array. RegExpResultsCache::Enter(isolate, subject, handle(regexp->data(), isolate), fixed_array, RegExpResultsCache::REGEXP_MULTIPLE_INDICES); } return *builder.ToJSArray(result_array); } else { return isolate->heap()->null_value(); // No matches at all. } } // This is only called for StringReplaceGlobalRegExpWithFunction. This sets // lastMatchInfoOverride to maintain the last match info, so we don't need to // set any other last match array info. RUNTIME_FUNCTION(Runtime_RegExpExecMultiple) { HandleScope handles(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(String, subject, 1); CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0); CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, result_array, 3); RUNTIME_ASSERT(last_match_info->HasFastObjectElements()); RUNTIME_ASSERT(result_array->HasFastObjectElements()); subject = String::Flatten(subject); RUNTIME_ASSERT(regexp->GetFlags().is_global()); if (regexp->CaptureCount() == 0) { return SearchRegExpMultiple<false>( isolate, subject, regexp, last_match_info, result_array); } else { return SearchRegExpMultiple<true>( isolate, subject, regexp, last_match_info, result_array); } } RUNTIME_FUNCTION(Runtime_NumberToRadixString) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_SMI_ARG_CHECKED(radix, 1); RUNTIME_ASSERT(2 <= radix && radix <= 36); // Fast case where the result is a one character string. if (args[0]->IsSmi()) { int value = args.smi_at(0); if (value >= 0 && value < radix) { // Character array used for conversion. static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz"; return *isolate->factory()-> LookupSingleCharacterStringFromCode(kCharTable[value]); } } // Slow case. CONVERT_DOUBLE_ARG_CHECKED(value, 0); if (std::isnan(value)) { return isolate->heap()->nan_string(); } if (std::isinf(value)) { if (value < 0) { return isolate->heap()->minus_infinity_string(); } return isolate->heap()->infinity_string(); } char* str = DoubleToRadixCString(value, radix); Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } RUNTIME_FUNCTION(Runtime_NumberToFixed) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(value, 0); CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); int f = FastD2IChecked(f_number); // See DoubleToFixedCString for these constants: RUNTIME_ASSERT(f >= 0 && f <= 20); RUNTIME_ASSERT(!Double(value).IsSpecial()); char* str = DoubleToFixedCString(value, f); Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } RUNTIME_FUNCTION(Runtime_NumberToExponential) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(value, 0); CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); int f = FastD2IChecked(f_number); RUNTIME_ASSERT(f >= -1 && f <= 20); RUNTIME_ASSERT(!Double(value).IsSpecial()); char* str = DoubleToExponentialCString(value, f); Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } RUNTIME_FUNCTION(Runtime_NumberToPrecision) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(value, 0); CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); int f = FastD2IChecked(f_number); RUNTIME_ASSERT(f >= 1 && f <= 21); RUNTIME_ASSERT(!Double(value).IsSpecial()); char* str = DoubleToPrecisionCString(value, f); Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } RUNTIME_FUNCTION(Runtime_IsValidSmi) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]); return isolate->heap()->ToBoolean(Smi::IsValid(number)); } // Returns a single character string where first character equals // string->Get(index). static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) { if (index < static_cast<uint32_t>(string->length())) { Factory* factory = string->GetIsolate()->factory(); return factory->LookupSingleCharacterStringFromCode( String::Flatten(string)->Get(index)); } return Execution::CharAt(string, index); } MaybeHandle<Object> Runtime::GetElementOrCharAt(Isolate* isolate, Handle<Object> object, uint32_t index) { // Handle [] indexing on Strings if (object->IsString()) { Handle<Object> result = GetCharAt(Handle<String>::cast(object), index); if (!result->IsUndefined()) return result; } // Handle [] indexing on String objects if (object->IsStringObjectWithCharacterAt(index)) { Handle<JSValue> js_value = Handle<JSValue>::cast(object); Handle<Object> result = GetCharAt(Handle<String>(String::cast(js_value->value())), index); if (!result->IsUndefined()) return result; } Handle<Object> result; if (object->IsString() || object->IsNumber() || object->IsBoolean()) { PrototypeIterator iter(isolate, object); return Object::GetElement(isolate, PrototypeIterator::GetCurrent(iter), index); } else { return Object::GetElement(isolate, object, index); } } MUST_USE_RESULT static MaybeHandle<Name> ToName(Isolate* isolate, Handle<Object> key) { if (key->IsName()) { return Handle<Name>::cast(key); } else { Handle<Object> converted; ASSIGN_RETURN_ON_EXCEPTION( isolate, converted, Execution::ToString(isolate, key), Name); return Handle<Name>::cast(converted); } } MaybeHandle<Object> Runtime::HasObjectProperty(Isolate* isolate, Handle<JSReceiver> object, Handle<Object> key) { Maybe<bool> maybe; // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { maybe = JSReceiver::HasElement(object, index); } else { // Convert the key to a name - possibly by calling back into JavaScript. Handle<Name> name; ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object); maybe = JSReceiver::HasProperty(object, name); } if (!maybe.has_value) return MaybeHandle<Object>(); return isolate->factory()->ToBoolean(maybe.value); } MaybeHandle<Object> Runtime::GetObjectProperty(Isolate* isolate, Handle<Object> object, Handle<Object> key) { if (object->IsUndefined() || object->IsNull()) { Handle<Object> args[2] = { key, object }; THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_load", HandleVector(args, 2)), Object); } // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { return GetElementOrCharAt(isolate, object, index); } // Convert the key to a name - possibly by calling back into JavaScript. Handle<Name> name; ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object); // Check if the name is trivially convertible to an index and get // the element if so. if (name->AsArrayIndex(&index)) { return GetElementOrCharAt(isolate, object, index); } else { return Object::GetProperty(object, name); } } RUNTIME_FUNCTION(Runtime_GetProperty) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Runtime::GetObjectProperty(isolate, object, key)); return *result; } // KeyedGetProperty is called from KeyedLoadIC::GenerateGeneric. RUNTIME_FUNCTION(Runtime_KeyedGetProperty) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Object, receiver_obj, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key_obj, 1); // Fast cases for getting named properties of the receiver JSObject // itself. // // The global proxy objects has to be excluded since LookupOwn on // the global proxy object can return a valid result even though the // global proxy object never has properties. This is the case // because the global proxy object forwards everything to its hidden // prototype including own lookups. // // Additionally, we need to make sure that we do not cache results // for objects that require access checks. if (receiver_obj->IsJSObject()) { if (!receiver_obj->IsJSGlobalProxy() && !receiver_obj->IsAccessCheckNeeded() && key_obj->IsName()) { DisallowHeapAllocation no_allocation; Handle<JSObject> receiver = Handle<JSObject>::cast(receiver_obj); Handle<Name> key = Handle<Name>::cast(key_obj); if (receiver->HasFastProperties()) { // Attempt to use lookup cache. Handle<Map> receiver_map(receiver->map(), isolate); KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache(); int index = keyed_lookup_cache->Lookup(receiver_map, key); if (index != -1) { // Doubles are not cached, so raw read the value. return receiver->RawFastPropertyAt( FieldIndex::ForKeyedLookupCacheIndex(*receiver_map, index)); } // Lookup cache miss. Perform lookup and update the cache if // appropriate. LookupIterator it(receiver, key, LookupIterator::OWN); if (it.state() == LookupIterator::DATA && it.property_details().type() == FIELD) { FieldIndex field_index = it.GetFieldIndex(); // Do not track double fields in the keyed lookup cache. Reading // double values requires boxing. if (!it.representation().IsDouble()) { keyed_lookup_cache->Update(receiver_map, key, field_index.GetKeyedLookupCacheIndex()); } AllowHeapAllocation allow_allocation; return *JSObject::FastPropertyAt(receiver, it.representation(), field_index); } } else { // Attempt dictionary lookup. NameDictionary* dictionary = receiver->property_dictionary(); int entry = dictionary->FindEntry(key); if ((entry != NameDictionary::kNotFound) && (dictionary->DetailsAt(entry).type() == NORMAL)) { Object* value = dictionary->ValueAt(entry); if (!receiver->IsGlobalObject()) return value; value = PropertyCell::cast(value)->value(); if (!value->IsTheHole()) return value; // If value is the hole (meaning, absent) do the general lookup. } } } else if (key_obj->IsSmi()) { // JSObject without a name key. If the key is a Smi, check for a // definite out-of-bounds access to elements, which is a strong indicator // that subsequent accesses will also call the runtime. Proactively // transition elements to FAST_*_ELEMENTS to avoid excessive boxing of // doubles for those future calls in the case that the elements would // become FAST_DOUBLE_ELEMENTS. Handle<JSObject> js_object = Handle<JSObject>::cast(receiver_obj); ElementsKind elements_kind = js_object->GetElementsKind(); if (IsFastDoubleElementsKind(elements_kind)) { Handle<Smi> key = Handle<Smi>::cast(key_obj); if (key->value() >= js_object->elements()->length()) { if (IsFastHoleyElementsKind(elements_kind)) { elements_kind = FAST_HOLEY_ELEMENTS; } else { elements_kind = FAST_ELEMENTS; } RETURN_FAILURE_ON_EXCEPTION( isolate, TransitionElements(js_object, elements_kind, isolate)); } } else { DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) || !IsFastElementsKind(elements_kind)); } } } else if (receiver_obj->IsString() && key_obj->IsSmi()) { // Fast case for string indexing using [] with a smi index. Handle<String> str = Handle<String>::cast(receiver_obj); int index = args.smi_at(1); if (index >= 0 && index < str->length()) { return *GetCharAt(str, index); } } // Fall back to GetObjectProperty. Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Runtime::GetObjectProperty(isolate, receiver_obj, key_obj)); return *result; } static bool IsValidAccessor(Handle<Object> obj) { return obj->IsUndefined() || obj->IsSpecFunction() || obj->IsNull(); } // Transform getter or setter into something DefineAccessor can handle. static Handle<Object> InstantiateAccessorComponent(Isolate* isolate, Handle<Object> component) { if (component->IsUndefined()) return isolate->factory()->undefined_value(); Handle<FunctionTemplateInfo> info = Handle<FunctionTemplateInfo>::cast(component); return Utils::OpenHandle(*Utils::ToLocal(info)->GetFunction()); } RUNTIME_FUNCTION(Runtime_DefineApiAccessorProperty) { HandleScope scope(isolate); DCHECK(args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2); CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3); CONVERT_SMI_ARG_CHECKED(attribute, 4); RUNTIME_ASSERT(getter->IsUndefined() || getter->IsFunctionTemplateInfo()); RUNTIME_ASSERT(setter->IsUndefined() || setter->IsFunctionTemplateInfo()); RUNTIME_ASSERT(PropertyDetails::AttributesField::is_valid( static_cast<PropertyAttributes>(attribute))); RETURN_FAILURE_ON_EXCEPTION( isolate, JSObject::DefineAccessor( object, name, InstantiateAccessorComponent(isolate, getter), InstantiateAccessorComponent(isolate, setter), static_cast<PropertyAttributes>(attribute))); return isolate->heap()->undefined_value(); } // Implements part of 8.12.9 DefineOwnProperty. // There are 3 cases that lead here: // Step 4b - define a new accessor property. // Steps 9c & 12 - replace an existing data property with an accessor property. // Step 12 - update an existing accessor property with an accessor or generic // descriptor. RUNTIME_FUNCTION(Runtime_DefineAccessorPropertyUnchecked) { HandleScope scope(isolate); DCHECK(args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); RUNTIME_ASSERT(!obj->IsNull()); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2); RUNTIME_ASSERT(IsValidAccessor(getter)); CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3); RUNTIME_ASSERT(IsValidAccessor(setter)); CONVERT_SMI_ARG_CHECKED(unchecked, 4); RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked); bool fast = obj->HasFastProperties(); RETURN_FAILURE_ON_EXCEPTION( isolate, JSObject::DefineAccessor(obj, name, getter, setter, attr)); if (fast) JSObject::MigrateSlowToFast(obj, 0); return isolate->heap()->undefined_value(); } // Implements part of 8.12.9 DefineOwnProperty. // There are 3 cases that lead here: // Step 4a - define a new data property. // Steps 9b & 12 - replace an existing accessor property with a data property. // Step 12 - update an existing data property with a data or generic // descriptor. RUNTIME_FUNCTION(Runtime_DefineDataPropertyUnchecked) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSObject, js_object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); CONVERT_ARG_HANDLE_CHECKED(Object, obj_value, 2); CONVERT_SMI_ARG_CHECKED(unchecked, 3); RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked); LookupIterator it(js_object, name, LookupIterator::OWN_SKIP_INTERCEPTOR); if (it.IsFound() && it.state() == LookupIterator::ACCESS_CHECK) { if (!isolate->MayNamedAccess(js_object, name, v8::ACCESS_SET)) { return isolate->heap()->undefined_value(); } it.Next(); } // Take special care when attributes are different and there is already // a property. if (it.state() == LookupIterator::ACCESSOR) { // Use IgnoreAttributes version since a readonly property may be // overridden and SetProperty does not allow this. Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::SetOwnPropertyIgnoreAttributes( js_object, name, obj_value, attr, JSObject::DONT_FORCE_FIELD)); return *result; } Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Runtime::DefineObjectProperty(js_object, name, obj_value, attr)); return *result; } // Return property without being observable by accessors or interceptors. RUNTIME_FUNCTION(Runtime_GetDataProperty) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, key, 1); return *JSObject::GetDataProperty(object, key); } MaybeHandle<Object> Runtime::SetObjectProperty(Isolate* isolate, Handle<Object> object, Handle<Object> key, Handle<Object> value, StrictMode strict_mode) { if (object->IsUndefined() || object->IsNull()) { Handle<Object> args[2] = { key, object }; THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_store", HandleVector(args, 2)), Object); } if (object->IsJSProxy()) { Handle<Object> name_object; if (key->IsSymbol()) { name_object = key; } else { ASSIGN_RETURN_ON_EXCEPTION( isolate, name_object, Execution::ToString(isolate, key), Object); } Handle<Name> name = Handle<Name>::cast(name_object); return Object::SetProperty(Handle<JSProxy>::cast(object), name, value, strict_mode); } // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { // TODO(verwaest): Support non-JSObject receivers. if (!object->IsJSObject()) return value; Handle<JSObject> js_object = Handle<JSObject>::cast(object); // In Firefox/SpiderMonkey, Safari and Opera you can access the characters // of a string using [] notation. We need to support this too in // JavaScript. // In the case of a String object we just need to redirect the assignment to // the underlying string if the index is in range. Since the underlying // string does nothing with the assignment then we can ignore such // assignments. if (js_object->IsStringObjectWithCharacterAt(index)) { return value; } JSObject::ValidateElements(js_object); if (js_object->HasExternalArrayElements() || js_object->HasFixedTypedArrayElements()) { if (!value->IsNumber() && !value->IsUndefined()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, value, Execution::ToNumber(isolate, value), Object); } } MaybeHandle<Object> result = JSObject::SetElement( js_object, index, value, NONE, strict_mode, true, SET_PROPERTY); JSObject::ValidateElements(js_object); return result.is_null() ? result : value; } if (key->IsName()) { Handle<Name> name = Handle<Name>::cast(key); if (name->AsArrayIndex(&index)) { // TODO(verwaest): Support non-JSObject receivers. if (!object->IsJSObject()) return value; Handle<JSObject> js_object = Handle<JSObject>::cast(object); if (js_object->HasExternalArrayElements()) { if (!value->IsNumber() && !value->IsUndefined()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, value, Execution::ToNumber(isolate, value), Object); } } return JSObject::SetElement(js_object, index, value, NONE, strict_mode, true, SET_PROPERTY); } else { if (name->IsString()) name = String::Flatten(Handle<String>::cast(name)); return Object::SetProperty(object, name, value, strict_mode); } } // Call-back into JavaScript to convert the key to a string. Handle<Object> converted; ASSIGN_RETURN_ON_EXCEPTION( isolate, converted, Execution::ToString(isolate, key), Object); Handle<String> name = Handle<String>::cast(converted); if (name->AsArrayIndex(&index)) { // TODO(verwaest): Support non-JSObject receivers. if (!object->IsJSObject()) return value; Handle<JSObject> js_object = Handle<JSObject>::cast(object); return JSObject::SetElement(js_object, index, value, NONE, strict_mode, true, SET_PROPERTY); } return Object::SetProperty(object, name, value, strict_mode); } MaybeHandle<Object> Runtime::DefineObjectProperty(Handle<JSObject> js_object, Handle<Object> key, Handle<Object> value, PropertyAttributes attr) { Isolate* isolate = js_object->GetIsolate(); // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { // In Firefox/SpiderMonkey, Safari and Opera you can access the characters // of a string using [] notation. We need to support this too in // JavaScript. // In the case of a String object we just need to redirect the assignment to // the underlying string if the index is in range. Since the underlying // string does nothing with the assignment then we can ignore such // assignments. if (js_object->IsStringObjectWithCharacterAt(index)) { return value; } return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false, DEFINE_PROPERTY); } if (key->IsName()) { Handle<Name> name = Handle<Name>::cast(key); if (name->AsArrayIndex(&index)) { return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false, DEFINE_PROPERTY); } else { if (name->IsString()) name = String::Flatten(Handle<String>::cast(name)); return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value, attr); } } // Call-back into JavaScript to convert the key to a string. Handle<Object> converted; ASSIGN_RETURN_ON_EXCEPTION( isolate, converted, Execution::ToString(isolate, key), Object); Handle<String> name = Handle<String>::cast(converted); if (name->AsArrayIndex(&index)) { return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false, DEFINE_PROPERTY); } else { return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value, attr); } } MaybeHandle<Object> Runtime::DeleteObjectProperty(Isolate* isolate, Handle<JSReceiver> receiver, Handle<Object> key, JSReceiver::DeleteMode mode) { // Check if the given key is an array index. uint32_t index; if (key->ToArrayIndex(&index)) { // In Firefox/SpiderMonkey, Safari and Opera you can access the // characters of a string using [] notation. In the case of a // String object we just need to redirect the deletion to the // underlying string if the index is in range. Since the // underlying string does nothing with the deletion, we can ignore // such deletions. if (receiver->IsStringObjectWithCharacterAt(index)) { return isolate->factory()->true_value(); } return JSReceiver::DeleteElement(receiver, index, mode); } Handle<Name> name; if (key->IsName()) { name = Handle<Name>::cast(key); } else { // Call-back into JavaScript to convert the key to a string. Handle<Object> converted; ASSIGN_RETURN_ON_EXCEPTION( isolate, converted, Execution::ToString(isolate, key), Object); name = Handle<String>::cast(converted); } if (name->IsString()) name = String::Flatten(Handle<String>::cast(name)); return JSReceiver::DeleteProperty(receiver, name, mode); } RUNTIME_FUNCTION(Runtime_SetHiddenProperty) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(String, key, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); RUNTIME_ASSERT(key->IsUniqueName()); return *JSObject::SetHiddenProperty(object, key, value); } RUNTIME_FUNCTION(Runtime_AddNamedProperty) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, key, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3); RUNTIME_ASSERT( (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); // Compute attributes. PropertyAttributes attributes = static_cast<PropertyAttributes>(unchecked_attributes); #ifdef DEBUG uint32_t index = 0; DCHECK(!key->ToArrayIndex(&index)); LookupIterator it(object, key, LookupIterator::OWN_SKIP_INTERCEPTOR); Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it); if (!maybe.has_value) return isolate->heap()->exception(); RUNTIME_ASSERT(!it.IsFound()); #endif Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::SetOwnPropertyIgnoreAttributes(object, key, value, attributes)); return *result; } RUNTIME_FUNCTION(Runtime_AddPropertyForTemplate) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3); RUNTIME_ASSERT( (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); // Compute attributes. PropertyAttributes attributes = static_cast<PropertyAttributes>(unchecked_attributes); #ifdef DEBUG bool duplicate; if (key->IsName()) { LookupIterator it(object, Handle<Name>::cast(key), LookupIterator::OWN_SKIP_INTERCEPTOR); Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it); DCHECK(maybe.has_value); duplicate = it.IsFound(); } else { uint32_t index = 0; RUNTIME_ASSERT(key->ToArrayIndex(&index)); Maybe<bool> maybe = JSReceiver::HasOwnElement(object, index); if (!maybe.has_value) return isolate->heap()->exception(); duplicate = maybe.value; } if (duplicate) { Handle<Object> args[1] = { key }; THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError("duplicate_template_property", HandleVector(args, 1))); } #endif Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Runtime::DefineObjectProperty(object, key, value, attributes)); return *result; } RUNTIME_FUNCTION(Runtime_SetProperty) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode_arg, 3); StrictMode strict_mode = strict_mode_arg; Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Runtime::SetObjectProperty(isolate, object, key, value, strict_mode)); return *result; } // Adds an element to an array. // This is used to create an indexed data property into an array. RUNTIME_FUNCTION(Runtime_AddElement) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Object, key, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3); RUNTIME_ASSERT( (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); // Compute attributes. PropertyAttributes attributes = static_cast<PropertyAttributes>(unchecked_attributes); uint32_t index = 0; key->ToArrayIndex(&index); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::SetElement(object, index, value, attributes, SLOPPY, false, DEFINE_PROPERTY)); return *result; } RUNTIME_FUNCTION(Runtime_TransitionElementsKind) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); CONVERT_ARG_HANDLE_CHECKED(Map, map, 1); JSObject::TransitionElementsKind(array, map->elements_kind()); return *array; } // Set the native flag on the function. // This is used to decide if we should transform null and undefined // into the global object when doing call and apply. RUNTIME_FUNCTION(Runtime_SetNativeFlag) { SealHandleScope shs(isolate); RUNTIME_ASSERT(args.length() == 1); CONVERT_ARG_CHECKED(Object, object, 0); if (object->IsJSFunction()) { JSFunction* func = JSFunction::cast(object); func->shared()->set_native(true); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_SetInlineBuiltinFlag) { SealHandleScope shs(isolate); RUNTIME_ASSERT(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); if (object->IsJSFunction()) { JSFunction* func = JSFunction::cast(*object); func->shared()->set_inline_builtin(true); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_StoreArrayLiteralElement) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_SMI_ARG_CHECKED(store_index, 1); CONVERT_ARG_HANDLE_CHECKED(Object, value, 2); CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 3); CONVERT_SMI_ARG_CHECKED(literal_index, 4); Object* raw_literal_cell = literals->get(literal_index); JSArray* boilerplate = NULL; if (raw_literal_cell->IsAllocationSite()) { AllocationSite* site = AllocationSite::cast(raw_literal_cell); boilerplate = JSArray::cast(site->transition_info()); } else { boilerplate = JSArray::cast(raw_literal_cell); } Handle<JSArray> boilerplate_object(boilerplate); ElementsKind elements_kind = object->GetElementsKind(); DCHECK(IsFastElementsKind(elements_kind)); // Smis should never trigger transitions. DCHECK(!value->IsSmi()); if (value->IsNumber()) { DCHECK(IsFastSmiElementsKind(elements_kind)); ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind) ? FAST_HOLEY_DOUBLE_ELEMENTS : FAST_DOUBLE_ELEMENTS; if (IsMoreGeneralElementsKindTransition( boilerplate_object->GetElementsKind(), transitioned_kind)) { JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind); } JSObject::TransitionElementsKind(object, transitioned_kind); DCHECK(IsFastDoubleElementsKind(object->GetElementsKind())); FixedDoubleArray* double_array = FixedDoubleArray::cast(object->elements()); HeapNumber* number = HeapNumber::cast(*value); double_array->set(store_index, number->Number()); } else { if (!IsFastObjectElementsKind(elements_kind)) { ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind) ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; JSObject::TransitionElementsKind(object, transitioned_kind); ElementsKind boilerplate_elements_kind = boilerplate_object->GetElementsKind(); if (IsMoreGeneralElementsKindTransition(boilerplate_elements_kind, transitioned_kind)) { JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind); } } FixedArray* object_array = FixedArray::cast(object->elements()); object_array->set(store_index, *value); } return *object; } // Check whether debugger and is about to step into the callback that is passed // to a built-in function such as Array.forEach. RUNTIME_FUNCTION(Runtime_DebugCallbackSupportsStepping) { DCHECK(args.length() == 1); if (!isolate->debug()->is_active() || !isolate->debug()->StepInActive()) { return isolate->heap()->false_value(); } CONVERT_ARG_CHECKED(Object, callback, 0); // We do not step into the callback if it's a builtin or not even a function. return isolate->heap()->ToBoolean( callback->IsJSFunction() && !JSFunction::cast(callback)->IsBuiltin()); } // Set one shot breakpoints for the callback function that is passed to a // built-in function such as Array.forEach to enable stepping into the callback. RUNTIME_FUNCTION(Runtime_DebugPrepareStepInIfStepping) { DCHECK(args.length() == 1); Debug* debug = isolate->debug(); if (!debug->IsStepping()) return isolate->heap()->undefined_value(); HandleScope scope(isolate); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); RUNTIME_ASSERT(object->IsJSFunction() || object->IsJSGeneratorObject()); Handle<JSFunction> fun; if (object->IsJSFunction()) { fun = Handle<JSFunction>::cast(object); } else { fun = Handle<JSFunction>( Handle<JSGeneratorObject>::cast(object)->function(), isolate); } // When leaving the function, step out has been activated, but not performed // if we do not leave the builtin. To be able to step into the function // again, we need to clear the step out at this point. debug->ClearStepOut(); debug->FloodWithOneShot(fun); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DebugPushPromise) { DCHECK(args.length() == 1); HandleScope scope(isolate); CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0); isolate->PushPromise(promise); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DebugPopPromise) { DCHECK(args.length() == 0); SealHandleScope shs(isolate); isolate->PopPromise(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DebugPromiseEvent) { DCHECK(args.length() == 1); HandleScope scope(isolate); CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0); isolate->debug()->OnPromiseEvent(data); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DebugPromiseRejectEvent) { DCHECK(args.length() == 2); HandleScope scope(isolate); CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0); CONVERT_ARG_HANDLE_CHECKED(Object, value, 1); isolate->debug()->OnPromiseReject(promise, value); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DebugAsyncTaskEvent) { DCHECK(args.length() == 1); HandleScope scope(isolate); CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0); isolate->debug()->OnAsyncTaskEvent(data); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DeleteProperty) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, key, 1); CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 2); JSReceiver::DeleteMode delete_mode = strict_mode == STRICT ? JSReceiver::STRICT_DELETION : JSReceiver::NORMAL_DELETION; Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSReceiver::DeleteProperty(object, key, delete_mode)); return *result; } static Object* HasOwnPropertyImplementation(Isolate* isolate, Handle<JSObject> object, Handle<Name> key) { Maybe<bool> maybe = JSReceiver::HasOwnProperty(object, key); if (!maybe.has_value) return isolate->heap()->exception(); if (maybe.value) return isolate->heap()->true_value(); // Handle hidden prototypes. If there's a hidden prototype above this thing // then we have to check it for properties, because they are supposed to // look like they are on this object. PrototypeIterator iter(isolate, object); if (!iter.IsAtEnd() && Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)) ->map() ->is_hidden_prototype()) { // TODO(verwaest): The recursion is not necessary for keys that are array // indices. Removing this. return HasOwnPropertyImplementation( isolate, Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), key); } RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); return isolate->heap()->false_value(); } RUNTIME_FUNCTION(Runtime_HasOwnProperty) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0) CONVERT_ARG_HANDLE_CHECKED(Name, key, 1); uint32_t index; const bool key_is_array_index = key->AsArrayIndex(&index); // Only JS objects can have properties. if (object->IsJSObject()) { Handle<JSObject> js_obj = Handle<JSObject>::cast(object); // Fast case: either the key is a real named property or it is not // an array index and there are no interceptors or hidden // prototypes. Maybe<bool> maybe = JSObject::HasRealNamedProperty(js_obj, key); if (!maybe.has_value) return isolate->heap()->exception(); DCHECK(!isolate->has_pending_exception()); if (maybe.value) { return isolate->heap()->true_value(); } Map* map = js_obj->map(); if (!key_is_array_index && !map->has_named_interceptor() && !HeapObject::cast(map->prototype())->map()->is_hidden_prototype()) { return isolate->heap()->false_value(); } // Slow case. return HasOwnPropertyImplementation(isolate, Handle<JSObject>(js_obj), Handle<Name>(key)); } else if (object->IsString() && key_is_array_index) { // Well, there is one exception: Handle [] on strings. Handle<String> string = Handle<String>::cast(object); if (index < static_cast<uint32_t>(string->length())) { return isolate->heap()->true_value(); } } return isolate->heap()->false_value(); } RUNTIME_FUNCTION(Runtime_HasProperty) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0); CONVERT_ARG_HANDLE_CHECKED(Name, key, 1); Maybe<bool> maybe = JSReceiver::HasProperty(receiver, key); if (!maybe.has_value) return isolate->heap()->exception(); return isolate->heap()->ToBoolean(maybe.value); } RUNTIME_FUNCTION(Runtime_HasElement) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0); CONVERT_SMI_ARG_CHECKED(index, 1); Maybe<bool> maybe = JSReceiver::HasElement(receiver, index); if (!maybe.has_value) return isolate->heap()->exception(); return isolate->heap()->ToBoolean(maybe.value); } RUNTIME_FUNCTION(Runtime_IsPropertyEnumerable) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Name, key, 1); Maybe<PropertyAttributes> maybe = JSReceiver::GetOwnPropertyAttributes(object, key); if (!maybe.has_value) return isolate->heap()->exception(); if (maybe.value == ABSENT) maybe.value = DONT_ENUM; return isolate->heap()->ToBoolean((maybe.value & DONT_ENUM) == 0); } RUNTIME_FUNCTION(Runtime_GetPropertyNames) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0); Handle<JSArray> result; isolate->counters()->for_in()->Increment(); Handle<FixedArray> elements; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, elements, JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS)); return *isolate->factory()->NewJSArrayWithElements(elements); } // Returns either a FixedArray as Runtime_GetPropertyNames, // or, if the given object has an enum cache that contains // all enumerable properties of the object and its prototypes // have none, the map of the object. This is used to speed up // the check for deletions during a for-in. RUNTIME_FUNCTION(Runtime_GetPropertyNamesFast) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSReceiver, raw_object, 0); if (raw_object->IsSimpleEnum()) return raw_object->map(); HandleScope scope(isolate); Handle<JSReceiver> object(raw_object); Handle<FixedArray> content; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, content, JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS)); // Test again, since cache may have been built by preceding call. if (object->IsSimpleEnum()) return object->map(); return *content; } // Find the length of the prototype chain that is to be handled as one. If a // prototype object is hidden it is to be viewed as part of the the object it // is prototype for. static int OwnPrototypeChainLength(JSObject* obj) { int count = 1; for (PrototypeIterator iter(obj->GetIsolate(), obj); !iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) { count++; } return count; } // Return the names of the own named properties. // args[0]: object // args[1]: PropertyAttributes as int RUNTIME_FUNCTION(Runtime_GetOwnPropertyNames) { HandleScope scope(isolate); DCHECK(args.length() == 2); if (!args[0]->IsJSObject()) { return isolate->heap()->undefined_value(); } CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_SMI_ARG_CHECKED(filter_value, 1); PropertyAttributes filter = static_cast<PropertyAttributes>(filter_value); // Skip the global proxy as it has no properties and always delegates to the // real global object. if (obj->IsJSGlobalProxy()) { // Only collect names if access is permitted. if (obj->IsAccessCheckNeeded() && !isolate->MayNamedAccess( obj, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(obj, v8::ACCESS_KEYS); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); return *isolate->factory()->NewJSArray(0); } PrototypeIterator iter(isolate, obj); obj = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); } // Find the number of objects making up this. int length = OwnPrototypeChainLength(*obj); // Find the number of own properties for each of the objects. ScopedVector<int> own_property_count(length); int total_property_count = 0; { PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER); for (int i = 0; i < length; i++) { DCHECK(!iter.IsAtEnd()); Handle<JSObject> jsproto = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); // Only collect names if access is permitted. if (jsproto->IsAccessCheckNeeded() && !isolate->MayNamedAccess(jsproto, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(jsproto, v8::ACCESS_KEYS); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); return *isolate->factory()->NewJSArray(0); } int n; n = jsproto->NumberOfOwnProperties(filter); own_property_count[i] = n; total_property_count += n; iter.Advance(); } } // Allocate an array with storage for all the property names. Handle<FixedArray> names = isolate->factory()->NewFixedArray(total_property_count); // Get the property names. int next_copy_index = 0; int hidden_strings = 0; { PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER); for (int i = 0; i < length; i++) { DCHECK(!iter.IsAtEnd()); Handle<JSObject> jsproto = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); jsproto->GetOwnPropertyNames(*names, next_copy_index, filter); if (i > 0) { // Names from hidden prototypes may already have been added // for inherited function template instances. Count the duplicates // and stub them out; the final copy pass at the end ignores holes. for (int j = next_copy_index; j < next_copy_index + own_property_count[i]; j++) { Object* name_from_hidden_proto = names->get(j); for (int k = 0; k < next_copy_index; k++) { if (names->get(k) != isolate->heap()->hidden_string()) { Object* name = names->get(k); if (name_from_hidden_proto == name) { names->set(j, isolate->heap()->hidden_string()); hidden_strings++; break; } } } } } next_copy_index += own_property_count[i]; // Hidden properties only show up if the filter does not skip strings. if ((filter & STRING) == 0 && JSObject::HasHiddenProperties(jsproto)) { hidden_strings++; } iter.Advance(); } } // Filter out name of hidden properties object and // hidden prototype duplicates. if (hidden_strings > 0) { Handle<FixedArray> old_names = names; names = isolate->factory()->NewFixedArray( names->length() - hidden_strings); int dest_pos = 0; for (int i = 0; i < total_property_count; i++) { Object* name = old_names->get(i); if (name == isolate->heap()->hidden_string()) { hidden_strings--; continue; } names->set(dest_pos++, name); } DCHECK_EQ(0, hidden_strings); } return *isolate->factory()->NewJSArrayWithElements(names); } // Return the names of the own indexed properties. // args[0]: object RUNTIME_FUNCTION(Runtime_GetOwnElementNames) { HandleScope scope(isolate); DCHECK(args.length() == 1); if (!args[0]->IsJSObject()) { return isolate->heap()->undefined_value(); } CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); int n = obj->NumberOfOwnElements(static_cast<PropertyAttributes>(NONE)); Handle<FixedArray> names = isolate->factory()->NewFixedArray(n); obj->GetOwnElementKeys(*names, static_cast<PropertyAttributes>(NONE)); return *isolate->factory()->NewJSArrayWithElements(names); } // Return information on whether an object has a named or indexed interceptor. // args[0]: object RUNTIME_FUNCTION(Runtime_GetInterceptorInfo) { HandleScope scope(isolate); DCHECK(args.length() == 1); if (!args[0]->IsJSObject()) { return Smi::FromInt(0); } CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); int result = 0; if (obj->HasNamedInterceptor()) result |= 2; if (obj->HasIndexedInterceptor()) result |= 1; return Smi::FromInt(result); } // Return property names from named interceptor. // args[0]: object RUNTIME_FUNCTION(Runtime_GetNamedInterceptorPropertyNames) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); if (obj->HasNamedInterceptor()) { Handle<JSObject> result; if (JSObject::GetKeysForNamedInterceptor(obj, obj).ToHandle(&result)) { return *result; } } return isolate->heap()->undefined_value(); } // Return element names from indexed interceptor. // args[0]: object RUNTIME_FUNCTION(Runtime_GetIndexedInterceptorElementNames) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); if (obj->HasIndexedInterceptor()) { Handle<JSObject> result; if (JSObject::GetKeysForIndexedInterceptor(obj, obj).ToHandle(&result)) { return *result; } } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_OwnKeys) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSObject, raw_object, 0); Handle<JSObject> object(raw_object); if (object->IsJSGlobalProxy()) { // Do access checks before going to the global object. if (object->IsAccessCheckNeeded() && !isolate->MayNamedAccess( object, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) { isolate->ReportFailedAccessCheck(object, v8::ACCESS_KEYS); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); return *isolate->factory()->NewJSArray(0); } PrototypeIterator iter(isolate, object); // If proxy is detached we simply return an empty array. if (iter.IsAtEnd()) return *isolate->factory()->NewJSArray(0); object = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); } Handle<FixedArray> contents; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, contents, JSReceiver::GetKeys(object, JSReceiver::OWN_ONLY)); // Some fast paths through GetKeysInFixedArrayFor reuse a cached // property array and since the result is mutable we have to create // a fresh clone on each invocation. int length = contents->length(); Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length); for (int i = 0; i < length; i++) { Object* entry = contents->get(i); if (entry->IsString()) { copy->set(i, entry); } else { DCHECK(entry->IsNumber()); HandleScope scope(isolate); Handle<Object> entry_handle(entry, isolate); Handle<Object> entry_str = isolate->factory()->NumberToString(entry_handle); copy->set(i, *entry_str); } } return *isolate->factory()->NewJSArrayWithElements(copy); } RUNTIME_FUNCTION(Runtime_GetArgumentsProperty) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, raw_key, 0); // Compute the frame holding the arguments. JavaScriptFrameIterator it(isolate); it.AdvanceToArgumentsFrame(); JavaScriptFrame* frame = it.frame(); // Get the actual number of provided arguments. const uint32_t n = frame->ComputeParametersCount(); // Try to convert the key to an index. If successful and within // index return the the argument from the frame. uint32_t index; if (raw_key->ToArrayIndex(&index) && index < n) { return frame->GetParameter(index); } HandleScope scope(isolate); if (raw_key->IsSymbol()) { Handle<Symbol> symbol = Handle<Symbol>::cast(raw_key); if (symbol->Equals(isolate->native_context()->iterator_symbol())) { return isolate->native_context()->array_values_iterator(); } // Lookup in the initial Object.prototype object. Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Object::GetProperty(isolate->initial_object_prototype(), Handle<Symbol>::cast(raw_key))); return *result; } // Convert the key to a string. Handle<Object> converted; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, converted, Execution::ToString(isolate, raw_key)); Handle<String> key = Handle<String>::cast(converted); // Try to convert the string key into an array index. if (key->AsArrayIndex(&index)) { if (index < n) { return frame->GetParameter(index); } else { Handle<Object> initial_prototype(isolate->initial_object_prototype()); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Object::GetElement(isolate, initial_prototype, index)); return *result; } } // Handle special arguments properties. if (String::Equals(isolate->factory()->length_string(), key)) { return Smi::FromInt(n); } if (String::Equals(isolate->factory()->callee_string(), key)) { JSFunction* function = frame->function(); if (function->shared()->strict_mode() == STRICT) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError("strict_arguments_callee", HandleVector<Object>(NULL, 0))); } return function; } // Lookup in the initial Object.prototype object. Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Object::GetProperty(isolate->initial_object_prototype(), key)); return *result; } RUNTIME_FUNCTION(Runtime_ToFastProperties) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); if (object->IsJSObject() && !object->IsGlobalObject()) { JSObject::MigrateSlowToFast(Handle<JSObject>::cast(object), 0); } return *object; } RUNTIME_FUNCTION(Runtime_ToBool) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, object, 0); return isolate->heap()->ToBoolean(object->BooleanValue()); } // Returns the type string of a value; see ECMA-262, 11.4.3 (p 47). // Possible optimizations: put the type string into the oddballs. RUNTIME_FUNCTION(Runtime_Typeof) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); if (obj->IsNumber()) return isolate->heap()->number_string(); HeapObject* heap_obj = HeapObject::cast(obj); // typeof an undetectable object is 'undefined' if (heap_obj->map()->is_undetectable()) { return isolate->heap()->undefined_string(); } InstanceType instance_type = heap_obj->map()->instance_type(); if (instance_type < FIRST_NONSTRING_TYPE) { return isolate->heap()->string_string(); } switch (instance_type) { case ODDBALL_TYPE: if (heap_obj->IsTrue() || heap_obj->IsFalse()) { return isolate->heap()->boolean_string(); } if (heap_obj->IsNull()) { return isolate->heap()->object_string(); } DCHECK(heap_obj->IsUndefined()); return isolate->heap()->undefined_string(); case SYMBOL_TYPE: return isolate->heap()->symbol_string(); case JS_FUNCTION_TYPE: case JS_FUNCTION_PROXY_TYPE: return isolate->heap()->function_string(); default: // For any kind of object not handled above, the spec rule for // host objects gives that it is okay to return "object" return isolate->heap()->object_string(); } } RUNTIME_FUNCTION(Runtime_Booleanize) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(Object, value_raw, 0); CONVERT_SMI_ARG_CHECKED(token_raw, 1); intptr_t value = reinterpret_cast<intptr_t>(value_raw); Token::Value token = static_cast<Token::Value>(token_raw); switch (token) { case Token::EQ: case Token::EQ_STRICT: return isolate->heap()->ToBoolean(value == 0); case Token::NE: case Token::NE_STRICT: return isolate->heap()->ToBoolean(value != 0); case Token::LT: return isolate->heap()->ToBoolean(value < 0); case Token::GT: return isolate->heap()->ToBoolean(value > 0); case Token::LTE: return isolate->heap()->ToBoolean(value <= 0); case Token::GTE: return isolate->heap()->ToBoolean(value >= 0); default: // This should only happen during natives fuzzing. return isolate->heap()->undefined_value(); } } static bool AreDigits(const uint8_t*s, int from, int to) { for (int i = from; i < to; i++) { if (s[i] < '0' || s[i] > '9') return false; } return true; } static int ParseDecimalInteger(const uint8_t*s, int from, int to) { DCHECK(to - from < 10); // Overflow is not possible. DCHECK(from < to); int d = s[from] - '0'; for (int i = from + 1; i < to; i++) { d = 10 * d + (s[i] - '0'); } return d; } RUNTIME_FUNCTION(Runtime_StringToNumber) { HandleScope handle_scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); subject = String::Flatten(subject); // Fast case: short integer or some sorts of junk values. if (subject->IsSeqOneByteString()) { int len = subject->length(); if (len == 0) return Smi::FromInt(0); DisallowHeapAllocation no_gc; uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars(); bool minus = (data[0] == '-'); int start_pos = (minus ? 1 : 0); if (start_pos == len) { return isolate->heap()->nan_value(); } else if (data[start_pos] > '9') { // Fast check for a junk value. A valid string may start from a // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit // or the 'I' character ('Infinity'). All of that have codes not greater // than '9' except 'I' and . if (data[start_pos] != 'I' && data[start_pos] != 0xa0) { return isolate->heap()->nan_value(); } } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) { // The maximal/minimal smi has 10 digits. If the string has less digits // we know it will fit into the smi-data type. int d = ParseDecimalInteger(data, start_pos, len); if (minus) { if (d == 0) return isolate->heap()->minus_zero_value(); d = -d; } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize && (len == 1 || data[0] != '0')) { // String hash is not calculated yet but all the data are present. // Update the hash field to speed up sequential convertions. uint32_t hash = StringHasher::MakeArrayIndexHash(d, len); #ifdef DEBUG subject->Hash(); // Force hash calculation. DCHECK_EQ(static_cast<int>(subject->hash_field()), static_cast<int>(hash)); #endif subject->set_hash_field(hash); } return Smi::FromInt(d); } } // Slower case. int flags = ALLOW_HEX; if (FLAG_harmony_numeric_literals) { // The current spec draft has not updated "ToNumber Applied to the String // Type", https://bugs.ecmascript.org/show_bug.cgi?id=1584 flags |= ALLOW_OCTAL | ALLOW_BINARY; } return *isolate->factory()->NewNumber(StringToDouble( isolate->unicode_cache(), *subject, flags)); } RUNTIME_FUNCTION(Runtime_NewString) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_INT32_ARG_CHECKED(length, 0); CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1); if (length == 0) return isolate->heap()->empty_string(); Handle<String> result; if (is_one_byte) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawOneByteString(length)); } else { ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawTwoByteString(length)); } return *result; } RUNTIME_FUNCTION(Runtime_TruncateString) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0); CONVERT_INT32_ARG_CHECKED(new_length, 1); RUNTIME_ASSERT(new_length >= 0); return *SeqString::Truncate(string, new_length); } RUNTIME_FUNCTION(Runtime_URIEscape) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, source, 0); Handle<String> string = String::Flatten(source); DCHECK(string->IsFlat()); Handle<String> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, string->IsOneByteRepresentationUnderneath() ? URIEscape::Escape<uint8_t>(isolate, source) : URIEscape::Escape<uc16>(isolate, source)); return *result; } RUNTIME_FUNCTION(Runtime_URIUnescape) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, source, 0); Handle<String> string = String::Flatten(source); DCHECK(string->IsFlat()); Handle<String> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, string->IsOneByteRepresentationUnderneath() ? URIUnescape::Unescape<uint8_t>(isolate, source) : URIUnescape::Unescape<uc16>(isolate, source)); return *result; } RUNTIME_FUNCTION(Runtime_QuoteJSONString) { HandleScope scope(isolate); CONVERT_ARG_HANDLE_CHECKED(String, string, 0); DCHECK(args.length() == 1); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, BasicJsonStringifier::StringifyString(isolate, string)); return *result; } RUNTIME_FUNCTION(Runtime_BasicJSONStringify) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); BasicJsonStringifier stringifier(isolate); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, stringifier.Stringify(object)); return *result; } RUNTIME_FUNCTION(Runtime_StringParseInt) { HandleScope handle_scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_NUMBER_CHECKED(int, radix, Int32, args[1]); RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36)); subject = String::Flatten(subject); double value; { DisallowHeapAllocation no_gc; String::FlatContent flat = subject->GetFlatContent(); // ECMA-262 section 15.1.2.3, empty string is NaN if (flat.IsOneByte()) { value = StringToInt( isolate->unicode_cache(), flat.ToOneByteVector(), radix); } else { value = StringToInt( isolate->unicode_cache(), flat.ToUC16Vector(), radix); } } return *isolate->factory()->NewNumber(value); } RUNTIME_FUNCTION(Runtime_StringParseFloat) { HandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); subject = String::Flatten(subject); double value = StringToDouble(isolate->unicode_cache(), *subject, ALLOW_TRAILING_JUNK, base::OS::nan_value()); return *isolate->factory()->NewNumber(value); } static inline bool ToUpperOverflows(uc32 character) { // y with umlauts and the micro sign are the only characters that stop // fitting into one-byte when converting to uppercase. static const uc32 yuml_code = 0xff; static const uc32 micro_code = 0xb5; return (character == yuml_code || character == micro_code); } template <class Converter> MUST_USE_RESULT static Object* ConvertCaseHelper( Isolate* isolate, String* string, SeqString* result, int result_length, unibrow::Mapping<Converter, 128>* mapping) { DisallowHeapAllocation no_gc; // We try this twice, once with the assumption that the result is no longer // than the input and, if that assumption breaks, again with the exact // length. This may not be pretty, but it is nicer than what was here before // and I hereby claim my vaffel-is. // // NOTE: This assumes that the upper/lower case of an ASCII // character is also ASCII. This is currently the case, but it // might break in the future if we implement more context and locale // dependent upper/lower conversions. bool has_changed_character = false; // Convert all characters to upper case, assuming that they will fit // in the buffer Access<ConsStringIteratorOp> op( isolate->runtime_state()->string_iterator()); StringCharacterStream stream(string, op.value()); unibrow::uchar chars[Converter::kMaxWidth]; // We can assume that the string is not empty uc32 current = stream.GetNext(); bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString(); for (int i = 0; i < result_length;) { bool has_next = stream.HasMore(); uc32 next = has_next ? stream.GetNext() : 0; int char_length = mapping->get(current, next, chars); if (char_length == 0) { // The case conversion of this character is the character itself. result->Set(i, current); i++; } else if (char_length == 1 && (ignore_overflow || !ToUpperOverflows(current))) { // Common case: converting the letter resulted in one character. DCHECK(static_cast<uc32>(chars[0]) != current); result->Set(i, chars[0]); has_changed_character = true; i++; } else if (result_length == string->length()) { bool overflows = ToUpperOverflows(current); // We've assumed that the result would be as long as the // input but here is a character that converts to several // characters. No matter, we calculate the exact length // of the result and try the whole thing again. // // Note that this leaves room for optimization. We could just // memcpy what we already have to the result string. Also, // the result string is the last object allocated we could // "realloc" it and probably, in the vast majority of cases, // extend the existing string to be able to hold the full // result. int next_length = 0; if (has_next) { next_length = mapping->get(next, 0, chars); if (next_length == 0) next_length = 1; } int current_length = i + char_length + next_length; while (stream.HasMore()) { current = stream.GetNext(); overflows |= ToUpperOverflows(current); // NOTE: we use 0 as the next character here because, while // the next character may affect what a character converts to, // it does not in any case affect the length of what it convert // to. int char_length = mapping->get(current, 0, chars); if (char_length == 0) char_length = 1; current_length += char_length; if (current_length > String::kMaxLength) { AllowHeapAllocation allocate_error_and_return; THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } } // Try again with the real length. Return signed if we need // to allocate a two-byte string for to uppercase. return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length) : Smi::FromInt(current_length); } else { for (int j = 0; j < char_length; j++) { result->Set(i, chars[j]); i++; } has_changed_character = true; } current = next; } if (has_changed_character) { return result; } else { // If we didn't actually change anything in doing the conversion // we simple return the result and let the converted string // become garbage; there is no reason to keep two identical strings // alive. return string; } } namespace { static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF; static const uintptr_t kAsciiMask = kOneInEveryByte << 7; // Given a word and two range boundaries returns a word with high bit // set in every byte iff the corresponding input byte was strictly in // the range (m, n). All the other bits in the result are cleared. // This function is only useful when it can be inlined and the // boundaries are statically known. // Requires: all bytes in the input word and the boundaries must be // ASCII (less than 0x7F). static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) { // Use strict inequalities since in edge cases the function could be // further simplified. DCHECK(0 < m && m < n); // Has high bit set in every w byte less than n. uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w; // Has high bit set in every w byte greater than m. uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m); return (tmp1 & tmp2 & (kOneInEveryByte * 0x80)); } #ifdef DEBUG static bool CheckFastAsciiConvert(char* dst, const char* src, int length, bool changed, bool is_to_lower) { bool expected_changed = false; for (int i = 0; i < length; i++) { if (dst[i] == src[i]) continue; expected_changed = true; if (is_to_lower) { DCHECK('A' <= src[i] && src[i] <= 'Z'); DCHECK(dst[i] == src[i] + ('a' - 'A')); } else { DCHECK('a' <= src[i] && src[i] <= 'z'); DCHECK(dst[i] == src[i] - ('a' - 'A')); } } return (expected_changed == changed); } #endif template<class Converter> static bool FastAsciiConvert(char* dst, const char* src, int length, bool* changed_out) { #ifdef DEBUG char* saved_dst = dst; const char* saved_src = src; #endif DisallowHeapAllocation no_gc; // We rely on the distance between upper and lower case letters // being a known power of 2. DCHECK('a' - 'A' == (1 << 5)); // Boundaries for the range of input characters than require conversion. static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1; static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1; bool changed = false; uintptr_t or_acc = 0; const char* const limit = src + length; // dst is newly allocated and always aligned. DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t))); // Only attempt processing one word at a time if src is also aligned. if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) { // Process the prefix of the input that requires no conversion one aligned // (machine) word at a time. while (src <= limit - sizeof(uintptr_t)) { const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src); or_acc |= w; if (AsciiRangeMask(w, lo, hi) != 0) { changed = true; break; } *reinterpret_cast<uintptr_t*>(dst) = w; src += sizeof(uintptr_t); dst += sizeof(uintptr_t); } // Process the remainder of the input performing conversion when // required one word at a time. while (src <= limit - sizeof(uintptr_t)) { const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src); or_acc |= w; uintptr_t m = AsciiRangeMask(w, lo, hi); // The mask has high (7th) bit set in every byte that needs // conversion and we know that the distance between cases is // 1 << 5. *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2); src += sizeof(uintptr_t); dst += sizeof(uintptr_t); } } // Process the last few bytes of the input (or the whole input if // unaligned access is not supported). while (src < limit) { char c = *src; or_acc |= c; if (lo < c && c < hi) { c ^= (1 << 5); changed = true; } *dst = c; ++src; ++dst; } if ((or_acc & kAsciiMask) != 0) return false; DCHECK(CheckFastAsciiConvert( saved_dst, saved_src, length, changed, Converter::kIsToLower)); *changed_out = changed; return true; } } // namespace template <class Converter> MUST_USE_RESULT static Object* ConvertCase( Handle<String> s, Isolate* isolate, unibrow::Mapping<Converter, 128>* mapping) { s = String::Flatten(s); int length = s->length(); // Assume that the string is not empty; we need this assumption later if (length == 0) return *s; // Simpler handling of ASCII strings. // // NOTE: This assumes that the upper/lower case of an ASCII // character is also ASCII. This is currently the case, but it // might break in the future if we implement more context and locale // dependent upper/lower conversions. if (s->IsOneByteRepresentationUnderneath()) { // Same length as input. Handle<SeqOneByteString> result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked(); DisallowHeapAllocation no_gc; String::FlatContent flat_content = s->GetFlatContent(); DCHECK(flat_content.IsFlat()); bool has_changed_character = false; bool is_ascii = FastAsciiConvert<Converter>( reinterpret_cast<char*>(result->GetChars()), reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()), length, &has_changed_character); // If not ASCII, we discard the result and take the 2 byte path. if (is_ascii) return has_changed_character ? *result : *s; } Handle<SeqString> result; // Same length as input. if (s->IsOneByteRepresentation()) { result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked(); } else { result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked(); } Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping); if (answer->IsException() || answer->IsString()) return answer; DCHECK(answer->IsSmi()); length = Smi::cast(answer)->value(); if (s->IsOneByteRepresentation() && length > 0) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawOneByteString(length)); } else { if (length < 0) length = -length; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawTwoByteString(length)); } return ConvertCaseHelper(isolate, *s, *result, length, mapping); } RUNTIME_FUNCTION(Runtime_StringToLowerCase) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, s, 0); return ConvertCase( s, isolate, isolate->runtime_state()->to_lower_mapping()); } RUNTIME_FUNCTION(Runtime_StringToUpperCase) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, s, 0); return ConvertCase( s, isolate, isolate->runtime_state()->to_upper_mapping()); } RUNTIME_FUNCTION(Runtime_StringTrim) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, string, 0); CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1); CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2); string = String::Flatten(string); int length = string->length(); int left = 0; UnicodeCache* unicode_cache = isolate->unicode_cache(); if (trimLeft) { while (left < length && unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) { left++; } } int right = length; if (trimRight) { while (right > left && unicode_cache->IsWhiteSpaceOrLineTerminator( string->Get(right - 1))) { right--; } } return *isolate->factory()->NewSubString(string, left, right); } RUNTIME_FUNCTION(Runtime_StringSplit) { HandleScope handle_scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[2]); RUNTIME_ASSERT(limit > 0); int subject_length = subject->length(); int pattern_length = pattern->length(); RUNTIME_ASSERT(pattern_length > 0); if (limit == 0xffffffffu) { Handle<Object> cached_answer( RegExpResultsCache::Lookup(isolate->heap(), *subject, *pattern, RegExpResultsCache::STRING_SPLIT_SUBSTRINGS), isolate); if (*cached_answer != Smi::FromInt(0)) { // The cache FixedArray is a COW-array and can therefore be reused. Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements( Handle<FixedArray>::cast(cached_answer)); return *result; } } // The limit can be very large (0xffffffffu), but since the pattern // isn't empty, we can never create more parts than ~half the length // of the subject. subject = String::Flatten(subject); pattern = String::Flatten(pattern); static const int kMaxInitialListCapacity = 16; ZoneScope zone_scope(isolate->runtime_zone()); // Find (up to limit) indices of separator and end-of-string in subject int initial_capacity = Min<uint32_t>(kMaxInitialListCapacity, limit); ZoneList<int> indices(initial_capacity, zone_scope.zone()); FindStringIndicesDispatch(isolate, *subject, *pattern, &indices, limit, zone_scope.zone()); if (static_cast<uint32_t>(indices.length()) < limit) { indices.Add(subject_length, zone_scope.zone()); } // The list indices now contains the end of each part to create. // Create JSArray of substrings separated by separator. int part_count = indices.length(); Handle<JSArray> result = isolate->factory()->NewJSArray(part_count); JSObject::EnsureCanContainHeapObjectElements(result); result->set_length(Smi::FromInt(part_count)); DCHECK(result->HasFastObjectElements()); if (part_count == 1 && indices.at(0) == subject_length) { FixedArray::cast(result->elements())->set(0, *subject); return *result; } Handle<FixedArray> elements(FixedArray::cast(result->elements())); int part_start = 0; for (int i = 0; i < part_count; i++) { HandleScope local_loop_handle(isolate); int part_end = indices.at(i); Handle<String> substring = isolate->factory()->NewProperSubString(subject, part_start, part_end); elements->set(i, *substring); part_start = part_end + pattern_length; } if (limit == 0xffffffffu) { if (result->HasFastObjectElements()) { RegExpResultsCache::Enter(isolate, subject, pattern, elements, RegExpResultsCache::STRING_SPLIT_SUBSTRINGS); } } return *result; } // Copies Latin1 characters to the given fixed array looking up // one-char strings in the cache. Gives up on the first char that is // not in the cache and fills the remainder with smi zeros. Returns // the length of the successfully copied prefix. static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars, FixedArray* elements, int length) { DisallowHeapAllocation no_gc; FixedArray* one_byte_cache = heap->single_character_string_cache(); Object* undefined = heap->undefined_value(); int i; WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); for (i = 0; i < length; ++i) { Object* value = one_byte_cache->get(chars[i]); if (value == undefined) break; elements->set(i, value, mode); } if (i < length) { DCHECK(Smi::FromInt(0) == 0); memset(elements->data_start() + i, 0, kPointerSize * (length - i)); } #ifdef DEBUG for (int j = 0; j < length; ++j) { Object* element = elements->get(j); DCHECK(element == Smi::FromInt(0) || (element->IsString() && String::cast(element)->LooksValid())); } #endif return i; } // Converts a String to JSArray. // For example, "foo" => ["f", "o", "o"]. RUNTIME_FUNCTION(Runtime_StringToArray) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, s, 0); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); s = String::Flatten(s); const int length = static_cast<int>(Min<uint32_t>(s->length(), limit)); Handle<FixedArray> elements; int position = 0; if (s->IsFlat() && s->IsOneByteRepresentation()) { // Try using cached chars where possible. elements = isolate->factory()->NewUninitializedFixedArray(length); DisallowHeapAllocation no_gc; String::FlatContent content = s->GetFlatContent(); if (content.IsOneByte()) { Vector<const uint8_t> chars = content.ToOneByteVector(); // Note, this will initialize all elements (not only the prefix) // to prevent GC from seeing partially initialized array. position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(), *elements, length); } else { MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(), length); } } else { elements = isolate->factory()->NewFixedArray(length); } for (int i = position; i < length; ++i) { Handle<Object> str = isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i)); elements->set(i, *str); } #ifdef DEBUG for (int i = 0; i < length; ++i) { DCHECK(String::cast(elements->get(i))->length() == 1); } #endif return *isolate->factory()->NewJSArrayWithElements(elements); } RUNTIME_FUNCTION(Runtime_NewStringWrapper) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, value, 0); return *Object::ToObject(isolate, value).ToHandleChecked(); } bool Runtime::IsUpperCaseChar(RuntimeState* runtime_state, uint16_t ch) { unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth]; int char_length = runtime_state->to_upper_mapping()->get(ch, 0, chars); return char_length == 0; } RUNTIME_FUNCTION(Runtime_NumberToStringRT) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0); return *isolate->factory()->NumberToString(number); } RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0); return *isolate->factory()->NumberToString(number, false); } RUNTIME_FUNCTION(Runtime_NumberToInteger) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(number, 0); return *isolate->factory()->NewNumber(DoubleToInteger(number)); } RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(number, 0); double double_value = DoubleToInteger(number); // Map both -0 and +0 to +0. if (double_value == 0) double_value = 0; return *isolate->factory()->NewNumber(double_value); } RUNTIME_FUNCTION(Runtime_NumberToJSUint32) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]); return *isolate->factory()->NewNumberFromUint(number); } RUNTIME_FUNCTION(Runtime_NumberToJSInt32) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(number, 0); return *isolate->factory()->NewNumberFromInt(DoubleToInt32(number)); } // Converts a Number to a Smi, if possible. Returns NaN if the number is not // a small integer. RUNTIME_FUNCTION(Runtime_NumberToSmi) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); if (obj->IsSmi()) { return obj; } if (obj->IsHeapNumber()) { double value = HeapNumber::cast(obj)->value(); int int_value = FastD2I(value); if (value == FastI2D(int_value) && Smi::IsValid(int_value)) { return Smi::FromInt(int_value); } } return isolate->heap()->nan_value(); } RUNTIME_FUNCTION(Runtime_AllocateHeapNumber) { HandleScope scope(isolate); DCHECK(args.length() == 0); return *isolate->factory()->NewHeapNumber(0); } RUNTIME_FUNCTION(Runtime_NumberAdd) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); return *isolate->factory()->NewNumber(x + y); } RUNTIME_FUNCTION(Runtime_NumberSub) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); return *isolate->factory()->NewNumber(x - y); } RUNTIME_FUNCTION(Runtime_NumberMul) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); return *isolate->factory()->NewNumber(x * y); } RUNTIME_FUNCTION(Runtime_NumberUnaryMinus) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return *isolate->factory()->NewNumber(-x); } RUNTIME_FUNCTION(Runtime_NumberDiv) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); return *isolate->factory()->NewNumber(x / y); } RUNTIME_FUNCTION(Runtime_NumberMod) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); return *isolate->factory()->NewNumber(modulo(x, y)); } RUNTIME_FUNCTION(Runtime_NumberImul) { HandleScope scope(isolate); DCHECK(args.length() == 2); // We rely on implementation-defined behavior below, but at least not on // undefined behavior. CONVERT_NUMBER_CHECKED(uint32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(uint32_t, y, Int32, args[1]); int32_t product = static_cast<int32_t>(x * y); return *isolate->factory()->NewNumberFromInt(product); } RUNTIME_FUNCTION(Runtime_StringAdd) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, str1, 0); CONVERT_ARG_HANDLE_CHECKED(String, str2, 1); isolate->counters()->string_add_runtime()->Increment(); Handle<String> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewConsString(str1, str2)); return *result; } template <typename sinkchar> static inline void StringBuilderConcatHelper(String* special, sinkchar* sink, FixedArray* fixed_array, int array_length) { DisallowHeapAllocation no_gc; int position = 0; for (int i = 0; i < array_length; i++) { Object* element = fixed_array->get(i); if (element->IsSmi()) { // Smi encoding of position and length. int encoded_slice = Smi::cast(element)->value(); int pos; int len; if (encoded_slice > 0) { // Position and length encoded in one smi. pos = StringBuilderSubstringPosition::decode(encoded_slice); len = StringBuilderSubstringLength::decode(encoded_slice); } else { // Position and length encoded in two smis. Object* obj = fixed_array->get(++i); DCHECK(obj->IsSmi()); pos = Smi::cast(obj)->value(); len = -encoded_slice; } String::WriteToFlat(special, sink + position, pos, pos + len); position += len; } else { String* string = String::cast(element); int element_length = string->length(); String::WriteToFlat(string, sink + position, 0, element_length); position += element_length; } } } // Returns the result length of the concatenation. // On illegal argument, -1 is returned. static inline int StringBuilderConcatLength(int special_length, FixedArray* fixed_array, int array_length, bool* one_byte) { DisallowHeapAllocation no_gc; int position = 0; for (int i = 0; i < array_length; i++) { int increment = 0; Object* elt = fixed_array->get(i); if (elt->IsSmi()) { // Smi encoding of position and length. int smi_value = Smi::cast(elt)->value(); int pos; int len; if (smi_value > 0) { // Position and length encoded in one smi. pos = StringBuilderSubstringPosition::decode(smi_value); len = StringBuilderSubstringLength::decode(smi_value); } else { // Position and length encoded in two smis. len = -smi_value; // Get the position and check that it is a positive smi. i++; if (i >= array_length) return -1; Object* next_smi = fixed_array->get(i); if (!next_smi->IsSmi()) return -1; pos = Smi::cast(next_smi)->value(); if (pos < 0) return -1; } DCHECK(pos >= 0); DCHECK(len >= 0); if (pos > special_length || len > special_length - pos) return -1; increment = len; } else if (elt->IsString()) { String* element = String::cast(elt); int element_length = element->length(); increment = element_length; if (*one_byte && !element->HasOnlyOneByteChars()) { *one_byte = false; } } else { return -1; } if (increment > String::kMaxLength - position) { return kMaxInt; // Provoke throw on allocation. } position += increment; } return position; } RUNTIME_FUNCTION(Runtime_StringBuilderConcat) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); int32_t array_length; if (!args[1]->ToInt32(&array_length)) { THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } CONVERT_ARG_HANDLE_CHECKED(String, special, 2); size_t actual_array_length = 0; RUNTIME_ASSERT( TryNumberToSize(isolate, array->length(), &actual_array_length)); RUNTIME_ASSERT(array_length >= 0); RUNTIME_ASSERT(static_cast<size_t>(array_length) <= actual_array_length); // This assumption is used by the slice encoding in one or two smis. DCHECK(Smi::kMaxValue >= String::kMaxLength); RUNTIME_ASSERT(array->HasFastElements()); JSObject::EnsureCanContainHeapObjectElements(array); int special_length = special->length(); if (!array->HasFastObjectElements()) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } int length; bool one_byte = special->HasOnlyOneByteChars(); { DisallowHeapAllocation no_gc; FixedArray* fixed_array = FixedArray::cast(array->elements()); if (fixed_array->length() < array_length) { array_length = fixed_array->length(); } if (array_length == 0) { return isolate->heap()->empty_string(); } else if (array_length == 1) { Object* first = fixed_array->get(0); if (first->IsString()) return first; } length = StringBuilderConcatLength( special_length, fixed_array, array_length, &one_byte); } if (length == -1) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } if (one_byte) { Handle<SeqOneByteString> answer; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, answer, isolate->factory()->NewRawOneByteString(length)); StringBuilderConcatHelper(*special, answer->GetChars(), FixedArray::cast(array->elements()), array_length); return *answer; } else { Handle<SeqTwoByteString> answer; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, answer, isolate->factory()->NewRawTwoByteString(length)); StringBuilderConcatHelper(*special, answer->GetChars(), FixedArray::cast(array->elements()), array_length); return *answer; } } RUNTIME_FUNCTION(Runtime_StringBuilderJoin) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); int32_t array_length; if (!args[1]->ToInt32(&array_length)) { THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } CONVERT_ARG_HANDLE_CHECKED(String, separator, 2); RUNTIME_ASSERT(array->HasFastObjectElements()); RUNTIME_ASSERT(array_length >= 0); Handle<FixedArray> fixed_array(FixedArray::cast(array->elements())); if (fixed_array->length() < array_length) { array_length = fixed_array->length(); } if (array_length == 0) { return isolate->heap()->empty_string(); } else if (array_length == 1) { Object* first = fixed_array->get(0); RUNTIME_ASSERT(first->IsString()); return first; } int separator_length = separator->length(); RUNTIME_ASSERT(separator_length > 0); int max_nof_separators = (String::kMaxLength + separator_length - 1) / separator_length; if (max_nof_separators < (array_length - 1)) { THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } int length = (array_length - 1) * separator_length; for (int i = 0; i < array_length; i++) { Object* element_obj = fixed_array->get(i); RUNTIME_ASSERT(element_obj->IsString()); String* element = String::cast(element_obj); int increment = element->length(); if (increment > String::kMaxLength - length) { STATIC_ASSERT(String::kMaxLength < kMaxInt); length = kMaxInt; // Provoke exception; break; } length += increment; } Handle<SeqTwoByteString> answer; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, answer, isolate->factory()->NewRawTwoByteString(length)); DisallowHeapAllocation no_gc; uc16* sink = answer->GetChars(); #ifdef DEBUG uc16* end = sink + length; #endif RUNTIME_ASSERT(fixed_array->get(0)->IsString()); String* first = String::cast(fixed_array->get(0)); String* separator_raw = *separator; int first_length = first->length(); String::WriteToFlat(first, sink, 0, first_length); sink += first_length; for (int i = 1; i < array_length; i++) { DCHECK(sink + separator_length <= end); String::WriteToFlat(separator_raw, sink, 0, separator_length); sink += separator_length; RUNTIME_ASSERT(fixed_array->get(i)->IsString()); String* element = String::cast(fixed_array->get(i)); int element_length = element->length(); DCHECK(sink + element_length <= end); String::WriteToFlat(element, sink, 0, element_length); sink += element_length; } DCHECK(sink == end); // Use %_FastOneByteArrayJoin instead. DCHECK(!answer->IsOneByteRepresentation()); return *answer; } template <typename Char> static void JoinSparseArrayWithSeparator(FixedArray* elements, int elements_length, uint32_t array_length, String* separator, Vector<Char> buffer) { DisallowHeapAllocation no_gc; int previous_separator_position = 0; int separator_length = separator->length(); int cursor = 0; for (int i = 0; i < elements_length; i += 2) { int position = NumberToInt32(elements->get(i)); String* string = String::cast(elements->get(i + 1)); int string_length = string->length(); if (string->length() > 0) { while (previous_separator_position < position) { String::WriteToFlat<Char>(separator, &buffer[cursor], 0, separator_length); cursor += separator_length; previous_separator_position++; } String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length); cursor += string->length(); } } if (separator_length > 0) { // Array length must be representable as a signed 32-bit number, // otherwise the total string length would have been too large. DCHECK(array_length <= 0x7fffffff); // Is int32_t. int last_array_index = static_cast<int>(array_length - 1); while (previous_separator_position < last_array_index) { String::WriteToFlat<Char>(separator, &buffer[cursor], 0, separator_length); cursor += separator_length; previous_separator_position++; } } DCHECK(cursor <= buffer.length()); } RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0); CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]); CONVERT_ARG_HANDLE_CHECKED(String, separator, 2); // elements_array is fast-mode JSarray of alternating positions // (increasing order) and strings. RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements()); // array_length is length of original array (used to add separators); // separator is string to put between elements. Assumed to be non-empty. RUNTIME_ASSERT(array_length > 0); // Find total length of join result. int string_length = 0; bool is_one_byte = separator->IsOneByteRepresentation(); bool overflow = false; CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length()); RUNTIME_ASSERT(elements_length <= elements_array->elements()->length()); RUNTIME_ASSERT((elements_length & 1) == 0); // Even length. FixedArray* elements = FixedArray::cast(elements_array->elements()); for (int i = 0; i < elements_length; i += 2) { RUNTIME_ASSERT(elements->get(i)->IsNumber()); CONVERT_NUMBER_CHECKED(uint32_t, position, Uint32, elements->get(i)); RUNTIME_ASSERT(position < array_length); RUNTIME_ASSERT(elements->get(i + 1)->IsString()); } { DisallowHeapAllocation no_gc; for (int i = 0; i < elements_length; i += 2) { String* string = String::cast(elements->get(i + 1)); int length = string->length(); if (is_one_byte && !string->IsOneByteRepresentation()) { is_one_byte = false; } if (length > String::kMaxLength || String::kMaxLength - length < string_length) { overflow = true; break; } string_length += length; } } int separator_length = separator->length(); if (!overflow && separator_length > 0) { if (array_length <= 0x7fffffffu) { int separator_count = static_cast<int>(array_length) - 1; int remaining_length = String::kMaxLength - string_length; if ((remaining_length / separator_length) >= separator_count) { string_length += separator_length * (array_length - 1); } else { // Not room for the separators within the maximal string length. overflow = true; } } else { // Nonempty separator and at least 2^31-1 separators necessary // means that the string is too large to create. STATIC_ASSERT(String::kMaxLength < 0x7fffffff); overflow = true; } } if (overflow) { // Throw an exception if the resulting string is too large. See // https://code.google.com/p/chromium/issues/detail?id=336820 // for details. THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } if (is_one_byte) { Handle<SeqOneByteString> result = isolate->factory()->NewRawOneByteString( string_length).ToHandleChecked(); JoinSparseArrayWithSeparator<uint8_t>( FixedArray::cast(elements_array->elements()), elements_length, array_length, *separator, Vector<uint8_t>(result->GetChars(), string_length)); return *result; } else { Handle<SeqTwoByteString> result = isolate->factory()->NewRawTwoByteString( string_length).ToHandleChecked(); JoinSparseArrayWithSeparator<uc16>( FixedArray::cast(elements_array->elements()), elements_length, array_length, *separator, Vector<uc16>(result->GetChars(), string_length)); return *result; } } RUNTIME_FUNCTION(Runtime_NumberOr) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return *isolate->factory()->NewNumberFromInt(x | y); } RUNTIME_FUNCTION(Runtime_NumberAnd) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return *isolate->factory()->NewNumberFromInt(x & y); } RUNTIME_FUNCTION(Runtime_NumberXor) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return *isolate->factory()->NewNumberFromInt(x ^ y); } RUNTIME_FUNCTION(Runtime_NumberShl) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return *isolate->factory()->NewNumberFromInt(x << (y & 0x1f)); } RUNTIME_FUNCTION(Runtime_NumberShr) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return *isolate->factory()->NewNumberFromUint(x >> (y & 0x1f)); } RUNTIME_FUNCTION(Runtime_NumberSar) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); return *isolate->factory()->NewNumberFromInt( ArithmeticShiftRight(x, y & 0x1f)); } RUNTIME_FUNCTION(Runtime_NumberEquals) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL); if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL); if (x == y) return Smi::FromInt(EQUAL); Object* result; if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) { result = Smi::FromInt(EQUAL); } else { result = Smi::FromInt(NOT_EQUAL); } return result; } RUNTIME_FUNCTION(Runtime_StringEquals) { HandleScope handle_scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, x, 0); CONVERT_ARG_HANDLE_CHECKED(String, y, 1); bool not_equal = !String::Equals(x, y); // This is slightly convoluted because the value that signifies // equality is 0 and inequality is 1 so we have to negate the result // from String::Equals. DCHECK(not_equal == 0 || not_equal == 1); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(NOT_EQUAL == 1); return Smi::FromInt(not_equal); } RUNTIME_FUNCTION(Runtime_NumberCompare) { SealHandleScope shs(isolate); DCHECK(args.length() == 3); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); CONVERT_ARG_HANDLE_CHECKED(Object, uncomparable_result, 2) if (std::isnan(x) || std::isnan(y)) return *uncomparable_result; if (x == y) return Smi::FromInt(EQUAL); if (isless(x, y)) return Smi::FromInt(LESS); return Smi::FromInt(GREATER); } // Compare two Smis as if they were converted to strings and then // compared lexicographically. RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_SMI_ARG_CHECKED(x_value, 0); CONVERT_SMI_ARG_CHECKED(y_value, 1); // If the integers are equal so are the string representations. if (x_value == y_value) return Smi::FromInt(EQUAL); // If one of the integers is zero the normal integer order is the // same as the lexicographic order of the string representations. if (x_value == 0 || y_value == 0) return Smi::FromInt(x_value < y_value ? LESS : GREATER); // If only one of the integers is negative the negative number is // smallest because the char code of '-' is less than the char code // of any digit. Otherwise, we make both values positive. // Use unsigned values otherwise the logic is incorrect for -MIN_INT on // architectures using 32-bit Smis. uint32_t x_scaled = x_value; uint32_t y_scaled = y_value; if (x_value < 0 || y_value < 0) { if (y_value >= 0) return Smi::FromInt(LESS); if (x_value >= 0) return Smi::FromInt(GREATER); x_scaled = -x_value; y_scaled = -y_value; } static const uint32_t kPowersOf10[] = { 1, 10, 100, 1000, 10*1000, 100*1000, 1000*1000, 10*1000*1000, 100*1000*1000, 1000*1000*1000 }; // If the integers have the same number of decimal digits they can be // compared directly as the numeric order is the same as the // lexicographic order. If one integer has fewer digits, it is scaled // by some power of 10 to have the same number of digits as the longer // integer. If the scaled integers are equal it means the shorter // integer comes first in the lexicographic order. // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 int x_log2 = IntegerLog2(x_scaled); int x_log10 = ((x_log2 + 1) * 1233) >> 12; x_log10 -= x_scaled < kPowersOf10[x_log10]; int y_log2 = IntegerLog2(y_scaled); int y_log10 = ((y_log2 + 1) * 1233) >> 12; y_log10 -= y_scaled < kPowersOf10[y_log10]; int tie = EQUAL; if (x_log10 < y_log10) { // X has fewer digits. We would like to simply scale up X but that // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would // be scaled up to 9_000_000_000. So we scale up by the next // smallest power and scale down Y to drop one digit. It is OK to // drop one digit from the longer integer since the final digit is // past the length of the shorter integer. x_scaled *= kPowersOf10[y_log10 - x_log10 - 1]; y_scaled /= 10; tie = LESS; } else if (y_log10 < x_log10) { y_scaled *= kPowersOf10[x_log10 - y_log10 - 1]; x_scaled /= 10; tie = GREATER; } if (x_scaled < y_scaled) return Smi::FromInt(LESS); if (x_scaled > y_scaled) return Smi::FromInt(GREATER); return Smi::FromInt(tie); } RUNTIME_FUNCTION(Runtime_StringCompare) { HandleScope handle_scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, x, 0); CONVERT_ARG_HANDLE_CHECKED(String, y, 1); isolate->counters()->string_compare_runtime()->Increment(); // A few fast case tests before we flatten. if (x.is_identical_to(y)) return Smi::FromInt(EQUAL); if (y->length() == 0) { if (x->length() == 0) return Smi::FromInt(EQUAL); return Smi::FromInt(GREATER); } else if (x->length() == 0) { return Smi::FromInt(LESS); } int d = x->Get(0) - y->Get(0); if (d < 0) return Smi::FromInt(LESS); else if (d > 0) return Smi::FromInt(GREATER); // Slow case. x = String::Flatten(x); y = String::Flatten(y); DisallowHeapAllocation no_gc; Object* equal_prefix_result = Smi::FromInt(EQUAL); int prefix_length = x->length(); if (y->length() < prefix_length) { prefix_length = y->length(); equal_prefix_result = Smi::FromInt(GREATER); } else if (y->length() > prefix_length) { equal_prefix_result = Smi::FromInt(LESS); } int r; String::FlatContent x_content = x->GetFlatContent(); String::FlatContent y_content = y->GetFlatContent(); if (x_content.IsOneByte()) { Vector<const uint8_t> x_chars = x_content.ToOneByteVector(); if (y_content.IsOneByte()) { Vector<const uint8_t> y_chars = y_content.ToOneByteVector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } else { Vector<const uc16> y_chars = y_content.ToUC16Vector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } } else { Vector<const uc16> x_chars = x_content.ToUC16Vector(); if (y_content.IsOneByte()) { Vector<const uint8_t> y_chars = y_content.ToOneByteVector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } else { Vector<const uc16> y_chars = y_content.ToUC16Vector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } } Object* result; if (r == 0) { result = equal_prefix_result; } else { result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER); } return result; } #define RUNTIME_UNARY_MATH(Name, name) \ RUNTIME_FUNCTION(Runtime_Math##Name) { \ HandleScope scope(isolate); \ DCHECK(args.length() == 1); \ isolate->counters()->math_##name()->Increment(); \ CONVERT_DOUBLE_ARG_CHECKED(x, 0); \ return *isolate->factory()->NewHeapNumber(std::name(x)); \ } RUNTIME_UNARY_MATH(Acos, acos) RUNTIME_UNARY_MATH(Asin, asin) RUNTIME_UNARY_MATH(Atan, atan) RUNTIME_UNARY_MATH(LogRT, log) #undef RUNTIME_UNARY_MATH RUNTIME_FUNCTION(Runtime_DoubleHi) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(x, 0); uint64_t integer = double_to_uint64(x); integer = (integer >> 32) & 0xFFFFFFFFu; return *isolate->factory()->NewNumber(static_cast<int32_t>(integer)); } RUNTIME_FUNCTION(Runtime_DoubleLo) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return *isolate->factory()->NewNumber( static_cast<int32_t>(double_to_uint64(x) & 0xFFFFFFFFu)); } RUNTIME_FUNCTION(Runtime_ConstructDouble) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(uint32_t, hi, Uint32, args[0]); CONVERT_NUMBER_CHECKED(uint32_t, lo, Uint32, args[1]); uint64_t result = (static_cast<uint64_t>(hi) << 32) | lo; return *isolate->factory()->NewNumber(uint64_to_double(result)); } RUNTIME_FUNCTION(Runtime_RemPiO2) { HandleScope handle_scope(isolate); DCHECK(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(x, 0); Factory* factory = isolate->factory(); double y[2] = {0.0, 0.0}; int n = fdlibm::rempio2(x, y); Handle<FixedArray> array = factory->NewFixedArray(3); Handle<HeapNumber> y0 = factory->NewHeapNumber(y[0]); Handle<HeapNumber> y1 = factory->NewHeapNumber(y[1]); array->set(0, Smi::FromInt(n)); array->set(1, *y0); array->set(2, *y1); return *factory->NewJSArrayWithElements(array); } static const double kPiDividedBy4 = 0.78539816339744830962; RUNTIME_FUNCTION(Runtime_MathAtan2) { HandleScope scope(isolate); DCHECK(args.length() == 2); isolate->counters()->math_atan2()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); double result; if (std::isinf(x) && std::isinf(y)) { // Make sure that the result in case of two infinite arguments // is a multiple of Pi / 4. The sign of the result is determined // by the first argument (x) and the sign of the second argument // determines the multiplier: one or three. int multiplier = (x < 0) ? -1 : 1; if (y < 0) multiplier *= 3; result = multiplier * kPiDividedBy4; } else { result = std::atan2(x, y); } return *isolate->factory()->NewNumber(result); } RUNTIME_FUNCTION(Runtime_MathExpRT) { HandleScope scope(isolate); DCHECK(args.length() == 1); isolate->counters()->math_exp()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); lazily_initialize_fast_exp(); return *isolate->factory()->NewNumber(fast_exp(x)); } RUNTIME_FUNCTION(Runtime_MathFloorRT) { HandleScope scope(isolate); DCHECK(args.length() == 1); isolate->counters()->math_floor()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return *isolate->factory()->NewNumber(Floor(x)); } // Slow version of Math.pow. We check for fast paths for special cases. // Used if VFP3 is not available. RUNTIME_FUNCTION(Runtime_MathPowSlow) { HandleScope scope(isolate); DCHECK(args.length() == 2); isolate->counters()->math_pow()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); // If the second argument is a smi, it is much faster to call the // custom powi() function than the generic pow(). if (args[1]->IsSmi()) { int y = args.smi_at(1); return *isolate->factory()->NewNumber(power_double_int(x, y)); } CONVERT_DOUBLE_ARG_CHECKED(y, 1); double result = power_helper(x, y); if (std::isnan(result)) return isolate->heap()->nan_value(); return *isolate->factory()->NewNumber(result); } // Fast version of Math.pow if we know that y is not an integer and y is not // -0.5 or 0.5. Used as slow case from full codegen. RUNTIME_FUNCTION(Runtime_MathPowRT) { HandleScope scope(isolate); DCHECK(args.length() == 2); isolate->counters()->math_pow()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); CONVERT_DOUBLE_ARG_CHECKED(y, 1); if (y == 0) { return Smi::FromInt(1); } else { double result = power_double_double(x, y); if (std::isnan(result)) return isolate->heap()->nan_value(); return *isolate->factory()->NewNumber(result); } } RUNTIME_FUNCTION(Runtime_RoundNumber) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_NUMBER_ARG_HANDLE_CHECKED(input, 0); isolate->counters()->math_round()->Increment(); if (!input->IsHeapNumber()) { DCHECK(input->IsSmi()); return *input; } Handle<HeapNumber> number = Handle<HeapNumber>::cast(input); double value = number->value(); int exponent = number->get_exponent(); int sign = number->get_sign(); if (exponent < -1) { // Number in range ]-0.5..0.5[. These always round to +/-zero. if (sign) return isolate->heap()->minus_zero_value(); return Smi::FromInt(0); } // We compare with kSmiValueSize - 2 because (2^30 - 0.1) has exponent 29 and // should be rounded to 2^30, which is not smi (for 31-bit smis, similar // argument holds for 32-bit smis). if (!sign && exponent < kSmiValueSize - 2) { return Smi::FromInt(static_cast<int>(value + 0.5)); } // If the magnitude is big enough, there's no place for fraction part. If we // try to add 0.5 to this number, 1.0 will be added instead. if (exponent >= 52) { return *number; } if (sign && value >= -0.5) return isolate->heap()->minus_zero_value(); // Do not call NumberFromDouble() to avoid extra checks. return *isolate->factory()->NewNumber(Floor(value + 0.5)); } RUNTIME_FUNCTION(Runtime_MathSqrtRT) { HandleScope scope(isolate); DCHECK(args.length() == 1); isolate->counters()->math_sqrt()->Increment(); CONVERT_DOUBLE_ARG_CHECKED(x, 0); return *isolate->factory()->NewNumber(fast_sqrt(x)); } RUNTIME_FUNCTION(Runtime_MathFround) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(x, 0); float xf = DoubleToFloat32(x); return *isolate->factory()->NewNumber(xf); } RUNTIME_FUNCTION(Runtime_DateMakeDay) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_SMI_ARG_CHECKED(year, 0); CONVERT_SMI_ARG_CHECKED(month, 1); int days = isolate->date_cache()->DaysFromYearMonth(year, month); RUNTIME_ASSERT(Smi::IsValid(days)); return Smi::FromInt(days); } RUNTIME_FUNCTION(Runtime_DateSetValue) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 0); CONVERT_DOUBLE_ARG_CHECKED(time, 1); CONVERT_SMI_ARG_CHECKED(is_utc, 2); DateCache* date_cache = isolate->date_cache(); Handle<Object> value;; bool is_value_nan = false; if (std::isnan(time)) { value = isolate->factory()->nan_value(); is_value_nan = true; } else if (!is_utc && (time < -DateCache::kMaxTimeBeforeUTCInMs || time > DateCache::kMaxTimeBeforeUTCInMs)) { value = isolate->factory()->nan_value(); is_value_nan = true; } else { time = is_utc ? time : date_cache->ToUTC(static_cast<int64_t>(time)); if (time < -DateCache::kMaxTimeInMs || time > DateCache::kMaxTimeInMs) { value = isolate->factory()->nan_value(); is_value_nan = true; } else { value = isolate->factory()->NewNumber(DoubleToInteger(time)); } } date->SetValue(*value, is_value_nan); return *value; } static Handle<JSObject> NewSloppyArguments(Isolate* isolate, Handle<JSFunction> callee, Object** parameters, int argument_count) { Handle<JSObject> result = isolate->factory()->NewArgumentsObject(callee, argument_count); // Allocate the elements if needed. int parameter_count = callee->shared()->formal_parameter_count(); if (argument_count > 0) { if (parameter_count > 0) { int mapped_count = Min(argument_count, parameter_count); Handle<FixedArray> parameter_map = isolate->factory()->NewFixedArray(mapped_count + 2, NOT_TENURED); parameter_map->set_map( isolate->heap()->sloppy_arguments_elements_map()); Handle<Map> map = Map::Copy(handle(result->map())); map->set_elements_kind(SLOPPY_ARGUMENTS_ELEMENTS); result->set_map(*map); result->set_elements(*parameter_map); // Store the context and the arguments array at the beginning of the // parameter map. Handle<Context> context(isolate->context()); Handle<FixedArray> arguments = isolate->factory()->NewFixedArray(argument_count, NOT_TENURED); parameter_map->set(0, *context); parameter_map->set(1, *arguments); // Loop over the actual parameters backwards. int index = argument_count - 1; while (index >= mapped_count) { // These go directly in the arguments array and have no // corresponding slot in the parameter map. arguments->set(index, *(parameters - index - 1)); --index; } Handle<ScopeInfo> scope_info(callee->shared()->scope_info()); while (index >= 0) { // Detect duplicate names to the right in the parameter list. Handle<String> name(scope_info->ParameterName(index)); int context_local_count = scope_info->ContextLocalCount(); bool duplicate = false; for (int j = index + 1; j < parameter_count; ++j) { if (scope_info->ParameterName(j) == *name) { duplicate = true; break; } } if (duplicate) { // This goes directly in the arguments array with a hole in the // parameter map. arguments->set(index, *(parameters - index - 1)); parameter_map->set_the_hole(index + 2); } else { // The context index goes in the parameter map with a hole in the // arguments array. int context_index = -1; for (int j = 0; j < context_local_count; ++j) { if (scope_info->ContextLocalName(j) == *name) { context_index = j; break; } } DCHECK(context_index >= 0); arguments->set_the_hole(index); parameter_map->set(index + 2, Smi::FromInt( Context::MIN_CONTEXT_SLOTS + context_index)); } --index; } } else { // If there is no aliasing, the arguments object elements are not // special in any way. Handle<FixedArray> elements = isolate->factory()->NewFixedArray(argument_count, NOT_TENURED); result->set_elements(*elements); for (int i = 0; i < argument_count; ++i) { elements->set(i, *(parameters - i - 1)); } } } return result; } static Handle<JSObject> NewStrictArguments(Isolate* isolate, Handle<JSFunction> callee, Object** parameters, int argument_count) { Handle<JSObject> result = isolate->factory()->NewArgumentsObject(callee, argument_count); if (argument_count > 0) { Handle<FixedArray> array = isolate->factory()->NewUninitializedFixedArray(argument_count); DisallowHeapAllocation no_gc; WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc); for (int i = 0; i < argument_count; i++) { array->set(i, *--parameters, mode); } result->set_elements(*array); } return result; } RUNTIME_FUNCTION(Runtime_NewArguments) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0); JavaScriptFrameIterator it(isolate); // Find the frame that holds the actual arguments passed to the function. it.AdvanceToArgumentsFrame(); JavaScriptFrame* frame = it.frame(); // Determine parameter location on the stack and dispatch on language mode. int argument_count = frame->GetArgumentsLength(); Object** parameters = reinterpret_cast<Object**>(frame->GetParameterSlot(-1)); return callee->shared()->strict_mode() == STRICT ? *NewStrictArguments(isolate, callee, parameters, argument_count) : *NewSloppyArguments(isolate, callee, parameters, argument_count); } RUNTIME_FUNCTION(Runtime_NewSloppyArguments) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0); Object** parameters = reinterpret_cast<Object**>(args[1]); CONVERT_SMI_ARG_CHECKED(argument_count, 2); return *NewSloppyArguments(isolate, callee, parameters, argument_count); } RUNTIME_FUNCTION(Runtime_NewStrictArguments) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0) Object** parameters = reinterpret_cast<Object**>(args[1]); CONVERT_SMI_ARG_CHECKED(argument_count, 2); return *NewStrictArguments(isolate, callee, parameters, argument_count); } RUNTIME_FUNCTION(Runtime_NewClosureFromStubFailure) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 0); Handle<Context> context(isolate->context()); PretenureFlag pretenure_flag = NOT_TENURED; return *isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context, pretenure_flag); } RUNTIME_FUNCTION(Runtime_NewClosure) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(Context, context, 0); CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 1); CONVERT_BOOLEAN_ARG_CHECKED(pretenure, 2); // The caller ensures that we pretenure closures that are assigned // directly to properties. PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED; return *isolate->factory()->NewFunctionFromSharedFunctionInfo( shared, context, pretenure_flag); } // Find the arguments of the JavaScript function invocation that called // into C++ code. Collect these in a newly allocated array of handles (possibly // prefixed by a number of empty handles). static SmartArrayPointer<Handle<Object> > GetCallerArguments( Isolate* isolate, int prefix_argc, int* total_argc) { // Find frame containing arguments passed to the caller. JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); List<JSFunction*> functions(2); frame->GetFunctions(&functions); if (functions.length() > 1) { int inlined_jsframe_index = functions.length() - 1; JSFunction* inlined_function = functions[inlined_jsframe_index]; SlotRefValueBuilder slot_refs( frame, inlined_jsframe_index, inlined_function->shared()->formal_parameter_count()); int args_count = slot_refs.args_length(); *total_argc = prefix_argc + args_count; SmartArrayPointer<Handle<Object> > param_data( NewArray<Handle<Object> >(*total_argc)); slot_refs.Prepare(isolate); for (int i = 0; i < args_count; i++) { Handle<Object> val = slot_refs.GetNext(isolate, 0); param_data[prefix_argc + i] = val; } slot_refs.Finish(isolate); return param_data; } else { it.AdvanceToArgumentsFrame(); frame = it.frame(); int args_count = frame->ComputeParametersCount(); *total_argc = prefix_argc + args_count; SmartArrayPointer<Handle<Object> > param_data( NewArray<Handle<Object> >(*total_argc)); for (int i = 0; i < args_count; i++) { Handle<Object> val = Handle<Object>(frame->GetParameter(i), isolate); param_data[prefix_argc + i] = val; } return param_data; } } RUNTIME_FUNCTION(Runtime_FunctionBindArguments) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSFunction, bound_function, 0); CONVERT_ARG_HANDLE_CHECKED(Object, bindee, 1); CONVERT_ARG_HANDLE_CHECKED(Object, this_object, 2); CONVERT_NUMBER_ARG_HANDLE_CHECKED(new_length, 3); // TODO(lrn): Create bound function in C++ code from premade shared info. bound_function->shared()->set_bound(true); // Get all arguments of calling function (Function.prototype.bind). int argc = 0; SmartArrayPointer<Handle<Object> > arguments = GetCallerArguments(isolate, 0, &argc); // Don't count the this-arg. if (argc > 0) { RUNTIME_ASSERT(arguments[0].is_identical_to(this_object)); argc--; } else { RUNTIME_ASSERT(this_object->IsUndefined()); } // Initialize array of bindings (function, this, and any existing arguments // if the function was already bound). Handle<FixedArray> new_bindings; int i; if (bindee->IsJSFunction() && JSFunction::cast(*bindee)->shared()->bound()) { Handle<FixedArray> old_bindings( JSFunction::cast(*bindee)->function_bindings()); RUNTIME_ASSERT(old_bindings->length() > JSFunction::kBoundFunctionIndex); new_bindings = isolate->factory()->NewFixedArray(old_bindings->length() + argc); bindee = Handle<Object>(old_bindings->get(JSFunction::kBoundFunctionIndex), isolate); i = 0; for (int n = old_bindings->length(); i < n; i++) { new_bindings->set(i, old_bindings->get(i)); } } else { int array_size = JSFunction::kBoundArgumentsStartIndex + argc; new_bindings = isolate->factory()->NewFixedArray(array_size); new_bindings->set(JSFunction::kBoundFunctionIndex, *bindee); new_bindings->set(JSFunction::kBoundThisIndex, *this_object); i = 2; } // Copy arguments, skipping the first which is "this_arg". for (int j = 0; j < argc; j++, i++) { new_bindings->set(i, *arguments[j + 1]); } new_bindings->set_map_no_write_barrier( isolate->heap()->fixed_cow_array_map()); bound_function->set_function_bindings(*new_bindings); // Update length. Have to remove the prototype first so that map migration // is happy about the number of fields. RUNTIME_ASSERT(bound_function->RemovePrototype()); Handle<Map> bound_function_map( isolate->native_context()->bound_function_map()); JSObject::MigrateToMap(bound_function, bound_function_map); Handle<String> length_string = isolate->factory()->length_string(); PropertyAttributes attr = static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY); RETURN_FAILURE_ON_EXCEPTION( isolate, JSObject::SetOwnPropertyIgnoreAttributes( bound_function, length_string, new_length, attr)); return *bound_function; } RUNTIME_FUNCTION(Runtime_BoundFunctionGetBindings) { HandleScope handles(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, callable, 0); if (callable->IsJSFunction()) { Handle<JSFunction> function = Handle<JSFunction>::cast(callable); if (function->shared()->bound()) { Handle<FixedArray> bindings(function->function_bindings()); RUNTIME_ASSERT(bindings->map() == isolate->heap()->fixed_cow_array_map()); return *isolate->factory()->NewJSArrayWithElements(bindings); } } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_NewObjectFromBound) { HandleScope scope(isolate); DCHECK(args.length() == 1); // First argument is a function to use as a constructor. CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); RUNTIME_ASSERT(function->shared()->bound()); // The argument is a bound function. Extract its bound arguments // and callable. Handle<FixedArray> bound_args = Handle<FixedArray>(FixedArray::cast(function->function_bindings())); int bound_argc = bound_args->length() - JSFunction::kBoundArgumentsStartIndex; Handle<Object> bound_function( JSReceiver::cast(bound_args->get(JSFunction::kBoundFunctionIndex)), isolate); DCHECK(!bound_function->IsJSFunction() || !Handle<JSFunction>::cast(bound_function)->shared()->bound()); int total_argc = 0; SmartArrayPointer<Handle<Object> > param_data = GetCallerArguments(isolate, bound_argc, &total_argc); for (int i = 0; i < bound_argc; i++) { param_data[i] = Handle<Object>(bound_args->get( JSFunction::kBoundArgumentsStartIndex + i), isolate); } if (!bound_function->IsJSFunction()) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, bound_function, Execution::TryGetConstructorDelegate(isolate, bound_function)); } DCHECK(bound_function->IsJSFunction()); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Execution::New(Handle<JSFunction>::cast(bound_function), total_argc, param_data.get())); return *result; } static Object* Runtime_NewObjectHelper(Isolate* isolate, Handle<Object> constructor, Handle<AllocationSite> site) { // If the constructor isn't a proper function we throw a type error. if (!constructor->IsJSFunction()) { Vector< Handle<Object> > arguments = HandleVector(&constructor, 1); THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewTypeError("not_constructor", arguments)); } Handle<JSFunction> function = Handle<JSFunction>::cast(constructor); // If function should not have prototype, construction is not allowed. In this // case generated code bailouts here, since function has no initial_map. if (!function->should_have_prototype() && !function->shared()->bound()) { Vector< Handle<Object> > arguments = HandleVector(&constructor, 1); THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewTypeError("not_constructor", arguments)); } Debug* debug = isolate->debug(); // Handle stepping into constructors if step into is active. if (debug->StepInActive()) { debug->HandleStepIn(function, Handle<Object>::null(), 0, true); } if (function->has_initial_map()) { if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) { // The 'Function' function ignores the receiver object when // called using 'new' and creates a new JSFunction object that // is returned. The receiver object is only used for error // reporting if an error occurs when constructing the new // JSFunction. Factory::NewJSObject() should not be used to // allocate JSFunctions since it does not properly initialize // the shared part of the function. Since the receiver is // ignored anyway, we use the global object as the receiver // instead of a new JSFunction object. This way, errors are // reported the same way whether or not 'Function' is called // using 'new'. return isolate->global_proxy(); } } // The function should be compiled for the optimization hints to be // available. Compiler::EnsureCompiled(function, CLEAR_EXCEPTION); Handle<JSObject> result; if (site.is_null()) { result = isolate->factory()->NewJSObject(function); } else { result = isolate->factory()->NewJSObjectWithMemento(function, site); } isolate->counters()->constructed_objects()->Increment(); isolate->counters()->constructed_objects_runtime()->Increment(); return *result; } RUNTIME_FUNCTION(Runtime_NewObject) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 0); return Runtime_NewObjectHelper(isolate, constructor, Handle<AllocationSite>::null()); } RUNTIME_FUNCTION(Runtime_NewObjectWithAllocationSite) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 1); CONVERT_ARG_HANDLE_CHECKED(Object, feedback, 0); Handle<AllocationSite> site; if (feedback->IsAllocationSite()) { // The feedback can be an AllocationSite or undefined. site = Handle<AllocationSite>::cast(feedback); } return Runtime_NewObjectHelper(isolate, constructor, site); } RUNTIME_FUNCTION(Runtime_FinalizeInstanceSize) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); function->CompleteInobjectSlackTracking(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_CompileLazy) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); #ifdef DEBUG if (FLAG_trace_lazy && !function->shared()->is_compiled()) { PrintF("[unoptimized: "); function->PrintName(); PrintF("]\n"); } #endif // Compile the target function. DCHECK(function->shared()->allows_lazy_compilation()); Handle<Code> code; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, code, Compiler::GetLazyCode(function)); DCHECK(code->kind() == Code::FUNCTION || code->kind() == Code::OPTIMIZED_FUNCTION); function->ReplaceCode(*code); return *code; } RUNTIME_FUNCTION(Runtime_CompileOptimized) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); CONVERT_BOOLEAN_ARG_CHECKED(concurrent, 1); Handle<Code> unoptimized(function->shared()->code()); if (!isolate->use_crankshaft() || function->shared()->optimization_disabled() || isolate->DebuggerHasBreakPoints()) { // If the function is not optimizable or debugger is active continue // using the code from the full compiler. if (FLAG_trace_opt) { PrintF("[failed to optimize "); function->PrintName(); PrintF(": is code optimizable: %s, is debugger enabled: %s]\n", function->shared()->optimization_disabled() ? "F" : "T", isolate->DebuggerHasBreakPoints() ? "T" : "F"); } function->ReplaceCode(*unoptimized); return function->code(); } Compiler::ConcurrencyMode mode = concurrent ? Compiler::CONCURRENT : Compiler::NOT_CONCURRENT; Handle<Code> code; if (Compiler::GetOptimizedCode(function, unoptimized, mode).ToHandle(&code)) { function->ReplaceCode(*code); } else { function->ReplaceCode(function->shared()->code()); } DCHECK(function->code()->kind() == Code::FUNCTION || function->code()->kind() == Code::OPTIMIZED_FUNCTION || function->IsInOptimizationQueue()); return function->code(); } class ActivationsFinder : public ThreadVisitor { public: Code* code_; bool has_code_activations_; explicit ActivationsFinder(Code* code) : code_(code), has_code_activations_(false) { } void VisitThread(Isolate* isolate, ThreadLocalTop* top) { JavaScriptFrameIterator it(isolate, top); VisitFrames(&it); } void VisitFrames(JavaScriptFrameIterator* it) { for (; !it->done(); it->Advance()) { JavaScriptFrame* frame = it->frame(); if (code_->contains(frame->pc())) has_code_activations_ = true; } } }; RUNTIME_FUNCTION(Runtime_NotifyStubFailure) { HandleScope scope(isolate); DCHECK(args.length() == 0); Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate); DCHECK(AllowHeapAllocation::IsAllowed()); delete deoptimizer; return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_NotifyDeoptimized) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_SMI_ARG_CHECKED(type_arg, 0); Deoptimizer::BailoutType type = static_cast<Deoptimizer::BailoutType>(type_arg); Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate); DCHECK(AllowHeapAllocation::IsAllowed()); Handle<JSFunction> function = deoptimizer->function(); Handle<Code> optimized_code = deoptimizer->compiled_code(); DCHECK(optimized_code->kind() == Code::OPTIMIZED_FUNCTION); DCHECK(type == deoptimizer->bailout_type()); // Make sure to materialize objects before causing any allocation. JavaScriptFrameIterator it(isolate); deoptimizer->MaterializeHeapObjects(&it); delete deoptimizer; JavaScriptFrame* frame = it.frame(); RUNTIME_ASSERT(frame->function()->IsJSFunction()); DCHECK(frame->function() == *function); // Avoid doing too much work when running with --always-opt and keep // the optimized code around. if (FLAG_always_opt || type == Deoptimizer::LAZY) { return isolate->heap()->undefined_value(); } // Search for other activations of the same function and code. ActivationsFinder activations_finder(*optimized_code); activations_finder.VisitFrames(&it); isolate->thread_manager()->IterateArchivedThreads(&activations_finder); if (!activations_finder.has_code_activations_) { if (function->code() == *optimized_code) { if (FLAG_trace_deopt) { PrintF("[removing optimized code for: "); function->PrintName(); PrintF("]\n"); } function->ReplaceCode(function->shared()->code()); // Evict optimized code for this function from the cache so that it // doesn't get used for new closures. function->shared()->EvictFromOptimizedCodeMap(*optimized_code, "notify deoptimized"); } } else { // TODO(titzer): we should probably do DeoptimizeCodeList(code) // unconditionally if the code is not already marked for deoptimization. // If there is an index by shared function info, all the better. Deoptimizer::DeoptimizeFunction(*function); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DeoptimizeFunction) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); if (!function->IsOptimized()) return isolate->heap()->undefined_value(); // TODO(turbofan): Deoptimization is not supported yet. if (function->code()->is_turbofanned() && !FLAG_turbo_deoptimization) { return isolate->heap()->undefined_value(); } Deoptimizer::DeoptimizeFunction(*function); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_ClearFunctionTypeFeedback) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); function->shared()->ClearTypeFeedbackInfo(); Code* unoptimized = function->shared()->code(); if (unoptimized->kind() == Code::FUNCTION) { unoptimized->ClearInlineCaches(); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_RunningInSimulator) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); #if defined(USE_SIMULATOR) return isolate->heap()->true_value(); #else return isolate->heap()->false_value(); #endif } RUNTIME_FUNCTION(Runtime_IsConcurrentRecompilationSupported) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); return isolate->heap()->ToBoolean( isolate->concurrent_recompilation_enabled()); } RUNTIME_FUNCTION(Runtime_OptimizeFunctionOnNextCall) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 1 || args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); // The following two assertions are lifted from the DCHECKs inside // JSFunction::MarkForOptimization(). RUNTIME_ASSERT(!function->shared()->is_generator()); RUNTIME_ASSERT(function->shared()->allows_lazy_compilation() || (function->code()->kind() == Code::FUNCTION && function->code()->optimizable())); // If the function is optimized, just return. if (function->IsOptimized()) return isolate->heap()->undefined_value(); function->MarkForOptimization(); Code* unoptimized = function->shared()->code(); if (args.length() == 2 && unoptimized->kind() == Code::FUNCTION) { CONVERT_ARG_HANDLE_CHECKED(String, type, 1); if (type->IsOneByteEqualTo(STATIC_CHAR_VECTOR("osr")) && FLAG_use_osr) { // Start patching from the currently patched loop nesting level. DCHECK(BackEdgeTable::Verify(isolate, unoptimized)); isolate->runtime_profiler()->AttemptOnStackReplacement( *function, Code::kMaxLoopNestingMarker); } else if (type->IsOneByteEqualTo(STATIC_CHAR_VECTOR("concurrent")) && isolate->concurrent_recompilation_enabled()) { function->MarkForConcurrentOptimization(); } } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_NeverOptimizeFunction) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, function, 0); function->shared()->set_optimization_disabled(true); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_GetOptimizationStatus) { HandleScope scope(isolate); RUNTIME_ASSERT(args.length() == 1 || args.length() == 2); if (!isolate->use_crankshaft()) { return Smi::FromInt(4); // 4 == "never". } bool sync_with_compiler_thread = true; if (args.length() == 2) { CONVERT_ARG_HANDLE_CHECKED(String, sync, 1); if (sync->IsOneByteEqualTo(STATIC_CHAR_VECTOR("no sync"))) { sync_with_compiler_thread = false; } } CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); if (isolate->concurrent_recompilation_enabled() && sync_with_compiler_thread) { while (function->IsInOptimizationQueue()) { isolate->optimizing_compiler_thread()->InstallOptimizedFunctions(); base::OS::Sleep(50); } } if (FLAG_always_opt) { // We may have always opt, but that is more best-effort than a real // promise, so we still say "no" if it is not optimized. return function->IsOptimized() ? Smi::FromInt(3) // 3 == "always". : Smi::FromInt(2); // 2 == "no". } if (FLAG_deopt_every_n_times) { return Smi::FromInt(6); // 6 == "maybe deopted". } if (function->IsOptimized() && function->code()->is_turbofanned()) { return Smi::FromInt(7); // 7 == "TurboFan compiler". } return function->IsOptimized() ? Smi::FromInt(1) // 1 == "yes". : Smi::FromInt(2); // 2 == "no". } RUNTIME_FUNCTION(Runtime_UnblockConcurrentRecompilation) { DCHECK(args.length() == 0); RUNTIME_ASSERT(FLAG_block_concurrent_recompilation); RUNTIME_ASSERT(isolate->concurrent_recompilation_enabled()); isolate->optimizing_compiler_thread()->Unblock(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_GetOptimizationCount) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); return Smi::FromInt(function->shared()->opt_count()); } static bool IsSuitableForOnStackReplacement(Isolate* isolate, Handle<JSFunction> function, Handle<Code> current_code) { // Keep track of whether we've succeeded in optimizing. if (!isolate->use_crankshaft() || !current_code->optimizable()) return false; // If we are trying to do OSR when there are already optimized // activations of the function, it means (a) the function is directly or // indirectly recursive and (b) an optimized invocation has been // deoptimized so that we are currently in an unoptimized activation. // Check for optimized activations of this function. for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) { JavaScriptFrame* frame = it.frame(); if (frame->is_optimized() && frame->function() == *function) return false; } return true; } RUNTIME_FUNCTION(Runtime_CompileForOnStackReplacement) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); Handle<Code> caller_code(function->shared()->code()); // We're not prepared to handle a function with arguments object. DCHECK(!function->shared()->uses_arguments()); RUNTIME_ASSERT(FLAG_use_osr); // Passing the PC in the javascript frame from the caller directly is // not GC safe, so we walk the stack to get it. JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); if (!caller_code->contains(frame->pc())) { // Code on the stack may not be the code object referenced by the shared // function info. It may have been replaced to include deoptimization data. caller_code = Handle<Code>(frame->LookupCode()); } uint32_t pc_offset = static_cast<uint32_t>( frame->pc() - caller_code->instruction_start()); #ifdef DEBUG