// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_X64 #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/compiler.h" #include "src/debug.h" #include "src/full-codegen.h" #include "src/ic/ic.h" #include "src/isolate-inl.h" #include "src/parser.h" #include "src/scopes.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) class JumpPatchSite BASE_EMBEDDED { public: explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { #ifdef DEBUG info_emitted_ = false; #endif } ~JumpPatchSite() { DCHECK(patch_site_.is_bound() == info_emitted_); } void EmitJumpIfNotSmi(Register reg, Label* target, Label::Distance near_jump = Label::kFar) { __ testb(reg, Immediate(kSmiTagMask)); EmitJump(not_carry, target, near_jump); // Always taken before patched. } void EmitJumpIfSmi(Register reg, Label* target, Label::Distance near_jump = Label::kFar) { __ testb(reg, Immediate(kSmiTagMask)); EmitJump(carry, target, near_jump); // Never taken before patched. } void EmitPatchInfo() { if (patch_site_.is_bound()) { int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_); DCHECK(is_uint8(delta_to_patch_site)); __ testl(rax, Immediate(delta_to_patch_site)); #ifdef DEBUG info_emitted_ = true; #endif } else { __ nop(); // Signals no inlined code. } } private: // jc will be patched with jz, jnc will become jnz. void EmitJump(Condition cc, Label* target, Label::Distance near_jump) { DCHECK(!patch_site_.is_bound() && !info_emitted_); DCHECK(cc == carry || cc == not_carry); __ bind(&patch_site_); __ j(cc, target, near_jump); } MacroAssembler* masm_; Label patch_site_; #ifdef DEBUG bool info_emitted_; #endif }; // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right, with the // return address on top of them. The actual argument count matches the // formal parameter count expected by the function. // // The live registers are: // o rdi: the JS function object being called (i.e. ourselves) // o rsi: our context // o rbp: our caller's frame pointer // o rsp: stack pointer (pointing to return address) // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-x64.h for its layout. void FullCodeGenerator::Generate() { CompilationInfo* info = info_; handler_table_ = isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED); profiling_counter_ = isolate()->factory()->NewCell( Handle(Smi::FromInt(FLAG_interrupt_budget), isolate())); SetFunctionPosition(function()); Comment cmnt(masm_, "[ function compiled by full code generator"); ProfileEntryHookStub::MaybeCallEntryHook(masm_); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { __ int3(); } #endif // Sloppy mode functions and builtins need to replace the receiver with the // global proxy when called as functions (without an explicit receiver // object). if (info->strict_mode() == SLOPPY && !info->is_native()) { Label ok; // +1 for return address. StackArgumentsAccessor args(rsp, info->scope()->num_parameters()); __ movp(rcx, args.GetReceiverOperand()); __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); __ j(not_equal, &ok, Label::kNear); __ movp(rcx, GlobalObjectOperand()); __ movp(rcx, FieldOperand(rcx, GlobalObject::kGlobalProxyOffset)); __ movp(args.GetReceiverOperand(), rcx); __ bind(&ok); } // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm_, StackFrame::MANUAL); info->set_prologue_offset(masm_->pc_offset()); __ Prologue(info->IsCodePreAgingActive()); info->AddNoFrameRange(0, masm_->pc_offset()); { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = info->scope()->num_stack_slots(); // Generators allocate locals, if any, in context slots. DCHECK(!info->function()->is_generator() || locals_count == 0); if (locals_count == 1) { __ PushRoot(Heap::kUndefinedValueRootIndex); } else if (locals_count > 1) { if (locals_count >= 128) { Label ok; __ movp(rcx, rsp); __ subp(rcx, Immediate(locals_count * kPointerSize)); __ CompareRoot(rcx, Heap::kRealStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); __ bind(&ok); } __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); const int kMaxPushes = 32; if (locals_count >= kMaxPushes) { int loop_iterations = locals_count / kMaxPushes; __ movp(rcx, Immediate(loop_iterations)); Label loop_header; __ bind(&loop_header); // Do pushes. for (int i = 0; i < kMaxPushes; i++) { __ Push(rdx); } // Continue loop if not done. __ decp(rcx); __ j(not_zero, &loop_header, Label::kNear); } int remaining = locals_count % kMaxPushes; // Emit the remaining pushes. for (int i = 0; i < remaining; i++) { __ Push(rdx); } } } bool function_in_register = true; // Possibly allocate a local context. int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment cmnt(masm_, "[ Allocate context"); bool need_write_barrier = true; // Argument to NewContext is the function, which is still in rdi. if (FLAG_harmony_scoping && info->scope()->is_global_scope()) { __ Push(rdi); __ Push(info->scope()->GetScopeInfo()); __ CallRuntime(Runtime::kNewGlobalContext, 2); } else if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(isolate(), heap_slots); __ CallStub(&stub); // Result of FastNewContextStub is always in new space. need_write_barrier = false; } else { __ Push(rdi); __ CallRuntime(Runtime::kNewFunctionContext, 1); } function_in_register = false; // Context is returned in rax. It replaces the context passed to us. // It's saved in the stack and kept live in rsi. __ movp(rsi, rax); __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax); // Copy any necessary parameters into the context. int num_parameters = info->scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Variable* var = scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ movp(rax, Operand(rbp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(var->index()); __ movp(Operand(rsi, context_offset), rax); // Update the write barrier. This clobbers rax and rbx. if (need_write_barrier) { __ RecordWriteContextSlot( rsi, context_offset, rax, rbx, kDontSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } } // Possibly allocate an arguments object. Variable* arguments = scope()->arguments(); if (arguments != NULL) { // Arguments object must be allocated after the context object, in // case the "arguments" or ".arguments" variables are in the context. Comment cmnt(masm_, "[ Allocate arguments object"); if (function_in_register) { __ Push(rdi); } else { __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } // The receiver is just before the parameters on the caller's stack. int num_parameters = info->scope()->num_parameters(); int offset = num_parameters * kPointerSize; __ leap(rdx, Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset)); __ Push(rdx); __ Push(Smi::FromInt(num_parameters)); // Arguments to ArgumentsAccessStub: // function, receiver address, parameter count. // The stub will rewrite receiver and parameter count if the previous // stack frame was an arguments adapter frame. ArgumentsAccessStub::Type type; if (strict_mode() == STRICT) { type = ArgumentsAccessStub::NEW_STRICT; } else if (function()->has_duplicate_parameters()) { type = ArgumentsAccessStub::NEW_SLOPPY_SLOW; } else { type = ArgumentsAccessStub::NEW_SLOPPY_FAST; } ArgumentsAccessStub stub(isolate(), type); __ CallStub(&stub); SetVar(arguments, rax, rbx, rdx); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } // Visit the declarations and body unless there is an illegal // redeclaration. if (scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ Declarations"); scope()->VisitIllegalRedeclaration(this); } else { PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS); { Comment cmnt(masm_, "[ Declarations"); // For named function expressions, declare the function name as a // constant. if (scope()->is_function_scope() && scope()->function() != NULL) { VariableDeclaration* function = scope()->function(); DCHECK(function->proxy()->var()->mode() == CONST || function->proxy()->var()->mode() == CONST_LEGACY); DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED); VisitVariableDeclaration(function); } VisitDeclarations(scope()->declarations()); } { Comment cmnt(masm_, "[ Stack check"); PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS); Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); __ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET); __ bind(&ok); } { Comment cmnt(masm_, "[ Body"); DCHECK(loop_depth() == 0); VisitStatements(function()->body()); DCHECK(loop_depth() == 0); } } // Always emit a 'return undefined' in case control fell off the end of // the body. { Comment cmnt(masm_, "[ return ;"); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); EmitReturnSequence(); } } void FullCodeGenerator::ClearAccumulator() { __ Set(rax, 0); } void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { __ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT); __ SmiAddConstant(FieldOperand(rbx, Cell::kValueOffset), Smi::FromInt(-delta)); } void FullCodeGenerator::EmitProfilingCounterReset() { int reset_value = FLAG_interrupt_budget; __ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT); __ Move(kScratchRegister, Smi::FromInt(reset_value)); __ movp(FieldOperand(rbx, Cell::kValueOffset), kScratchRegister); } static const byte kJnsOffset = kPointerSize == kInt64Size ? 0x1d : 0x14; void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt, Label* back_edge_target) { Comment cmnt(masm_, "[ Back edge bookkeeping"); Label ok; DCHECK(back_edge_target->is_bound()); int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target); int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); EmitProfilingCounterDecrement(weight); __ j(positive, &ok, Label::kNear); { PredictableCodeSizeScope predictible_code_size_scope(masm_, kJnsOffset); DontEmitDebugCodeScope dont_emit_debug_code_scope(masm_); __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); // Record a mapping of this PC offset to the OSR id. This is used to find // the AST id from the unoptimized code in order to use it as a key into // the deoptimization input data found in the optimized code. RecordBackEdge(stmt->OsrEntryId()); EmitProfilingCounterReset(); } __ bind(&ok); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); // Record a mapping of the OSR id to this PC. This is used if the OSR // entry becomes the target of a bailout. We don't expect it to be, but // we want it to work if it is. PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ jmp(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { __ Push(rax); __ CallRuntime(Runtime::kTraceExit, 1); } // Pretend that the exit is a backwards jump to the entry. int weight = 1; if (info_->ShouldSelfOptimize()) { weight = FLAG_interrupt_budget / FLAG_self_opt_count; } else { int distance = masm_->pc_offset(); weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); } EmitProfilingCounterDecrement(weight); Label ok; __ j(positive, &ok, Label::kNear); __ Push(rax); __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); __ Pop(rax); EmitProfilingCounterReset(); __ bind(&ok); #ifdef DEBUG // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); #endif CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); __ RecordJSReturn(); // Do not use the leave instruction here because it is too short to // patch with the code required by the debugger. __ movp(rsp, rbp); __ popq(rbp); int no_frame_start = masm_->pc_offset(); int arguments_bytes = (info_->scope()->num_parameters() + 1) * kPointerSize; __ Ret(arguments_bytes, rcx); // Add padding that will be overwritten by a debugger breakpoint. We // have just generated at least 7 bytes: "movp rsp, rbp; pop rbp; ret k" // (3 + 1 + 3) for x64 and at least 6 (2 + 1 + 3) bytes for x32. const int kPadding = Assembler::kJSReturnSequenceLength - kPointerSize == kInt64Size ? 