DCHECK_EQ(frame->function(), *function); DCHECK_EQ(frame->LookupCode(), *caller_code); DCHECK(caller_code->contains(frame->pc())); #endif // DEBUG BailoutId ast_id = caller_code->TranslatePcOffsetToAstId(pc_offset); DCHECK(!ast_id.IsNone()); Compiler::ConcurrencyMode mode = isolate->concurrent_osr_enabled() && (function->shared()->ast_node_count() > 512) ? Compiler::CONCURRENT : Compiler::NOT_CONCURRENT; Handle<Code> result = Handle<Code>::null(); OptimizedCompileJob* job = NULL; if (mode == Compiler::CONCURRENT) { // Gate the OSR entry with a stack check. BackEdgeTable::AddStackCheck(caller_code, pc_offset); // Poll already queued compilation jobs. OptimizingCompilerThread* thread = isolate->optimizing_compiler_thread(); if (thread->IsQueuedForOSR(function, ast_id)) { if (FLAG_trace_osr) { PrintF("[OSR - Still waiting for queued: "); function->PrintName(); PrintF(" at AST id %d]\n", ast_id.ToInt()); } return NULL; } job = thread->FindReadyOSRCandidate(function, ast_id); } if (job != NULL) { if (FLAG_trace_osr) { PrintF("[OSR - Found ready: "); function->PrintName(); PrintF(" at AST id %d]\n", ast_id.ToInt()); } result = Compiler::GetConcurrentlyOptimizedCode(job); } else if (IsSuitableForOnStackReplacement(isolate, function, caller_code)) { if (FLAG_trace_osr) { PrintF("[OSR - Compiling: "); function->PrintName(); PrintF(" at AST id %d]\n", ast_id.ToInt()); } MaybeHandle<Code> maybe_result = Compiler::GetOptimizedCode( function, caller_code, mode, ast_id); if (maybe_result.ToHandle(&result) && result.is_identical_to(isolate->builtins()->InOptimizationQueue())) { // Optimization is queued. Return to check later. return NULL; } } // Revert the patched back edge table, regardless of whether OSR succeeds. BackEdgeTable::Revert(isolate, *caller_code); // Check whether we ended up with usable optimized code. if (!result.is_null() && result->kind() == Code::OPTIMIZED_FUNCTION) { DeoptimizationInputData* data = DeoptimizationInputData::cast(result->deoptimization_data()); if (data->OsrPcOffset()->value() >= 0) { DCHECK(BailoutId(data->OsrAstId()->value()) == ast_id); if (FLAG_trace_osr) { PrintF("[OSR - Entry at AST id %d, offset %d in optimized code]\n", ast_id.ToInt(), data->OsrPcOffset()->value()); } // TODO(titzer): this is a massive hack to make the deopt counts // match. Fix heuristics for reenabling optimizations! function->shared()->increment_deopt_count(); // TODO(titzer): Do not install code into the function. function->ReplaceCode(*result); return *result; } } // Failed. if (FLAG_trace_osr) { PrintF("[OSR - Failed: "); function->PrintName(); PrintF(" at AST id %d]\n", ast_id.ToInt()); } if (!function->IsOptimized()) { function->ReplaceCode(function->shared()->code()); } return NULL; } RUNTIME_FUNCTION(Runtime_SetAllocationTimeout) { SealHandleScope shs(isolate); DCHECK(args.length() == 2 || args.length() == 3); #ifdef DEBUG CONVERT_SMI_ARG_CHECKED(interval, 0); CONVERT_SMI_ARG_CHECKED(timeout, 1); isolate->heap()->set_allocation_timeout(timeout); FLAG_gc_interval = interval; if (args.length() == 3) { // Enable/disable inline allocation if requested. CONVERT_BOOLEAN_ARG_CHECKED(inline_allocation, 2); if (inline_allocation) { isolate->heap()->EnableInlineAllocation(); } else { isolate->heap()->DisableInlineAllocation(); } } #endif return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_CheckIsBootstrapping) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); RUNTIME_ASSERT(isolate->bootstrapper()->IsActive()); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_GetRootNaN) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); RUNTIME_ASSERT(isolate->bootstrapper()->IsActive()); return isolate->heap()->nan_value(); } RUNTIME_FUNCTION(Runtime_Call) { HandleScope scope(isolate); DCHECK(args.length() >= 2); int argc = args.length() - 2; CONVERT_ARG_CHECKED(JSReceiver, fun, argc + 1); Object* receiver = args[0]; // If there are too many arguments, allocate argv via malloc. const int argv_small_size = 10; Handle<Object> argv_small_buffer[argv_small_size]; SmartArrayPointer<Handle<Object> > argv_large_buffer; Handle<Object>* argv = argv_small_buffer; if (argc > argv_small_size) { argv = new Handle<Object>[argc]; if (argv == NULL) return isolate->StackOverflow(); argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv); } for (int i = 0; i < argc; ++i) { argv[i] = Handle<Object>(args[1 + i], isolate); } Handle<JSReceiver> hfun(fun); Handle<Object> hreceiver(receiver, isolate); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Execution::Call(isolate, hfun, hreceiver, argc, argv, true)); return *result; } RUNTIME_FUNCTION(Runtime_Apply) { HandleScope scope(isolate); DCHECK(args.length() == 5); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, fun, 0); CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, arguments, 2); CONVERT_INT32_ARG_CHECKED(offset, 3); CONVERT_INT32_ARG_CHECKED(argc, 4); RUNTIME_ASSERT(offset >= 0); // Loose upper bound to allow fuzzing. We'll most likely run out of // stack space before hitting this limit. static int kMaxArgc = 1000000; RUNTIME_ASSERT(argc >= 0 && argc <= kMaxArgc); // If there are too many arguments, allocate argv via malloc. const int argv_small_size = 10; Handle<Object> argv_small_buffer[argv_small_size]; SmartArrayPointer<Handle<Object> > argv_large_buffer; Handle<Object>* argv = argv_small_buffer; if (argc > argv_small_size) { argv = new Handle<Object>[argc]; if (argv == NULL) return isolate->StackOverflow(); argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv); } for (int i = 0; i < argc; ++i) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, argv[i], Object::GetElement(isolate, arguments, offset + i)); } Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Execution::Call(isolate, fun, receiver, argc, argv, true)); return *result; } RUNTIME_FUNCTION(Runtime_GetFunctionDelegate) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); RUNTIME_ASSERT(!object->IsJSFunction()); return *Execution::GetFunctionDelegate(isolate, object); } RUNTIME_FUNCTION(Runtime_GetConstructorDelegate) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); RUNTIME_ASSERT(!object->IsJSFunction()); return *Execution::GetConstructorDelegate(isolate, object); } RUNTIME_FUNCTION(Runtime_NewGlobalContext) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1); Handle<Context> result = isolate->factory()->NewGlobalContext(function, scope_info); DCHECK(function->context() == isolate->context()); DCHECK(function->context()->global_object() == result->global_object()); result->global_object()->set_global_context(*result); return *result; } RUNTIME_FUNCTION(Runtime_NewFunctionContext) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); DCHECK(function->context() == isolate->context()); int length = function->shared()->scope_info()->ContextLength(); return *isolate->factory()->NewFunctionContext(length, function); } RUNTIME_FUNCTION(Runtime_PushWithContext) { HandleScope scope(isolate); DCHECK(args.length() == 2); Handle<JSReceiver> extension_object; if (args[0]->IsJSReceiver()) { extension_object = args.at<JSReceiver>(0); } else { // Try to convert the object to a proper JavaScript object. MaybeHandle<JSReceiver> maybe_object = Object::ToObject(isolate, args.at<Object>(0)); if (!maybe_object.ToHandle(&extension_object)) { Handle<Object> handle = args.at<Object>(0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError("with_expression", HandleVector(&handle, 1))); } } Handle<JSFunction> function; if (args[1]->IsSmi()) { // A smi sentinel indicates a context nested inside global code rather // than some function. There is a canonical empty function that can be // gotten from the native context. function = handle(isolate->native_context()->closure()); } else { function = args.at<JSFunction>(1); } Handle<Context> current(isolate->context()); Handle<Context> context = isolate->factory()->NewWithContext( function, current, extension_object); isolate->set_context(*context); return *context; } RUNTIME_FUNCTION(Runtime_PushCatchContext) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, name, 0); CONVERT_ARG_HANDLE_CHECKED(Object, thrown_object, 1); Handle<JSFunction> function; if (args[2]->IsSmi()) { // A smi sentinel indicates a context nested inside global code rather // than some function. There is a canonical empty function that can be // gotten from the native context. function = handle(isolate->native_context()->closure()); } else { function = args.at<JSFunction>(2); } Handle<Context> current(isolate->context()); Handle<Context> context = isolate->factory()->NewCatchContext( function, current, name, thrown_object); isolate->set_context(*context); return *context; } RUNTIME_FUNCTION(Runtime_PushBlockContext) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 0); Handle<JSFunction> function; if (args[1]->IsSmi()) { // A smi sentinel indicates a context nested inside global code rather // than some function. There is a canonical empty function that can be // gotten from the native context. function = handle(isolate->native_context()->closure()); } else { function = args.at<JSFunction>(1); } Handle<Context> current(isolate->context()); Handle<Context> context = isolate->factory()->NewBlockContext( function, current, scope_info); isolate->set_context(*context); return *context; } RUNTIME_FUNCTION(Runtime_IsJSModule) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsJSModule()); } RUNTIME_FUNCTION(Runtime_PushModuleContext) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_SMI_ARG_CHECKED(index, 0); if (!args[1]->IsScopeInfo()) { // Module already initialized. Find hosting context and retrieve context. Context* host = Context::cast(isolate->context())->global_context(); Context* context = Context::cast(host->get(index)); DCHECK(context->previous() == isolate->context()); isolate->set_context(context); return context; } CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1); // Allocate module context. HandleScope scope(isolate); Factory* factory = isolate->factory(); Handle<Context> context = factory->NewModuleContext(scope_info); Handle<JSModule> module = factory->NewJSModule(context, scope_info); context->set_module(*module); Context* previous = isolate->context(); context->set_previous(previous); context->set_closure(previous->closure()); context->set_global_object(previous->global_object()); isolate->set_context(*context); // Find hosting scope and initialize internal variable holding module there. previous->global_context()->set(index, *context); return *context; } RUNTIME_FUNCTION(Runtime_DeclareModules) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(FixedArray, descriptions, 0); Context* host_context = isolate->context(); for (int i = 0; i < descriptions->length(); ++i) { Handle<ModuleInfo> description(ModuleInfo::cast(descriptions->get(i))); int host_index = description->host_index(); Handle<Context> context(Context::cast(host_context->get(host_index))); Handle<JSModule> module(context->module()); for (int j = 0; j < description->length(); ++j) { Handle<String> name(description->name(j)); VariableMode mode = description->mode(j); int index = description->index(j); switch (mode) { case VAR: case LET: case CONST: case CONST_LEGACY: { PropertyAttributes attr = IsImmutableVariableMode(mode) ? FROZEN : SEALED; Handle<AccessorInfo> info = Accessors::MakeModuleExport(name, index, attr); Handle<Object> result = JSObject::SetAccessor(module, info).ToHandleChecked(); DCHECK(!result->IsUndefined()); USE(result); break; } case MODULE: { Object* referenced_context = Context::cast(host_context)->get(index); Handle<JSModule> value(Context::cast(referenced_context)->module()); JSObject::SetOwnPropertyIgnoreAttributes(module, name, value, FROZEN) .Assert(); break; } case INTERNAL: case TEMPORARY: case DYNAMIC: case DYNAMIC_GLOBAL: case DYNAMIC_LOCAL: UNREACHABLE(); } } JSObject::PreventExtensions(module).Assert(); } DCHECK(!isolate->has_pending_exception()); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DeleteLookupSlot) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Context, context, 0); CONVERT_ARG_HANDLE_CHECKED(String, name, 1); int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; BindingFlags binding_flags; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes, &binding_flags); // If the slot was not found the result is true. if (holder.is_null()) { return isolate->heap()->true_value(); } // If the slot was found in a context, it should be DONT_DELETE. if (holder->IsContext()) { return isolate->heap()->false_value(); } // The slot was found in a JSObject, either a context extension object, // the global object, or the subject of a with. Try to delete it // (respecting DONT_DELETE). Handle<JSObject> object = Handle<JSObject>::cast(holder); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSReceiver::DeleteProperty(object, name)); return *result; } // A mechanism to return a pair of Object pointers in registers (if possible). // How this is achieved is calling convention-dependent. // All currently supported x86 compiles uses calling conventions that are cdecl // variants where a 64-bit value is returned in two 32-bit registers // (edx:eax on ia32, r1:r0 on ARM). // In AMD-64 calling convention a struct of two pointers is returned in rdx:rax. // In Win64 calling convention, a struct of two pointers is returned in memory, // allocated by the caller, and passed as a pointer in a hidden first parameter. #ifdef V8_HOST_ARCH_64_BIT struct ObjectPair { Object* x; Object* y; }; static inline ObjectPair MakePair(Object* x, Object* y) { ObjectPair result = {x, y}; // Pointers x and y returned in rax and rdx, in AMD-x64-abi. // In Win64 they are assigned to a hidden first argument. return result; } #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT // For x32 a 128-bit struct return is done as rax and rdx from the ObjectPair // are used in the full codegen and Crankshaft compiler. An alternative is // using uint64_t and modifying full codegen and Crankshaft compiler. struct ObjectPair { Object* x; uint32_t x_upper; Object* y; uint32_t y_upper; }; static inline ObjectPair MakePair(Object* x, Object* y) { ObjectPair result = {x, 0, y, 0}; // Pointers x and y returned in rax and rdx, in x32-abi. return result; } #else typedef uint64_t ObjectPair; static inline ObjectPair MakePair(Object* x, Object* y) { #if defined(V8_TARGET_LITTLE_ENDIAN) return reinterpret_cast<uint32_t>(x) | (reinterpret_cast<ObjectPair>(y) << 32); #elif defined(V8_TARGET_BIG_ENDIAN) return reinterpret_cast<uint32_t>(y) | (reinterpret_cast<ObjectPair>(x) << 32); #else #error Unknown endianness #endif } #endif static Object* ComputeReceiverForNonGlobal(Isolate* isolate, JSObject* holder) { DCHECK(!holder->IsGlobalObject()); Context* top = isolate->context(); // Get the context extension function. JSFunction* context_extension_function = top->native_context()->context_extension_function(); // If the holder isn't a context extension object, we just return it // as the receiver. This allows arguments objects to be used as // receivers, but only if they are put in the context scope chain // explicitly via a with-statement. Object* constructor = holder->map()->constructor(); if (constructor != context_extension_function) return holder; // Fall back to using the global object as the implicit receiver if // the property turns out to be a local variable allocated in a // context extension object - introduced via eval. return isolate->heap()->undefined_value(); } static ObjectPair LoadLookupSlotHelper(Arguments args, Isolate* isolate, bool throw_error) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); if (!args[0]->IsContext() || !args[1]->IsString()) { return MakePair(isolate->ThrowIllegalOperation(), NULL); } Handle<Context> context = args.at<Context>(0); Handle<String> name = args.at<String>(1); int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; BindingFlags binding_flags; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes, &binding_flags); if (isolate->has_pending_exception()) { return MakePair(isolate->heap()->exception(), NULL); } // If the index is non-negative, the slot has been found in a context. if (index >= 0) { DCHECK(holder->IsContext()); // If the "property" we were looking for is a local variable, the // receiver is the global object; see ECMA-262, 3rd., 10.1.6 and 10.2.3. Handle<Object> receiver = isolate->factory()->undefined_value(); Object* value = Context::cast(*holder)->get(index); // Check for uninitialized bindings. switch (binding_flags) { case MUTABLE_CHECK_INITIALIZED: case IMMUTABLE_CHECK_INITIALIZED_HARMONY: if (value->IsTheHole()) { Handle<Object> error; MaybeHandle<Object> maybe_error = isolate->factory()->NewReferenceError("not_defined", HandleVector(&name, 1)); if (maybe_error.ToHandle(&error)) isolate->Throw(*error); return MakePair(isolate->heap()->exception(), NULL); } // FALLTHROUGH case MUTABLE_IS_INITIALIZED: case IMMUTABLE_IS_INITIALIZED: case IMMUTABLE_IS_INITIALIZED_HARMONY: DCHECK(!value->IsTheHole()); return MakePair(value, *receiver); case IMMUTABLE_CHECK_INITIALIZED: if (value->IsTheHole()) { DCHECK((attributes & READ_ONLY) != 0); value = isolate->heap()->undefined_value(); } return MakePair(value, *receiver); case MISSING_BINDING: UNREACHABLE(); return MakePair(NULL, NULL); } } // Otherwise, if the slot was found the holder is a context extension // object, subject of a with, or a global object. We read the named // property from it. if (!holder.is_null()) { Handle<JSReceiver> object = Handle<JSReceiver>::cast(holder); #ifdef DEBUG if (!object->IsJSProxy()) { Maybe<bool> maybe = JSReceiver::HasProperty(object, name); DCHECK(maybe.has_value); DCHECK(maybe.value); } #endif // GetProperty below can cause GC. Handle<Object> receiver_handle( object->IsGlobalObject() ? Object::cast(isolate->heap()->undefined_value()) : object->IsJSProxy() ? static_cast<Object*>(*object) : ComputeReceiverForNonGlobal(isolate, JSObject::cast(*object)), isolate); // No need to unhole the value here. This is taken care of by the // GetProperty function. Handle<Object> value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, value, Object::GetProperty(object, name), MakePair(isolate->heap()->exception(), NULL)); return MakePair(*value, *receiver_handle); } if (throw_error) { // The property doesn't exist - throw exception. Handle<Object> error; MaybeHandle<Object> maybe_error = isolate->factory()->NewReferenceError( "not_defined", HandleVector(&name, 1)); if (maybe_error.ToHandle(&error)) isolate->Throw(*error); return MakePair(isolate->heap()->exception(), NULL); } else { // The property doesn't exist - return undefined. return MakePair(isolate->heap()->undefined_value(), isolate->heap()->undefined_value()); } } RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlot) { return LoadLookupSlotHelper(args, isolate, true); } RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlotNoReferenceError) { return LoadLookupSlotHelper(args, isolate, false); } RUNTIME_FUNCTION(Runtime_StoreLookupSlot) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(Object, value, 0); CONVERT_ARG_HANDLE_CHECKED(Context, context, 1); CONVERT_ARG_HANDLE_CHECKED(String, name, 2); CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 3); int index; PropertyAttributes attributes; ContextLookupFlags flags = FOLLOW_CHAINS; BindingFlags binding_flags; Handle<Object> holder = context->Lookup(name, flags, &index, &attributes, &binding_flags); // In case of JSProxy, an exception might have been thrown. if (isolate->has_pending_exception()) return isolate->heap()->exception(); // The property was found in a context slot. if (index >= 0) { if ((attributes & READ_ONLY) == 0) { Handle<Context>::cast(holder)->set(index, *value); } else if (strict_mode == STRICT) { // Setting read only property in strict mode. THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError("strict_cannot_assign", HandleVector(&name, 1))); } return *value; } // Slow case: The property is not in a context slot. It is either in a // context extension object, a property of the subject of a with, or a // property of the global object. Handle<JSReceiver> object; if (attributes != ABSENT) { // The property exists on the holder. object = Handle<JSReceiver>::cast(holder); } else if (strict_mode == STRICT) { // If absent in strict mode: throw. THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError("not_defined", HandleVector(&name, 1))); } else { // If absent in sloppy mode: add the property to the global object. object = Handle<JSReceiver>(context->global_object()); } RETURN_FAILURE_ON_EXCEPTION( isolate, Object::SetProperty(object, name, value, strict_mode)); return *value; } RUNTIME_FUNCTION(Runtime_Throw) { HandleScope scope(isolate); DCHECK(args.length() == 1); return isolate->Throw(args[0]); } RUNTIME_FUNCTION(Runtime_ReThrow) { HandleScope scope(isolate); DCHECK(args.length() == 1); return isolate->ReThrow(args[0]); } RUNTIME_FUNCTION(Runtime_PromoteScheduledException) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); return isolate->PromoteScheduledException(); } RUNTIME_FUNCTION(Runtime_ThrowReferenceError) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, name, 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError("not_defined", HandleVector(&name, 1))); } RUNTIME_FUNCTION(Runtime_ThrowNonMethodError) { HandleScope scope(isolate); DCHECK(args.length() == 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError("non_method", HandleVector<Object>(NULL, 0))); } RUNTIME_FUNCTION(Runtime_ThrowUnsupportedSuperError) { HandleScope scope(isolate); DCHECK(args.length() == 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError("unsupported_super", HandleVector<Object>(NULL, 0))); } RUNTIME_FUNCTION(Runtime_ThrowNotDateError) { HandleScope scope(isolate); DCHECK(args.length() == 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError("not_date_object", HandleVector<Object>(NULL, 0))); } RUNTIME_FUNCTION(Runtime_StackGuard) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); // First check if this is a real stack overflow. StackLimitCheck check(isolate); if (check.JsHasOverflowed()) { return isolate->StackOverflow(); } return isolate->stack_guard()->HandleInterrupts(); } RUNTIME_FUNCTION(Runtime_TryInstallOptimizedCode) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); // First check if this is a real stack overflow. StackLimitCheck check(isolate); if (check.JsHasOverflowed()) { SealHandleScope shs(isolate); return isolate->StackOverflow(); } isolate->optimizing_compiler_thread()->InstallOptimizedFunctions(); return (function->IsOptimized()) ? function->code() : function->shared()->code(); } RUNTIME_FUNCTION(Runtime_Interrupt) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); return isolate->stack_guard()->HandleInterrupts(); } static int StackSize(Isolate* isolate) { int n = 0; for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) n++; return n; } static void PrintTransition(Isolate* isolate, Object* result) { // indentation { const int nmax = 80; int n = StackSize(isolate); if (n <= nmax) PrintF("%4d:%*s", n, n, ""); else PrintF("%4d:%*s", n, nmax, "..."); } if (result == NULL) { JavaScriptFrame::PrintTop(isolate, stdout, true, false); PrintF(" {\n"); } else { // function result PrintF("} -> "); result->ShortPrint(); PrintF("\n"); } } RUNTIME_FUNCTION(Runtime_TraceEnter) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); PrintTransition(isolate, NULL); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_TraceExit) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); PrintTransition(isolate, obj); return obj; // return TOS } RUNTIME_FUNCTION(Runtime_DebugPrint) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); OFStream os(stdout); #ifdef DEBUG if (args[0]->IsString()) { // If we have a string, assume it's a code "marker" // and print some interesting cpu debugging info. JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); os << "fp = " << frame->fp() << ", sp = " << frame->sp() << ", caller_sp = " << frame->caller_sp() << ": "; } else { os << "DebugPrint: "; } args[0]->Print(os); if (args[0]->IsHeapObject()) { os << "\n"; HeapObject::cast(args[0])->map()->Print(os); } #else // ShortPrint is available in release mode. Print is not. os << Brief(args[0]); #endif os << endl; return args[0]; // return TOS } RUNTIME_FUNCTION(Runtime_DebugTrace) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); isolate->PrintStack(stdout); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DateCurrentTime) { HandleScope scope(isolate); DCHECK(args.length() == 0); if (FLAG_log_timer_events) LOG(isolate, CurrentTimeEvent()); // According to ECMA-262, section 15.9.1, page 117, the precision of // the number in a Date object representing a particular instant in // time is milliseconds. Therefore, we floor the result of getting // the OS time. double millis; if (FLAG_verify_predictable) { millis = 1388534400000.0; // Jan 1 2014 00:00:00 GMT+0000 millis += Floor(isolate->heap()->synthetic_time()); } else { millis = Floor(base::OS::TimeCurrentMillis()); } return *isolate->factory()->NewNumber(millis); } RUNTIME_FUNCTION(Runtime_DateParseString) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, str, 0); CONVERT_ARG_HANDLE_CHECKED(JSArray, output, 1); RUNTIME_ASSERT(output->HasFastElements()); JSObject::EnsureCanContainHeapObjectElements(output); RUNTIME_ASSERT(output->HasFastObjectElements()); Handle<FixedArray> output_array(FixedArray::cast(output->elements())); RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE); str = String::Flatten(str); DisallowHeapAllocation no_gc; bool result; String::FlatContent str_content = str->GetFlatContent(); if (str_content.IsOneByte()) { result = DateParser::Parse(str_content.ToOneByteVector(), *output_array, isolate->unicode_cache()); } else { DCHECK(str_content.IsTwoByte()); result = DateParser::Parse(str_content.ToUC16Vector(), *output_array, isolate->unicode_cache()); } if (result) { return *output; } else { return isolate->heap()->null_value(); } } RUNTIME_FUNCTION(Runtime_DateLocalTimezone) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(x, 0); RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs && x <= DateCache::kMaxTimeBeforeUTCInMs); const char* zone = isolate->date_cache()->LocalTimezone(static_cast<int64_t>(x)); Handle<String> result = isolate->factory()->NewStringFromUtf8( CStrVector(zone)).ToHandleChecked(); return *result; } RUNTIME_FUNCTION(Runtime_DateToUTC) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_DOUBLE_ARG_CHECKED(x, 0); RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs && x <= DateCache::kMaxTimeBeforeUTCInMs); int64_t time = isolate->date_cache()->ToUTC(static_cast<int64_t>(x)); return *isolate->factory()->NewNumber(static_cast<double>(time)); } RUNTIME_FUNCTION(Runtime_DateCacheVersion) { HandleScope hs(isolate); DCHECK(args.length() == 0); if (!isolate->eternal_handles()->Exists(EternalHandles::DATE_CACHE_VERSION)) { Handle<FixedArray> date_cache_version = isolate->factory()->NewFixedArray(1, TENURED); date_cache_version->set(0, Smi::FromInt(0)); isolate->eternal_handles()->CreateSingleton( isolate, *date_cache_version, EternalHandles::DATE_CACHE_VERSION); } Handle<FixedArray> date_cache_version = Handle<FixedArray>::cast(isolate->eternal_handles()->GetSingleton( EternalHandles::DATE_CACHE_VERSION)); // Return result as a JS array. Handle<JSObject> result = isolate->factory()->NewJSObject(isolate->array_function()); JSArray::SetContent(Handle<JSArray>::cast(result), date_cache_version); return *result; } RUNTIME_FUNCTION(Runtime_GlobalProxy) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, global, 0); if (!global->IsJSGlobalObject()) return isolate->heap()->null_value(); return JSGlobalObject::cast(global)->global_proxy(); } RUNTIME_FUNCTION(Runtime_IsAttachedGlobal) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, global, 0); if (!global->IsJSGlobalObject()) return isolate->heap()->false_value(); return isolate->heap()->ToBoolean( !JSGlobalObject::cast(global)->IsDetached()); } RUNTIME_FUNCTION(Runtime_ParseJson) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, source, 0); source = String::Flatten(source); // Optimized fast case where we only have Latin1 characters. Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, source->IsSeqOneByteString() ? JsonParser<true>::Parse(source) : JsonParser<false>::Parse(source)); return *result; } bool CodeGenerationFromStringsAllowed(Isolate* isolate, Handle<Context> context) { DCHECK(context->allow_code_gen_from_strings()->IsFalse()); // Check with callback if set. AllowCodeGenerationFromStringsCallback callback = isolate->allow_code_gen_callback(); if (callback == NULL) { // No callback set and code generation disallowed. return false; } else { // Callback set. Let it decide if code generation is allowed. VMState<EXTERNAL> state(isolate); return callback(v8::Utils::ToLocal(context)); } } RUNTIME_FUNCTION(Runtime_CompileString) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, source, 0); CONVERT_BOOLEAN_ARG_CHECKED(function_literal_only, 1); // Extract native context. Handle<Context> context(isolate->native_context()); // Check if native context allows code generation from // strings. Throw an exception if it doesn't. if (context->allow_code_gen_from_strings()->IsFalse() && !CodeGenerationFromStringsAllowed(isolate, context)) { Handle<Object> error_message = context->ErrorMessageForCodeGenerationFromStrings(); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewEvalError("code_gen_from_strings", HandleVector<Object>(&error_message, 1))); } // Compile source string in the native context. ParseRestriction restriction = function_literal_only ? ONLY_SINGLE_FUNCTION_LITERAL : NO_PARSE_RESTRICTION; Handle<SharedFunctionInfo> outer_info(context->closure()->shared(), isolate); Handle<JSFunction> fun; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, fun, Compiler::GetFunctionFromEval( source, outer_info, context, SLOPPY, restriction, RelocInfo::kNoPosition)); return *fun; } static ObjectPair CompileGlobalEval(Isolate* isolate, Handle<String> source, Handle<SharedFunctionInfo> outer_info, Handle<Object> receiver, StrictMode strict_mode, int scope_position) { Handle<Context> context = Handle<Context>(isolate->context()); Handle<Context> native_context = Handle<Context>(context->native_context()); // Check if native context allows code generation from // strings. Throw an exception if it doesn't. if (native_context->allow_code_gen_from_strings()->IsFalse() && !CodeGenerationFromStringsAllowed(isolate, native_context)) { Handle<Object> error_message = native_context->ErrorMessageForCodeGenerationFromStrings(); Handle<Object> error; MaybeHandle<Object> maybe_error = isolate->factory()->NewEvalError( "code_gen_from_strings", HandleVector<Object>(&error_message, 1)); if (maybe_error.ToHandle(&error)) isolate->Throw(*error); return MakePair(isolate->heap()->exception(), NULL); } // Deal with a normal eval call with a string argument. Compile it // and return the compiled function bound in the local context. static const ParseRestriction restriction = NO_PARSE_RESTRICTION; Handle<JSFunction> compiled; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, compiled, Compiler::GetFunctionFromEval( source, outer_info, context, strict_mode, restriction, scope_position), MakePair(isolate->heap()->exception(), NULL)); return MakePair(*compiled, *receiver); } RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ResolvePossiblyDirectEval) { HandleScope scope(isolate); DCHECK(args.length() == 6); Handle<Object> callee = args.at<Object>(0); // If "eval" didn't refer to the original GlobalEval, it's not a // direct call to eval. // (And even if it is, but the first argument isn't a string, just let // execution default to an indirect call to eval, which will also return // the first argument without doing anything). if (*callee != isolate->native_context()->global_eval_fun() || !args[1]->IsString()) { return MakePair(*callee, isolate->heap()->undefined_value()); } DCHECK(args[4]->IsSmi()); DCHECK(args.smi_at(4) == SLOPPY || args.smi_at(4) == STRICT); StrictMode strict_mode = static_cast<StrictMode>(args.smi_at(4)); DCHECK(args[5]->IsSmi()); Handle<SharedFunctionInfo> outer_info(args.at<JSFunction>(2)->shared(), isolate); return CompileGlobalEval(isolate, args.at<String>(1), outer_info, args.at<Object>(3), strict_mode, args.smi_at(5)); } RUNTIME_FUNCTION(Runtime_AllocateInNewSpace) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_SMI_ARG_CHECKED(size, 0); RUNTIME_ASSERT(IsAligned(size, kPointerSize)); RUNTIME_ASSERT(size > 0); RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize); return *isolate->factory()->NewFillerObject(size, false, NEW_SPACE); } RUNTIME_FUNCTION(Runtime_AllocateInTargetSpace) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_SMI_ARG_CHECKED(size, 0); CONVERT_SMI_ARG_CHECKED(flags, 1); RUNTIME_ASSERT(IsAligned(size, kPointerSize)); RUNTIME_ASSERT(size > 0); RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize); bool double_align = AllocateDoubleAlignFlag::decode(flags); AllocationSpace space = AllocateTargetSpace::decode(flags); return *isolate->factory()->NewFillerObject(size, double_align, space); } // Push an object unto an array of objects if it is not already in the // array. Returns true if the element was pushed on the stack and // false otherwise. RUNTIME_FUNCTION(Runtime_PushIfAbsent) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, element, 1); RUNTIME_ASSERT(array->HasFastSmiOrObjectElements()); int length = Smi::cast(array->length())->value(); FixedArray* elements = FixedArray::cast(array->elements()); for (int i = 0; i < length; i++) { if (elements->get(i) == *element) return isolate->heap()->false_value(); } // Strict not needed. Used for cycle detection in Array join implementation. RETURN_FAILURE_ON_EXCEPTION( isolate, JSObject::SetFastElement(array, length, element, SLOPPY, true)); return isolate->heap()->true_value(); } /** * A simple visitor visits every element of Array's. * The backend storage can be a fixed array for fast elements case, * or a dictionary for sparse array. Since Dictionary is a subtype * of FixedArray, the class can be used by both fast and slow cases. * The second parameter of the constructor, fast_elements, specifies * whether the storage is a FixedArray or Dictionary. * * An index limit is used to deal with the situation that a result array * length overflows 32-bit non-negative integer. */ class ArrayConcatVisitor { public: ArrayConcatVisitor(Isolate* isolate, Handle<FixedArray> storage, bool fast_elements) : isolate_(isolate), storage_(Handle<FixedArray>::cast( isolate->global_handles()->Create(*storage))), index_offset_(0u), fast_elements_(fast_elements), exceeds_array_limit_(false) { } ~ArrayConcatVisitor() { clear_storage(); } void visit(uint32_t i, Handle<Object> elm) { if (i > JSObject::kMaxElementCount - index_offset_) { exceeds_array_limit_ = true; return; } uint32_t index = index_offset_ + i; if (fast_elements_) { if (index < static_cast<uint32_t>(storage_->length())) { storage_->set(index, *elm); return; } // Our initial estimate of length was foiled, possibly by // getters on the arrays increasing the length of later arrays // during iteration. // This shouldn't happen in anything but pathological cases. SetDictionaryMode(); // Fall-through to dictionary mode. } DCHECK(!fast_elements_); Handle<SeededNumberDictionary> dict( SeededNumberDictionary::cast(*storage_)); Handle<SeededNumberDictionary> result = SeededNumberDictionary::AtNumberPut(dict, index, elm); if (!result.is_identical_to(dict)) { // Dictionary needed to grow. clear_storage(); set_storage(*result); } } void increase_index_offset(uint32_t delta) { if (JSObject::kMaxElementCount - index_offset_ < delta) { index_offset_ = JSObject::kMaxElementCount; } else { index_offset_ += delta; } // If the initial length estimate was off (see special case in visit()), // but the array blowing the limit didn't contain elements beyond the // provided-for index range, go to dictionary mode now. if (fast_elements_ && index_offset_ > static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) { SetDictionaryMode(); } } bool exceeds_array_limit() { return exceeds_array_limit_; } Handle<JSArray> ToArray() { Handle<JSArray> array = isolate_->factory()->NewJSArray(0); Handle<Object> length = isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); Handle<Map> map = JSObject::GetElementsTransitionMap( array, fast_elements_ ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS); array->set_map(*map); array->set_length(*length); array->set_elements(*storage_); return array; } private: // Convert storage to dictionary mode. void SetDictionaryMode() { DCHECK(fast_elements_); Handle<FixedArray> current_storage(*storage_); Handle<SeededNumberDictionary> slow_storage( SeededNumberDictionary::New(isolate_, current_storage->length())); uint32_t current_length = static_cast<uint32_t>(current_storage->length()); for (uint32_t i = 0; i < current_length; i++) { HandleScope loop_scope(isolate_); Handle<Object> element(current_storage->get(i), isolate_); if (!element->IsTheHole()) { Handle<SeededNumberDictionary> new_storage = SeededNumberDictionary::AtNumberPut(slow_storage, i, element); if (!new_storage.is_identical_to(slow_storage)) { slow_storage = loop_scope.CloseAndEscape(new_storage); } } } clear_storage(); set_storage(*slow_storage); fast_elements_ = false; } inline void clear_storage() { GlobalHandles::Destroy(Handle<Object>::cast(storage_).location()); } inline void set_storage(FixedArray* storage) { storage_ = Handle<FixedArray>::cast( isolate_->global_handles()->Create(storage)); } Isolate* isolate_; Handle<FixedArray> storage_; // Always a global handle. // Index after last seen index. Always less than or equal to // JSObject::kMaxElementCount. uint32_t index_offset_; bool fast_elements_ : 1; bool exceeds_array_limit_ : 1; }; static uint32_t EstimateElementCount(Handle<JSArray> array) { uint32_t length = static_cast<uint32_t>(array->length()->Number()); int element_count = 0; switch (array->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_ELEMENTS: { // Fast elements can't have lengths that are not representable by // a 32-bit signed integer. DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); int fast_length = static_cast<int>(length); Handle<FixedArray> elements(FixedArray::cast(array->elements())); for (int i = 0; i < fast_length; i++) { if (!elements->get(i)->IsTheHole()) element_count++; } break; } case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: { // Fast elements can't have lengths that are not representable by // a 32-bit signed integer. DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0); int fast_length = static_cast<int>(length); if (array->elements()->IsFixedArray()) { DCHECK(FixedArray::cast(array->elements())->length() == 0); break; } Handle<FixedDoubleArray> elements( FixedDoubleArray::cast(array->elements())); for (int i = 0; i < fast_length; i++) { if (!elements->is_the_hole(i)) element_count++; } break; } case DICTIONARY_ELEMENTS: { Handle<SeededNumberDictionary> dictionary( SeededNumberDictionary::cast(array->elements())); int capacity = dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate()); if (dictionary->IsKey(*key)) { element_count++; } } break; } case SLOPPY_ARGUMENTS_ELEMENTS: #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case EXTERNAL_##TYPE##_ELEMENTS: \ case TYPE##_ELEMENTS: \ TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE // External arrays are always dense. return length; } // As an estimate, we assume that the prototype doesn't contain any // inherited elements. return element_count; } template<class ExternalArrayClass, class ElementType> static void IterateExternalArrayElements(Isolate* isolate, Handle<JSObject> receiver, bool elements_are_ints, bool elements_are_guaranteed_smis, ArrayConcatVisitor* visitor) { Handle<ExternalArrayClass> array( ExternalArrayClass::cast(receiver->elements())); uint32_t len = static_cast<uint32_t>(array->length()); DCHECK(visitor != NULL); if (elements_are_ints) { if (elements_are_guaranteed_smis) { for (uint32_t j = 0; j < len; j++) { HandleScope loop_scope(isolate); Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))), isolate); visitor->visit(j, e); } } else { for (uint32_t j = 0; j < len; j++) { HandleScope loop_scope(isolate); int64_t val = static_cast<int64_t>(array->get_scalar(j)); if (Smi::IsValid(static_cast<intptr_t>(val))) { Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate); visitor->visit(j, e); } else { Handle<Object> e = isolate->factory()->NewNumber(static_cast<ElementType>(val)); visitor->visit(j, e); } } } } else { for (uint32_t j = 0; j < len; j++) { HandleScope loop_scope(isolate); Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j)); visitor->visit(j, e); } } } // Used for sorting indices in a List<uint32_t>. static int compareUInt32(const uint32_t* ap, const uint32_t* bp) { uint32_t a = *ap; uint32_t b = *bp; return (a == b) ? 0 : (a < b) ? -1 : 1; } static void CollectElementIndices(Handle<JSObject> object, uint32_t range, List<uint32_t>* indices) { Isolate* isolate = object->GetIsolate(); ElementsKind kind = object->GetElementsKind(); switch (kind) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { Handle<FixedArray> elements(FixedArray::cast(object->elements())); uint32_t length = static_cast<uint32_t>(elements->length()); if (range < length) length = range; for (uint32_t i = 0; i < length; i++) { if (!elements->get(i)->IsTheHole()) { indices->Add(i); } } break; } case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { if (object->elements()->IsFixedArray()) { DCHECK(object->elements()->length() == 0); break; } Handle<FixedDoubleArray> elements( FixedDoubleArray::cast(object->elements())); uint32_t length = static_cast<uint32_t>(elements->length()); if (range < length) length = range; for (uint32_t i = 0; i < length; i++) { if (!elements->is_the_hole(i)) { indices->Add(i); } } break; } case DICTIONARY_ELEMENTS: { Handle<SeededNumberDictionary> dict( SeededNumberDictionary::cast(object->elements())); uint32_t capacity = dict->Capacity(); for (uint32_t j = 0; j < capacity; j++) { HandleScope loop_scope(isolate); Handle<Object> k(dict->KeyAt(j), isolate); if (dict->IsKey(*k)) { DCHECK(k->IsNumber()); uint32_t index = static_cast<uint32_t>(k->Number()); if (index < range) { indices->Add(index); } } } break; } #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ case EXTERNAL_##TYPE##_ELEMENTS: TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE { uint32_t length = static_cast<uint32_t>( FixedArrayBase::cast(object->elements())->length()); if (range <= length) { length = range; // We will add all indices, so we might as well clear it first // and avoid duplicates. indices->Clear(); } for (uint32_t i = 0; i < length; i++) { indices->Add(i); } if (length == range) return; // All indices accounted for already. break; } case SLOPPY_ARGUMENTS_ELEMENTS: { MaybeHandle<Object> length_obj = Object::GetProperty(object, isolate->factory()->length_string()); double length_num = length_obj.ToHandleChecked()->Number(); uint32_t length = static_cast<uint32_t>(DoubleToInt32(length_num)); ElementsAccessor* accessor = object->GetElementsAccessor(); for (uint32_t i = 0; i < length; i++) { if (accessor->HasElement(object, object, i)) { indices->Add(i); } } break; } } PrototypeIterator iter(isolate, object); if (!iter.IsAtEnd()) { // The prototype will usually have no inherited element indices, // but we have to check. CollectElementIndices( Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), range, indices); } } /** * A helper function that visits elements of a JSArray in numerical * order. * * The visitor argument called for each existing element in the array * with the element index and the element's value. * Afterwards it increments the base-index of the visitor by the array * length. * Returns false if any access threw an exception, otherwise true. */ static bool IterateElements(Isolate* isolate, Handle<JSArray> receiver, ArrayConcatVisitor* visitor) { uint32_t length = static_cast<uint32_t>(receiver->length()->Number()); switch (receiver->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { // Run through the elements FixedArray and use HasElement and GetElement // to check the prototype for missing elements. Handle<FixedArray> elements(FixedArray::cast(receiver->elements())); int fast_length = static_cast<int>(length); DCHECK(fast_length <= elements->length()); for (int j = 0; j < fast_length; j++) { HandleScope loop_scope(isolate); Handle<Object> element_value(elements->get(j), isolate); if (!element_value->IsTheHole()) { visitor->visit(j, element_value); } else { Maybe<bool> maybe = JSReceiver::HasElement(receiver, j); if (!maybe.has_value) return false; if (maybe.value) { // Call GetElement on receiver, not its prototype, or getters won't // have the correct receiver. ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element_value, Object::GetElement(isolate, receiver, j), false); visitor->visit(j, element_value); } } } break; } case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { // Empty array is FixedArray but not FixedDoubleArray. if (length == 0) break; // Run through the elements FixedArray and use HasElement and GetElement // to check the prototype for missing elements. if (receiver->elements()->IsFixedArray()) { DCHECK(receiver->elements()->length() == 0); break; } Handle<FixedDoubleArray> elements( FixedDoubleArray::cast(receiver->elements())); int fast_length = static_cast<int>(length); DCHECK(fast_length <= elements->length()); for (int j = 0; j < fast_length; j++) { HandleScope loop_scope(isolate); if (!elements->is_the_hole(j)) { double double_value = elements->get_scalar(j); Handle<Object> element_value = isolate->factory()->NewNumber(double_value); visitor->visit(j, element_value); } else { Maybe<bool> maybe = JSReceiver::HasElement(receiver, j); if (!maybe.has_value) return false; if (maybe.value) { // Call GetElement on receiver, not its prototype, or getters won't // have the correct receiver. Handle<Object> element_value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element_value, Object::GetElement(isolate, receiver, j), false); visitor->visit(j, element_value); } } } break; } case DICTIONARY_ELEMENTS: { Handle<SeededNumberDictionary> dict(receiver->element_dictionary()); List<uint32_t> indices(dict->Capacity() / 2); // Collect all indices in the object and the prototypes less // than length. This might introduce duplicates in the indices list. CollectElementIndices(receiver, length, &indices); indices.Sort(&compareUInt32); int j = 0; int n = indices.length(); while (j < n) { HandleScope loop_scope(isolate); uint32_t index = indices[j]; Handle<Object> element; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, element, Object::GetElement(isolate, receiver, index), false); visitor->visit(index, element); // Skip to next different index (i.e., omit duplicates). do { j++; } while (j < n && indices[j] == index); } break; } case EXTERNAL_UINT8_CLAMPED_ELEMENTS: { Handle<ExternalUint8ClampedArray> pixels(ExternalUint8ClampedArray::cast( receiver->elements())); for (uint32_t j = 0; j < length; j++) { Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate); visitor->visit(j, e); } break; } case EXTERNAL_INT8_ELEMENTS: { IterateExternalArrayElements<ExternalInt8Array, int8_t>( isolate, receiver, true, true, visitor); break; } case EXTERNAL_UINT8_ELEMENTS: { IterateExternalArrayElements<ExternalUint8Array, uint8_t>( isolate, receiver, true, true, visitor); break; } case EXTERNAL_INT16_ELEMENTS: { IterateExternalArrayElements<ExternalInt16Array, int16_t>( isolate, receiver, true, true, visitor); break; } case EXTERNAL_UINT16_ELEMENTS: { IterateExternalArrayElements<ExternalUint16Array, uint16_t>( isolate, receiver, true, true, visitor); break; } case EXTERNAL_INT32_ELEMENTS: { IterateExternalArrayElements<ExternalInt32Array, int32_t>( isolate, receiver, true, false, visitor); break; } case EXTERNAL_UINT32_ELEMENTS: { IterateExternalArrayElements<ExternalUint32Array, uint32_t>( isolate, receiver, true, false, visitor); break; } case EXTERNAL_FLOAT32_ELEMENTS: { IterateExternalArrayElements<ExternalFloat32Array, float>( isolate, receiver, false, false, visitor); break; } case EXTERNAL_FLOAT64_ELEMENTS: { IterateExternalArrayElements<ExternalFloat64Array, double>( isolate, receiver, false, false, visitor); break; } default: UNREACHABLE(); break; } visitor->increase_index_offset(length); return true; } /** * Array::concat implementation. * See ECMAScript 262, 15.4.4.4. * TODO(581): Fix non-compliance for very large concatenations and update to * following the ECMAScript 5 specification. */ RUNTIME_FUNCTION(Runtime_ArrayConcat) { HandleScope handle_scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0); int argument_count = static_cast<int>(arguments->length()->Number()); RUNTIME_ASSERT(arguments->HasFastObjectElements()); Handle<FixedArray> elements(FixedArray::cast(arguments->elements())); // Pass 1: estimate the length and number of elements of the result. // The actual length can be larger if any of the arguments have getters // that mutate other arguments (but will otherwise be precise). // The number of elements is precise if there are no inherited elements. ElementsKind kind = FAST_SMI_ELEMENTS; uint32_t estimate_result_length = 0; uint32_t estimate_nof_elements = 0; for (int i = 0; i < argument_count; i++) { HandleScope loop_scope(isolate); Handle<Object> obj(elements->get(i), isolate); uint32_t length_estimate; uint32_t element_estimate; if (obj->IsJSArray()) { Handle<JSArray> array(Handle<JSArray>::cast(obj)); length_estimate = static_cast<uint32_t>(array->length()->Number()); if (length_estimate != 0) { ElementsKind array_kind = GetPackedElementsKind(array->map()->elements_kind()); if (IsMoreGeneralElementsKindTransition(kind, array_kind)) { kind = array_kind; } } element_estimate = EstimateElementCount(array); } else { if (obj->IsHeapObject()) { if (obj->IsNumber()) { if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) { kind = FAST_DOUBLE_ELEMENTS; } } else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) { kind = FAST_ELEMENTS; } } length_estimate = 1; element_estimate = 1; } // Avoid overflows by capping at kMaxElementCount. if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { estimate_result_length = JSObject::kMaxElementCount; } else { estimate_result_length += length_estimate; } if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { estimate_nof_elements = JSObject::kMaxElementCount; } else { estimate_nof_elements += element_estimate; } } // If estimated number of elements is more than half of length, a // fixed array (fast case) is more time and space-efficient than a // dictionary. bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length; if (fast_case && kind == FAST_DOUBLE_ELEMENTS) { Handle<FixedArrayBase> storage = isolate->factory()->NewFixedDoubleArray(estimate_result_length); int j = 0; bool failure = false; if (estimate_result_length > 0) { Handle<FixedDoubleArray> double_storage = Handle<FixedDoubleArray>::cast(storage); for (int i = 0; i < argument_count; i++) { Handle<Object> obj(elements->get(i), isolate); if (obj->IsSmi()) { double_storage->set(j, Smi::cast(*obj)->value()); j++; } else if (obj->IsNumber()) { double_storage->set(j, obj->Number()); j++; } else { JSArray* array = JSArray::cast(*obj); uint32_t length = static_cast<uint32_t>(array->length()->Number()); switch (array->map()->elements_kind()) { case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { // Empty array is FixedArray but not FixedDoubleArray. if (length == 0) break; FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); for (uint32_t i = 0; i < length; i++) { if (elements->is_the_hole(i)) { // TODO(jkummerow/verwaest): We could be a bit more clever // here: Check if there are no elements/getters on the // prototype chain, and if so, allow creation of a holey // result array. // Same thing below (holey smi case). failure = true; break; } double double_value = elements->get_scalar(i); double_storage->set(j, double_value); j++; } break; } case FAST_HOLEY_SMI_ELEMENTS: case FAST_SMI_ELEMENTS: { FixedArray* elements( FixedArray::cast(array->elements())); for (uint32_t i = 0; i < length; i++) { Object* element = elements->get(i); if (element->IsTheHole()) { failure = true; break; } int32_t int_value = Smi::cast(element)->value(); double_storage->set(j, int_value); j++; } break; } case FAST_HOLEY_ELEMENTS: case FAST_ELEMENTS: DCHECK_EQ(0, length); break; default: UNREACHABLE(); } } if (failure) break; } } if (!failure) { Handle<JSArray> array = isolate->factory()->NewJSArray(0); Smi* length = Smi::FromInt(j); Handle<Map> map; map = JSObject::GetElementsTransitionMap(array, kind); array->set_map(*map); array->set_length(length); array->set_elements(*storage); return *array; } // In case of failure, fall through. } Handle<FixedArray> storage; if (fast_case) { // The backing storage array must have non-existing elements to preserve // holes across concat operations. storage = isolate->factory()->NewFixedArrayWithHoles( estimate_result_length); } else { // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate uint32_t at_least_space_for = estimate_nof_elements + (estimate_nof_elements >> 2); storage = Handle<FixedArray>::cast( SeededNumberDictionary::New(isolate, at_least_space_for)); } ArrayConcatVisitor visitor(isolate, storage, fast_case); for (int i = 0; i < argument_count; i++) { Handle<Object> obj(elements->get(i), isolate); if (obj->IsJSArray()) { Handle<JSArray> array = Handle<JSArray>::cast(obj); if (!IterateElements(isolate, array, &visitor)) { return isolate->heap()->exception(); } } else { visitor.visit(0, obj); visitor.increase_index_offset(1); } } if (visitor.exceeds_array_limit()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError("invalid_array_length", HandleVector<Object>(NULL, 0))); } return *visitor.ToArray(); } // This will not allocate (flatten the string), but it may run // very slowly for very deeply nested ConsStrings. For debugging use only. RUNTIME_FUNCTION(Runtime_GlobalPrint) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(String, string, 0); ConsStringIteratorOp op; StringCharacterStream stream(string, &op); while (stream.HasMore()) { uint16_t character = stream.GetNext(); PrintF("%c", character); } return string; } // Moves all own elements of an object, that are below a limit, to positions // starting at zero. All undefined values are placed after non-undefined values, // and are followed by non-existing element. Does not change the length // property. // Returns the number of non-undefined elements collected. // Returns -1 if hole removal is not supported by this method. RUNTIME_FUNCTION(Runtime_RemoveArrayHoles) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]); return *JSObject::PrepareElementsForSort(object, limit); } // Move contents of argument 0 (an array) to argument 1 (an array) RUNTIME_FUNCTION(Runtime_MoveArrayContents) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, from, 0); CONVERT_ARG_HANDLE_CHECKED(JSArray, to, 1); JSObject::ValidateElements(from); JSObject::ValidateElements(to); Handle<FixedArrayBase> new_elements(from->elements()); ElementsKind from_kind = from->GetElementsKind(); Handle<Map> new_map = JSObject::GetElementsTransitionMap(to, from_kind); JSObject::SetMapAndElements(to, new_map, new_elements); to->set_length(from->length()); JSObject::ResetElements(from); from->set_length(Smi::FromInt(0)); JSObject::ValidateElements(to); return *to; } // How many elements does this object/array have? RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0); Handle<FixedArrayBase> elements(array->elements(), isolate); SealHandleScope shs(isolate); if (elements->IsDictionary()) { int result = Handle<SeededNumberDictionary>::cast(elements)->NumberOfElements(); return Smi::FromInt(result); } else { DCHECK(array->length()->IsSmi()); // For packed elements, we know the exact number of elements int length = elements->length(); ElementsKind kind = array->GetElementsKind(); if (IsFastPackedElementsKind(kind)) { return Smi::FromInt(length); } // For holey elements, take samples from the buffer checking for holes // to generate the estimate. const int kNumberOfHoleCheckSamples = 97; int increment = (length < kNumberOfHoleCheckSamples) ? 1 : static_cast<int>(length / kNumberOfHoleCheckSamples); ElementsAccessor* accessor = array->GetElementsAccessor(); int holes = 0; for (int i = 0; i < length; i += increment) { if (!accessor->HasElement(array, array, i, elements)) { ++holes; } } int estimate = static_cast<int>((kNumberOfHoleCheckSamples - holes) / kNumberOfHoleCheckSamples * length); return Smi::FromInt(estimate); } } // Returns an array that tells you where in the [0, length) interval an array // might have elements. Can either return an array of keys (positive integers // or undefined) or a number representing the positive length of an interval // starting at index 0. // Intervals can span over some keys that are not in the object. RUNTIME_FUNCTION(Runtime_GetArrayKeys) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0); CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]); if (array->elements()->IsDictionary()) { Handle<FixedArray> keys = isolate->factory()->empty_fixed_array(); for (PrototypeIterator iter(isolate, array, PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(); iter.Advance()) { if (PrototypeIterator::GetCurrent(iter)->IsJSProxy() || JSObject::cast(*PrototypeIterator::GetCurrent(iter)) ->HasIndexedInterceptor()) { // Bail out if we find a proxy or interceptor, likely not worth // collecting keys in that case. return *isolate->factory()->NewNumberFromUint(length); } Handle<JSObject> current = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); Handle<FixedArray> current_keys = isolate->factory()->NewFixedArray(current->NumberOfOwnElements(NONE)); current->GetOwnElementKeys(*current_keys, NONE); ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, keys, FixedArray::UnionOfKeys(keys, current_keys)); } // Erase any keys >= length. // TODO(adamk): Remove this step when the contract of %GetArrayKeys // is changed to let this happen on the JS side. for (int i = 0; i < keys->length(); i++) { if (NumberToUint32(keys->get(i)) >= length) keys->set_undefined(i); } return *isolate->factory()->NewJSArrayWithElements(keys); } else { RUNTIME_ASSERT(array->HasFastSmiOrObjectElements() || array->HasFastDoubleElements()); uint32_t actual_length = static_cast<uint32_t>(array->elements()->length()); return *isolate->factory()->NewNumberFromUint(Min(actual_length, length)); } } RUNTIME_FUNCTION(Runtime_LookupAccessor) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); CONVERT_SMI_ARG_CHECKED(flag, 2); AccessorComponent component = flag == 0 ? ACCESSOR_GETTER : ACCESSOR_SETTER; if (!receiver->IsJSObject()) return isolate->heap()->undefined_value(); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::GetAccessor(Handle<JSObject>::cast(receiver), name, component)); return *result; } RUNTIME_FUNCTION(Runtime_DebugBreak) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); isolate->debug()->HandleDebugBreak(); return isolate->heap()->undefined_value(); } // Helper functions for wrapping and unwrapping stack frame ids. static Smi* WrapFrameId(StackFrame::Id id) { DCHECK(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4))); return Smi::FromInt(id >> 2); } static StackFrame::Id UnwrapFrameId(int wrapped) { return static_cast<StackFrame::Id>(wrapped << 2); } // Adds a JavaScript function as a debug event listener. // args[0]: debug event listener function to set or null or undefined for // clearing the event listener function // args[1]: object supplied during callback RUNTIME_FUNCTION(Runtime_SetDebugEventListener) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); RUNTIME_ASSERT(args[0]->IsJSFunction() || args[0]->IsUndefined() || args[0]->IsNull()); CONVERT_ARG_HANDLE_CHECKED(Object, callback, 0); CONVERT_ARG_HANDLE_CHECKED(Object, data, 1); isolate->debug()->SetEventListener(callback, data); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_Break) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); isolate->stack_guard()->RequestDebugBreak(); return isolate->heap()->undefined_value(); } static Handle<Object> DebugGetProperty(LookupIterator* it, bool* has_caught = NULL) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: // Ignore access checks. break; case LookupIterator::INTERCEPTOR: case LookupIterator::JSPROXY: return it->isolate()->factory()->undefined_value(); case LookupIterator::ACCESSOR: { Handle<Object> accessors = it->GetAccessors(); if (!accessors->IsAccessorInfo()) { return it->isolate()->factory()->undefined_value(); } MaybeHandle<Object> maybe_result = JSObject::GetPropertyWithAccessor( it->GetReceiver(), it->name(), it->GetHolder<JSObject>(), accessors); Handle<Object> result; if (!maybe_result.ToHandle(&result)) { result = handle(it->isolate()->pending_exception(), it->isolate()); it->isolate()->clear_pending_exception(); if (has_caught != NULL) *has_caught = true; } return result; } case LookupIterator::DATA: return it->GetDataValue(); } } return it->isolate()->factory()->undefined_value(); } // Get debugger related details for an object property, in the following format: // 0: Property value // 1: Property details // 2: Property value is exception // 3: Getter function if defined // 4: Setter function if defined // Items 2-4 are only filled if the property has either a getter or a setter. RUNTIME_FUNCTION(Runtime_DebugGetPropertyDetails) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); // Make sure to set the current context to the context before the debugger was // entered (if the debugger is entered). The reason for switching context here // is that for some property lookups (accessors and interceptors) callbacks // into the embedding application can occour, and the embedding application // could have the assumption that its own native context is the current // context and not some internal debugger context. SaveContext save(isolate); if (isolate->debug()->in_debug_scope()) { isolate->set_context(*isolate->debug()->debugger_entry()->GetContext()); } // Check if the name is trivially convertible to an index and get the element // if so. uint32_t index; if (name->AsArrayIndex(&index)) { Handle<FixedArray> details = isolate->factory()->NewFixedArray(2); Handle<Object> element_or_char; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, element_or_char, Runtime::GetElementOrCharAt(isolate, obj, index)); details->set(0, *element_or_char); details->set( 1, PropertyDetails(NONE, NORMAL, Representation::None()).AsSmi()); return *isolate->factory()->NewJSArrayWithElements(details); } LookupIterator it(obj, name, LookupIterator::HIDDEN); bool has_caught = false; Handle<Object> value = DebugGetProperty(&it, &has_caught); if (!it.IsFound()) return isolate->heap()->undefined_value(); Handle<Object> maybe_pair; if (it.state() == LookupIterator::ACCESSOR) { maybe_pair = it.GetAccessors(); } // If the callback object is a fixed array then it contains JavaScript // getter and/or setter. bool has_js_accessors = !maybe_pair.is_null() && maybe_pair->IsAccessorPair(); Handle<FixedArray> details = isolate->factory()->NewFixedArray(has_js_accessors ? 6 : 3); details->set(0, *value); // TODO(verwaest): Get rid of this random way of handling interceptors. PropertyDetails d = it.state() == LookupIterator::INTERCEPTOR ? PropertyDetails(NONE, NORMAL, 0) : it.property_details(); details->set(1, d.AsSmi()); details->set( 2, isolate->heap()->ToBoolean(it.state() == LookupIterator::INTERCEPTOR)); if (has_js_accessors) { AccessorPair* accessors = AccessorPair::cast(*maybe_pair); details->set(3, isolate->heap()->ToBoolean(has_caught)); details->set(4, accessors->GetComponent(ACCESSOR_GETTER)); details->set(5, accessors->GetComponent(ACCESSOR_SETTER)); } return *isolate->factory()->NewJSArrayWithElements(details); } RUNTIME_FUNCTION(Runtime_DebugGetProperty) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); LookupIterator it(obj, name); return *DebugGetProperty(&it); } // Return the property type calculated from the property details. // args[0]: smi with property details. RUNTIME_FUNCTION(Runtime_DebugPropertyTypeFromDetails) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_PROPERTY_DETAILS_CHECKED(details, 0); return Smi::FromInt(static_cast<int>(details.type())); } // Return the property attribute calculated from the property details. // args[0]: smi with property details. RUNTIME_FUNCTION(Runtime_DebugPropertyAttributesFromDetails) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_PROPERTY_DETAILS_CHECKED(details, 0); return Smi::FromInt(static_cast<int>(details.attributes())); } // Return the property insertion index calculated from the property details. // args[0]: smi with property details. RUNTIME_FUNCTION(Runtime_DebugPropertyIndexFromDetails) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_PROPERTY_DETAILS_CHECKED(details, 0); // TODO(verwaest): Depends on the type of details. return Smi::FromInt(details.dictionary_index()); } // Return property value from named interceptor. // args[0]: object // args[1]: property name RUNTIME_FUNCTION(Runtime_DebugNamedInterceptorPropertyValue) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); RUNTIME_ASSERT(obj->HasNamedInterceptor()); CONVERT_ARG_HANDLE_CHECKED(Name, name, 1); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::GetProperty(obj, name)); return *result; } // Return element value from indexed interceptor. // args[0]: object // args[1]: index RUNTIME_FUNCTION(Runtime_DebugIndexedInterceptorElementValue) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); RUNTIME_ASSERT(obj->HasIndexedInterceptor()); CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, JSObject::GetElementWithInterceptor(obj, obj, index)); return *result; } static bool CheckExecutionState(Isolate* isolate, int break_id) { return !isolate->debug()->debug_context().is_null() && isolate->debug()->break_id() != 0 && isolate->debug()->break_id() == break_id; } RUNTIME_FUNCTION(Runtime_CheckExecutionState) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); return isolate->heap()->true_value(); } RUNTIME_FUNCTION(Runtime_GetFrameCount) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); // Count all frames which are relevant to debugging stack trace. int n = 0; StackFrame::Id id = isolate->debug()->break_frame_id(); if (id == StackFrame::NO_ID) { // If there is no JavaScript stack frame count is 0. return Smi::FromInt(0); } for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) { List<FrameSummary> frames(FLAG_max_inlining_levels + 1); it.frame()->Summarize(&frames); for (int i = frames.length() - 1; i >= 0; i--) { // Omit functions from native scripts. if (!frames[i].function()->IsFromNativeScript()) n++; } } return Smi::FromInt(n); } class FrameInspector { public: FrameInspector(JavaScriptFrame* frame, int inlined_jsframe_index, Isolate* isolate) : frame_(frame), deoptimized_frame_(NULL), isolate_(isolate) { // Calculate the deoptimized frame. if (frame->is_optimized()) { deoptimized_frame_ = Deoptimizer::DebuggerInspectableFrame( frame, inlined_jsframe_index, isolate); } has_adapted_arguments_ = frame_->has_adapted_arguments(); is_bottommost_ = inlined_jsframe_index == 0; is_optimized_ = frame_->is_optimized(); } ~FrameInspector() { // Get rid of the calculated deoptimized frame if any. if (deoptimized_frame_ != NULL) { Deoptimizer::DeleteDebuggerInspectableFrame(deoptimized_frame_, isolate_); } } int GetParametersCount() { return is_optimized_ ? deoptimized_frame_->parameters_count() : frame_->ComputeParametersCount(); } int expression_count() { return deoptimized_frame_->expression_count(); } Object* GetFunction() { return is_optimized_ ? deoptimized_frame_->GetFunction() : frame_->function(); } Object* GetParameter(int index) { return is_optimized_ ? deoptimized_frame_->GetParameter(index) : frame_->GetParameter(index); } Object* GetExpression(int index) { return is_optimized_ ? deoptimized_frame_->GetExpression(index) : frame_->GetExpression(index); } int GetSourcePosition() { return is_optimized_ ? deoptimized_frame_->GetSourcePosition() : frame_->LookupCode()->SourcePosition(frame_->pc()); } bool IsConstructor() { return is_optimized_ && !is_bottommost_ ? deoptimized_frame_->HasConstructStub() : frame_->IsConstructor(); } Object* GetContext() { return is_optimized_ ? deoptimized_frame_->GetContext() : frame_->context(); } // To inspect all the provided arguments the frame might need to be // replaced with the arguments frame. void SetArgumentsFrame(JavaScriptFrame* frame) { DCHECK(has_adapted_arguments_); frame_ = frame; is_optimized_ = frame_->is_optimized(); DCHECK(!is_optimized_); } private: JavaScriptFrame* frame_; DeoptimizedFrameInfo* deoptimized_frame_; Isolate* isolate_; bool is_optimized_; bool is_bottommost_; bool has_adapted_arguments_; DISALLOW_COPY_AND_ASSIGN(FrameInspector); }; static const int kFrameDetailsFrameIdIndex = 0; static const int kFrameDetailsReceiverIndex = 1; static const int kFrameDetailsFunctionIndex = 2; static const int kFrameDetailsArgumentCountIndex = 3; static const int kFrameDetailsLocalCountIndex = 4; static const int kFrameDetailsSourcePositionIndex = 5; static const int kFrameDetailsConstructCallIndex = 6; static const int kFrameDetailsAtReturnIndex = 7; static const int kFrameDetailsFlagsIndex = 8; static const int kFrameDetailsFirstDynamicIndex = 9; static SaveContext* FindSavedContextForFrame(Isolate* isolate, JavaScriptFrame* frame) { SaveContext* save = isolate->save_context(); while (save != NULL && !save->IsBelowFrame(frame)) { save = save->prev(); } DCHECK(save != NULL); return save; } // Advances the iterator to the frame that matches the index and returns the // inlined frame index, or -1 if not found. Skips native JS functions. static int FindIndexedNonNativeFrame(JavaScriptFrameIterator* it, int index) { int count = -1; for (; !it->done(); it->Advance()) { List<FrameSummary> frames(FLAG_max_inlining_levels + 1); it->frame()->Summarize(&frames); for (int i = frames.length() - 1; i >= 0; i--) { // Omit functions from native scripts. if (frames[i].function()->IsFromNativeScript()) continue; if (++count == index) return i; } } return -1; } // Return an array with frame details // args[0]: number: break id // args[1]: number: frame index // // The array returned contains the following information: // 0: Frame id // 1: Receiver // 2: Function // 3: Argument count // 4: Local count // 5: Source position // 6: Constructor call // 7: Is at return // 8: Flags // Arguments name, value // Locals name, value // Return value if any RUNTIME_FUNCTION(Runtime_GetFrameDetails) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); Heap* heap = isolate->heap(); // Find the relevant frame with the requested index. StackFrame::Id id = isolate->debug()->break_frame_id(); if (id == StackFrame::NO_ID) { // If there are no JavaScript stack frames return undefined. return heap->undefined_value(); } JavaScriptFrameIterator it(isolate, id); // Inlined frame index in optimized frame, starting from outer function. int inlined_jsframe_index = FindIndexedNonNativeFrame(&it, index); if (inlined_jsframe_index == -1) return heap->undefined_value(); FrameInspector frame_inspector(it.frame(), inlined_jsframe_index, isolate); bool is_optimized = it.frame()->is_optimized(); // Traverse the saved contexts chain to find the active context for the // selected frame. SaveContext* save = FindSavedContextForFrame(isolate, it.frame()); // Get the frame id. Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate); // Find source position in unoptimized code. int position = frame_inspector.GetSourcePosition(); // Check for constructor frame. bool constructor = frame_inspector.IsConstructor(); // Get scope info and read from it for local variable information. Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction())); Handle<SharedFunctionInfo> shared(function->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); DCHECK(*scope_info != ScopeInfo::Empty(isolate)); // Get the locals names and values into a temporary array. int local_count = scope_info->LocalCount(); for (int slot = 0; slot < scope_info->LocalCount(); ++slot) { // Hide compiler-introduced temporary variables, whether on the stack or on // the context. if (scope_info->LocalIsSynthetic(slot)) local_count--; } Handle<FixedArray> locals = isolate->factory()->NewFixedArray(local_count * 2); // Fill in the values of the locals. int local = 0; int i = 0; for (; i < scope_info->StackLocalCount(); ++i) { // Use the value from the stack. if (scope_info->LocalIsSynthetic(i)) continue; locals->set(local * 2, scope_info->LocalName(i)); locals->set(local * 2 + 1, frame_inspector.GetExpression(i)); local++; } if (local < local_count) { // Get the context containing declarations. Handle<Context> context( Context::cast(frame_inspector.GetContext())->declaration_context()); for (; i < scope_info->LocalCount(); ++i) { if (scope_info->LocalIsSynthetic(i)) continue; Handle<String> name(scope_info->LocalName(i)); VariableMode mode; InitializationFlag init_flag; MaybeAssignedFlag maybe_assigned_flag; locals->set(local * 2, *name); int context_slot_index = ScopeInfo::ContextSlotIndex( scope_info, name, &mode, &init_flag, &maybe_assigned_flag); Object* value = context->get(context_slot_index); locals->set(local * 2 + 1, value); local++; } } // Check whether this frame is positioned at return. If not top // frame or if the frame is optimized it cannot be at a return. bool at_return = false; if (!is_optimized && index == 0) { at_return = isolate->debug()->IsBreakAtReturn(it.frame()); } // If positioned just before return find the value to be returned and add it // to the frame information. Handle<Object> return_value = isolate->factory()->undefined_value(); if (at_return) { StackFrameIterator it2(isolate); Address internal_frame_sp = NULL; while (!it2.done()) { if (it2.frame()->is_internal()) { internal_frame_sp = it2.frame()->sp(); } else { if (it2.frame()->is_java_script()) { if (it2.frame()->id() == it.frame()->id()) { // The internal frame just before the JavaScript frame contains the // value to return on top. A debug break at return will create an // internal frame to store the return value (eax/rax/r0) before // entering the debug break exit frame. if (internal_frame_sp != NULL) { return_value = Handle<Object>(Memory::Object_at(internal_frame_sp), isolate); break; } } } // Indicate that the previous frame was not an internal frame. internal_frame_sp = NULL; } it2.Advance(); } } // Now advance to the arguments adapter frame (if any). It contains all // the provided parameters whereas the function frame always have the number // of arguments matching the functions parameters. The rest of the // information (except for what is collected above) is the same. if ((inlined_jsframe_index == 0) && it.frame()->has_adapted_arguments()) { it.AdvanceToArgumentsFrame(); frame_inspector.SetArgumentsFrame(it.frame()); } // Find the number of arguments to fill. At least fill the number of // parameters for the function and fill more if more parameters are provided. int argument_count = scope_info->ParameterCount(); if (argument_count < frame_inspector.GetParametersCount()) { argument_count = frame_inspector.GetParametersCount(); } // Calculate the size of the result. int details_size = kFrameDetailsFirstDynamicIndex + 2 * (argument_count + local_count) + (at_return ? 1 : 0); Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size); // Add the frame id. details->set(kFrameDetailsFrameIdIndex, *frame_id); // Add the function (same as in function frame). details->set(kFrameDetailsFunctionIndex, frame_inspector.GetFunction()); // Add the arguments count. details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count)); // Add the locals count details->set(kFrameDetailsLocalCountIndex, Smi::FromInt(local_count)); // Add the source position. if (position != RelocInfo::kNoPosition) { details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position)); } else { details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value()); } // Add the constructor information. details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor)); // Add the at return information. details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return)); // Add flags to indicate information on whether this frame is // bit 0: invoked in the debugger context. // bit 1: optimized frame. // bit 2: inlined in optimized frame int flags = 0; if (*save->context() == *isolate->debug()->debug_context()) { flags |= 1 << 0; } if (is_optimized) { flags |= 1 << 1; flags |= inlined_jsframe_index << 2; } details->set(kFrameDetailsFlagsIndex, Smi::FromInt(flags)); // Fill the dynamic part. int details_index = kFrameDetailsFirstDynamicIndex; // Add arguments name and value. for (int i = 0; i < argument_count; i++) { // Name of the argument. if (i < scope_info->ParameterCount()) { details->set(details_index++, scope_info->ParameterName(i)); } else { details->set(details_index++, heap->undefined_value()); } // Parameter value. if (i < frame_inspector.GetParametersCount()) { // Get the value from the stack. details->set(details_index++, frame_inspector.GetParameter(i)); } else { details->set(details_index++, heap->undefined_value()); } } // Add locals name and value from the temporary copy from the function frame. for (int i = 0; i < local_count * 2; i++) { details->set(details_index++, locals->get(i)); } // Add the value being returned. if (at_return) { details->set(details_index++, *return_value); } // Add the receiver (same as in function frame). // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE // THE FRAME ITERATOR TO WRAP THE RECEIVER. Handle<Object> receiver(it.frame()->receiver(), isolate); if (!receiver->IsJSObject() && shared->strict_mode() == SLOPPY && !function->IsBuiltin()) { // If the receiver is not a JSObject and the function is not a // builtin or strict-mode we have hit an optimization where a // value object is not converted into a wrapped JS objects. To // hide this optimization from the debugger, we wrap the receiver // by creating correct wrapper object based on the calling frame's // native context. it.Advance(); if (receiver->IsUndefined()) { receiver = handle(function->global_proxy()); } else { Context* context = Context::cast(it.frame()->context()); Handle<Context> native_context(Context::cast(context->native_context())); if (!Object::ToObject(isolate, receiver, native_context) .ToHandle(&receiver)) { // This only happens if the receiver is forcibly set in %_CallFunction. return heap->undefined_value(); } } } details->set(kFrameDetailsReceiverIndex, *receiver); DCHECK_EQ(details_size, details_index); return *isolate->factory()->NewJSArrayWithElements(details); } static bool ParameterIsShadowedByContextLocal(Handle<ScopeInfo> info, Handle<String> parameter_name) { VariableMode mode; InitializationFlag init_flag; MaybeAssignedFlag maybe_assigned_flag; return ScopeInfo::ContextSlotIndex(info, parameter_name, &mode, &init_flag, &maybe_assigned_flag) != -1; } // Create a plain JSObject which materializes the local scope for the specified // frame. MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeStackLocalsWithFrameInspector( Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function, FrameInspector* frame_inspector) { Handle<SharedFunctionInfo> shared(function->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); // First fill all parameters. for (int i = 0; i < scope_info->ParameterCount(); ++i) { // Do not materialize the parameter if it is shadowed by a context local. Handle<String> name(scope_info->ParameterName(i)); if (ParameterIsShadowedByContextLocal(scope_info, name)) continue; HandleScope scope(isolate); Handle<Object> value(i < frame_inspector->GetParametersCount() ? frame_inspector->GetParameter(i) : isolate->heap()->undefined_value(), isolate); DCHECK(!value->IsTheHole()); RETURN_ON_EXCEPTION( isolate, Runtime::SetObjectProperty(isolate, target, name, value, SLOPPY), JSObject); } // Second fill all stack locals. for (int i = 0; i < scope_info->StackLocalCount(); ++i) { if (scope_info->LocalIsSynthetic(i)) continue; Handle<String> name(scope_info->StackLocalName(i)); Handle<Object> value(frame_inspector->GetExpression(i), isolate); if (value->IsTheHole()) continue; RETURN_ON_EXCEPTION( isolate, Runtime::SetObjectProperty(isolate, target, name, value, SLOPPY), JSObject); } return target; } static void UpdateStackLocalsFromMaterializedObject(Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function, JavaScriptFrame* frame, int inlined_jsframe_index) { if (inlined_jsframe_index != 0 || frame->is_optimized()) { // Optimized frames are not supported. // TODO(yangguo): make sure all code deoptimized when debugger is active // and assert that this cannot happen. return; } Handle<SharedFunctionInfo> shared(function->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); // Parameters. for (int i = 0; i < scope_info->ParameterCount(); ++i) { // Shadowed parameters were not materialized. Handle<String> name(scope_info->ParameterName(i)); if (ParameterIsShadowedByContextLocal(scope_info, name)) continue; DCHECK(!frame->GetParameter(i)->IsTheHole()); HandleScope scope(isolate); Handle<Object> value = Object::GetPropertyOrElement(target, name).ToHandleChecked(); frame->SetParameterValue(i, *value); } // Stack locals. for (int i = 0; i < scope_info->StackLocalCount(); ++i) { if (scope_info->LocalIsSynthetic(i)) continue; if (frame->GetExpression(i)->IsTheHole()) continue; HandleScope scope(isolate); Handle<Object> value = Object::GetPropertyOrElement( target, handle(scope_info->StackLocalName(i), isolate)).ToHandleChecked(); frame->SetExpression(i, *value); } } MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalContext( Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function, JavaScriptFrame* frame) { HandleScope scope(isolate); Handle<SharedFunctionInfo> shared(function->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); if (!scope_info->HasContext()) return target; // Third fill all context locals. Handle<Context> frame_context(Context::cast(frame->context())); Handle<Context> function_context(frame_context->declaration_context()); if (!ScopeInfo::CopyContextLocalsToScopeObject( scope_info, function_context, target)) { return MaybeHandle<JSObject>(); } // Finally copy any properties from the function context extension. // These will be variables introduced by eval. if (function_context->closure() == *function) { if (function_context->has_extension() && !function_context->IsNativeContext()) { Handle<JSObject> ext(JSObject::cast(function_context->extension())); Handle<FixedArray> keys; ASSIGN_RETURN_ON_EXCEPTION( isolate, keys, JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS), JSObject); for (int i = 0; i < keys->length(); i++) { // Names of variables introduced by eval are strings. DCHECK(keys->get(i)->IsString()); Handle<String> key(String::cast(keys->get(i))); Handle<Object> value; ASSIGN_RETURN_ON_EXCEPTION( isolate, value, Object::GetPropertyOrElement(ext, key), JSObject); RETURN_ON_EXCEPTION( isolate, Runtime::SetObjectProperty(isolate, target, key, value, SLOPPY), JSObject); } } } return target; } MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalScope( Isolate* isolate, JavaScriptFrame* frame, int inlined_jsframe_index) { FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate); Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction())); Handle<JSObject> local_scope = isolate->factory()->NewJSObject(isolate->object_function()); ASSIGN_RETURN_ON_EXCEPTION( isolate, local_scope, MaterializeStackLocalsWithFrameInspector( isolate, local_scope, function, &frame_inspector), JSObject); return MaterializeLocalContext(isolate, local_scope, function, frame); } // Set the context local variable value. static bool SetContextLocalValue(Isolate* isolate, Handle<ScopeInfo> scope_info, Handle<Context> context, Handle<String> variable_name, Handle<Object> new_value) { for (int i = 0; i < scope_info->ContextLocalCount(); i++) { Handle<String> next_name(scope_info->ContextLocalName(i)); if (String::Equals(variable_name, next_name)) { VariableMode mode; InitializationFlag init_flag; MaybeAssignedFlag maybe_assigned_flag; int context_index = ScopeInfo::ContextSlotIndex( scope_info, next_name, &mode, &init_flag, &maybe_assigned_flag); context->set(context_index, *new_value); return true; } } return false; } static bool SetLocalVariableValue(Isolate* isolate, JavaScriptFrame* frame, int inlined_jsframe_index, Handle<String> variable_name, Handle<Object> new_value) { if (inlined_jsframe_index != 0 || frame->is_optimized()) { // Optimized frames are not supported. return false; } Handle<JSFunction> function(frame->function()); Handle<SharedFunctionInfo> shared(function->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); bool default_result = false; // Parameters. for (int i = 0; i < scope_info->ParameterCount(); ++i) { HandleScope scope(isolate); if (String::Equals(handle(scope_info->ParameterName(i)), variable_name)) { frame->SetParameterValue(i, *new_value); // Argument might be shadowed in heap context, don't stop here. default_result = true; } } // Stack locals. for (int i = 0; i < scope_info->StackLocalCount(); ++i) { HandleScope scope(isolate); if (String::Equals(handle(scope_info->StackLocalName(i)), variable_name)) { frame->SetExpression(i, *new_value); return true; } } if (scope_info->HasContext()) { // Context locals. Handle<Context> frame_context(Context::cast(frame->context())); Handle<Context> function_context(frame_context->declaration_context()); if (SetContextLocalValue( isolate, scope_info, function_context, variable_name, new_value)) { return true; } // Function context extension. These are variables introduced by eval. if (function_context->closure() == *function) { if (function_context->has_extension() && !function_context->IsNativeContext()) { Handle<JSObject> ext(JSObject::cast(function_context->extension())); Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name); DCHECK(maybe.has_value); if (maybe.value) { // We don't expect this to do anything except replacing // property value. Runtime::SetObjectProperty(isolate, ext, variable_name, new_value, SLOPPY).Assert(); return true; } } } } return default_result; } // Create a plain JSObject which materializes the closure content for the // context. MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeClosure( Isolate* isolate, Handle<Context> context) { DCHECK(context->IsFunctionContext()); Handle<SharedFunctionInfo> shared(context->closure()->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); // Allocate and initialize a JSObject with all the content of this function // closure. Handle<JSObject> closure_scope = isolate->factory()->NewJSObject(isolate->object_function()); // Fill all context locals to the context extension. if (!ScopeInfo::CopyContextLocalsToScopeObject( scope_info, context, closure_scope)) { return MaybeHandle<JSObject>(); } // Finally copy any properties from the function context extension. This will // be variables introduced by eval. if (context->has_extension()) { Handle<JSObject> ext(JSObject::cast(context->extension())); Handle<FixedArray> keys; ASSIGN_RETURN_ON_EXCEPTION( isolate, keys, JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS), JSObject); for (int i = 0; i < keys->length(); i++) { HandleScope scope(isolate); // Names of variables introduced by eval are strings. DCHECK(keys->get(i)->IsString()); Handle<String> key(String::cast(keys->get(i))); Handle<Object> value; ASSIGN_RETURN_ON_EXCEPTION( isolate, value, Object::GetPropertyOrElement(ext, key), JSObject); RETURN_ON_EXCEPTION( isolate, Runtime::DefineObjectProperty(closure_scope, key, value, NONE), JSObject); } } return closure_scope; } // This method copies structure of MaterializeClosure method above. static bool SetClosureVariableValue(Isolate* isolate, Handle<Context> context, Handle<String> variable_name, Handle<Object> new_value) { DCHECK(context->IsFunctionContext()); Handle<SharedFunctionInfo> shared(context->closure()->shared()); Handle<ScopeInfo> scope_info(shared->scope_info()); // Context locals to the context extension. if (SetContextLocalValue( isolate, scope_info, context, variable_name, new_value)) { return true; } // Properties from the function context extension. This will // be variables introduced by eval. if (context->has_extension()) { Handle<JSObject> ext(JSObject::cast(context->extension())); Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name); DCHECK(maybe.has_value); if (maybe.value) { // We don't expect this to do anything except replacing property value. Runtime::DefineObjectProperty( ext, variable_name, new_value, NONE).Assert(); return true; } } return false; } // Create a plain JSObject which materializes the scope for the specified // catch context. MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeCatchScope( Isolate* isolate, Handle<Context> context) { DCHECK(context->IsCatchContext()); Handle<String> name(String::cast(context->extension())); Handle<Object> thrown_object(context->get(Context::THROWN_OBJECT_INDEX), isolate); Handle<JSObject> catch_scope = isolate->factory()->NewJSObject(isolate->object_function()); RETURN_ON_EXCEPTION( isolate, Runtime::DefineObjectProperty(catch_scope, name, thrown_object, NONE), JSObject); return catch_scope; } static bool SetCatchVariableValue(Isolate* isolate, Handle<Context> context, Handle<String> variable_name, Handle<Object> new_value) { DCHECK(context->IsCatchContext()); Handle<String> name(String::cast(context->extension())); if (!String::Equals(name, variable_name)) { return false; } context->set(Context::THROWN_OBJECT_INDEX, *new_value); return true; } // Create a plain JSObject which materializes the block scope for the specified // block context. MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeBlockScope( Isolate* isolate, Handle<Context> context) { DCHECK(context->IsBlockContext()); Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension())); // Allocate and initialize a JSObject with all the arguments, stack locals // heap locals and extension properties of the debugged function. Handle<JSObject> block_scope = isolate->factory()->NewJSObject(isolate->object_function()); // Fill all context locals. if (!ScopeInfo::CopyContextLocalsToScopeObject( scope_info, context, block_scope)) { return MaybeHandle<JSObject>(); } return block_scope; } // Create a plain JSObject which materializes the module scope for the specified // module context. MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeModuleScope( Isolate* isolate, Handle<Context> context) { DCHECK(context->IsModuleContext()); Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension())); // Allocate and initialize a JSObject with all the members of the debugged // module. Handle<JSObject> module_scope = isolate->factory()->NewJSObject(isolate->object_function()); // Fill all context locals. if (!ScopeInfo::CopyContextLocalsToScopeObject( scope_info, context, module_scope)) { return MaybeHandle<JSObject>(); } return module_scope; } // Iterate over the actual scopes visible from a stack frame or from a closure. // The iteration proceeds from the innermost visible nested scope outwards. // All scopes are backed by an actual context except the local scope, // which is inserted "artificially" in the context chain. class ScopeIterator { public: enum ScopeType { ScopeTypeGlobal = 0, ScopeTypeLocal, ScopeTypeWith, ScopeTypeClosure, ScopeTypeCatch, ScopeTypeBlock, ScopeTypeModule }; ScopeIterator(Isolate* isolate, JavaScriptFrame* frame, int inlined_jsframe_index, bool ignore_nested_scopes = false) : isolate_(isolate), frame_(frame), inlined_jsframe_index_(inlined_jsframe_index), function_(frame->function()), context_(Context::cast(frame->context())), nested_scope_chain_(4), failed_(false) { // Catch the case when the debugger stops in an internal function. Handle<SharedFunctionInfo> shared_info(function_->shared()); Handle<ScopeInfo> scope_info(shared_info->scope_info()); if (shared_info->script() == isolate->heap()->undefined_value()) { while (context_->closure() == *function_) { context_ = Handle<Context>(context_->previous(), isolate_); } return; } // Get the debug info (create it if it does not exist). if (!isolate->debug()->EnsureDebugInfo(shared_info, function_)) { // Return if ensuring debug info failed. return; } // Currently it takes too much time to find nested scopes due to script // parsing. Sometimes we want to run the ScopeIterator as fast as possible // (for example, while collecting async call stacks on every // addEventListener call), even if we drop some nested scopes. // Later we may optimize getting the nested scopes (cache the result?) // and include nested scopes into the "fast" iteration case as well. if (!ignore_nested_scopes) { Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared_info); // Find the break point where execution has stopped. BreakLocationIterator break_location_iterator(debug_info, ALL_BREAK_LOCATIONS); // pc points to the instruction after the current one, possibly a break // location as well. So the "- 1" to exclude it from the search. break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1); // Within the return sequence at the moment it is not possible to // get a source position which is consistent with the current scope chain. // Thus all nested with, catch and block contexts are skipped and we only // provide the function scope. ignore_nested_scopes = break_location_iterator.IsExit(); } if (ignore_nested_scopes) { if (scope_info->HasContext()) { context_ = Handle<Context>(context_->declaration_context(), isolate_); } else { while (context_->closure() == *function_) { context_ = Handle<Context>(context_->previous(), isolate_); } } if (scope_info->scope_type() == FUNCTION_SCOPE) { nested_scope_chain_.Add(scope_info); } } else { // Reparse the code and analyze the scopes. Handle<Script> script(Script::cast(shared_info->script())); Scope* scope = NULL; // Check whether we are in global, eval or function code. Handle<ScopeInfo> scope_info(shared_info->scope_info()); if (scope_info->scope_type() != FUNCTION_SCOPE) { // Global or eval code. CompilationInfoWithZone info(script); if (scope_info->scope_type() == GLOBAL_SCOPE) { info.MarkAsGlobal(); } else { DCHECK(scope_info->scope_type() == EVAL_SCOPE); info.MarkAsEval(); info.SetContext(Handle<Context>(function_->context())); } if (Parser::Parse(&info) && Scope::Analyze(&info)) { scope = info.function()->scope(); } RetrieveScopeChain(scope, shared_info); } else { // Function code CompilationInfoWithZone info(shared_info); if (Parser::Parse(&info) && Scope::Analyze(&info)) { scope = info.function()->scope(); } RetrieveScopeChain(scope, shared_info); } } } ScopeIterator(Isolate* isolate, Handle<JSFunction> function) : isolate_(isolate), frame_(NULL), inlined_jsframe_index_(0), function_(function), context_(function->context()), failed_(false) { if (function->IsBuiltin()) { context_ = Handle<Context>(); } } // More scopes? bool Done() { DCHECK(!failed_); return context_.is_null(); } bool Failed() { return failed_; } // Move to the next scope. void Next() { DCHECK(!failed_); ScopeType scope_type = Type(); if (scope_type == ScopeTypeGlobal) { // The global scope is always the last in the chain. DCHECK(context_->IsNativeContext()); context_ = Handle<Context>(); return; } if (nested_scope_chain_.is_empty()) { context_ = Handle<Context>(context_->previous(), isolate_); } else { if (nested_scope_chain_.last()->HasContext()) { DCHECK(context_->previous() != NULL); context_ = Handle<Context>(context_->previous(), isolate_); } nested_scope_chain_.RemoveLast(); } } // Return the type of the current scope. ScopeType Type() { DCHECK(!failed_); if (!nested_scope_chain_.is_empty()) { Handle<ScopeInfo> scope_info = nested_scope_chain_.last(); switch (scope_info->scope_type()) { case FUNCTION_SCOPE: DCHECK(context_->IsFunctionContext() || !scope_info->HasContext()); return ScopeTypeLocal; case MODULE_SCOPE: DCHECK(context_->IsModuleContext()); return ScopeTypeModule; case GLOBAL_SCOPE: DCHECK(context_->IsNativeContext()); return ScopeTypeGlobal; case WITH_SCOPE: DCHECK(context_->IsWithContext()); return ScopeTypeWith; case CATCH_SCOPE: DCHECK(context_->IsCatchContext()); return ScopeTypeCatch; case BLOCK_SCOPE: DCHECK(!scope_info->HasContext() || context_->IsBlockContext()); return ScopeTypeBlock; case EVAL_SCOPE: UNREACHABLE(); } } if (context_->IsNativeContext()) { DCHECK(context_->global_object()->IsGlobalObject()); return ScopeTypeGlobal; } if (context_->IsFunctionContext()) { return ScopeTypeClosure; } if (context_->IsCatchContext()) { return ScopeTypeCatch; } if (context_->IsBlockContext()) { return ScopeTypeBlock; } if (context_->IsModuleContext()) { return ScopeTypeModule; } DCHECK(context_->IsWithContext()); return ScopeTypeWith; } // Return the JavaScript object with the content of the current scope. MaybeHandle<JSObject> ScopeObject() { DCHECK(!failed_); switch (Type()) { case ScopeIterator::ScopeTypeGlobal: return Handle<JSObject>(CurrentContext()->global_object()); case ScopeIterator::ScopeTypeLocal: // Materialize the content of the local scope into a JSObject. DCHECK(nested_scope_chain_.length() == 1); return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_); case ScopeIterator::ScopeTypeWith: // Return the with object. return Handle<JSObject>(JSObject::cast(CurrentContext()->extension())); case ScopeIterator::ScopeTypeCatch: return MaterializeCatchScope(isolate_, CurrentContext()); case ScopeIterator::ScopeTypeClosure: // Materialize the content of the closure scope into a JSObject. return MaterializeClosure(isolate_, CurrentContext()); case ScopeIterator::ScopeTypeBlock: return MaterializeBlockScope(isolate_, CurrentContext()); case ScopeIterator::ScopeTypeModule: return MaterializeModuleScope(isolate_, CurrentContext()); } UNREACHABLE(); return Handle<JSObject>(); } bool SetVariableValue(Handle<String> variable_name, Handle<Object> new_value) { DCHECK(!failed_); switch (Type()) { case ScopeIterator::ScopeTypeGlobal: break; case ScopeIterator::ScopeTypeLocal: return SetLocalVariableValue(isolate_, frame_, inlined_jsframe_index_, variable_name, new_value); case ScopeIterator::ScopeTypeWith: break; case ScopeIterator::ScopeTypeCatch: return SetCatchVariableValue(isolate_, CurrentContext(), variable_name, new_value); case ScopeIterator::ScopeTypeClosure: return SetClosureVariableValue(isolate_, CurrentContext(), variable_name, new_value); case ScopeIterator::ScopeTypeBlock: // TODO(2399): should we implement it? break; case ScopeIterator::ScopeTypeModule: // TODO(2399): should we implement it? break; } return false; } Handle<ScopeInfo> CurrentScopeInfo() { DCHECK(!failed_); if (!nested_scope_chain_.is_empty()) { return nested_scope_chain_.last(); } else if (context_->IsBlockContext()) { return Handle<ScopeInfo>(ScopeInfo::cast(context_->extension())); } else if (context_->IsFunctionContext()) { return Handle<ScopeInfo>(context_->closure()->shared()->scope_info()); } return Handle<ScopeInfo>::null(); } // Return the context for this scope. For the local context there might not // be an actual context. Handle<Context> CurrentContext() { DCHECK(!failed_); if (Type() == ScopeTypeGlobal || nested_scope_chain_.is_empty()) { return context_; } else if (nested_scope_chain_.last()->HasContext()) { return context_; } else { return Handle<Context>(); } } #ifdef DEBUG // Debug print of the content of the current scope. void DebugPrint() { OFStream os(stdout); DCHECK(!failed_); switch (Type()) { case ScopeIterator::ScopeTypeGlobal: os << "Global:\n"; CurrentContext()->Print(os); break; case ScopeIterator::ScopeTypeLocal: { os << "Local:\n"; function_->shared()->scope_info()->Print(); if (!CurrentContext().is_null()) { CurrentContext()->Print(os); if (CurrentContext()->has_extension()) { Handle<Object> extension(CurrentContext()->extension(), isolate_); if (extension->IsJSContextExtensionObject()) { extension->Print(os); } } } break; } case ScopeIterator::ScopeTypeWith: os << "With:\n"; CurrentContext()->extension()->Print(os); break; case ScopeIterator::ScopeTypeCatch: os << "Catch:\n"; CurrentContext()->extension()->Print(os); CurrentContext()->get(Context::THROWN_OBJECT_INDEX)->Print(os); break; case ScopeIterator::ScopeTypeClosure: os << "Closure:\n"; CurrentContext()->Print(os); if (CurrentContext()->has_extension()) { Handle<Object> extension(CurrentContext()->extension(), isolate_); if (extension->IsJSContextExtensionObject()) { extension->Print(os); } } break; default: UNREACHABLE(); } PrintF("\n"); } #endif private: Isolate* isolate_; JavaScriptFrame* frame_; int inlined_jsframe_index_; Handle<JSFunction> function_; Handle<Context> context_; List<Handle<ScopeInfo> > nested_scope_chain_; bool failed_; void RetrieveScopeChain(Scope* scope, Handle<SharedFunctionInfo> shared_info) { if (scope != NULL) { int source_position = shared_info->code()->SourcePosition(frame_->pc()); scope->GetNestedScopeChain(&nested_scope_chain_, source_position); } else { // A failed reparse indicates that the preparser has diverged from the // parser or that the preparse data given to the initial parse has been // faulty. We fail in debug mode but in release mode we only provide the // information we get from the context chain but nothing about // completely stack allocated scopes or stack allocated locals. // Or it could be due to stack overflow. DCHECK(isolate_->has_pending_exception()); failed_ = true; } } DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator); }; RUNTIME_FUNCTION(Runtime_GetScopeCount) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator it(isolate, id); JavaScriptFrame* frame = it.frame(); // Count the visible scopes. int n = 0; for (ScopeIterator it(isolate, frame, 0); !it.Done(); it.Next()) { n++; } return Smi::FromInt(n); } // Returns the list of step-in positions (text offset) in a function of the // stack frame in a range from the current debug break position to the end // of the corresponding statement. RUNTIME_FUNCTION(Runtime_GetStepInPositions) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator frame_it(isolate, id); RUNTIME_ASSERT(!frame_it.done()); JavaScriptFrame* frame = frame_it.frame(); Handle<JSFunction> fun = Handle<JSFunction>(frame->function()); Handle<SharedFunctionInfo> shared = Handle<SharedFunctionInfo>(fun->shared()); if (!isolate->debug()->EnsureDebugInfo(shared, fun)) { return isolate->heap()->undefined_value(); } Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared); int len = 0; Handle<JSArray> array(isolate->factory()->NewJSArray(10)); // Find the break point where execution has stopped. BreakLocationIterator break_location_iterator(debug_info, ALL_BREAK_LOCATIONS); break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1); int current_statement_pos = break_location_iterator.statement_position(); while (!break_location_iterator.Done()) { bool accept; if (break_location_iterator.pc() > frame->pc()) { accept = true; } else { StackFrame::Id break_frame_id = isolate->debug()->break_frame_id(); // The break point is near our pc. Could be a step-in possibility, // that is currently taken by active debugger call. if (break_frame_id == StackFrame::NO_ID) { // We are not stepping. accept = false; } else { JavaScriptFrameIterator additional_frame_it(isolate, break_frame_id); // If our frame is a top frame and we are stepping, we can do step-in // at this place. accept = additional_frame_it.frame()->id() == id; } } if (accept) { if (break_location_iterator.IsStepInLocation(isolate)) { Smi* position_value = Smi::FromInt(break_location_iterator.position()); RETURN_FAILURE_ON_EXCEPTION( isolate, JSObject::SetElement(array, len, Handle<Object>(position_value, isolate), NONE, SLOPPY)); len++; } } // Advance iterator. break_location_iterator.Next(); if (current_statement_pos != break_location_iterator.statement_position()) { break; } } return *array; } static const int kScopeDetailsTypeIndex = 0; static const int kScopeDetailsObjectIndex = 1; static const int kScopeDetailsSize = 2; MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeScopeDetails( Isolate* isolate, ScopeIterator* it) { // Calculate the size of the result. int details_size = kScopeDetailsSize; Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size); // Fill in scope details. details->set(kScopeDetailsTypeIndex, Smi::FromInt(it->Type())); Handle<JSObject> scope_object; ASSIGN_RETURN_ON_EXCEPTION( isolate, scope_object, it->ScopeObject(), JSObject); details->set(kScopeDetailsObjectIndex, *scope_object); return isolate->factory()->NewJSArrayWithElements(details); } // Return an array with scope details // args[0]: number: break id // args[1]: number: frame index // args[2]: number: inlined frame index // args[3]: number: scope index // // The array returned contains the following information: // 0: Scope type // 1: Scope object RUNTIME_FUNCTION(Runtime_GetScopeDetails) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]); CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator frame_it(isolate, id); JavaScriptFrame* frame = frame_it.frame(); // Find the requested scope. int n = 0; ScopeIterator it(isolate, frame, inlined_jsframe_index); for (; !it.Done() && n < index; it.Next()) { n++; } if (it.Done()) { return isolate->heap()->undefined_value(); } Handle<JSObject> details; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, details, MaterializeScopeDetails(isolate, &it)); return *details; } // Return an array of scope details // args[0]: number: break id // args[1]: number: frame index // args[2]: number: inlined frame index // args[3]: boolean: ignore nested scopes // // The array returned contains arrays with the following information: // 0: Scope type // 1: Scope object RUNTIME_FUNCTION(Runtime_GetAllScopesDetails) { HandleScope scope(isolate); DCHECK(args.length() == 3 || args.length() == 4); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]); bool ignore_nested_scopes = false; if (args.length() == 4) { CONVERT_BOOLEAN_ARG_CHECKED(flag, 3); ignore_nested_scopes = flag; } // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator frame_it(isolate, id); JavaScriptFrame* frame = frame_it.frame(); List<Handle<JSObject> > result(4); ScopeIterator it(isolate, frame, inlined_jsframe_index, ignore_nested_scopes); for (; !it.Done(); it.Next()) { Handle<JSObject> details; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, details, MaterializeScopeDetails(isolate, &it)); result.Add(details); } Handle<FixedArray> array = isolate->factory()->NewFixedArray(result.length()); for (int i = 0; i < result.length(); ++i) { array->set(i, *result[i]); } return *isolate->factory()->NewJSArrayWithElements(array); } RUNTIME_FUNCTION(Runtime_GetFunctionScopeCount) { HandleScope scope(isolate); DCHECK(args.length() == 1); // Check arguments. CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); // Count the visible scopes. int n = 0; for (ScopeIterator it(isolate, fun); !it.Done(); it.Next()) { n++; } return Smi::FromInt(n); } RUNTIME_FUNCTION(Runtime_GetFunctionScopeDetails) { HandleScope scope(isolate); DCHECK(args.length() == 2); // Check arguments. CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); // Find the requested scope. int n = 0; ScopeIterator it(isolate, fun); for (; !it.Done() && n < index; it.Next()) { n++; } if (it.Done()) { return isolate->heap()->undefined_value(); } Handle<JSObject> details; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, details, MaterializeScopeDetails(isolate, &it)); return *details; } static bool SetScopeVariableValue(ScopeIterator* it, int index, Handle<String> variable_name, Handle<Object> new_value) { for (int n = 0; !it->Done() && n < index; it->Next()) { n++; } if (it->Done()) { return false; } return it->SetVariableValue(variable_name, new_value); } // Change variable value in closure or local scope // args[0]: number or JsFunction: break id or function // args[1]: number: frame index (when arg[0] is break id) // args[2]: number: inlined frame index (when arg[0] is break id) // args[3]: number: scope index // args[4]: string: variable name // args[5]: object: new value // // Return true if success and false otherwise RUNTIME_FUNCTION(Runtime_SetScopeVariableValue) { HandleScope scope(isolate); DCHECK(args.length() == 6); // Check arguments. CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]); CONVERT_ARG_HANDLE_CHECKED(String, variable_name, 4); CONVERT_ARG_HANDLE_CHECKED(Object, new_value, 5); bool res; if (args[0]->IsNumber()) { CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator frame_it(isolate, id); JavaScriptFrame* frame = frame_it.frame(); ScopeIterator it(isolate, frame, inlined_jsframe_index); res = SetScopeVariableValue(&it, index, variable_name, new_value); } else { CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); ScopeIterator it(isolate, fun); res = SetScopeVariableValue(&it, index, variable_name, new_value); } return isolate->heap()->ToBoolean(res); } RUNTIME_FUNCTION(Runtime_DebugPrintScopes) { HandleScope scope(isolate); DCHECK(args.length() == 0); #ifdef DEBUG // Print the scopes for the top frame. StackFrameLocator locator(isolate); JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); for (ScopeIterator it(isolate, frame, 0); !it.Done(); it.Next()) { it.DebugPrint(); } #endif return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_GetThreadCount) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); // Count all archived V8 threads. int n = 0; for (ThreadState* thread = isolate->thread_manager()->FirstThreadStateInUse(); thread != NULL; thread = thread->Next()) { n++; } // Total number of threads is current thread and archived threads. return Smi::FromInt(n + 1); } static const int kThreadDetailsCurrentThreadIndex = 0; static const int kThreadDetailsThreadIdIndex = 1; static const int kThreadDetailsSize = 2; // Return an array with thread details // args[0]: number: break id // args[1]: number: thread index // // The array returned contains the following information: // 0: Is current thread? // 1: Thread id RUNTIME_FUNCTION(Runtime_GetThreadDetails) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); // Allocate array for result. Handle<FixedArray> details = isolate->factory()->NewFixedArray(kThreadDetailsSize); // Thread index 0 is current thread. if (index == 0) { // Fill the details. details->set(kThreadDetailsCurrentThreadIndex, isolate->heap()->true_value()); details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(ThreadId::Current().ToInteger())); } else { // Find the thread with the requested index. int n = 1; ThreadState* thread = isolate->thread_manager()->FirstThreadStateInUse(); while (index != n && thread != NULL) { thread = thread->Next(); n++; } if (thread == NULL) { return isolate->heap()->undefined_value(); } // Fill the details. details->set(kThreadDetailsCurrentThreadIndex, isolate->heap()->false_value()); details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(thread->id().ToInteger())); } // Convert to JS array and return. return *isolate->factory()->NewJSArrayWithElements(details); } // Sets the disable break state // args[0]: disable break state RUNTIME_FUNCTION(Runtime_SetDisableBreak) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 0); isolate->debug()->set_disable_break(disable_break); return isolate->heap()->undefined_value(); } static bool IsPositionAlignmentCodeCorrect(int alignment) { return alignment == STATEMENT_ALIGNED || alignment == BREAK_POSITION_ALIGNED; } RUNTIME_FUNCTION(Runtime_GetBreakLocations) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0); CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[1]); if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) { return isolate->ThrowIllegalOperation(); } BreakPositionAlignment alignment = static_cast<BreakPositionAlignment>(statement_aligned_code); Handle<SharedFunctionInfo> shared(fun->shared()); // Find the number of break points Handle<Object> break_locations = Debug::GetSourceBreakLocations(shared, alignment); if (break_locations->IsUndefined()) return isolate->heap()->undefined_value(); // Return array as JS array return *isolate->factory()->NewJSArrayWithElements( Handle<FixedArray>::cast(break_locations)); } // Set a break point in a function. // args[0]: function // args[1]: number: break source position (within the function source) // args[2]: number: break point object RUNTIME_FUNCTION(Runtime_SetFunctionBreakPoint) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); RUNTIME_ASSERT(source_position >= function->shared()->start_position() && source_position <= function->shared()->end_position()); CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 2); // Set break point. RUNTIME_ASSERT(isolate->debug()->SetBreakPoint( function, break_point_object_arg, &source_position)); return Smi::FromInt(source_position); } // Changes the state of a break point in a script and returns source position // where break point was set. NOTE: Regarding performance see the NOTE for // GetScriptFromScriptData. // args[0]: script to set break point in // args[1]: number: break source position (within the script source) // args[2]: number, breakpoint position alignment // args[3]: number: break point object RUNTIME_FUNCTION(Runtime_SetScriptBreakPoint) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_ARG_HANDLE_CHECKED(JSValue, wrapper, 0); CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); RUNTIME_ASSERT(source_position >= 0); CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[2]); CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 3); if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) { return isolate->ThrowIllegalOperation(); } BreakPositionAlignment alignment = static_cast<BreakPositionAlignment>(statement_aligned_code); // Get the script from the script wrapper. RUNTIME_ASSERT(wrapper->value()->IsScript()); Handle<Script> script(Script::cast(wrapper->value())); // Set break point. if (!isolate->debug()->SetBreakPointForScript(script, break_point_object_arg, &source_position, alignment)) { return isolate->heap()->undefined_value(); } return Smi::FromInt(source_position); } // Clear a break point // args[0]: number: break point object RUNTIME_FUNCTION(Runtime_ClearBreakPoint) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 0); // Clear break point. isolate->debug()->ClearBreakPoint(break_point_object_arg); return isolate->heap()->undefined_value(); } // Change the state of break on exceptions. // args[0]: Enum value indicating whether to affect caught/uncaught exceptions. // args[1]: Boolean indicating on/off. RUNTIME_FUNCTION(Runtime_ChangeBreakOnException) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]); CONVERT_BOOLEAN_ARG_CHECKED(enable, 1); // If the number doesn't match an enum value, the ChangeBreakOnException // function will default to affecting caught exceptions. ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg); // Update break point state. isolate->debug()->ChangeBreakOnException(type, enable); return isolate->heap()->undefined_value(); } // Returns the state of break on exceptions // args[0]: boolean indicating uncaught exceptions RUNTIME_FUNCTION(Runtime_IsBreakOnException) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]); ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg); bool result = isolate->debug()->IsBreakOnException(type); return Smi::FromInt(result); } // Prepare for stepping // args[0]: break id for checking execution state // args[1]: step action from the enumeration StepAction // args[2]: number of times to perform the step, for step out it is the number // of frames to step down. RUNTIME_FUNCTION(Runtime_PrepareStep) { HandleScope scope(isolate); DCHECK(args.length() == 4); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); if (!args[1]->IsNumber() || !args[2]->IsNumber()) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } CONVERT_NUMBER_CHECKED(int, wrapped_frame_id, Int32, args[3]); StackFrame::Id frame_id; if (wrapped_frame_id == 0) { frame_id = StackFrame::NO_ID; } else { frame_id = UnwrapFrameId(wrapped_frame_id); } // Get the step action and check validity. StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1])); if (step_action != StepIn && step_action != StepNext && step_action != StepOut && step_action != StepInMin && step_action != StepMin) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } if (frame_id != StackFrame::NO_ID && step_action != StepNext && step_action != StepMin && step_action != StepOut) { return isolate->ThrowIllegalOperation(); } // Get the number of steps. int step_count = NumberToInt32(args[2]); if (step_count < 1) { return isolate->Throw(isolate->heap()->illegal_argument_string()); } // Clear all current stepping setup. isolate->debug()->ClearStepping(); // Prepare step. isolate->debug()->PrepareStep(static_cast<StepAction>(step_action), step_count, frame_id); return isolate->heap()->undefined_value(); } // Clear all stepping set by PrepareStep. RUNTIME_FUNCTION(Runtime_ClearStepping) { HandleScope scope(isolate); DCHECK(args.length() == 0); isolate->debug()->ClearStepping(); return isolate->heap()->undefined_value(); } // Helper function to find or create the arguments object for // Runtime_DebugEvaluate. MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeArgumentsObject( Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function) { // Do not materialize the arguments object for eval or top-level code. // Skip if "arguments" is already taken. if (!function->shared()->is_function()) return target; Maybe<bool> maybe = JSReceiver::HasOwnProperty( target, isolate->factory()->arguments_string()); if (!maybe.has_value) return MaybeHandle<JSObject>(); if (maybe.value) return target; // FunctionGetArguments can't throw an exception. Handle<JSObject> arguments = Handle<JSObject>::cast( Accessors::FunctionGetArguments(function)); Handle<String> arguments_str = isolate->factory()->arguments_string(); RETURN_ON_EXCEPTION( isolate, Runtime::DefineObjectProperty(target, arguments_str, arguments, NONE), JSObject); return target; } // Compile and evaluate source for the given context. static MaybeHandle<Object> DebugEvaluate(Isolate* isolate, Handle<SharedFunctionInfo> outer_info, Handle<Context> context, Handle<Object> context_extension, Handle<Object> receiver, Handle<String> source) { if (context_extension->IsJSObject()) { Handle<JSObject> extension = Handle<JSObject>::cast(context_extension); Handle<JSFunction> closure(context->closure(), isolate); context = isolate->factory()->NewWithContext(closure, context, extension); } Handle<JSFunction> eval_fun; ASSIGN_RETURN_ON_EXCEPTION( isolate, eval_fun, Compiler::GetFunctionFromEval(source, outer_info, context, SLOPPY, NO_PARSE_RESTRICTION, RelocInfo::kNoPosition), Object); Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, Execution::Call(isolate, eval_fun, receiver, 0, NULL), Object); // Skip the global proxy as it has no properties and always delegates to the // real global object. if (result->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, result); // TODO(verwaest): This will crash when the global proxy is detached. result = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)); } // Clear the oneshot breakpoints so that the debugger does not step further. isolate->debug()->ClearStepping(); return result; } static Handle<JSObject> NewJSObjectWithNullProto(Isolate* isolate) { Handle<JSObject> result = isolate->factory()->NewJSObject(isolate->object_function()); Handle<Map> new_map = Map::Copy(Handle<Map>(result->map())); new_map->set_prototype(*isolate->factory()->null_value()); JSObject::MigrateToMap(result, new_map); return result; } // Evaluate a piece of JavaScript in the context of a stack frame for // debugging. Things that need special attention are: // - Parameters and stack-allocated locals need to be materialized. Altered // values need to be written back to the stack afterwards. // - The arguments object needs to materialized. RUNTIME_FUNCTION(Runtime_DebugEvaluate) { HandleScope scope(isolate); // Check the execution state and decode arguments frame and source to be // evaluated. DCHECK(args.length() == 6); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); CONVERT_SMI_ARG_CHECKED(wrapped_id, 1); CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]); CONVERT_ARG_HANDLE_CHECKED(String, source, 3); CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 4); CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 5); // Handle the processing of break. DisableBreak disable_break_scope(isolate->debug(), disable_break); // Get the frame where the debugging is performed. StackFrame::Id id = UnwrapFrameId(wrapped_id); JavaScriptFrameIterator it(isolate, id); JavaScriptFrame* frame = it.frame(); FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate); Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction())); Handle<SharedFunctionInfo> outer_info(function->shared()); // Traverse the saved contexts chain to find the active context for the // selected frame. SaveContext* save = FindSavedContextForFrame(isolate, frame); SaveContext savex(isolate); isolate->set_context(*(save->context())); // Evaluate on the context of the frame. Handle<Context> context(Context::cast(frame_inspector.GetContext())); DCHECK(!context.is_null()); // Materialize stack locals and the arguments object. Handle<JSObject> materialized = NewJSObjectWithNullProto(isolate); ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, materialized, MaterializeStackLocalsWithFrameInspector( isolate, materialized, function, &frame_inspector)); ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, materialized, MaterializeArgumentsObject(isolate, materialized, function)); // Add the materialized object in a with-scope to shadow the stack locals. context = isolate->factory()->NewWithContext(function, context, materialized); Handle<Object> receiver(frame->receiver(), isolate); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, DebugEvaluate(isolate, outer_info, context, context_extension, receiver, source)); // Write back potential changes to materialized stack locals to the stack. UpdateStackLocalsFromMaterializedObject( isolate, materialized, function, frame, inlined_jsframe_index); return *result; } RUNTIME_FUNCTION(Runtime_DebugEvaluateGlobal) { HandleScope scope(isolate); // Check the execution state and decode arguments frame and source to be // evaluated. DCHECK(args.length() == 4); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); CONVERT_ARG_HANDLE_CHECKED(String, source, 1); CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 2); CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 3); // Handle the processing of break. DisableBreak disable_break_scope(isolate->debug(), disable_break); // Enter the top context from before the debugger was invoked. SaveContext save(isolate); SaveContext* top = &save; while (top != NULL && *top->context() == *isolate->debug()->debug_context()) { top = top->prev(); } if (top != NULL) { isolate->set_context(*top->context()); } // Get the native context now set to the top context from before the // debugger was invoked. Handle<Context> context = isolate->native_context(); Handle<JSObject> receiver(context->global_proxy()); Handle<SharedFunctionInfo> outer_info(context->closure()->shared(), isolate); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, DebugEvaluate(isolate, outer_info, context, context_extension, receiver, source)); return *result; } RUNTIME_FUNCTION(Runtime_DebugGetLoadedScripts) { HandleScope scope(isolate); DCHECK(args.length() == 0); // Fill the script objects. Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts(); // Convert the script objects to proper JS objects. for (int i = 0; i < instances->length(); i++) { Handle<Script> script = Handle<Script>(Script::cast(instances->get(i))); // Get the script wrapper in a local handle before calling GetScriptWrapper, // because using // instances->set(i, *GetScriptWrapper(script)) // is unsafe as GetScriptWrapper might call GC and the C++ compiler might // already have dereferenced the instances handle. Handle<JSObject> wrapper = Script::GetWrapper(script); instances->set(i, *wrapper); } // Return result as a JS array. Handle<JSObject> result = isolate->factory()->NewJSObject(isolate->array_function()); JSArray::SetContent(Handle<JSArray>::cast(result), instances); return *result; } // Helper function used by Runtime_DebugReferencedBy below. static int DebugReferencedBy(HeapIterator* iterator, JSObject* target, Object* instance_filter, int max_references, FixedArray* instances, int instances_size, JSFunction* arguments_function) { Isolate* isolate = target->GetIsolate(); SealHandleScope shs(isolate); DisallowHeapAllocation no_allocation; // Iterate the heap. int count = 0; JSObject* last = NULL; HeapObject* heap_obj = NULL; while (((heap_obj = iterator->next()) != NULL) && (max_references == 0 || count < max_references)) { // Only look at all JSObjects. if (heap_obj->IsJSObject()) { // Skip context extension objects and argument arrays as these are // checked in the context of functions using them. JSObject* obj = JSObject::cast(heap_obj); if (obj->IsJSContextExtensionObject() || obj->map()->constructor() == arguments_function) { continue; } // Check if the JS object has a reference to the object looked for. if (obj->ReferencesObject(target)) { // Check instance filter if supplied. This is normally used to avoid // references from mirror objects (see Runtime_IsInPrototypeChain). if (!instance_filter->IsUndefined()) { for (PrototypeIterator iter(isolate, obj); !iter.IsAtEnd(); iter.Advance()) { if (iter.GetCurrent() == instance_filter) { obj = NULL; // Don't add this object. break; } } } if (obj != NULL) { // Valid reference found add to instance array if supplied an update // count. if (instances != NULL && count < instances_size) { instances->set(count, obj); } last = obj; count++; } } } } // Check for circular reference only. This can happen when the object is only // referenced from mirrors and has a circular reference in which case the // object is not really alive and would have been garbage collected if not // referenced from the mirror. if (count == 1 && last == target) { count = 0; } // Return the number of referencing objects found. return count; } // Scan the heap for objects with direct references to an object // args[0]: the object to find references to // args[1]: constructor function for instances to exclude (Mirror) // args[2]: the the maximum number of objects to return RUNTIME_FUNCTION(Runtime_DebugReferencedBy) { HandleScope scope(isolate); DCHECK(args.length() == 3); // Check parameters. CONVERT_ARG_HANDLE_CHECKED(JSObject, target, 0); CONVERT_ARG_HANDLE_CHECKED(Object, instance_filter, 1); RUNTIME_ASSERT(instance_filter->IsUndefined() || instance_filter->IsJSObject()); CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]); RUNTIME_ASSERT(max_references >= 0); // Get the constructor function for context extension and arguments array. Handle<JSFunction> arguments_function( JSFunction::cast(isolate->sloppy_arguments_map()->constructor())); // Get the number of referencing objects. int count; // First perform a full GC in order to avoid dead objects and to make the heap // iterable. Heap* heap = isolate->heap(); heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy"); { HeapIterator heap_iterator(heap); count = DebugReferencedBy(&heap_iterator, *target, *instance_filter, max_references, NULL, 0, *arguments_function); } // Allocate an array to hold the result. Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count); // Fill the referencing objects. { HeapIterator heap_iterator(heap); count = DebugReferencedBy(&heap_iterator, *target, *instance_filter, max_references, *instances, count, *arguments_function); } // Return result as JS array. Handle<JSFunction> constructor = isolate->array_function(); Handle<JSObject> result = isolate->factory()->NewJSObject(constructor); JSArray::SetContent(Handle<JSArray>::cast(result), instances); return *result; } // Helper function used by Runtime_DebugConstructedBy below. static int DebugConstructedBy(HeapIterator* iterator, JSFunction* constructor, int max_references, FixedArray* instances, int instances_size) { DisallowHeapAllocation no_allocation; // Iterate the heap. int count = 0; HeapObject* heap_obj = NULL; while (((heap_obj = iterator->next()) != NULL) && (max_references == 0 || count < max_references)) { // Only look at all JSObjects. if (heap_obj->IsJSObject()) { JSObject* obj = JSObject::cast(heap_obj); if (obj->map()->constructor() == constructor) { // Valid reference found add to instance array if supplied an update // count. if (instances != NULL && count < instances_size) { instances->set(count, obj); } count++; } } } // Return the number of referencing objects found. return count; } // Scan the heap for objects constructed by a specific function. // args[0]: the constructor to find instances of // args[1]: the the maximum number of objects to return RUNTIME_FUNCTION(Runtime_DebugConstructedBy) { HandleScope scope(isolate); DCHECK(args.length() == 2); // Check parameters. CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, 0); CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]); RUNTIME_ASSERT(max_references >= 0); // Get the number of referencing objects. int count; // First perform a full GC in order to avoid dead objects and to make the heap // iterable. Heap* heap = isolate->heap(); heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy"); { HeapIterator heap_iterator(heap); count = DebugConstructedBy(&heap_iterator, *constructor, max_references, NULL, 0); } // Allocate an array to hold the result. Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count); // Fill the referencing objects. { HeapIterator heap_iterator2(heap); count = DebugConstructedBy(&heap_iterator2, *constructor, max_references, *instances, count); } // Return result as JS array. Handle<JSFunction> array_function = isolate->array_function(); Handle<JSObject> result = isolate->factory()->NewJSObject(array_function); JSArray::SetContent(Handle<JSArray>::cast(result), instances); return *result; } // Find the effective prototype object as returned by __proto__. // args[0]: the object to find the prototype for. RUNTIME_FUNCTION(Runtime_DebugGetPrototype) { HandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0); return *GetPrototypeSkipHiddenPrototypes(isolate, obj); } // Patches script source (should be called upon BeforeCompile event). RUNTIME_FUNCTION(Runtime_DebugSetScriptSource) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0); CONVERT_ARG_HANDLE_CHECKED(String, source, 1); RUNTIME_ASSERT(script_wrapper->value()->IsScript()); Handle<Script> script(Script::cast(script_wrapper->value())); int compilation_state = script->compilation_state(); RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL); script->set_source(*source); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_SystemBreak) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); base::OS::DebugBreak(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DebugDisassembleFunction) { HandleScope scope(isolate); #ifdef DEBUG DCHECK(args.length() == 1); // Get the function and make sure it is compiled. CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0); if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) { return isolate->heap()->exception(); } OFStream os(stdout); func->code()->Print(os); os << endl; #endif // DEBUG return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_DebugDisassembleConstructor) { HandleScope scope(isolate); #ifdef DEBUG DCHECK(args.length() == 1); // Get the function and make sure it is compiled. CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0); if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) { return isolate->heap()->exception(); } OFStream os(stdout); func->shared()->construct_stub()->Print(os); os << endl; #endif // DEBUG return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_FunctionGetInferredName) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSFunction, f, 0); return f->shared()->inferred_name(); } static int FindSharedFunctionInfosForScript(HeapIterator* iterator, Script* script, FixedArray* buffer) { DisallowHeapAllocation no_allocation; int counter = 0; int buffer_size = buffer->length(); for (HeapObject* obj = iterator->next(); obj != NULL; obj = iterator->next()) { DCHECK(obj != NULL); if (!obj->IsSharedFunctionInfo()) { continue; } SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj); if (shared->script() != script) { continue; } if (counter < buffer_size) { buffer->set(counter, shared); } counter++; } return counter; } // For a script finds all SharedFunctionInfo's in the heap that points // to this script. Returns JSArray of SharedFunctionInfo wrapped // in OpaqueReferences. RUNTIME_FUNCTION(Runtime_LiveEditFindSharedFunctionInfosForScript) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSValue, script_value, 0); RUNTIME_ASSERT(script_value->value()->IsScript()); Handle<Script> script = Handle<Script>(Script::cast(script_value->value())); const int kBufferSize = 32; Handle<FixedArray> array; array = isolate->factory()->NewFixedArray(kBufferSize); int number; Heap* heap = isolate->heap(); { HeapIterator heap_iterator(heap); Script* scr = *script; FixedArray* arr = *array; number = FindSharedFunctionInfosForScript(&heap_iterator, scr, arr); } if (number > kBufferSize) { array = isolate->factory()->NewFixedArray(number); HeapIterator heap_iterator(heap); Script* scr = *script; FixedArray* arr = *array; FindSharedFunctionInfosForScript(&heap_iterator, scr, arr); } Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array); result->set_length(Smi::FromInt(number)); LiveEdit::WrapSharedFunctionInfos(result); return *result; } // For a script calculates compilation information about all its functions. // The script source is explicitly specified by the second argument. // The source of the actual script is not used, however it is important that // all generated code keeps references to this particular instance of script. // Returns a JSArray of compilation infos. The array is ordered so that // each function with all its descendant is always stored in a continues range // with the function itself going first. The root function is a script function. RUNTIME_FUNCTION(Runtime_LiveEditGatherCompileInfo) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(JSValue, script, 0); CONVERT_ARG_HANDLE_CHECKED(String, source, 1); RUNTIME_ASSERT(script->value()->IsScript()); Handle<Script> script_handle = Handle<Script>(Script::cast(script->value())); Handle<JSArray> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, LiveEdit::GatherCompileInfo(script_handle, source)); return *result; } // Changes the source of the script to a new_source. // If old_script_name is provided (i.e. is a String), also creates a copy of // the script with its original source and sends notification to debugger. RUNTIME_FUNCTION(Runtime_LiveEditReplaceScript) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 3); CONVERT_ARG_CHECKED(JSValue, original_script_value, 0); CONVERT_ARG_HANDLE_CHECKED(String, new_source, 1); CONVERT_ARG_HANDLE_CHECKED(Object, old_script_name, 2); RUNTIME_ASSERT(original_script_value->value()->IsScript()); Handle<Script> original_script(Script::cast(original_script_value->value())); Handle<Object> old_script = LiveEdit::ChangeScriptSource( original_script, new_source, old_script_name); if (old_script->IsScript()) { Handle<Script> script_handle = Handle<Script>::cast(old_script); return *Script::GetWrapper(script_handle); } else { return isolate->heap()->null_value(); } } RUNTIME_FUNCTION(Runtime_LiveEditFunctionSourceUpdated) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 0); RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info)); LiveEdit::FunctionSourceUpdated(shared_info); return isolate->heap()->undefined_value(); } // Replaces code of SharedFunctionInfo with a new one. RUNTIME_FUNCTION(Runtime_LiveEditReplaceFunctionCode) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, new_compile_info, 0); CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 1); RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info)); LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info); return isolate->heap()->undefined_value(); } // Connects SharedFunctionInfo to another script. RUNTIME_FUNCTION(Runtime_LiveEditFunctionSetScript) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Object, function_object, 0); CONVERT_ARG_HANDLE_CHECKED(Object, script_object, 1); if (function_object->IsJSValue()) { Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object); if (script_object->IsJSValue()) { RUNTIME_ASSERT(JSValue::cast(*script_object)->value()->IsScript()); Script* script = Script::cast(JSValue::cast(*script_object)->value()); script_object = Handle<Object>(script, isolate); } RUNTIME_ASSERT(function_wrapper->value()->IsSharedFunctionInfo()); LiveEdit::SetFunctionScript(function_wrapper, script_object); } else { // Just ignore this. We may not have a SharedFunctionInfo for some functions // and we check it in this function. } return isolate->heap()->undefined_value(); } // In a code of a parent function replaces original function as embedded object // with a substitution one. RUNTIME_FUNCTION(Runtime_LiveEditReplaceRefToNestedFunction) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSValue, parent_wrapper, 0); CONVERT_ARG_HANDLE_CHECKED(JSValue, orig_wrapper, 1); CONVERT_ARG_HANDLE_CHECKED(JSValue, subst_wrapper, 2); RUNTIME_ASSERT(parent_wrapper->value()->IsSharedFunctionInfo()); RUNTIME_ASSERT(orig_wrapper->value()->IsSharedFunctionInfo()); RUNTIME_ASSERT(subst_wrapper->value()->IsSharedFunctionInfo()); LiveEdit::ReplaceRefToNestedFunction( parent_wrapper, orig_wrapper, subst_wrapper); return isolate->heap()->undefined_value(); } // Updates positions of a shared function info (first parameter) according // to script source change. Text change is described in second parameter as // array of groups of 3 numbers: // (change_begin, change_end, change_end_new_position). // Each group describes a change in text; groups are sorted by change_begin. RUNTIME_FUNCTION(Runtime_LiveEditPatchFunctionPositions) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0); CONVERT_ARG_HANDLE_CHECKED(JSArray, position_change_array, 1); RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_array)) LiveEdit::PatchFunctionPositions(shared_array, position_change_array); return isolate->heap()->undefined_value(); } // For array of SharedFunctionInfo's (each wrapped in JSValue) // checks that none of them have activations on stacks (of any thread). // Returns array of the same length with corresponding results of // LiveEdit::FunctionPatchabilityStatus type. RUNTIME_FUNCTION(Runtime_LiveEditCheckAndDropActivations) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0); CONVERT_BOOLEAN_ARG_CHECKED(do_drop, 1); RUNTIME_ASSERT(shared_array->length()->IsSmi()); RUNTIME_ASSERT(shared_array->HasFastElements()) int array_length = Smi::cast(shared_array->length())->value(); for (int i = 0; i < array_length; i++) { Handle<Object> element = Object::GetElement(isolate, shared_array, i).ToHandleChecked(); RUNTIME_ASSERT( element->IsJSValue() && Handle<JSValue>::cast(element)->value()->IsSharedFunctionInfo()); } return *LiveEdit::CheckAndDropActivations(shared_array, do_drop); } // Compares 2 strings line-by-line, then token-wise and returns diff in form // of JSArray of triplets (pos1, pos1_end, pos2_end) describing list // of diff chunks. RUNTIME_FUNCTION(Runtime_LiveEditCompareStrings) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, s1, 0); CONVERT_ARG_HANDLE_CHECKED(String, s2, 1); return *LiveEdit::CompareStrings(s1, s2); } // Restarts a call frame and completely drops all frames above. // Returns true if successful. Otherwise returns undefined or an error message. RUNTIME_FUNCTION(Runtime_LiveEditRestartFrame) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 2); CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]); RUNTIME_ASSERT(CheckExecutionState(isolate, break_id)); CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]); Heap* heap = isolate->heap(); // Find the relevant frame with the requested index. StackFrame::Id id = isolate->debug()->break_frame_id(); if (id == StackFrame::NO_ID) { // If there are no JavaScript stack frames return undefined. return heap->undefined_value(); } JavaScriptFrameIterator it(isolate, id); int inlined_jsframe_index = FindIndexedNonNativeFrame(&it, index); if (inlined_jsframe_index == -1) return heap->undefined_value(); // We don't really care what the inlined frame index is, since we are // throwing away the entire frame anyways. const char* error_message = LiveEdit::RestartFrame(it.frame()); if (error_message) { return *(isolate->factory()->InternalizeUtf8String(error_message)); } return heap->true_value(); } // A testing entry. Returns statement position which is the closest to // source_position. RUNTIME_FUNCTION(Runtime_GetFunctionCodePositionFromSource) { HandleScope scope(isolate); CHECK(isolate->debug()->live_edit_enabled()); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]); Handle<Code> code(function->code(), isolate); if (code->kind() != Code::FUNCTION && code->kind() != Code::OPTIMIZED_FUNCTION) { return isolate->heap()->undefined_value(); } RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION)); int closest_pc = 0; int distance = kMaxInt; while (!it.done()) { int statement_position = static_cast<int>(it.rinfo()->data()); // Check if this break point is closer that what was previously found. if (source_position <= statement_position && statement_position - source_position < distance) { closest_pc = static_cast<int>(it.rinfo()->pc() - code->instruction_start()); distance = statement_position - source_position; // Check whether we can't get any closer. if (distance == 0) break; } it.next(); } return Smi::FromInt(closest_pc); } // Calls specified function with or without entering the debugger. // This is used in unit tests to run code as if debugger is entered or simply // to have a stack with C++ frame in the middle. RUNTIME_FUNCTION(Runtime_ExecuteInDebugContext) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1); MaybeHandle<Object> maybe_result; if (without_debugger) { maybe_result = Execution::Call(isolate, function, handle(function->global_proxy()), 0, NULL); } else { DebugScope debug_scope(isolate->debug()); maybe_result = Execution::Call(isolate, function, handle(function->global_proxy()), 0, NULL); } Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, maybe_result); return *result; } // Sets a v8 flag. RUNTIME_FUNCTION(Runtime_SetFlags) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(String, arg, 0); SmartArrayPointer<char> flags = arg->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); FlagList::SetFlagsFromString(flags.get(), StrLength(flags.get())); return isolate->heap()->undefined_value(); } // Performs a GC. // Presently, it only does a full GC. RUNTIME_FUNCTION(Runtime_CollectGarbage) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "%CollectGarbage"); return isolate->heap()->undefined_value(); } // Gets the current heap usage. RUNTIME_FUNCTION(Runtime_GetHeapUsage) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); int usage = static_cast<int>(isolate->heap()->SizeOfObjects()); if (!Smi::IsValid(usage)) { return *isolate->factory()->NewNumberFromInt(usage); } return Smi::FromInt(usage); } #ifdef V8_I18N_SUPPORT RUNTIME_FUNCTION(Runtime_CanonicalizeLanguageTag) { HandleScope scope(isolate); Factory* factory = isolate->factory(); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, locale_id_str, 0); v8::String::Utf8Value locale_id(v8::Utils::ToLocal(locale_id_str)); // Return value which denotes invalid language tag. const char* const kInvalidTag = "invalid-tag"; UErrorCode error = U_ZERO_ERROR; char icu_result[ULOC_FULLNAME_CAPACITY]; int icu_length = 0; uloc_forLanguageTag(*locale_id, icu_result, ULOC_FULLNAME_CAPACITY, &icu_length, &error); if (U_FAILURE(error) || icu_length == 0) { return *factory->NewStringFromAsciiChecked(kInvalidTag); } char result[ULOC_FULLNAME_CAPACITY]; // Force strict BCP47 rules. uloc_toLanguageTag(icu_result, result, ULOC_FULLNAME_CAPACITY, TRUE, &error); if (U_FAILURE(error)) { return *factory->NewStringFromAsciiChecked(kInvalidTag); } return *factory->NewStringFromAsciiChecked(result); } RUNTIME_FUNCTION(Runtime_AvailableLocalesOf) { HandleScope scope(isolate); Factory* factory = isolate->factory(); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, service, 0); const icu::Locale* available_locales = NULL; int32_t count = 0; if (service->IsUtf8EqualTo(CStrVector("collator"))) { available_locales = icu::Collator::getAvailableLocales(count); } else if (service->IsUtf8EqualTo(CStrVector("numberformat"))) { available_locales = icu::NumberFormat::getAvailableLocales(count); } else if (service->IsUtf8EqualTo(CStrVector("dateformat"))) { available_locales = icu::DateFormat::getAvailableLocales(count); } else if (service->IsUtf8EqualTo(CStrVector("breakiterator"))) { available_locales = icu::BreakIterator::getAvailableLocales(count); } UErrorCode error = U_ZERO_ERROR; char result[ULOC_FULLNAME_CAPACITY]; Handle<JSObject> locales = factory->NewJSObject(isolate->object_function()); for (int32_t i = 0; i < count; ++i) { const char* icu_name = available_locales[i].getName(); error = U_ZERO_ERROR; // No need to force strict BCP47 rules. uloc_toLanguageTag(icu_name, result, ULOC_FULLNAME_CAPACITY, FALSE, &error); if (U_FAILURE(error)) { // This shouldn't happen, but lets not break the user. continue; } RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes( locales, factory->NewStringFromAsciiChecked(result), factory->NewNumber(i), NONE)); } return *locales; } RUNTIME_FUNCTION(Runtime_GetDefaultICULocale) { HandleScope scope(isolate); Factory* factory = isolate->factory(); DCHECK(args.length() == 0); icu::Locale default_locale; // Set the locale char result[ULOC_FULLNAME_CAPACITY]; UErrorCode status = U_ZERO_ERROR; uloc_toLanguageTag( default_locale.getName(), result, ULOC_FULLNAME_CAPACITY, FALSE, &status); if (U_SUCCESS(status)) { return *factory->NewStringFromAsciiChecked(result); } return *factory->NewStringFromStaticChars("und"); } RUNTIME_FUNCTION(Runtime_GetLanguageTagVariants) { HandleScope scope(isolate); Factory* factory = isolate->factory(); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSArray, input, 0); uint32_t length = static_cast<uint32_t>(input->length()->Number()); // Set some limit to prevent fuzz tests from going OOM. // Can be bumped when callers' requirements change. RUNTIME_ASSERT(length < 100); Handle<FixedArray> output = factory->NewFixedArray(length); Handle<Name> maximized = factory->NewStringFromStaticChars("maximized"); Handle<Name> base = factory->NewStringFromStaticChars("base"); for (unsigned int i = 0; i < length; ++i) { Handle<Object> locale_id; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, locale_id, Object::GetElement(isolate, input, i)); if (!locale_id->IsString()) { return isolate->Throw(*factory->illegal_argument_string()); } v8::String::Utf8Value utf8_locale_id( v8::Utils::ToLocal(Handle<String>::cast(locale_id))); UErrorCode error = U_ZERO_ERROR; // Convert from BCP47 to ICU format. // de-DE-u-co-phonebk -> de_DE@collation=phonebook char icu_locale[ULOC_FULLNAME_CAPACITY]; int icu_locale_length = 0; uloc_forLanguageTag(*utf8_locale_id, icu_locale, ULOC_FULLNAME_CAPACITY, &icu_locale_length, &error); if (U_FAILURE(error) || icu_locale_length == 0) { return isolate->Throw(*factory->illegal_argument_string()); } // Maximize the locale. // de_DE@collation=phonebook -> de_Latn_DE@collation=phonebook char icu_max_locale[ULOC_FULLNAME_CAPACITY]; uloc_addLikelySubtags( icu_locale, icu_max_locale, ULOC_FULLNAME_CAPACITY, &error); // Remove extensions from maximized locale. // de_Latn_DE@collation=phonebook -> de_Latn_DE char icu_base_max_locale[ULOC_FULLNAME_CAPACITY]; uloc_getBaseName( icu_max_locale, icu_base_max_locale, ULOC_FULLNAME_CAPACITY, &error); // Get original name without extensions. // de_DE@collation=phonebook -> de_DE char icu_base_locale[ULOC_FULLNAME_CAPACITY]; uloc_getBaseName( icu_locale, icu_base_locale, ULOC_FULLNAME_CAPACITY, &error); // Convert from ICU locale format to BCP47 format. // de_Latn_DE -> de-Latn-DE char base_max_locale[ULOC_FULLNAME_CAPACITY]; uloc_toLanguageTag(icu_base_max_locale, base_max_locale, ULOC_FULLNAME_CAPACITY, FALSE, &error); // de_DE -> de-DE char base_locale[ULOC_FULLNAME_CAPACITY]; uloc_toLanguageTag( icu_base_locale, base_locale, ULOC_FULLNAME_CAPACITY, FALSE, &error); if (U_FAILURE(error)) { return isolate->Throw(*factory->illegal_argument_string()); } Handle<JSObject> result = factory->NewJSObject(isolate->object_function()); Handle<String> value = factory->NewStringFromAsciiChecked(base_max_locale); JSObject::AddProperty(result, maximized, value, NONE); value = factory->NewStringFromAsciiChecked(base_locale); JSObject::AddProperty(result, base, value, NONE); output->set(i, *result); } Handle<JSArray> result = factory->NewJSArrayWithElements(output); result->set_length(Smi::FromInt(length)); return *result; } RUNTIME_FUNCTION(Runtime_IsInitializedIntlObject) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, input, 0); if (!input->IsJSObject()) return isolate->heap()->false_value(); Handle<JSObject> obj = Handle<JSObject>::cast(input); Handle<String> marker = isolate->factory()->intl_initialized_marker_string(); Handle<Object> tag(obj->GetHiddenProperty(marker), isolate); return isolate->heap()->ToBoolean(!tag->IsTheHole()); } RUNTIME_FUNCTION(Runtime_IsInitializedIntlObjectOfType) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Object, input, 0); CONVERT_ARG_HANDLE_CHECKED(String, expected_type, 1); if (!input->IsJSObject()) return isolate->heap()->false_value(); Handle<JSObject> obj = Handle<JSObject>::cast(input); Handle<String> marker = isolate->factory()->intl_initialized_marker_string(); Handle<Object> tag(obj->GetHiddenProperty(marker), isolate); return isolate->heap()->ToBoolean( tag->IsString() && String::cast(*tag)->Equals(*expected_type)); } RUNTIME_FUNCTION(Runtime_MarkAsInitializedIntlObjectOfType) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSObject, input, 0); CONVERT_ARG_HANDLE_CHECKED(String, type, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, impl, 2); Handle<String> marker = isolate->factory()->intl_initialized_marker_string(); JSObject::SetHiddenProperty(input, marker, type); marker = isolate->factory()->intl_impl_object_string(); JSObject::SetHiddenProperty(input, marker, impl); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_GetImplFromInitializedIntlObject) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, input, 0); if (!input->IsJSObject()) { Vector< Handle<Object> > arguments = HandleVector(&input, 1); THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewTypeError("not_intl_object", arguments)); } Handle<JSObject> obj = Handle<JSObject>::cast(input); Handle<String> marker = isolate->factory()->intl_impl_object_string(); Handle<Object> impl(obj->GetHiddenProperty(marker), isolate); if (impl->IsTheHole()) { Vector< Handle<Object> > arguments = HandleVector(&obj, 1); THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewTypeError("not_intl_object", arguments)); } return *impl; } RUNTIME_FUNCTION(Runtime_CreateDateTimeFormat) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, locale, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2); Handle<ObjectTemplateInfo> date_format_template = I18N::GetTemplate(isolate); // Create an empty object wrapper. Handle<JSObject> local_object; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, local_object, Execution::InstantiateObject(date_format_template)); // Set date time formatter as internal field of the resulting JS object. icu::SimpleDateFormat* date_format = DateFormat::InitializeDateTimeFormat( isolate, locale, options, resolved); if (!date_format) return isolate->ThrowIllegalOperation(); local_object->SetInternalField(0, reinterpret_cast<Smi*>(date_format)); Factory* factory = isolate->factory(); Handle<String> key = factory->NewStringFromStaticChars("dateFormat"); Handle<String> value = factory->NewStringFromStaticChars("valid"); JSObject::AddProperty(local_object, key, value, NONE); // Make object handle weak so we can delete the data format once GC kicks in. Handle<Object> wrapper = isolate->global_handles()->Create(*local_object); GlobalHandles::MakeWeak(wrapper.location(), reinterpret_cast<void*>(wrapper.location()), DateFormat::DeleteDateFormat); return *local_object; } RUNTIME_FUNCTION(Runtime_InternalDateFormat) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0); CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 1); Handle<Object> value; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, value, Execution::ToNumber(isolate, date)); icu::SimpleDateFormat* date_format = DateFormat::UnpackDateFormat(isolate, date_format_holder); if (!date_format) return isolate->ThrowIllegalOperation(); icu::UnicodeString result; date_format->format(value->Number(), result); Handle<String> result_str; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result_str, isolate->factory()->NewStringFromTwoByte( Vector<const uint16_t>( reinterpret_cast<const uint16_t*>(result.getBuffer()), result.length()))); return *result_str; } RUNTIME_FUNCTION(Runtime_InternalDateParse) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0); CONVERT_ARG_HANDLE_CHECKED(String, date_string, 1); v8::String::Utf8Value utf8_date(v8::Utils::ToLocal(date_string)); icu::UnicodeString u_date(icu::UnicodeString::fromUTF8(*utf8_date)); icu::SimpleDateFormat* date_format = DateFormat::UnpackDateFormat(isolate, date_format_holder); if (!date_format) return isolate->ThrowIllegalOperation(); UErrorCode status = U_ZERO_ERROR; UDate date = date_format->parse(u_date, status); if (U_FAILURE(status)) return isolate->heap()->undefined_value(); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Execution::NewDate(isolate, static_cast<double>(date))); DCHECK(result->IsJSDate()); return *result; } RUNTIME_FUNCTION(Runtime_CreateNumberFormat) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, locale, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2); Handle<ObjectTemplateInfo> number_format_template = I18N::GetTemplate(isolate); // Create an empty object wrapper. Handle<JSObject> local_object; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, local_object, Execution::InstantiateObject(number_format_template)); // Set number formatter as internal field of the resulting JS object. icu::DecimalFormat* number_format = NumberFormat::InitializeNumberFormat( isolate, locale, options, resolved); if (!number_format) return isolate->ThrowIllegalOperation(); local_object->SetInternalField(0, reinterpret_cast<Smi*>(number_format)); Factory* factory = isolate->factory(); Handle<String> key = factory->NewStringFromStaticChars("numberFormat"); Handle<String> value = factory->NewStringFromStaticChars("valid"); JSObject::AddProperty(local_object, key, value, NONE); Handle<Object> wrapper = isolate->global_handles()->Create(*local_object); GlobalHandles::MakeWeak(wrapper.location(), reinterpret_cast<void*>(wrapper.location()), NumberFormat::DeleteNumberFormat); return *local_object; } RUNTIME_FUNCTION(Runtime_InternalNumberFormat) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0); CONVERT_ARG_HANDLE_CHECKED(Object, number, 1); Handle<Object> value; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, value, Execution::ToNumber(isolate, number)); icu::DecimalFormat* number_format = NumberFormat::UnpackNumberFormat(isolate, number_format_holder); if (!number_format) return isolate->ThrowIllegalOperation(); icu::UnicodeString result; number_format->format(value->Number(), result); Handle<String> result_str; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result_str, isolate->factory()->NewStringFromTwoByte( Vector<const uint16_t>( reinterpret_cast<const uint16_t*>(result.getBuffer()), result.length()))); return *result_str; } RUNTIME_FUNCTION(Runtime_InternalNumberParse) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0); CONVERT_ARG_HANDLE_CHECKED(String, number_string, 1); v8::String::Utf8Value utf8_number(v8::Utils::ToLocal(number_string)); icu::UnicodeString u_number(icu::UnicodeString::fromUTF8(*utf8_number)); icu::DecimalFormat* number_format = NumberFormat::UnpackNumberFormat(isolate, number_format_holder); if (!number_format) return isolate->ThrowIllegalOperation(); UErrorCode status = U_ZERO_ERROR; icu::Formattable result; // ICU 4.6 doesn't support parseCurrency call. We need to wait for ICU49 // to be part of Chrome. // TODO(cira): Include currency parsing code using parseCurrency call. // We need to check if the formatter parses all currencies or only the // one it was constructed with (it will impact the API - how to return ISO // code and the value). number_format->parse(u_number, result, status); if (U_FAILURE(status)) return isolate->heap()->undefined_value(); switch (result.getType()) { case icu::Formattable::kDouble: return *isolate->factory()->NewNumber(result.getDouble()); case icu::Formattable::kLong: return *isolate->factory()->NewNumberFromInt(result.getLong()); case icu::Formattable::kInt64: return *isolate->factory()->NewNumber( static_cast<double>(result.getInt64())); default: return isolate->heap()->undefined_value(); } } RUNTIME_FUNCTION(Runtime_CreateCollator) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, locale, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2); Handle<ObjectTemplateInfo> collator_template = I18N::GetTemplate(isolate); // Create an empty object wrapper. Handle<JSObject> local_object; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, local_object, Execution::InstantiateObject(collator_template)); // Set collator as internal field of the resulting JS object. icu::Collator* collator = Collator::InitializeCollator( isolate, locale, options, resolved); if (!collator) return isolate->ThrowIllegalOperation(); local_object->SetInternalField(0, reinterpret_cast<Smi*>(collator)); Factory* factory = isolate->factory(); Handle<String> key = factory->NewStringFromStaticChars("collator"); Handle<String> value = factory->NewStringFromStaticChars("valid"); JSObject::AddProperty(local_object, key, value, NONE); Handle<Object> wrapper = isolate->global_handles()->Create(*local_object); GlobalHandles::MakeWeak(wrapper.location(), reinterpret_cast<void*>(wrapper.location()), Collator::DeleteCollator); return *local_object; } RUNTIME_FUNCTION(Runtime_InternalCompare) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSObject, collator_holder, 0); CONVERT_ARG_HANDLE_CHECKED(String, string1, 1); CONVERT_ARG_HANDLE_CHECKED(String, string2, 2); icu::Collator* collator = Collator::UnpackCollator(isolate, collator_holder); if (!collator) return isolate->ThrowIllegalOperation(); v8::String::Value string_value1(v8::Utils::ToLocal(string1)); v8::String::Value string_value2(v8::Utils::ToLocal(string2)); const UChar* u_string1 = reinterpret_cast<const UChar*>(*string_value1); const UChar* u_string2 = reinterpret_cast<const UChar*>(*string_value2); UErrorCode status = U_ZERO_ERROR; UCollationResult result = collator->compare(u_string1, string_value1.length(), u_string2, string_value2.length(), status); if (U_FAILURE(status)) return isolate->ThrowIllegalOperation(); return *isolate->factory()->NewNumberFromInt(result); } RUNTIME_FUNCTION(Runtime_StringNormalize) { HandleScope scope(isolate); static const UNormalizationMode normalizationForms[] = { UNORM_NFC, UNORM_NFD, UNORM_NFKC, UNORM_NFKD }; DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(String, stringValue, 0); CONVERT_NUMBER_CHECKED(int, form_id, Int32, args[1]); RUNTIME_ASSERT(form_id >= 0 && static_cast<size_t>(form_id) < arraysize(normalizationForms)); v8::String::Value string_value(v8::Utils::ToLocal(stringValue)); const UChar* u_value = reinterpret_cast<const UChar*>(*string_value); // TODO(mnita): check Normalizer2 (not available in ICU 46) UErrorCode status = U_ZERO_ERROR; icu::UnicodeString result; icu::Normalizer::normalize(u_value, normalizationForms[form_id], 0, result, status); if (U_FAILURE(status)) { return isolate->heap()->undefined_value(); } Handle<String> result_str; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result_str, isolate->factory()->NewStringFromTwoByte( Vector<const uint16_t>( reinterpret_cast<const uint16_t*>(result.getBuffer()), result.length()))); return *result_str; } RUNTIME_FUNCTION(Runtime_CreateBreakIterator) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(String, locale, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2); Handle<ObjectTemplateInfo> break_iterator_template = I18N::GetTemplate2(isolate); // Create an empty object wrapper. Handle<JSObject> local_object; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, local_object, Execution::InstantiateObject(break_iterator_template)); // Set break iterator as internal field of the resulting JS object. icu::BreakIterator* break_iterator = BreakIterator::InitializeBreakIterator( isolate, locale, options, resolved); if (!break_iterator) return isolate->ThrowIllegalOperation(); local_object->SetInternalField(0, reinterpret_cast<Smi*>(break_iterator)); // Make sure that the pointer to adopted text is NULL. local_object->SetInternalField(1, reinterpret_cast<Smi*>(NULL)); Factory* factory = isolate->factory(); Handle<String> key = factory->NewStringFromStaticChars("breakIterator"); Handle<String> value = factory->NewStringFromStaticChars("valid"); JSObject::AddProperty(local_object, key, value, NONE); // Make object handle weak so we can delete the break iterator once GC kicks // in. Handle<Object> wrapper = isolate->global_handles()->Create(*local_object); GlobalHandles::MakeWeak(wrapper.location(), reinterpret_cast<void*>(wrapper.location()), BreakIterator::DeleteBreakIterator); return *local_object; } RUNTIME_FUNCTION(Runtime_BreakIteratorAdoptText) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0); CONVERT_ARG_HANDLE_CHECKED(String, text, 1); icu::BreakIterator* break_iterator = BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder); if (!break_iterator) return isolate->ThrowIllegalOperation(); icu::UnicodeString* u_text = reinterpret_cast<icu::UnicodeString*>( break_iterator_holder->GetInternalField(1)); delete u_text; v8::String::Value text_value(v8::Utils::ToLocal(text)); u_text = new icu::UnicodeString( reinterpret_cast<const UChar*>(*text_value), text_value.length()); break_iterator_holder->SetInternalField(1, reinterpret_cast<Smi*>(u_text)); break_iterator->setText(*u_text); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_BreakIteratorFirst) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0); icu::BreakIterator* break_iterator = BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder); if (!break_iterator) return isolate->ThrowIllegalOperation(); return *isolate->factory()->NewNumberFromInt(break_iterator->first()); } RUNTIME_FUNCTION(Runtime_BreakIteratorNext) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0); icu::BreakIterator* break_iterator = BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder); if (!break_iterator) return isolate->ThrowIllegalOperation(); return *isolate->factory()->NewNumberFromInt(break_iterator->next()); } RUNTIME_FUNCTION(Runtime_BreakIteratorCurrent) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0); icu::BreakIterator* break_iterator = BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder); if (!break_iterator) return isolate->ThrowIllegalOperation(); return *isolate->factory()->NewNumberFromInt(break_iterator->current()); } RUNTIME_FUNCTION(Runtime_BreakIteratorBreakType) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0); icu::BreakIterator* break_iterator = BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder); if (!break_iterator) return isolate->ThrowIllegalOperation(); // TODO(cira): Remove cast once ICU fixes base BreakIterator class. icu::RuleBasedBreakIterator* rule_based_iterator = static_cast<icu::RuleBasedBreakIterator*>(break_iterator); int32_t status = rule_based_iterator->getRuleStatus(); // Keep return values in sync with JavaScript BreakType enum. if (status >= UBRK_WORD_NONE && status < UBRK_WORD_NONE_LIMIT) { return *isolate->factory()->NewStringFromStaticChars("none"); } else if (status >= UBRK_WORD_NUMBER && status < UBRK_WORD_NUMBER_LIMIT) { return *isolate->factory()->number_string(); } else if (status >= UBRK_WORD_LETTER && status < UBRK_WORD_LETTER_LIMIT) { return *isolate->factory()->NewStringFromStaticChars("letter"); } else if (status >= UBRK_WORD_KANA && status < UBRK_WORD_KANA_LIMIT) { return *isolate->factory()->NewStringFromStaticChars("kana"); } else if (status >= UBRK_WORD_IDEO && status < UBRK_WORD_IDEO_LIMIT) { return *isolate->factory()->NewStringFromStaticChars("ideo"); } else { return *isolate->factory()->NewStringFromStaticChars("unknown"); } } #endif // V8_I18N_SUPPORT // Finds the script object from the script data. NOTE: This operation uses // heap traversal to find the function generated for the source position // for the requested break point. For lazily compiled functions several heap // traversals might be required rendering this operation as a rather slow // operation. However for setting break points which is normally done through // some kind of user interaction the performance is not crucial. static Handle<Object> Runtime_GetScriptFromScriptName( Handle<String> script_name) { // Scan the heap for Script objects to find the script with the requested // script data. Handle<Script> script; Factory* factory = script_name->GetIsolate()->factory(); Heap* heap = script_name->GetHeap(); HeapIterator iterator(heap); HeapObject* obj = NULL; while (script.is_null() && ((obj = iterator.next()) != NULL)) { // If a script is found check if it has the script data requested. if (obj->IsScript()) { if (Script::cast(obj)->name()->IsString()) { if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) { script = Handle<Script>(Script::cast(obj)); } } } } // If no script with the requested script data is found return undefined. if (script.is_null()) return factory->undefined_value(); // Return the script found. return Script::GetWrapper(script); } // Get the script object from script data. NOTE: Regarding performance // see the NOTE for GetScriptFromScriptData. // args[0]: script data for the script to find the source for RUNTIME_FUNCTION(Runtime_GetScript) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(String, script_name, 0); // Find the requested script. Handle<Object> result = Runtime_GetScriptFromScriptName(Handle<String>(script_name)); return *result; } // Collect the raw data for a stack trace. Returns an array of 4 // element segments each containing a receiver, function, code and // native code offset. RUNTIME_FUNCTION(Runtime_CollectStackTrace) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0); CONVERT_ARG_HANDLE_CHECKED(Object, caller, 1); if (!isolate->bootstrapper()->IsActive()) { // Optionally capture a more detailed stack trace for the message. isolate->CaptureAndSetDetailedStackTrace(error_object); // Capture a simple stack trace for the stack property. isolate->CaptureAndSetSimpleStackTrace(error_object, caller); } return isolate->heap()->undefined_value(); } // Returns V8 version as a string. RUNTIME_FUNCTION(Runtime_GetV8Version) { HandleScope scope(isolate); DCHECK(args.length() == 0); const char* version_string = v8::V8::GetVersion(); return *isolate->factory()->NewStringFromAsciiChecked(version_string); } // Returns function of generator activation. RUNTIME_FUNCTION(Runtime_GeneratorGetFunction) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0); return generator->function(); } // Returns context of generator activation. RUNTIME_FUNCTION(Runtime_GeneratorGetContext) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0); return generator->context(); } // Returns receiver of generator activation. RUNTIME_FUNCTION(Runtime_GeneratorGetReceiver) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0); return generator->receiver(); } // Returns generator continuation as a PC offset, or the magic -1 or 0 values. RUNTIME_FUNCTION(Runtime_GeneratorGetContinuation) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0); return Smi::FromInt(generator->continuation()); } RUNTIME_FUNCTION(Runtime_GeneratorGetSourcePosition) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0); if (generator->is_suspended()) { Handle<Code> code(generator->function()->code(), isolate); int offset = generator->continuation(); RUNTIME_ASSERT(0 <= offset && offset < code->Size()); Address pc = code->address() + offset; return Smi::FromInt(code->SourcePosition(pc)); } return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_Abort) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_SMI_ARG_CHECKED(message_id, 0); const char* message = GetBailoutReason( static_cast<BailoutReason>(message_id)); base::OS::PrintError("abort: %s\n", message); isolate->PrintStack(stderr); base::OS::Abort(); UNREACHABLE(); return NULL; } RUNTIME_FUNCTION(Runtime_AbortJS) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, message, 0); base::OS::PrintError("abort: %s\n", message->ToCString().get()); isolate->PrintStack(stderr); base::OS::Abort(); UNREACHABLE(); return NULL; } RUNTIME_FUNCTION(Runtime_FlattenString) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(String, str, 0); return *String::Flatten(str); } RUNTIME_FUNCTION(Runtime_NotifyContextDisposed) { HandleScope scope(isolate); DCHECK(args.length() == 0); isolate->heap()->NotifyContextDisposed(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_LoadMutableDouble) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); CONVERT_ARG_HANDLE_CHECKED(Smi, index, 1); RUNTIME_ASSERT((index->value() & 1) == 1); FieldIndex field_index = FieldIndex::ForLoadByFieldIndex(object->map(), index->value()); if (field_index.is_inobject()) { RUNTIME_ASSERT(field_index.property_index() < object->map()->inobject_properties()); } else { RUNTIME_ASSERT(field_index.outobject_array_index() < object->properties()->length()); } Handle<Object> raw_value(object->RawFastPropertyAt(field_index), isolate); RUNTIME_ASSERT(raw_value->IsMutableHeapNumber()); return *Object::WrapForRead(isolate, raw_value, Representation::Double()); } RUNTIME_FUNCTION(Runtime_TryMigrateInstance) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); if (!object->IsJSObject()) return Smi::FromInt(0); Handle<JSObject> js_object = Handle<JSObject>::cast(object); if (!js_object->map()->is_deprecated()) return Smi::FromInt(0); // This call must not cause lazy deopts, because it's called from deferred // code where we can't handle lazy deopts for lack of a suitable bailout // ID. So we just try migration and signal failure if necessary, // which will also trigger a deopt. if (!JSObject::TryMigrateInstance(js_object)) return Smi::FromInt(0); return *object; } RUNTIME_FUNCTION(Runtime_GetFromCache) { SealHandleScope shs(isolate); // This is only called from codegen, so checks might be more lax. CONVERT_ARG_CHECKED(JSFunctionResultCache, cache, 0); CONVERT_ARG_CHECKED(Object, key, 1); { DisallowHeapAllocation no_alloc; int finger_index = cache->finger_index(); Object* o = cache->get(finger_index); if (o == key) { // The fastest case: hit the same place again. return cache->get(finger_index + 1); } for (int i = finger_index - 2; i >= JSFunctionResultCache::kEntriesIndex; i -= 2) { o = cache->get(i); if (o == key) { cache->set_finger_index(i); return cache->get(i + 1); } } int size = cache->size(); DCHECK(size <= cache->length()); for (int i = size - 2; i > finger_index; i -= 2) { o = cache->get(i); if (o == key) { cache->set_finger_index(i); return cache->get(i + 1); } } } // There is no value in the cache. Invoke the function and cache result. HandleScope scope(isolate); Handle<JSFunctionResultCache> cache_handle(cache); Handle<Object> key_handle(key, isolate); Handle<Object> value; { Handle<JSFunction> factory(JSFunction::cast( cache_handle->get(JSFunctionResultCache::kFactoryIndex))); // TODO(antonm): consider passing a receiver when constructing a cache. Handle<JSObject> receiver(isolate->global_proxy()); // This handle is nor shared, nor used later, so it's safe. Handle<Object> argv[] = { key_handle }; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, value, Execution::Call(isolate, factory, receiver, arraysize(argv), argv)); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { cache_handle->JSFunctionResultCacheVerify(); } #endif // Function invocation may have cleared the cache. Reread all the data. int finger_index = cache_handle->finger_index(); int size = cache_handle->size(); // If we have spare room, put new data into it, otherwise evict post finger // entry which is likely to be the least recently used. int index = -1; if (size < cache_handle->length()) { cache_handle->set_size(size + JSFunctionResultCache::kEntrySize); index = size; } else { index = finger_index + JSFunctionResultCache::kEntrySize; if (index == cache_handle->length()) { index = JSFunctionResultCache::kEntriesIndex; } } DCHECK(index % 2 == 0); DCHECK(index >= JSFunctionResultCache::kEntriesIndex); DCHECK(index < cache_handle->length()); cache_handle->set(index, *key_handle); cache_handle->set(index + 1, *value); cache_handle->set_finger_index(index); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { cache_handle->JSFunctionResultCacheVerify(); } #endif return *value; } RUNTIME_FUNCTION(Runtime_MessageGetStartPosition) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSMessageObject, message, 0); return Smi::FromInt(message->start_position()); } RUNTIME_FUNCTION(Runtime_MessageGetScript) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(JSMessageObject, message, 0); return message->script(); } #ifdef DEBUG // ListNatives is ONLY used by the fuzz-natives.js in debug mode // Exclude the code in release mode. RUNTIME_FUNCTION(Runtime_ListNatives) { HandleScope scope(isolate); DCHECK(args.length() == 0); #define COUNT_ENTRY(Name, argc, ressize) + 1 int entry_count = 0 RUNTIME_FUNCTION_LIST(COUNT_ENTRY) INLINE_FUNCTION_LIST(COUNT_ENTRY) INLINE_OPTIMIZED_FUNCTION_LIST(COUNT_ENTRY); #undef COUNT_ENTRY Factory* factory = isolate->factory(); Handle<FixedArray> elements = factory->NewFixedArray(entry_count); int index = 0; bool inline_runtime_functions = false; #define ADD_ENTRY(Name, argc, ressize) \ { \ HandleScope inner(isolate); \ Handle<String> name; \ /* Inline runtime functions have an underscore in front of the name. */ \ if (inline_runtime_functions) { \ name = factory->NewStringFromStaticChars("_" #Name); \ } else { \ name = factory->NewStringFromStaticChars(#Name); \ } \ Handle<FixedArray> pair_elements = factory->NewFixedArray(2); \ pair_elements->set(0, *name); \ pair_elements->set(1, Smi::FromInt(argc)); \ Handle<JSArray> pair = factory->NewJSArrayWithElements(pair_elements); \ elements->set(index++, *pair); \ } inline_runtime_functions = false; RUNTIME_FUNCTION_LIST(ADD_ENTRY) INLINE_OPTIMIZED_FUNCTION_LIST(ADD_ENTRY) inline_runtime_functions = true; INLINE_FUNCTION_LIST(ADD_ENTRY) #undef ADD_ENTRY DCHECK_EQ(index, entry_count); Handle<JSArray> result = factory->NewJSArrayWithElements(elements); return *result; } #endif RUNTIME_FUNCTION(Runtime_IS_VAR) { UNREACHABLE(); // implemented as macro in the parser return NULL; } #define ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(Name) \ RUNTIME_FUNCTION(Runtime_Has##Name) { \ CONVERT_ARG_CHECKED(JSObject, obj, 0); \ return isolate->heap()->ToBoolean(obj->Has##Name()); \ } ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastObjectElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiOrObjectElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastDoubleElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastHoleyElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(DictionaryElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(SloppyArgumentsElements) ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalArrayElements) // Properties test sitting with elements tests - not fooling anyone. ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastProperties) #undef ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION #define TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, size) \ RUNTIME_FUNCTION(Runtime_HasExternal##Type##Elements) { \ CONVERT_ARG_CHECKED(JSObject, obj, 0); \ return isolate->heap()->ToBoolean(obj->HasExternal##Type##Elements()); \ } TYPED_ARRAYS(TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION) #undef TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION #define FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, s) \ RUNTIME_FUNCTION(Runtime_HasFixed##Type##Elements) { \ CONVERT_ARG_CHECKED(JSObject, obj, 0); \ return isolate->heap()->ToBoolean(obj->HasFixed##Type##Elements()); \ } TYPED_ARRAYS(FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION) #undef FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION RUNTIME_FUNCTION(Runtime_HaveSameMap) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(JSObject, obj1, 0); CONVERT_ARG_CHECKED(JSObject, obj2, 1); return isolate->heap()->ToBoolean(obj1->map() == obj2->map()); } RUNTIME_FUNCTION(Runtime_IsJSGlobalProxy) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsJSGlobalProxy()); } RUNTIME_FUNCTION(Runtime_IsObserved) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); if (!args[0]->IsJSReceiver()) return isolate->heap()->false_value(); CONVERT_ARG_CHECKED(JSReceiver, obj, 0); DCHECK(!obj->IsJSGlobalProxy() || !obj->map()->is_observed()); return isolate->heap()->ToBoolean(obj->map()->is_observed()); } RUNTIME_FUNCTION(Runtime_SetIsObserved) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, obj, 0); RUNTIME_ASSERT(!obj->IsJSGlobalProxy()); if (obj->IsJSProxy()) return isolate->heap()->undefined_value(); RUNTIME_ASSERT(!obj->map()->is_observed()); DCHECK(obj->IsJSObject()); JSObject::SetObserved(Handle<JSObject>::cast(obj)); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_EnqueueMicrotask) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSFunction, microtask, 0); isolate->EnqueueMicrotask(microtask); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_RunMicrotasks) { HandleScope scope(isolate); DCHECK(args.length() == 0); isolate->RunMicrotasks(); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(Runtime_GetObservationState) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); return isolate->heap()->observation_state(); } RUNTIME_FUNCTION(Runtime_ObservationWeakMapCreate) { HandleScope scope(isolate); DCHECK(args.length() == 0); // TODO(adamk): Currently this runtime function is only called three times per // isolate. If it's called more often, the map should be moved into the // strong root list. Handle<Map> map = isolate->factory()->NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize); Handle<JSWeakMap> weakmap = Handle<JSWeakMap>::cast(isolate->factory()->NewJSObjectFromMap(map)); return *WeakCollectionInitialize(isolate, weakmap); } static bool ContextsHaveSameOrigin(Handle<Context> context1, Handle<Context> context2) { return context1->security_token() == context2->security_token(); } RUNTIME_FUNCTION(Runtime_ObserverObjectAndRecordHaveSameOrigin) { HandleScope scope(isolate); DCHECK(args.length() == 3); CONVERT_ARG_HANDLE_CHECKED(JSFunction, observer, 0); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, record, 2); Handle<Context> observer_context(observer->context()->native_context()); Handle<Context> object_context(object->GetCreationContext()); Handle<Context> record_context(record->GetCreationContext()); return isolate->heap()->ToBoolean( ContextsHaveSameOrigin(object_context, observer_context) && ContextsHaveSameOrigin(object_context, record_context)); } RUNTIME_FUNCTION(Runtime_ObjectWasCreatedInCurrentOrigin) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); Handle<Context> creation_context(object->GetCreationContext(), isolate); return isolate->heap()->ToBoolean( ContextsHaveSameOrigin(creation_context, isolate->native_context())); } RUNTIME_FUNCTION(Runtime_GetObjectContextObjectObserve) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); Handle<Context> context(object->GetCreationContext(), isolate); return context->native_object_observe(); } RUNTIME_FUNCTION(Runtime_GetObjectContextObjectGetNotifier) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); Handle<Context> context(object->GetCreationContext(), isolate); return context->native_object_get_notifier(); } RUNTIME_FUNCTION(Runtime_GetObjectContextNotifierPerformChange) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, object_info, 0); Handle<Context> context(object_info->GetCreationContext(), isolate); return context->native_object_notifier_perform_change(); } static Object* ArrayConstructorCommon(Isolate* isolate, Handle<JSFunction> constructor, Handle<AllocationSite> site, Arguments* caller_args) { Factory* factory = isolate->factory(); bool holey = false; bool can_use_type_feedback = true; if (caller_args->length() == 1) { Handle<Object> argument_one = caller_args->at<Object>(0); if (argument_one->IsSmi()) { int value = Handle<Smi>::cast(argument_one)->value(); if (value < 0 || value >= JSObject::kInitialMaxFastElementArray) { // the array is a dictionary in this case. can_use_type_feedback = false; } else if (value != 0) { holey = true; } } else { // Non-smi length argument produces a dictionary can_use_type_feedback = false; } } Handle<JSArray> array; if (!site.is_null() && can_use_type_feedback) { ElementsKind to_kind = site->GetElementsKind(); if (holey && !IsFastHoleyElementsKind(to_kind)) { to_kind = GetHoleyElementsKind(to_kind); // Update the allocation site info to reflect the advice alteration. site->SetElementsKind(to_kind); } // We should allocate with an initial map that reflects the allocation site // advice. Therefore we use AllocateJSObjectFromMap instead of passing // the constructor. Handle<Map> initial_map(constructor->initial_map(), isolate); if (to_kind != initial_map->elements_kind()) { initial_map = Map::AsElementsKind(initial_map, to_kind); } // If we don't care to track arrays of to_kind ElementsKind, then // don't emit a memento for them. Handle<AllocationSite> allocation_site; if (AllocationSite::GetMode(to_kind) == TRACK_ALLOCATION_SITE) { allocation_site = site; } array = Handle<JSArray>::cast(factory->NewJSObjectFromMap( initial_map, NOT_TENURED, true, allocation_site)); } else { array = Handle<JSArray>::cast(factory->NewJSObject(constructor)); // We might need to transition to holey ElementsKind kind = constructor->initial_map()->elements_kind(); if (holey && !IsFastHoleyElementsKind(kind)) { kind = GetHoleyElementsKind(kind); JSObject::TransitionElementsKind(array, kind); } } factory->NewJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS); ElementsKind old_kind = array->GetElementsKind(); RETURN_FAILURE_ON_EXCEPTION( isolate, ArrayConstructInitializeElements(array, caller_args)); if (!site.is_null() && (old_kind != array->GetElementsKind() || !can_use_type_feedback)) { // The arguments passed in caused a transition. This kind of complexity // can't be dealt with in the inlined hydrogen array constructor case. // We must mark the allocationsite as un-inlinable. site->SetDoNotInlineCall(); } return *array; } RUNTIME_FUNCTION(Runtime_ArrayConstructor) { HandleScope scope(isolate); // If we get 2 arguments then they are the stub parameters (constructor, type // info). If we get 4, then the first one is a pointer to the arguments // passed by the caller, and the last one is the length of the arguments // passed to the caller (redundant, but useful to check on the deoptimizer // with an assert). Arguments empty_args(0, NULL); bool no_caller_args = args.length() == 2; DCHECK(no_caller_args || args.length() == 4); int parameters_start = no_caller_args ? 0 : 1; Arguments* caller_args = no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]); CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start); CONVERT_ARG_HANDLE_CHECKED(Object, type_info, parameters_start + 1); #ifdef DEBUG if (!no_caller_args) { CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 2); DCHECK(arg_count == caller_args->length()); } #endif Handle<AllocationSite> site; if (!type_info.is_null() && *type_info != isolate->heap()->undefined_value()) { site = Handle<AllocationSite>::cast(type_info); DCHECK(!site->SitePointsToLiteral()); } return ArrayConstructorCommon(isolate, constructor, site, caller_args); } RUNTIME_FUNCTION(Runtime_InternalArrayConstructor) { HandleScope scope(isolate); Arguments empty_args(0, NULL); bool no_caller_args = args.length() == 1; DCHECK(no_caller_args || args.length() == 3); int parameters_start = no_caller_args ? 0 : 1; Arguments* caller_args = no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]); CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start); #ifdef DEBUG if (!no_caller_args) { CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 1); DCHECK(arg_count == caller_args->length()); } #endif return ArrayConstructorCommon(isolate, constructor, Handle<AllocationSite>::null(), caller_args); } RUNTIME_FUNCTION(Runtime_NormalizeElements) { HandleScope scope(isolate); DCHECK(args.length() == 1); CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0); RUNTIME_ASSERT(!array->HasExternalArrayElements() && !array->HasFixedTypedArrayElements()); JSObject::NormalizeElements(array); return *array; } RUNTIME_FUNCTION(Runtime_MaxSmi) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); return Smi::FromInt(Smi::kMaxValue); } // TODO(dcarney): remove this function when TurboFan supports it. // Takes the object to be iterated over and the result of GetPropertyNamesFast // Returns pair (cache_array, cache_type). RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInInit) { SealHandleScope scope(isolate); DCHECK(args.length() == 2); // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs. // Not worth creating a macro atm as this function should be removed. if (!args[0]->IsJSReceiver() || !args[1]->IsObject()) { Object* error = isolate->ThrowIllegalOperation(); return MakePair(error, isolate->heap()->undefined_value()); } Handle<JSReceiver> object = args.at<JSReceiver>(0); Handle<Object> cache_type = args.at<Object>(1); if (cache_type->IsMap()) { // Enum cache case. if (Map::EnumLengthBits::decode(Map::cast(*cache_type)->bit_field3()) == 0) { // 0 length enum. // Can't handle this case in the graph builder, // so transform it into the empty fixed array case. return MakePair(isolate->heap()->empty_fixed_array(), Smi::FromInt(1)); } return MakePair(object->map()->instance_descriptors()->GetEnumCache(), *cache_type); } else { // FixedArray case. Smi* new_cache_type = Smi::FromInt(object->IsJSProxy() ? 0 : 1); return MakePair(*Handle<FixedArray>::cast(cache_type), new_cache_type); } } // TODO(dcarney): remove this function when TurboFan supports it. RUNTIME_FUNCTION(Runtime_ForInCacheArrayLength) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_HANDLE_CHECKED(Object, cache_type, 0); CONVERT_ARG_HANDLE_CHECKED(FixedArray, array, 1); int length = 0; if (cache_type->IsMap()) { length = Map::cast(*cache_type)->EnumLength(); } else { DCHECK(cache_type->IsSmi()); length = array->length(); } return Smi::FromInt(length); } // TODO(dcarney): remove this function when TurboFan supports it. // Takes (the object to be iterated over, // cache_array from ForInInit, // cache_type from ForInInit, // the current index) // Returns pair (array[index], needs_filtering). RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInNext) { SealHandleScope scope(isolate); DCHECK(args.length() == 4); int32_t index; // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs. // Not worth creating a macro atm as this function should be removed. if (!args[0]->IsJSReceiver() || !args[1]->IsFixedArray() || !args[2]->IsObject() || !args[3]->ToInt32(&index)) { Object* error = isolate->ThrowIllegalOperation(); return MakePair(error, isolate->heap()->undefined_value()); } Handle<JSReceiver> object = args.at<JSReceiver>(0); Handle<FixedArray> array = args.at<FixedArray>(1); Handle<Object> cache_type = args.at<Object>(2); // Figure out first if a slow check is needed for this object. bool slow_check_needed = false; if (cache_type->IsMap()) { if (object->map() != Map::cast(*cache_type)) { // Object transitioned. Need slow check. slow_check_needed = true; } } else { // No slow check needed for proxies. slow_check_needed = Smi::cast(*cache_type)->value() == 1; } return MakePair(array->get(index), isolate->heap()->ToBoolean(slow_check_needed)); } // ---------------------------------------------------------------------------- // Reference implementation for inlined runtime functions. Only used when the // compiler does not support a certain intrinsic. Don't optimize these, but // implement the intrinsic in the respective compiler instead. // TODO(mstarzinger): These are place-holder stubs for TurboFan and will // eventually all have a C++ implementation and this macro will be gone. #define U(name) \ RUNTIME_FUNCTION(RuntimeReference_##name) { \ UNIMPLEMENTED(); \ return NULL; \ } U(IsStringWrapperSafeForDefaultValueOf) U(DebugBreakInOptimizedCode) #undef U RUNTIME_FUNCTION(RuntimeReference_IsSmi) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsSmi()); } RUNTIME_FUNCTION(RuntimeReference_IsNonNegativeSmi) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsSmi() && Smi::cast(obj)->value() >= 0); } RUNTIME_FUNCTION(RuntimeReference_IsArray) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsJSArray()); } RUNTIME_FUNCTION(RuntimeReference_IsRegExp) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsJSRegExp()); } RUNTIME_FUNCTION(RuntimeReference_IsConstructCall) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); return isolate->heap()->ToBoolean(frame->IsConstructor()); } RUNTIME_FUNCTION(RuntimeReference_CallFunction) { SealHandleScope shs(isolate); return __RT_impl_Runtime_Call(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_ArgumentsLength) { SealHandleScope shs(isolate); DCHECK(args.length() == 0); JavaScriptFrameIterator it(isolate); JavaScriptFrame* frame = it.frame(); return Smi::FromInt(frame->GetArgumentsLength()); } RUNTIME_FUNCTION(RuntimeReference_Arguments) { SealHandleScope shs(isolate); return __RT_impl_Runtime_GetArgumentsProperty(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_ValueOf) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); if (!obj->IsJSValue()) return obj; return JSValue::cast(obj)->value(); } RUNTIME_FUNCTION(RuntimeReference_SetValueOf) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(Object, obj, 0); CONVERT_ARG_CHECKED(Object, value, 1); if (!obj->IsJSValue()) return value; JSValue::cast(obj)->set_value(value); return value; } RUNTIME_FUNCTION(RuntimeReference_DateField) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(Object, obj, 0); CONVERT_SMI_ARG_CHECKED(index, 1); if (!obj->IsJSDate()) { HandleScope scope(isolate); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError("not_date_object", HandleVector<Object>(NULL, 0))); } JSDate* date = JSDate::cast(obj); if (index == 0) return date->value(); return JSDate::GetField(date, Smi::FromInt(index)); } RUNTIME_FUNCTION(RuntimeReference_StringCharFromCode) { SealHandleScope shs(isolate); return __RT_impl_Runtime_CharFromCode(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_StringCharAt) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); if (!args[0]->IsString()) return Smi::FromInt(0); if (!args[1]->IsNumber()) return Smi::FromInt(0); if (std::isinf(args.number_at(1))) return isolate->heap()->empty_string(); Object* code = __RT_impl_Runtime_StringCharCodeAtRT(args, isolate); if (code->IsNaN()) return isolate->heap()->empty_string(); return __RT_impl_Runtime_CharFromCode(Arguments(1, &code), isolate); } RUNTIME_FUNCTION(RuntimeReference_OneByteSeqStringSetChar) { SealHandleScope shs(isolate); DCHECK(args.length() == 3); CONVERT_INT32_ARG_CHECKED(index, 0); CONVERT_INT32_ARG_CHECKED(value, 1); CONVERT_ARG_CHECKED(SeqOneByteString, string, 2); string->SeqOneByteStringSet(index, value); return string; } RUNTIME_FUNCTION(RuntimeReference_TwoByteSeqStringSetChar) { SealHandleScope shs(isolate); DCHECK(args.length() == 3); CONVERT_INT32_ARG_CHECKED(index, 0); CONVERT_INT32_ARG_CHECKED(value, 1); CONVERT_ARG_CHECKED(SeqTwoByteString, string, 2); string->SeqTwoByteStringSet(index, value); return string; } RUNTIME_FUNCTION(RuntimeReference_ObjectEquals) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); CONVERT_ARG_CHECKED(Object, obj1, 0); CONVERT_ARG_CHECKED(Object, obj2, 1); return isolate->heap()->ToBoolean(obj1 == obj2); } RUNTIME_FUNCTION(RuntimeReference_IsObject) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); if (!obj->IsHeapObject()) return isolate->heap()->false_value(); if (obj->IsNull()) return isolate->heap()->true_value(); if (obj->IsUndetectableObject()) return isolate->heap()->false_value(); Map* map = HeapObject::cast(obj)->map(); bool is_non_callable_spec_object = map->instance_type() >= FIRST_NONCALLABLE_SPEC_OBJECT_TYPE && map->instance_type() <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE; return isolate->heap()->ToBoolean(is_non_callable_spec_object); } RUNTIME_FUNCTION(RuntimeReference_IsFunction) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsJSFunction()); } RUNTIME_FUNCTION(RuntimeReference_IsUndetectableObject) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsUndetectableObject()); } RUNTIME_FUNCTION(RuntimeReference_IsSpecObject) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); return isolate->heap()->ToBoolean(obj->IsSpecObject()); } RUNTIME_FUNCTION(RuntimeReference_MathPow) { SealHandleScope shs(isolate); return __RT_impl_Runtime_MathPowSlow(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_IsMinusZero) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); if (!obj->IsHeapNumber()) return isolate->heap()->false_value(); HeapNumber* number = HeapNumber::cast(obj); return isolate->heap()->ToBoolean(IsMinusZero(number->value())); } RUNTIME_FUNCTION(RuntimeReference_HasCachedArrayIndex) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); return isolate->heap()->false_value(); } RUNTIME_FUNCTION(RuntimeReference_GetCachedArrayIndex) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(RuntimeReference_FastOneByteArrayJoin) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); return isolate->heap()->undefined_value(); } RUNTIME_FUNCTION(RuntimeReference_GeneratorNext) { UNREACHABLE(); // Optimization disabled in SetUpGenerators(). return NULL; } RUNTIME_FUNCTION(RuntimeReference_GeneratorThrow) { UNREACHABLE(); // Optimization disabled in SetUpGenerators(). return NULL; } RUNTIME_FUNCTION(RuntimeReference_ClassOf) { SealHandleScope shs(isolate); DCHECK(args.length() == 1); CONVERT_ARG_CHECKED(Object, obj, 0); if (!obj->IsJSReceiver()) return isolate->heap()->null_value(); return JSReceiver::cast(obj)->class_name(); } RUNTIME_FUNCTION(RuntimeReference_StringCharCodeAt) { SealHandleScope shs(isolate); DCHECK(args.length() == 2); if (!args[0]->IsString()) return isolate->heap()->undefined_value(); if (!args[1]->IsNumber()) return isolate->heap()->undefined_value(); if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value(); return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_StringAdd) { SealHandleScope shs(isolate); return __RT_impl_Runtime_StringAdd(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_SubString) { SealHandleScope shs(isolate); return __RT_impl_Runtime_SubString(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_StringCompare) { SealHandleScope shs(isolate); return __RT_impl_Runtime_StringCompare(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_RegExpExec) { SealHandleScope shs(isolate); return __RT_impl_Runtime_RegExpExecRT(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_RegExpConstructResult) { SealHandleScope shs(isolate); return __RT_impl_Runtime_RegExpConstructResult(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_GetFromCache) { HandleScope scope(isolate); DCHECK(args.length() == 2); CONVERT_SMI_ARG_CHECKED(id, 0); args[0] = isolate->native_context()->jsfunction_result_caches()->get(id); return __RT_impl_Runtime_GetFromCache(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_NumberToString) { SealHandleScope shs(isolate); return __RT_impl_Runtime_NumberToStringRT(args, isolate); } RUNTIME_FUNCTION(RuntimeReference_DebugIsActive) { SealHandleScope shs(isolate); return Smi::FromInt(isolate->debug()->is_active()); } // ---------------------------------------------------------------------------- // Implementation of Runtime #define F(name, number_of_args, result_size) \ { \ Runtime::k##name, Runtime::RUNTIME, #name, FUNCTION_ADDR(Runtime_##name), \ number_of_args, result_size \ } \ , #define I(name, number_of_args, result_size) \ { \ Runtime::kInline##name, Runtime::INLINE, "_" #name, \ FUNCTION_ADDR(RuntimeReference_##name), number_of_args, result_size \ } \ , #define IO(name, number_of_args, result_size) \ { \ Runtime::kInlineOptimized##name, Runtime::INLINE_OPTIMIZED, "_" #name, \ FUNCTION_ADDR(Runtime_##name), number_of_args, result_size \ } \ , static const Runtime::Function kIntrinsicFunctions[] = { RUNTIME_FUNCTION_LIST(F) INLINE_OPTIMIZED_FUNCTION_LIST(F) INLINE_FUNCTION_LIST(I) INLINE_OPTIMIZED_FUNCTION_LIST(IO) }; #undef IO #undef I #undef F void Runtime::InitializeIntrinsicFunctionNames(Isolate* isolate, Handle<NameDictionary> dict) { DCHECK(dict->NumberOfElements() == 0); HandleScope scope(isolate); for (int i = 0; i < kNumFunctions; ++i) { const char* name = kIntrinsicFunctions[i].name; if (name == NULL) continue; Handle<NameDictionary> new_dict = NameDictionary::Add( dict, isolate->factory()->InternalizeUtf8String(name), Handle<Smi>(Smi::FromInt(i), isolate), PropertyDetails(NONE, NORMAL, Representation::None())); // The dictionary does not need to grow. CHECK(new_dict.is_identical_to(dict)); } } const Runtime::Function* Runtime::FunctionForName(Handle<String> name) { Heap* heap = name->GetHeap(); int entry = heap->intrinsic_function_names()->FindEntry(name); if (entry != kNotFound) { Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry); int function_index = Smi::cast(smi_index)->value(); return &(kIntrinsicFunctions[function_index]); } return NULL; } const Runtime::Function* Runtime::FunctionForEntry(Address entry) { for (size_t i = 0; i < arraysize(kIntrinsicFunctions); ++i) { if (entry == kIntrinsicFunctions[i].entry) { return &(kIntrinsicFunctions[i]); } } return NULL; } const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) { return &(kIntrinsicFunctions[static_cast<int>(id)]); } } } // namespace v8::internal