7 : 6; for (int i = 0; i < kPadding; ++i) { masm_->int3(); } // Check that the size of the code used for returning is large enough // for the debugger's requirements. DCHECK(Assembler::kJSReturnSequenceLength <= masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); } } void FullCodeGenerator::EffectContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); } void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); codegen()->GetVar(result_register(), var); } void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand operand = codegen()->VarOperand(var, result_register()); __ Push(operand); } void FullCodeGenerator::TestContext::Plug(Variable* var) const { codegen()->GetVar(result_register(), var); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { __ PushRoot(index); } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (index == Heap::kUndefinedValueRootIndex || index == Heap::kNullValueRootIndex || index == Heap::kFalseValueRootIndex) { if (false_label_ != fall_through_) __ jmp(false_label_); } else if (index == Heap::kTrueValueRootIndex) { if (true_label_ != fall_through_) __ jmp(true_label_); } else { __ LoadRoot(result_register(), index); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::Plug(Handle lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle lit) const { if (lit->IsSmi()) { __ SafeMove(result_register(), Smi::cast(*lit)); } else { __ Move(result_register(), lit); } } void FullCodeGenerator::StackValueContext::Plug(Handle lit) const { if (lit->IsSmi()) { __ SafePush(Smi::cast(*lit)); } else { __ Push(lit); } } void FullCodeGenerator::TestContext::Plug(Handle lit) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals. if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { if (false_label_ != fall_through_) __ jmp(false_label_); } else if (lit->IsTrue() || lit->IsJSObject()) { if (true_label_ != fall_through_) __ jmp(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { if (false_label_ != fall_through_) __ jmp(false_label_); } else { if (true_label_ != fall_through_) __ jmp(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { if (false_label_ != fall_through_) __ jmp(false_label_); } else { if (true_label_ != fall_through_) __ jmp(true_label_); } } else { // For simplicity we always test the accumulator register. __ Move(result_register(), lit); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); __ Drop(count); } void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( int count, Register reg) const { DCHECK(count > 0); __ Drop(count); __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); if (count > 1) __ Drop(count - 1); __ movp(Operand(rsp, 0), reg); } void FullCodeGenerator::TestContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); // For simplicity we always test the accumulator register. __ Drop(count); __ Move(result_register(), reg); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == materialize_false); __ bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ Move(result_register(), isolate()->factory()->true_value()); __ jmp(&done, Label::kNear); __ bind(materialize_false); __ Move(result_register(), isolate()->factory()->false_value()); __ bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ Push(isolate()->factory()->true_value()); __ jmp(&done, Label::kNear); __ bind(materialize_false); __ Push(isolate()->factory()->false_value()); __ bind(&done); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == true_label_); DCHECK(materialize_false == false_label_); } void FullCodeGenerator::EffectContext::Plug(bool flag) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(result_register(), value_root_index); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ PushRoot(value_root_index); } void FullCodeGenerator::TestContext::Plug(bool flag) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (flag) { if (true_label_ != fall_through_) __ jmp(true_label_); } else { if (false_label_ != fall_through_) __ jmp(false_label_); } } void FullCodeGenerator::DoTest(Expression* condition, Label* if_true, Label* if_false, Label* fall_through) { Handle ic = ToBooleanStub::GetUninitialized(isolate()); CallIC(ic, condition->test_id()); __ testp(result_register(), result_register()); // The stub returns nonzero for true. Split(not_zero, if_true, if_false, fall_through); } void FullCodeGenerator::Split(Condition cc, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ j(cc, if_true); } else if (if_true == fall_through) { __ j(NegateCondition(cc), if_false); } else { __ j(cc, if_true); __ jmp(if_false); } } MemOperand FullCodeGenerator::StackOperand(Variable* var) { DCHECK(var->IsStackAllocated()); // Offset is negative because higher indexes are at lower addresses. int offset = -var->index() * kPointerSize; // Adjust by a (parameter or local) base offset. if (var->IsParameter()) { offset += kFPOnStackSize + kPCOnStackSize + (info_->scope()->num_parameters() - 1) * kPointerSize; } else { offset += JavaScriptFrameConstants::kLocal0Offset; } return Operand(rbp, offset); } MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); if (var->IsContextSlot()) { int context_chain_length = scope()->ContextChainLength(var->scope()); __ LoadContext(scratch, context_chain_length); return ContextOperand(scratch, var->index()); } else { return StackOperand(var); } } void FullCodeGenerator::GetVar(Register dest, Variable* var) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); MemOperand location = VarOperand(var, dest); __ movp(dest, location); } void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0, Register scratch1) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); DCHECK(!scratch0.is(src)); DCHECK(!scratch0.is(scratch1)); DCHECK(!scratch1.is(src)); MemOperand location = VarOperand(var, scratch0); __ movp(location, src); // Emit the write barrier code if the location is in the heap. if (var->IsContextSlot()) { int offset = Context::SlotOffset(var->index()); __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs); } } void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, bool should_normalize, Label* if_true, Label* if_false) { // Only prepare for bailouts before splits if we're in a test // context. Otherwise, we let the Visit function deal with the // preparation to avoid preparing with the same AST id twice. if (!context()->IsTest() || !info_->IsOptimizable()) return; Label skip; if (should_normalize) __ jmp(&skip, Label::kNear); PrepareForBailout(expr, TOS_REG); if (should_normalize) { __ CompareRoot(rax, Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, NULL); __ bind(&skip); } } void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) { // The variable in the declaration always resides in the current context. DCHECK_EQ(0, scope()->ContextChainLength(variable->scope())); if (generate_debug_code_) { // Check that we're not inside a with or catch context. __ movp(rbx, FieldOperand(rsi, HeapObject::kMapOffset)); __ CompareRoot(rbx, Heap::kWithContextMapRootIndex); __ Check(not_equal, kDeclarationInWithContext); __ CompareRoot(rbx, Heap::kCatchContextMapRootIndex); __ Check(not_equal, kDeclarationInCatchContext); } } void FullCodeGenerator::VisitVariableDeclaration( VariableDeclaration* declaration) { // If it was not possible to allocate the variable at compile time, we // need to "declare" it at runtime to make sure it actually exists in the // local context. VariableProxy* proxy = declaration->proxy(); VariableMode mode = declaration->mode(); Variable* variable = proxy->var(); bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY; switch (variable->location()) { case Variable::UNALLOCATED: globals_->Add(variable->name(), zone()); globals_->Add(variable->binding_needs_init() ? isolate()->factory()->the_hole_value() : isolate()->factory()->undefined_value(), zone()); break; case Variable::PARAMETER: case Variable::LOCAL: if (hole_init) { Comment cmnt(masm_, "[ VariableDeclaration"); __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ movp(StackOperand(variable), kScratchRegister); } break; case Variable::CONTEXT: if (hole_init) { Comment cmnt(masm_, "[ VariableDeclaration"); EmitDebugCheckDeclarationContext(variable); __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ movp(ContextOperand(rsi, variable->index()), kScratchRegister); // No write barrier since the hole value is in old space. PrepareForBailoutForId(proxy->id(), NO_REGISTERS); } break; case Variable::LOOKUP: { Comment cmnt(masm_, "[ VariableDeclaration"); __ Push(rsi); __ Push(variable->name()); // Declaration nodes are always introduced in one of four modes. DCHECK(IsDeclaredVariableMode(mode)); PropertyAttributes attr = IsImmutableVariableMode(mode) ? READ_ONLY : NONE; __ Push(Smi::FromInt(attr)); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (hole_init) { __ PushRoot(Heap::kTheHoleValueRootIndex); } else { __ Push(Smi::FromInt(0)); // Indicates no initial value. } __ CallRuntime(Runtime::kDeclareLookupSlot, 4); break; } } } void FullCodeGenerator::VisitFunctionDeclaration( FunctionDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case Variable::UNALLOCATED: { globals_->Add(variable->name(), zone()); Handle function = Compiler::BuildFunctionInfo(declaration->fun(), script(), info_); // Check for stack-overflow exception. if (function.is_null()) return SetStackOverflow(); globals_->Add(function, zone()); break; } case Variable::PARAMETER: case Variable::LOCAL: { Comment cmnt(masm_, "[ FunctionDeclaration"); VisitForAccumulatorValue(declaration->fun()); __ movp(StackOperand(variable), result_register()); break; } case Variable::CONTEXT: { Comment cmnt(masm_, "[ FunctionDeclaration"); EmitDebugCheckDeclarationContext(variable); VisitForAccumulatorValue(declaration->fun()); __ movp(ContextOperand(rsi, variable->index()), result_register()); int offset = Context::SlotOffset(variable->index()); // We know that we have written a function, which is not a smi. __ RecordWriteContextSlot(rsi, offset, result_register(), rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(proxy->id(), NO_REGISTERS); break; } case Variable::LOOKUP: { Comment cmnt(masm_, "[ FunctionDeclaration"); __ Push(rsi); __ Push(variable->name()); __ Push(Smi::FromInt(NONE)); VisitForStackValue(declaration->fun()); __ CallRuntime(Runtime::kDeclareLookupSlot, 4); break; } } } void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) { Variable* variable = declaration->proxy()->var(); DCHECK(variable->location() == Variable::CONTEXT); DCHECK(variable->interface()->IsFrozen()); Comment cmnt(masm_, "[ ModuleDeclaration"); EmitDebugCheckDeclarationContext(variable); // Load instance object. __ LoadContext(rax, scope_->ContextChainLength(scope_->GlobalScope())); __ movp(rax, ContextOperand(rax, variable->interface()->Index())); __ movp(rax, ContextOperand(rax, Context::EXTENSION_INDEX)); // Assign it. __ movp(ContextOperand(rsi, variable->index()), rax); // We know that we have written a module, which is not a smi. __ RecordWriteContextSlot(rsi, Context::SlotOffset(variable->index()), rax, rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS); // Traverse into body. Visit(declaration->module()); } void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case Variable::UNALLOCATED: // TODO(rossberg) break; case Variable::CONTEXT: { Comment cmnt(masm_, "[ ImportDeclaration"); EmitDebugCheckDeclarationContext(variable); // TODO(rossberg) break; } case Variable::PARAMETER: case Variable::LOCAL: case Variable::LOOKUP: UNREACHABLE(); } } void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) { // TODO(rossberg) } void FullCodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. __ Push(rsi); // The context is the first argument. __ Push(pairs); __ Push(Smi::FromInt(DeclareGlobalsFlags())); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FullCodeGenerator::DeclareModules(Handle descriptions) { // Call the runtime to declare the modules. __ Push(descriptions); __ CallRuntime(Runtime::kDeclareModules, 1); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); ZoneList* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); clause->body_target()->Unuse(); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); // Perform the comparison as if via '==='. __ movp(rdx, Operand(rsp, 0)); // Switch value. bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ movp(rcx, rdx); __ orp(rcx, rax); patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear); __ cmpp(rdx, rax); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()); __ bind(&slow_case); } // Record position before stub call for type feedback. SetSourcePosition(clause->position()); Handle ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code(); CallIC(ic, clause->CompareId()); patch_site.EmitPatchInfo(); Label skip; __ jmp(&skip, Label::kNear); PrepareForBailout(clause, TOS_REG); __ CompareRoot(rax, Heap::kTrueValueRootIndex); __ j(not_equal, &next_test); __ Drop(1); __ jmp(clause->body_target()); __ bind(&skip); __ testp(rax, rax); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ bind(&next_test); __ Drop(1); // Switch value is no longer needed. if (default_clause == NULL) { __ jmp(nested_statement.break_label()); } else { __ jmp(default_clause->body_target()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ bind(clause->body_target()); PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS); VisitStatements(clause->statements()); } __ bind(nested_statement.break_label()); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { Comment cmnt(masm_, "[ ForInStatement"); int slot = stmt->ForInFeedbackSlot(); SetStatementPosition(stmt); Label loop, exit; ForIn loop_statement(this, stmt); increment_loop_depth(); // Get the object to enumerate over. If the object is null or undefined, skip // over the loop. See ECMA-262 version 5, section 12.6.4. VisitForAccumulatorValue(stmt->enumerable()); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, &exit); Register null_value = rdi; __ LoadRoot(null_value, Heap::kNullValueRootIndex); __ cmpp(rax, null_value); __ j(equal, &exit); PrepareForBailoutForId(stmt->PrepareId(), TOS_REG); // Convert the object to a JS object. Label convert, done_convert; __ JumpIfSmi(rax, &convert); __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(above_equal, &done_convert); __ bind(&convert); __ Push(rax); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ bind(&done_convert); __ Push(rax); // Check for proxies. Label call_runtime; STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ CmpObjectType(rax, LAST_JS_PROXY_TYPE, rcx); __ j(below_equal, &call_runtime); // Check cache validity in generated code. This is a fast case for // the JSObject::IsSimpleEnum cache validity checks. If we cannot // guarantee cache validity, call the runtime system to check cache // validity or get the property names in a fixed array. __ CheckEnumCache(null_value, &call_runtime); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. Label use_cache; __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset)); __ jmp(&use_cache, Label::kNear); // Get the set of properties to enumerate. __ bind(&call_runtime); __ Push(rax); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. Label fixed_array; __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kMetaMapRootIndex); __ j(not_equal, &fixed_array); // We got a map in register rax. Get the enumeration cache from it. __ bind(&use_cache); Label no_descriptors; __ EnumLength(rdx, rax); __ Cmp(rdx, Smi::FromInt(0)); __ j(equal, &no_descriptors); __ LoadInstanceDescriptors(rax, rcx); __ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheOffset)); __ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Set up the four remaining stack slots. __ Push(rax); // Map. __ Push(rcx); // Enumeration cache. __ Push(rdx); // Number of valid entries for the map in the enum cache. __ Push(Smi::FromInt(0)); // Initial index. __ jmp(&loop); __ bind(&no_descriptors); __ addp(rsp, Immediate(kPointerSize)); __ jmp(&exit); // We got a fixed array in register rax. Iterate through that. Label non_proxy; __ bind(&fixed_array); // No need for a write barrier, we are storing a Smi in the feedback vector. __ Move(rbx, FeedbackVector()); __ Move(FieldOperand(rbx, FixedArray::OffsetOfElementAt(slot)), TypeFeedbackVector::MegamorphicSentinel(isolate())); __ Move(rbx, Smi::FromInt(1)); // Smi indicates slow check __ movp(rcx, Operand(rsp, 0 * kPointerSize)); // Get enumerated object STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ CmpObjectType(rcx, LAST_JS_PROXY_TYPE, rcx); __ j(above, &non_proxy); __ Move(rbx, Smi::FromInt(0)); // Zero indicates proxy __ bind(&non_proxy); __ Push(rbx); // Smi __ Push(rax); // Array __ movp(rax, FieldOperand(rax, FixedArray::kLengthOffset)); __ Push(rax); // Fixed array length (as smi). __ Push(Smi::FromInt(0)); // Initial index. // Generate code for doing the condition check. PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); __ bind(&loop); __ movp(rax, Operand(rsp, 0 * kPointerSize)); // Get the current index. __ cmpp(rax, Operand(rsp, 1 * kPointerSize)); // Compare to the array length. __ j(above_equal, loop_statement.break_label()); // Get the current entry of the array into register rbx. __ movp(rbx, Operand(rsp, 2 * kPointerSize)); SmiIndex index = masm()->SmiToIndex(rax, rax, kPointerSizeLog2); __ movp(rbx, FieldOperand(rbx, index.reg, index.scale, FixedArray::kHeaderSize)); // Get the expected map from the stack or a smi in the // permanent slow case into register rdx. __ movp(rdx, Operand(rsp, 3 * kPointerSize)); // Check if the expected map still matches that of the enumerable. // If not, we may have to filter the key. Label update_each; __ movp(rcx, Operand(rsp, 4 * kPointerSize)); __ cmpp(rdx, FieldOperand(rcx, HeapObject::kMapOffset)); __ j(equal, &update_each, Label::kNear); // For proxies, no filtering is done. // TODO(rossberg): What if only a prototype is a proxy? Not specified yet. __ Cmp(rdx, Smi::FromInt(0)); __ j(equal, &update_each, Label::kNear); // Convert the entry to a string or null if it isn't a property // anymore. If the property has been removed while iterating, we // just skip it. __ Push(rcx); // Enumerable. __ Push(rbx); // Current entry. __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION); __ Cmp(rax, Smi::FromInt(0)); __ j(equal, loop_statement.continue_label()); __ movp(rbx, rax); // Update the 'each' property or variable from the possibly filtered // entry in register rbx. __ bind(&update_each); __ movp(result_register(), rbx); // Perform the assignment as if via '='. { EffectContext context(this); EmitAssignment(stmt->each()); } // Generate code for the body of the loop. Visit(stmt->body()); // Generate code for going to the next element by incrementing the // index (smi) stored on top of the stack. __ bind(loop_statement.continue_label()); __ SmiAddConstant(Operand(rsp, 0 * kPointerSize), Smi::FromInt(1)); EmitBackEdgeBookkeeping(stmt, &loop); __ jmp(&loop); // Remove the pointers stored on the stack. __ bind(loop_statement.break_label()); __ addp(rsp, Immediate(5 * kPointerSize)); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) { Comment cmnt(masm_, "[ ForOfStatement"); SetStatementPosition(stmt); Iteration loop_statement(this, stmt); increment_loop_depth(); // var iterator = iterable[Symbol.iterator](); VisitForEffect(stmt->assign_iterator()); // Loop entry. __ bind(loop_statement.continue_label()); // result = iterator.next() VisitForEffect(stmt->next_result()); // if (result.done) break; Label result_not_done; VisitForControl(stmt->result_done(), loop_statement.break_label(), &result_not_done, &result_not_done); __ bind(&result_not_done); // each = result.value VisitForEffect(stmt->assign_each()); // Generate code for the body of the loop. Visit(stmt->body()); // Check stack before looping. PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS); EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label()); __ jmp(loop_statement.continue_label()); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(loop_statement.break_label()); decrement_loop_depth(); } void FullCodeGenerator::EmitNewClosure(Handle info, bool pretenure) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. If // we're running with the --always-opt or the --prepare-always-opt // flag, we need to use the runtime function so that the new function // we are creating here gets a chance to have its code optimized and // doesn't just get a copy of the existing unoptimized code. if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure && scope()->is_function_scope() && info->num_literals() == 0) { FastNewClosureStub stub(isolate(), info->strict_mode(), info->kind()); __ Move(rbx, info); __ CallStub(&stub); } else { __ Push(rsi); __ Push(info); __ Push(pretenure ? isolate()->factory()->true_value() : isolate()->factory()->false_value()); __ CallRuntime(Runtime::kNewClosure, 3); } context()->Plug(rax); } void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); EmitVariableLoad(expr); } void FullCodeGenerator::EmitLoadHomeObject(SuperReference* expr) { Comment cnmt(masm_, "[ SuperReference "); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); Handle home_object_symbol(isolate()->heap()->home_object_symbol()); __ Move(LoadDescriptor::NameRegister(), home_object_symbol); CallLoadIC(NOT_CONTEXTUAL, expr->HomeObjectFeedbackId()); __ Cmp(rax, isolate()->factory()->undefined_value()); Label done; __ j(not_equal, &done); __ CallRuntime(Runtime::kThrowNonMethodError, 0); __ bind(&done); } void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy, TypeofState typeof_state, Label* slow) { Register context = rsi; Register temp = rdx; Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_sloppy_eval()) { // Check that extension is NULL. __ cmpp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); } // Load next context in chain. __ movp(temp, ContextOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering rsi. context = temp; } // If no outer scope calls eval, we do not need to check more // context extensions. If we have reached an eval scope, we check // all extensions from this point. if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s != NULL && s->is_eval_scope()) { // Loop up the context chain. There is no frame effect so it is // safe to use raw labels here. Label next, fast; if (!context.is(temp)) { __ movp(temp, context); } // Load map for comparison into register, outside loop. __ LoadRoot(kScratchRegister, Heap::kNativeContextMapRootIndex); __ bind(&next); // Terminate at native context. __ cmpp(kScratchRegister, FieldOperand(temp, HeapObject::kMapOffset)); __ j(equal, &fast, Label::kNear); // Check that extension is NULL. __ cmpp(ContextOperand(temp, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); // Load next context in chain. __ movp(temp, ContextOperand(temp, Context::PREVIOUS_INDEX)); __ jmp(&next); __ bind(&fast); } // All extension objects were empty and it is safe to use a global // load IC call. __ movp(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand()); __ Move(LoadDescriptor::NameRegister(), proxy->var()->name()); if (FLAG_vector_ics) { __ Move(VectorLoadICDescriptor::SlotRegister(), Smi::FromInt(proxy->VariableFeedbackSlot())); } ContextualMode mode = (typeof_state == INSIDE_TYPEOF) ? NOT_CONTEXTUAL : CONTEXTUAL; CallLoadIC(mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, Label* slow) { DCHECK(var->IsContextSlot()); Register context = rsi; Register temp = rbx; for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_sloppy_eval()) { // Check that extension is NULL. __ cmpp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); } __ movp(temp, ContextOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering rsi. context = temp; } } // Check that last extension is NULL. __ cmpp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); // This function is used only for loads, not stores, so it's safe to // return an rsi-based operand (the write barrier cannot be allowed to // destroy the rsi register). return ContextOperand(context, var->index()); } void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy, TypeofState typeof_state, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. Variable* var = proxy->var(); if (var->mode() == DYNAMIC_GLOBAL) { EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow); __ jmp(done); } else if (var->mode() == DYNAMIC_LOCAL) { Variable* local = var->local_if_not_shadowed(); __ movp(rax, ContextSlotOperandCheckExtensions(local, slow)); if (local->mode() == LET || local->mode() == CONST || local->mode() == CONST_LEGACY) { __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); __ j(not_equal, done); if (local->mode() == CONST_LEGACY) { __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); } else { // LET || CONST __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError, 1); } } __ jmp(done); } } void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // Record position before possible IC call. SetSourcePosition(proxy->position()); Variable* var = proxy->var(); // Three cases: global variables, lookup variables, and all other types of // variables. switch (var->location()) { case Variable::UNALLOCATED: { Comment cmnt(masm_, "[ Global variable"); __ Move(LoadDescriptor::NameRegister(), var->name()); __ movp(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand()); if (FLAG_vector_ics) { __ Move(VectorLoadICDescriptor::SlotRegister(), Smi::FromInt(proxy->VariableFeedbackSlot())); } CallLoadIC(CONTEXTUAL); context()->Plug(rax); break; } case Variable::PARAMETER: case Variable::LOCAL: case Variable::CONTEXT: { Comment cmnt(masm_, var->IsContextSlot() ? "[ Context slot" : "[ Stack slot"); if (var->binding_needs_init()) { // var->scope() may be NULL when the proxy is located in eval code and // refers to a potential outside binding. Currently those bindings are // always looked up dynamically, i.e. in that case // var->location() == LOOKUP. // always holds. DCHECK(var->scope() != NULL); // Check if the binding really needs an initialization check. The check // can be skipped in the following situation: we have a LET or CONST // binding in harmony mode, both the Variable and the VariableProxy have // the same declaration scope (i.e. they are both in global code, in the // same function or in the same eval code) and the VariableProxy is in // the source physically located after the initializer of the variable. // // We cannot skip any initialization checks for CONST in non-harmony // mode because const variables may be declared but never initialized: // if (false) { const x; }; var y = x; // // The condition on the declaration scopes is a conservative check for // nested functions that access a binding and are called before the // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // bool skip_init_check; if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { skip_init_check = false; } else { // Check that we always have valid source position. DCHECK(var->initializer_position() != RelocInfo::kNoPosition); DCHECK(proxy->position() != RelocInfo::kNoPosition); skip_init_check = var->mode() != CONST_LEGACY && var->initializer_position() < proxy->position(); } if (!skip_init_check) { // Let and const need a read barrier. Label done; GetVar(rax, var); __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); __ j(not_equal, &done, Label::kNear); if (var->mode() == LET || var->mode() == CONST) { // Throw a reference error when using an uninitialized let/const // binding in harmony mode. __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError, 1); } else { // Uninitalized const bindings outside of harmony mode are unholed. DCHECK(var->mode() == CONST_LEGACY); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); } __ bind(&done); context()->Plug(rax); break; } } context()->Plug(var); break; } case Variable::LOOKUP: { Comment cmnt(masm_, "[ Lookup slot"); Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done); __ bind(&slow); __ Push(rsi); // Context. __ Push(var->name()); __ CallRuntime(Runtime::kLoadLookupSlot, 2); __ bind(&done); context()->Plug(rax); break; } } } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); Label materialized; // Registers will be used as follows: // rdi = JS function. // rcx = literals array. // rbx = regexp literal. // rax = regexp literal clone. __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movp(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ movp(rbx, FieldOperand(rcx, literal_offset)); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(not_equal, &materialized, Label::kNear); // Create regexp literal using runtime function // Result will be in rax. __ Push(rcx); __ Push(Smi::FromInt(expr->literal_index())); __ Push(expr->pattern()); __ Push(expr->flags()); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); __ movp(rbx, rax); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ Allocate(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ Push(rbx); __ Push(Smi::FromInt(size)); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); __ Pop(rbx); __ bind(&allocated); // Copy the content into the newly allocated memory. // (Unroll copy loop once for better throughput). for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { __ movp(rdx, FieldOperand(rbx, i)); __ movp(rcx, FieldOperand(rbx, i + kPointerSize)); __ movp(FieldOperand(rax, i), rdx); __ movp(FieldOperand(rax, i + kPointerSize), rcx); } if ((size % (2 * kPointerSize)) != 0) { __ movp(rdx, FieldOperand(rbx, size - kPointerSize)); __ movp(FieldOperand(rax, size - kPointerSize), rdx); } context()->Plug(rax); } void FullCodeGenerator::EmitAccessor(Expression* expression) { if (expression == NULL) { __ PushRoot(Heap::kNullValueRootIndex); } else { VisitForStackValue(expression); } } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); expr->BuildConstantProperties(isolate()); Handle constant_properties = expr->constant_properties(); int flags = expr->fast_elements() ? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags; flags |= expr->has_function() ? ObjectLiteral::kHasFunction : ObjectLiteral::kNoFlags; int properties_count = constant_properties->length() / 2; if (expr->may_store_doubles() || expr->depth() > 1 || masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements || properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) { __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ Push(FieldOperand(rdi, JSFunction::kLiteralsOffset)); __ Push(Smi::FromInt(expr->literal_index())); __ Push(constant_properties); __ Push(Smi::FromInt(flags)); __ CallRuntime(Runtime::kCreateObjectLiteral, 4); } else { __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movp(rax, FieldOperand(rdi, JSFunction::kLiteralsOffset)); __ Move(rbx, Smi::FromInt(expr->literal_index())); __ Move(rcx, constant_properties); __ Move(rdx, Smi::FromInt(flags)); FastCloneShallowObjectStub stub(isolate(), properties_count); __ CallStub(&stub); } // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in rax. bool result_saved = false; // Mark all computed expressions that are bound to a key that // is shadowed by a later occurrence of the same key. For the // marked expressions, no store code is emitted. expr->CalculateEmitStore(zone()); AccessorTable accessor_table(zone()); for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); if (!result_saved) { __ Push(rax); // Save result on the stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: DCHECK(!CompileTimeValue::IsCompileTimeValue(value)); // Fall through. case ObjectLiteral::Property::COMPUTED: if (key->value()->IsInternalizedString()) { if (property->emit_store()) { VisitForAccumulatorValue(value); DCHECK(StoreDescriptor::ValueRegister().is(rax)); __ Move(StoreDescriptor::NameRegister(), key->value()); __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0)); CallStoreIC(key->LiteralFeedbackId()); PrepareForBailoutForId(key->id(), NO_REGISTERS); } else { VisitForEffect(value); } break; } __ Push(Operand(rsp, 0)); // Duplicate receiver. VisitForStackValue(key); VisitForStackValue(value); if (property->emit_store()) { __ Push(Smi::FromInt(SLOPPY)); // Strict mode __ CallRuntime(Runtime::kSetProperty, 4); } else { __ Drop(3); } break; case ObjectLiteral::Property::PROTOTYPE: __ Push(Operand(rsp, 0)); // Duplicate receiver. VisitForStackValue(value); if (property->emit_store()) { __ CallRuntime(Runtime::kSetPrototype, 2); } else { __ Drop(2); } break; case ObjectLiteral::Property::GETTER: accessor_table.lookup(key)->second->getter = value; break; case ObjectLiteral::Property::SETTER: accessor_table.lookup(key)->second->setter = value; break; } } // Emit code to define accessors, using only a single call to the runtime for // each pair of corresponding getters and setters. for (AccessorTable::Iterator it = accessor_table.begin(); it != accessor_table.end(); ++it) { __ Push(Operand(rsp, 0)); // Duplicate receiver. VisitForStackValue(it->first); EmitAccessor(it->second->getter); EmitAccessor(it->second->setter); __ Push(Smi::FromInt(NONE)); __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5); } if (expr->has_function()) { DCHECK(result_saved); __ Push(Operand(rsp, 0)); __ CallRuntime(Runtime::kToFastProperties, 1); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(rax); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); expr->BuildConstantElements(isolate()); int flags = expr->depth() == 1 ? ArrayLiteral::kShallowElements : ArrayLiteral::kNoFlags; ZoneList* subexprs = expr->values(); int length = subexprs->length(); Handle constant_elements = expr->constant_elements(); DCHECK_EQ(2, constant_elements->length()); ElementsKind constant_elements_kind = static_cast(Smi::cast(constant_elements->get(0))->value()); bool has_constant_fast_elements = IsFastObjectElementsKind(constant_elements_kind); Handle constant_elements_values( FixedArrayBase::cast(constant_elements->get(1))); AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE; if (has_constant_fast_elements && !FLAG_allocation_site_pretenuring) { // If the only customer of allocation sites is transitioning, then // we can turn it off if we don't have anywhere else to transition to. allocation_site_mode = DONT_TRACK_ALLOCATION_SITE; } if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) { __ movp(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ Push(FieldOperand(rbx, JSFunction::kLiteralsOffset)); __ Push(Smi::FromInt(expr->literal_index())); __ Push(constant_elements); __ Push(Smi::FromInt(flags)); __ CallRuntime(Runtime::kCreateArrayLiteral, 4); } else { __ movp(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movp(rax, FieldOperand(rbx, JSFunction::kLiteralsOffset)); __ Move(rbx, Smi::FromInt(expr->literal_index())); __ Move(rcx, constant_elements); FastCloneShallowArrayStub stub(isolate(), allocation_site_mode); __ CallStub(&stub); } bool result_saved = false; // Is the result saved to the stack? // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. for (int i = 0; i < length; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; if (!result_saved) { __ Push(rax); // array literal __ Push(Smi::FromInt(expr->literal_index())); result_saved = true; } VisitForAccumulatorValue(subexpr); if (IsFastObjectElementsKind(constant_elements_kind)) { // Fast-case array literal with ElementsKind of FAST_*_ELEMENTS, they // cannot transition and don't need to call the runtime stub. int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ movp(rbx, Operand(rsp, kPointerSize)); // Copy of array literal. __ movp(rbx, FieldOperand(rbx, JSObject::kElementsOffset)); // Store the subexpression value in the array's elements. __ movp(FieldOperand(rbx, offset), result_register()); // Update the write barrier for the array store. __ RecordWriteField(rbx, offset, result_register(), rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, INLINE_SMI_CHECK); } else { // Store the subexpression value in the array's elements. __ Move(rcx, Smi::FromInt(i)); StoreArrayLiteralElementStub stub(isolate()); __ CallStub(&stub); } PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS); } if (result_saved) { __ addp(rsp, Immediate(kPointerSize)); // literal index context()->PlugTOS(); } else { context()->Plug(rax); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { DCHECK(expr->target()->IsValidReferenceExpression()); Comment cmnt(masm_, "[ Assignment"); // Left-hand side can only be a property, a global or a (parameter or local) // slot. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* property = expr->target()->AsProperty(); if (property != NULL) { assign_type = (property->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the register. VisitForStackValue(property->obj()); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0)); } else { VisitForStackValue(property->obj()); } break; case KEYED_PROPERTY: { if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize)); __ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0)); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } } // For compound assignments we need another deoptimization point after the // variable/property load. if (expr->is_compound()) { { AccumulatorValueContext context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()); PrepareForBailout(expr->target(), TOS_REG); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; } } Token::Value op = expr->binary_op(); __ Push(rax); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); OverwriteMode mode = expr->value()->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE; SetSourcePosition(expr->position() + 1); AccumulatorValueContext context(this); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr->binary_operation(), op, mode, expr->target(), expr->value()); } else { EmitBinaryOp(expr->binary_operation(), op, mode); } // Deoptimization point in case the binary operation may have side effects. PrepareForBailout(expr->binary_operation(), TOS_REG); } else { VisitForAccumulatorValue(expr->value()); } // Record source position before possible IC call. SetSourcePosition(expr->position()); // Store the value. switch (assign_type) { case VARIABLE: EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), expr->op()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); break; case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::VisitYield(Yield* expr) { Comment cmnt(masm_, "[ Yield"); // Evaluate yielded value first; the initial iterator definition depends on // this. It stays on the stack while we update the iterator. VisitForStackValue(expr->expression()); switch (expr->yield_kind()) { case Yield::kSuspend: // Pop value from top-of-stack slot; box result into result register. EmitCreateIteratorResult(false); __ Push(result_register()); // Fall through. case Yield::kInitial: { Label suspend, continuation, post_runtime, resume; __ jmp(&suspend); __ bind(&continuation); __ jmp(&resume); __ bind(&suspend); VisitForAccumulatorValue(expr->generator_object()); DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos())); __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset), Smi::FromInt(continuation.pos())); __ movp(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi); __ movp(rcx, rsi); __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx, kDontSaveFPRegs); __ leap(rbx, Operand(rbp, StandardFrameConstants::kExpressionsOffset)); __ cmpp(rsp, rbx); __ j(equal, &post_runtime); __ Push(rax); // generator object __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); __ movp(context_register(), Operand(rbp, StandardFrameConstants::kContextOffset)); __ bind(&post_runtime); __ Pop(result_register()); EmitReturnSequence(); __ bind(&resume); context()->Plug(result_register()); break; } case Yield::kFinal: { VisitForAccumulatorValue(expr->generator_object()); __ Move(FieldOperand(result_register(), JSGeneratorObject::kContinuationOffset), Smi::FromInt(JSGeneratorObject::kGeneratorClosed)); // Pop value from top-of-stack slot, box result into result register. EmitCreateIteratorResult(true); EmitUnwindBeforeReturn(); EmitReturnSequence(); break; } case Yield::kDelegating: { VisitForStackValue(expr->generator_object()); // Initial stack layout is as follows: // [sp + 1 * kPointerSize] iter // [sp + 0 * kPointerSize] g Label l_catch, l_try, l_suspend, l_continuation, l_resume; Label l_next, l_call, l_loop; Register load_receiver = LoadDescriptor::ReceiverRegister(); Register load_name = LoadDescriptor::NameRegister(); // Initial send value is undefined. __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ jmp(&l_next); // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; } __ bind(&l_catch); handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos())); __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw" __ Push(load_name); __ Push(Operand(rsp, 2 * kPointerSize)); // iter __ Push(rax); // exception __ jmp(&l_call); // try { received = %yield result } // Shuffle the received result above a try handler and yield it without // re-boxing. __ bind(&l_try); __ Pop(rax); // result __ PushTryHandler(StackHandler::CATCH, expr->index()); const int handler_size = StackHandlerConstants::kSize; __ Push(rax); // result __ jmp(&l_suspend); __ bind(&l_continuation); __ jmp(&l_resume); __ bind(&l_suspend); const int generator_object_depth = kPointerSize + handler_size; __ movp(rax, Operand(rsp, generator_object_depth)); __ Push(rax); // g DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos())); __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset), Smi::FromInt(l_continuation.pos())); __ movp(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi); __ movp(rcx, rsi); __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx, kDontSaveFPRegs); __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); __ movp(context_register(), Operand(rbp, StandardFrameConstants::kContextOffset)); __ Pop(rax); // result EmitReturnSequence(); __ bind(&l_resume); // received in rax __ PopTryHandler(); // receiver = iter; f = 'next'; arg = received; __ bind(&l_next); __ LoadRoot(load_name, Heap::knext_stringRootIndex); __ Push(load_name); // "next" __ Push(Operand(rsp, 2 * kPointerSize)); // iter __ Push(rax); // received // result = receiver[f](arg); __ bind(&l_call); __ movp(load_receiver, Operand(rsp, kPointerSize)); if (FLAG_vector_ics) { __ Move(VectorLoadICDescriptor::SlotRegister(), Smi::FromInt(expr->KeyedLoadFeedbackSlot())); } Handle ic = CodeFactory::KeyedLoadIC(isolate()).code(); CallIC(ic, TypeFeedbackId::None()); __ movp(rdi, rax); __ movp(Operand(rsp, 2 * kPointerSize), rdi); CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD); __ CallStub(&stub); __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ Drop(1); // The function is still on the stack; drop it. // if (!result.done) goto l_try; __ bind(&l_loop); __ Move(load_receiver, rax); __ Push(load_receiver); // save result __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done" if (FLAG_vector_ics) { __ Move(VectorLoadICDescriptor::SlotRegister(), Smi::FromInt(expr->DoneFeedbackSlot())); } CallLoadIC(NOT_CONTEXTUAL); // rax=result.done Handle bool_ic = ToBooleanStub::GetUninitialized(isolate()); CallIC(bool_ic); __ testp(result_register(), result_register()); __ j(zero, &l_try); // result.value __ Pop(load_receiver); // result __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value" if (FLAG_vector_ics) { __ Move(VectorLoadICDescriptor::SlotRegister(), Smi::FromInt(expr->ValueFeedbackSlot())); } CallLoadIC(NOT_CONTEXTUAL); // result.value in rax context()->DropAndPlug(2, rax); // drop iter and g break; } } } void FullCodeGenerator::EmitGeneratorResume(Expression *generator, Expression *value, JSGeneratorObject::ResumeMode resume_mode) { // The value stays in rax, and is ultimately read by the resumed generator, as // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it // is read to throw the value when the resumed generator is already closed. // rbx will hold the generator object until the activation has been resumed. VisitForStackValue(generator); VisitForAccumulatorValue(value); __ Pop(rbx); // Check generator state. Label wrong_state, closed_state, done; STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0); STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0); __ SmiCompare(FieldOperand(rbx, JSGeneratorObject::kContinuationOffset), Smi::FromInt(0)); __ j(equal, &closed_state); __ j(less, &wrong_state); // Load suspended function and context. __ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset)); __ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset)); // Push receiver. __ Push(FieldOperand(rbx, JSGeneratorObject::kReceiverOffset)); // Push holes for arguments to generator function. __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ LoadSharedFunctionInfoSpecialField(rdx, rdx, SharedFunctionInfo::kFormalParameterCountOffset); __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex); Label push_argument_holes, push_frame; __ bind(&push_argument_holes); __ subp(rdx, Immediate(1)); __ j(carry, &push_frame); __ Push(rcx); __ jmp(&push_argument_holes); // Enter a new JavaScript frame, and initialize its slots as they were when // the generator was suspended. Label resume_frame; __ bind(&push_frame); __ call(&resume_frame); __ jmp(&done); __ bind(&resume_frame); __ pushq(rbp); // Caller's frame pointer. __ movp(rbp, rsp); __ Push(rsi); // Callee's context. __ Push(rdi); // Callee's JS Function. // Load the operand stack size. __ movp(rdx, FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset)); __ movp(rdx, FieldOperand(rdx, FixedArray::kLengthOffset)); __ SmiToInteger32(rdx, rdx); // If we are sending a value and there is no operand stack, we can jump back // in directly. if (resume_mode == JSGeneratorObject::NEXT) { Label slow_resume; __ cmpp(rdx, Immediate(0)); __ j(not_zero, &slow_resume); __ movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); __ SmiToInteger64(rcx, FieldOperand(rbx, JSGeneratorObject::kContinuationOffset)); __ addp(rdx, rcx); __ Move(FieldOperand(rbx, JSGeneratorObject::kContinuationOffset), Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)); __ jmp(rdx); __ bind(&slow_resume); } // Otherwise, we push holes for the operand stack and call the runtime to fix // up the stack and the handlers. Label push_operand_holes, call_resume; __ bind(&push_operand_holes); __ subp(rdx, Immediate(1)); __ j(carry, &call_resume); __ Push(rcx); __ jmp(&push_operand_holes); __ bind(&call_resume); __ Push(rbx); __ Push(result_register()); __ Push(Smi::FromInt(resume_mode)); __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3); // Not reached: the runtime call returns elsewhere. __ Abort(kGeneratorFailedToResume); // Reach here when generator is closed. __ bind(&closed_state); if (resume_mode == JSGeneratorObject::NEXT) { // Return completed iterator result when generator is closed. __ PushRoot(Heap::kUndefinedValueRootIndex); // Pop value from top-of-stack slot; box result into result register. EmitCreateIteratorResult(true); } else { // Throw the provided value. __ Push(rax); __ CallRuntime(Runtime::kThrow, 1); } __ jmp(&done); // Throw error if we attempt to operate on a running generator. __ bind(&wrong_state); __ Push(rbx); __ CallRuntime(Runtime::kThrowGeneratorStateError, 1); __ bind(&done); context()->Plug(result_register()); } void FullCodeGenerator::EmitCreateIteratorResult(bool done) { Label gc_required; Label allocated; Handle map(isolate()->native_context()->iterator_result_map()); __ Allocate(map->instance_size(), rax, rcx, rdx, &gc_required, TAG_OBJECT); __ jmp(&allocated); __ bind(&gc_required); __ Push(Smi::FromInt(map->instance_size())); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); __ movp(context_register(), Operand(rbp, StandardFrameConstants::kContextOffset)); __ bind(&allocated); __ Move(rbx, map); __ Pop(rcx); __ Move(rdx, isolate()->factory()->ToBoolean(done)); DCHECK_EQ(map->instance_size(), 5 * kPointerSize); __ movp(FieldOperand(rax, HeapObject::kMapOffset), rbx); __ Move(FieldOperand(rax, JSObject::kPropertiesOffset), isolate()->factory()->empty_fixed_array()); __ Move(FieldOperand(rax, JSObject::kElementsOffset), isolate()->factory()->empty_fixed_array()); __ movp(FieldOperand(rax, JSGeneratorObject::kResultValuePropertyOffset), rcx); __ movp(FieldOperand(rax, JSGeneratorObject::kResultDonePropertyOffset), rdx); // Only the value field needs a write barrier, as the other values are in the // root set. __ RecordWriteField(rax, JSGeneratorObject::kResultValuePropertyOffset, rcx, rdx, kDontSaveFPRegs); } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); __ Move(LoadDescriptor::NameRegister(), key->value()); if (FLAG_vector_ics) { __ Move(VectorLoadICDescriptor::SlotRegister(), Smi::FromInt(prop->PropertyFeedbackSlot())); CallLoadIC(NOT_CONTEXTUAL); } else { CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId()); } } void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); DCHECK(prop->IsSuperAccess()); SuperReference* super_ref = prop->obj()->AsSuperReference(); EmitLoadHomeObject(super_ref); __ Push(rax); VisitForStackValue(super_ref->this_var()); __ Push(key->value()); __ CallRuntime(Runtime::kLoadFromSuper, 3); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Handle ic = CodeFactory::KeyedLoadIC(isolate()).code(); if (FLAG_vector_ics) { __ Move(VectorLoadICDescriptor::SlotRegister(), Smi::FromInt(prop->PropertyFeedbackSlot())); CallIC(ic); } else { CallIC(ic, prop->PropertyFeedbackId()); } } void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, Token::Value op, OverwriteMode mode, Expression* left, Expression* right) { // Do combined smi check of the operands. Left operand is on the // stack (popped into rdx). Right operand is in rax but moved into // rcx to make the shifts easier. Label done, stub_call, smi_case; __ Pop(rdx); __ movp(rcx, rax); __ orp(rax, rdx); JumpPatchSite patch_site(masm_); patch_site.EmitJumpIfSmi(rax, &smi_case, Label::kNear); __ bind(&stub_call); __ movp(rax, rcx); Handle code = CodeFactory::BinaryOpIC(isolate(), op, mode).code(); CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); __ jmp(&done, Label::kNear); __ bind(&smi_case); switch (op) { case Token::SAR: __ SmiShiftArithmeticRight(rax, rdx, rcx); break; case Token::SHL: __ SmiShiftLeft(rax, rdx, rcx, &stub_call); break; case Token::SHR: __ SmiShiftLogicalRight(rax, rdx, rcx, &stub_call); break; case Token::ADD: __ SmiAdd(rax, rdx, rcx, &stub_call); break; case Token::SUB: __ SmiSub(rax, rdx, rcx, &stub_call); break; case Token::MUL: __ SmiMul(rax, rdx, rcx, &stub_call); break; case Token::BIT_OR: __ SmiOr(rax, rdx, rcx); break; case Token::BIT_AND: __ SmiAnd(rax, rdx, rcx); break; case Token::BIT_XOR: __ SmiXor(rax, rdx, rcx); break; default: UNREACHABLE(); break; } __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op, OverwriteMode mode) { __ Pop(rdx); Handle code = CodeFactory::BinaryOpIC(isolate(), op, mode).code(); JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); context()->Plug(rax); } void FullCodeGenerator::EmitAssignment(Expression* expr) { DCHECK(expr->IsValidReferenceExpression()); // Left-hand side can only be a property, a global or a (parameter or local) // slot. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->AsProperty(); if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } switch (assign_type) { case VARIABLE: { Variable* var = expr->AsVariableProxy()->var(); EffectContext context(this); EmitVariableAssignment(var, Token::ASSIGN); break; } case NAMED_PROPERTY: { __ Push(rax); // Preserve value. VisitForAccumulatorValue(prop->obj()); __ Move(StoreDescriptor::ReceiverRegister(), rax); __ Pop(StoreDescriptor::ValueRegister()); // Restore value. __ Move(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value()); CallStoreIC(); break; } case KEYED_PROPERTY: { __ Push(rax); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ Move(StoreDescriptor::NameRegister(), rax); __ Pop(StoreDescriptor::ReceiverRegister()); __ Pop(StoreDescriptor::ValueRegister()); // Restore value. Handle ic = CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code(); CallIC(ic); break; } } context()->Plug(rax); } void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot( Variable* var, MemOperand location) { __ movp(location, rax); if (var->IsContextSlot()) { __ movp(rdx, rax); __ RecordWriteContextSlot( rcx, Context::SlotOffset(var->index()), rdx, rbx, kDontSaveFPRegs); } } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) { if (var->IsUnallocated()) { // Global var, const, or let. __ Move(StoreDescriptor::NameRegister(), var->name()); __ movp(StoreDescriptor::ReceiverRegister(), GlobalObjectOperand()); CallStoreIC(); } else if (op == Token::INIT_CONST_LEGACY) { // Const initializers need a write barrier. DCHECK(!var->IsParameter()); // No const parameters. if (var->IsLookupSlot()) { __ Push(rax); __ Push(rsi); __ Push(var->name()); __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3); } else { DCHECK(var->IsStackLocal() || var->IsContextSlot()); Label skip; MemOperand location = VarOperand(var, rcx); __ movp(rdx, location); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ j(not_equal, &skip); EmitStoreToStackLocalOrContextSlot(var, location); __ bind(&skip); } } else if (var->mode() == LET && op != Token::INIT_LET) { // Non-initializing assignment to let variable needs a write barrier. DCHECK(!var->IsLookupSlot()); DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label assign; MemOperand location = VarOperand(var, rcx); __ movp(rdx, location); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ j(not_equal, &assign, Label::kNear); __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError, 1); __ bind(&assign); EmitStoreToStackLocalOrContextSlot(var, location); } else if (!var->is_const_mode() || op == Token::INIT_CONST) { if (var->IsLookupSlot()) { // Assignment to var. __ Push(rax); // Value. __ Push(rsi); // Context. __ Push(var->name()); __ Push(Smi::FromInt(strict_mode())); __ CallRuntime(Runtime::kStoreLookupSlot, 4); } else { // Assignment to var or initializing assignment to let/const in harmony // mode. DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand location = VarOperand(var, rcx); if (generate_debug_code_ && op == Token::INIT_LET) { // Check for an uninitialized let binding. __ movp(rdx, location); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ Check(equal, kLetBindingReInitialization); } EmitStoreToStackLocalOrContextSlot(var, location); } } // Non-initializing assignments to consts are ignored. } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); DCHECK(prop != NULL); DCHECK(prop->key()->IsLiteral()); // Record source code position before IC call. SetSourcePosition(expr->position()); __ Move(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value()); __ Pop(StoreDescriptor::ReceiverRegister()); CallStoreIC(expr->AssignmentFeedbackId()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. __ Pop(StoreDescriptor::NameRegister()); // Key. __ Pop(StoreDescriptor::ReceiverRegister()); DCHECK(StoreDescriptor::ValueRegister().is(rax)); // Record source code position before IC call. SetSourcePosition(expr->position()); Handle ic = CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code(); CallIC(ic, expr->AssignmentFeedbackId()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); Expression* key = expr->key(); if (key->IsPropertyName()) { if (!expr->IsSuperAccess()) { VisitForAccumulatorValue(expr->obj()); DCHECK(!rax.is(LoadDescriptor::ReceiverRegister())); __ movp(LoadDescriptor::ReceiverRegister(), rax); EmitNamedPropertyLoad(expr); } else { EmitNamedSuperPropertyLoad(expr); } PrepareForBailoutForId(expr->LoadId(), TOS_REG); context()->Plug(rax); } else { VisitForStackValue(expr->obj()); VisitForAccumulatorValue(expr->key()); __ Move(LoadDescriptor::NameRegister(), rax); __ Pop(LoadDescriptor::ReceiverRegister()); EmitKeyedPropertyLoad(expr); context()->Plug(rax); } } void FullCodeGenerator::CallIC(Handle code, TypeFeedbackId ast_id) { ic_total_count_++; __ call(code, RelocInfo::CODE_TARGET, ast_id); } // Code common for calls using the IC. void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); CallICState::CallType call_type = callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD; // Get the target function. if (call_type == CallICState::FUNCTION) { { StackValueContext context(this); EmitVariableLoad(callee->AsVariableProxy()); PrepareForBailout(callee, NO_REGISTERS); } // Push undefined as receiver. This is patched in the method prologue if it // is a sloppy mode method. __ Push(isolate()->factory()->undefined_value()); } else { // Load the function from the receiver. DCHECK(callee->IsProperty()); DCHECK(!callee->AsProperty()->IsSuperAccess()); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0)); EmitNamedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); // Push the target function under the receiver. __ Push(Operand(rsp, 0)); __ movp(Operand(rsp, kPointerSize), rax); } EmitCall(expr, call_type); } void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); // Load the function from the receiver. SuperReference* super_ref = prop->obj()->AsSuperReference(); EmitLoadHomeObject(super_ref); __ Push(rax); VisitForAccumulatorValue(super_ref->this_var()); __ Push(rax); __ Push(Operand(rsp, kPointerSize)); __ Push(rax); __ Push(key->value()); // Stack here: // - home_object // - this (receiver) // - home_object <-- LoadFromSuper will pop here and below. // - this (receiver) // - key __ CallRuntime(Runtime::kLoadFromSuper, 3); // Replace home_object with target function. __ movp(Operand(rsp, kPointerSize), rax); // Stack here: // - target function // - this (receiver) EmitCall(expr, CallICState::METHOD); } // Common code for calls using the IC. void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) { // Load the key. VisitForAccumulatorValue(key); Expression* callee = expr->expression(); // Load the function from the receiver. DCHECK(callee->IsProperty()); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0)); __ Move(LoadDescriptor::NameRegister(), rax); EmitKeyedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); // Push the target function under the receiver. __ Push(Operand(rsp, 0)); __ movp(Operand(rsp, kPointerSize), rax); EmitCall(expr, CallICState::METHOD); } void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) { // Load the arguments. ZoneList* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } } // Record source position of the IC call. SetSourcePosition(expr->position()); Handle ic = CallIC::initialize_stub( isolate(), arg_count, call_type); __ Move(rdx, Smi::FromInt(expr->CallFeedbackSlot())); __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize)); // Don't assign a type feedback id to the IC, since type feedback is provided // by the vector above. CallIC(ic); RecordJSReturnSite(expr); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. context()->DropAndPlug(1, rax); } void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) { // Push copy of the first argument or undefined if it doesn't exist. if (arg_count > 0) { __ Push(Operand(rsp, arg_count * kPointerSize)); } else { __ PushRoot(Heap::kUndefinedValueRootIndex); } // Push the enclosing function. __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); // Push the receiver of the enclosing function and do runtime call. StackArgumentsAccessor args(rbp, info_->scope()->num_parameters()); __ Push(args.GetReceiverOperand()); // Push the language mode. __ Push(Smi::FromInt(strict_mode())); // Push the start position of the scope the calls resides in. __ Push(Smi::FromInt(scope()->start_position())); // Do the runtime call. __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 6); } void FullCodeGenerator::VisitCall(Call* expr) { #ifdef DEBUG // We want to verify that RecordJSReturnSite gets called on all paths // through this function. Avoid early returns. expr->return_is_recorded_ = false; #endif Comment cmnt(masm_, "[ Call"); Expression* callee = expr->expression(); Call::CallType call_type = expr->GetCallType(isolate()); if (call_type == Call::POSSIBLY_EVAL_CALL) { // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval // to resolve the function we need to call and the receiver of the call. // Then we call the resolved function using the given arguments. ZoneList* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope pos_scope(masm()->positions_recorder()); VisitForStackValue(callee); __ PushRoot(Heap::kUndefinedValueRootIndex); // Reserved receiver slot. // Push the arguments. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push a copy of the function (found below the arguments) and resolve // eval. __ Push(Operand(rsp, (arg_count + 1) * kPointerSize)); EmitResolvePossiblyDirectEval(arg_count); // The runtime call returns a pair of values in rax (function) and // rdx (receiver). Touch up the stack with the right values. __ movp(Operand(rsp, (arg_count + 0) * kPointerSize), rdx); __ movp(Operand(rsp, (arg_count + 1) * kPointerSize), rax); } // Record source position for debugger. SetSourcePosition(expr->position()); CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS); __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize)); __ CallStub(&stub); RecordJSReturnSite(expr); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, rax); } else if (call_type == Call::GLOBAL_CALL) { EmitCallWithLoadIC(expr); } else if (call_type == Call::LOOKUP_SLOT_CALL) { // Call to a lookup slot (dynamically introduced variable). VariableProxy* proxy = callee->AsVariableProxy(); Label slow, done; { PreservePositionScope scope(masm()->positions_recorder()); // Generate code for loading from variables potentially shadowed by // eval-introduced variables. EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done); } __ bind(&slow); // Call the runtime to find the function to call (returned in rax) and // the object holding it (returned in rdx). __ Push(context_register()); __ Push(proxy->name()); __ CallRuntime(Runtime::kLoadLookupSlot, 2); __ Push(rax); // Function. __ Push(rdx); // Receiver. // If fast case code has been generated, emit code to push the function // and receiver and have the slow path jump around this code. if (done.is_linked()) { Label call; __ jmp(&call, Label::kNear); __ bind(&done); // Push function. __ Push(rax); // The receiver is implicitly the global receiver. Indicate this by // passing the hole to the call function stub. __ PushRoot(Heap::kUndefinedValueRootIndex); __ bind(&call); } // The receiver is either the global receiver or an object found by // LoadContextSlot. EmitCall(expr); } else if (call_type == Call::PROPERTY_CALL) { Property* property = callee->AsProperty(); bool is_named_call = property->key()->IsPropertyName(); // super.x() is handled in EmitCallWithLoadIC. if (property->IsSuperAccess() && is_named_call) { EmitSuperCallWithLoadIC(expr); } else { { PreservePositionScope scope(masm()->positions_recorder()); VisitForStackValue(property->obj()); } if (is_named_call) { EmitCallWithLoadIC(expr); } else { EmitKeyedCallWithLoadIC(expr, property->key()); } } } else { DCHECK(call_type == Call::OTHER_CALL); // Call to an arbitrary expression not handled specially above. { PreservePositionScope scope(masm()->positions_recorder()); VisitForStackValue(callee); } __ PushRoot(Heap::kUndefinedValueRootIndex); // Emit function call. EmitCall(expr); } #ifdef DEBUG // RecordJSReturnSite should have been called. DCHECK(expr->return_is_recorded_); #endif } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored. VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function and argument count into rdi and rax. __ Set(rax, arg_count); __ movp(rdi, Operand(rsp, arg_count * kPointerSize)); // Record call targets in unoptimized code, but not in the snapshot. if (FLAG_pretenuring_call_new) { EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot()); DCHECK(expr->AllocationSiteFeedbackSlot() == expr->CallNewFeedbackSlot() + 1); } __ Move(rbx, FeedbackVector()); __ Move(rdx, Smi::FromInt(expr->CallNewFeedbackSlot())); CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET); __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); PrepareForBailoutForId(expr->ReturnId(), TOS_REG); context()->Plug(rax); } void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ JumpIfSmi(rax, if_true); __ jmp(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Condition non_negative_smi = masm()->CheckNonNegativeSmi(rax); Split(non_negative_smi, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsObject(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CompareRoot(rax, Heap::kNullValueRootIndex); __ j(equal, if_true); __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset)); // Undetectable objects behave like undefined when tested with typeof. __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, if_false); __ movzxbp(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ cmpp(rbx, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ j(below, if_false); __ cmpp(rbx, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(below_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(above_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(not_zero, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false, skip_lookup; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ AssertNotSmi(rax); // Check whether this map has already been checked to be safe for default // valueOf. __ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rbx, Map::kBitField2Offset), Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); __ j(not_zero, &skip_lookup); // Check for fast case object. Generate false result for slow case object. __ movp(rcx, FieldOperand(rax, JSObject::kPropertiesOffset)); __ movp(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); __ CompareRoot(rcx, Heap::kHashTableMapRootIndex); __ j(equal, if_false); // Look for valueOf string in the descriptor array, and indicate false if // found. Since we omit an enumeration index check, if it is added via a // transition that shares its descriptor array, this is a false positive. Label entry, loop, done; // Skip loop if no descriptors are valid. __ NumberOfOwnDescriptors(rcx, rbx); __ cmpp(rcx, Immediate(0)); __ j(equal, &done); __ LoadInstanceDescriptors(rbx, r8); // rbx: descriptor array. // rcx: valid entries in the descriptor array. // Calculate the end of the descriptor array. __ imulp(rcx, rcx, Immediate(DescriptorArray::kDescriptorSize)); __ leap(rcx, Operand(r8, rcx, times_pointer_size, DescriptorArray::kFirstOffset)); // Calculate location of the first key name. __ addp(r8, Immediate(DescriptorArray::kFirstOffset)); // Loop through all the keys in the descriptor array. If one of these is the // internalized string "valueOf" the result is false. __ jmp(&entry); __ bind(&loop); __ movp(rdx, FieldOperand(r8, 0)); __ Cmp(rdx, isolate()->factory()->value_of_string()); __ j(equal, if_false); __ addp(r8, Immediate(DescriptorArray::kDescriptorSize * kPointerSize)); __ bind(&entry); __ cmpp(r8, rcx); __ j(not_equal, &loop); __ bind(&done); // Set the bit in the map to indicate that there is no local valueOf field. __ orp(FieldOperand(rbx, Map::kBitField2Offset), Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); __ bind(&skip_lookup); // If a valueOf property is not found on the object check that its // prototype is the un-modified String prototype. If not result is false. __ movp(rcx, FieldOperand(rbx, Map::kPrototypeOffset)); __ testp(rcx, Immediate(kSmiTagMask)); __ j(zero, if_false); __ movp(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); __ movp(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ movp(rdx, FieldOperand(rdx, GlobalObject::kNativeContextOffset)); __ cmpp(rcx, ContextOperand(rdx, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Handle map = masm()->isolate()->factory()->heap_number_map(); __ CheckMap(rax, map, if_false, DO_SMI_CHECK); __ cmpl(FieldOperand(rax, HeapNumber::kExponentOffset), Immediate(0x1)); __ j(no_overflow, if_false); __ cmpl(FieldOperand(rax, HeapNumber::kMantissaOffset), Immediate(0x00000000)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_ARRAY_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_REGEXP_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // Get the frame pointer for the calling frame. __ movp(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ Cmp(Operand(rax, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &check_frame_marker); __ movp(rax, Operand(rax, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ Cmp(Operand(rax, StandardFrameConstants::kMarkerOffset), Smi::FromInt(StackFrame::CONSTRUCT)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); // Load the two objects into registers and perform the comparison. VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ Pop(rbx); __ cmpp(rax, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitArguments(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); // ArgumentsAccessStub expects the key in rdx and the formal // parameter count in rax. VisitForAccumulatorValue(args->at(0)); __ movp(rdx, rax); __ Move(rax, Smi::FromInt(info_->scope()->num_parameters())); ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); Label exit; // Get the number of formal parameters. __ Move(rax, Smi::FromInt(info_->scope()->num_parameters())); // Check if the calling frame is an arguments adaptor frame. __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &exit, Label::kNear); // Arguments adaptor case: Read the arguments length from the // adaptor frame. __ movp(rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ bind(&exit); __ AssertSmi(rax); context()->Plug(rax); } void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is a smi, we return null. __ JumpIfSmi(rax, &null); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. // Assume that there are only two callable types, and one of them is at // either end of the type range for JS object types. Saves extra comparisons. STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax); // Map is now in rax. __ j(below, &null); STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == FIRST_SPEC_OBJECT_TYPE + 1); __ j(equal, &function); __ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE); STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1); __ j(equal, &function); // Assume that there is no larger type. STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1); // Check if the constructor in the map is a JS function. __ movp(rax, FieldOperand(rax, Map::kConstructorOffset)); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx); __ j(not_equal, &non_function_constructor); // rax now contains the constructor function. Grab the // instance class name from there. __ movp(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset)); __ movp(rax, FieldOperand(rax, SharedFunctionInfo::kInstanceClassNameOffset)); __ jmp(&done); // Functions have class 'Function'. __ bind(&function); __ Move(rax, isolate()->factory()->Function_string()); __ jmp(&done); // Objects with a non-function constructor have class 'Object'. __ bind(&non_function_constructor); __ Move(rax, isolate()->factory()->Object_string()); __ jmp(&done); // Non-JS objects have class null. __ bind(&null); __ LoadRoot(rax, Heap::kNullValueRootIndex); // All done. __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitSubString(CallRuntime* expr) { // Load the arguments on the stack and call the stub. SubStringStub stub(isolate()); ZoneList* args = expr->arguments(); DCHECK(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) { // Load the arguments on the stack and call the stub. RegExpExecStub stub(isolate()); ZoneList* args = expr->arguments(); DCHECK(args->length() == 4); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); VisitForStackValue(args->at(3)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitValueOf(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); // Load the object. Label done; // If the object is a smi return the object. __ JumpIfSmi(rax, &done); // If the object is not a value type, return the object. __ CmpObjectType(rax, JS_VALUE_TYPE, rbx); __ j(not_equal, &done); __ movp(rax, FieldOperand(rax, JSValue::kValueOffset)); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitDateField(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); DCHECK_NE(NULL, args->at(1)->AsLiteral()); Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value())); VisitForAccumulatorValue(args->at(0)); // Load the object. Label runtime, done, not_date_object; Register object = rax; Register result = rax; Register scratch = rcx; __ JumpIfSmi(object, ¬_date_object); __ CmpObjectType(object, JS_DATE_TYPE, scratch); __ j(not_equal, ¬_date_object); if (index->value() == 0) { __ movp(result, FieldOperand(object, JSDate::kValueOffset)); __ jmp(&done); } else { if (index->value() < JSDate::kFirstUncachedField) { ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); Operand stamp_operand = __ ExternalOperand(stamp); __ movp(scratch, stamp_operand); __ cmpp(scratch, FieldOperand(object, JSDate::kCacheStampOffset)); __ j(not_equal, &runtime, Label::kNear); __ movp(result, FieldOperand(object, JSDate::kValueOffset + kPointerSize * index->value())); __ jmp(&done); } __ bind(&runtime); __ PrepareCallCFunction(2); __ movp(arg_reg_1, object); __ Move(arg_reg_2, index, Assembler::RelocInfoNone()); __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ jmp(&done); } __ bind(¬_date_object); __ CallRuntime(Runtime::kThrowNotDateError, 0); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(3, args->length()); Register string = rax; Register index = rbx; Register value = rcx; VisitForStackValue(args->at(0)); // index VisitForStackValue(args->at(1)); // value VisitForAccumulatorValue(args->at(2)); // string __ Pop(value); __ Pop(index); if (FLAG_debug_code) { __ Check(__ CheckSmi(value), kNonSmiValue); __ Check(__ CheckSmi(index), kNonSmiValue); } __ SmiToInteger32(value, value); __ SmiToInteger32(index, index); if (FLAG_debug_code) { static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type); } __ movb(FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize), value); context()->Plug(string); } void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(3, args->length()); Register string = rax; Register index = rbx; Register value = rcx; VisitForStackValue(args->at(0)); // index VisitForStackValue(args->at(1)); // value VisitForAccumulatorValue(args->at(2)); // string __ Pop(value); __ Pop(index); if (FLAG_debug_code) { __ Check(__ CheckSmi(value), kNonSmiValue); __ Check(__ CheckSmi(index), kNonSmiValue); } __ SmiToInteger32(value, value); __ SmiToInteger32(index, index); if (FLAG_debug_code) { static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type); } __ movw(FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize), value); context()->Plug(rax); } void FullCodeGenerator::EmitMathPow(CallRuntime* expr) { // Load the arguments on the stack and call the runtime function. ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); MathPowStub stub(isolate(), MathPowStub::ON_STACK); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); // Load the object. VisitForAccumulatorValue(args->at(1)); // Load the value. __ Pop(rbx); // rax = value. rbx = object. Label done; // If the object is a smi, return the value. __ JumpIfSmi(rbx, &done); // If the object is not a value type, return the value. __ CmpObjectType(rbx, JS_VALUE_TYPE, rcx); __ j(not_equal, &done); // Store the value. __ movp(FieldOperand(rbx, JSValue::kValueOffset), rax); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. __ movp(rdx, rax); __ RecordWriteField(rbx, JSValue::kValueOffset, rdx, rcx, kDontSaveFPRegs); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(args->length(), 1); // Load the argument into rax and call the stub. VisitForAccumulatorValue(args->at(0)); NumberToStringStub stub(isolate()); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label done; StringCharFromCodeGenerator generator(rax, rbx); generator.GenerateFast(masm_); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(rbx); } void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = rbx; Register index = rax; Register result = rdx; __ Pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // NaN. __ LoadRoot(result, Heap::kNanValueRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = rbx; Register index = rax; Register scratch = rdx; Register result = rax; __ Pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharAtGenerator generator(object, index, scratch, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // the empty string. __ LoadRoot(result, Heap::kempty_stringRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move smi zero into the result register, which will trigger // conversion. __ Move(result, Smi::FromInt(0)); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); __ Pop(rdx); StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); StringCompareStub stub(isolate()); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() >= 2); int arg_count = args->length() - 2; // 2 ~ receiver and function. for (int i = 0; i < arg_count + 1; i++) { VisitForStackValue(args->at(i)); } VisitForAccumulatorValue(args->last()); // Function. Label runtime, done; // Check for non-function argument (including proxy). __ JumpIfSmi(rax, &runtime); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx); __ j(not_equal, &runtime); // InvokeFunction requires the function in rdi. Move it in there. __ movp(rdi, result_register()); ParameterCount count(arg_count); __ InvokeFunction(rdi, count, CALL_FUNCTION, NullCallWrapper()); __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ jmp(&done); __ bind(&runtime); __ Push(rax); __ CallRuntime(Runtime::kCall, args->length()); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) { RegExpConstructResultStub stub(isolate()); ZoneList* args = expr->arguments(); DCHECK(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForAccumulatorValue(args->at(2)); __ Pop(rbx); __ Pop(rcx); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(2, args->length()); DCHECK_NE(NULL, args->at(0)->AsLiteral()); int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value(); Handle jsfunction_result_caches( isolate()->native_context()->jsfunction_result_caches()); if (jsfunction_result_caches->length() <= cache_id) { __ Abort(kAttemptToUseUndefinedCache); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); context()->Plug(rax); return; } VisitForAccumulatorValue(args->at(1)); Register key = rax; Register cache = rbx; Register tmp = rcx; __ movp(cache, ContextOperand(rsi, Context::GLOBAL_OBJECT_INDEX)); __ movp(cache, FieldOperand(cache, GlobalObject::kNativeContextOffset)); __ movp(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); __ movp(cache, FieldOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); Label done, not_found; STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ movp(tmp, FieldOperand(cache, JSFunctionResultCache::kFingerOffset)); // tmp now holds finger offset as a smi. SmiIndex index = __ SmiToIndex(kScratchRegister, tmp, kPointerSizeLog2); __ cmpp(key, FieldOperand(cache, index.reg, index.scale, FixedArray::kHeaderSize)); __ j(not_equal, ¬_found, Label::kNear); __ movp(rax, FieldOperand(cache, index.reg, index.scale, FixedArray::kHeaderSize + kPointerSize)); __ jmp(&done, Label::kNear); __ bind(¬_found); // Call runtime to perform the lookup. __ Push(cache); __ Push(key); __ CallRuntime(Runtime::kGetFromCache, 2); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ testl(FieldOperand(rax, String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ j(zero, if_true); __ jmp(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); __ AssertString(rax); __ movl(rax, FieldOperand(rax, String::kHashFieldOffset)); DCHECK(String::kHashShift >= kSmiTagSize); __ IndexFromHash(rax, rax); context()->Plug(rax); } void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) { Label bailout, return_result, done, one_char_separator, long_separator, non_trivial_array, not_size_one_array, loop, loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry; ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); // We will leave the separator on the stack until the end of the function. VisitForStackValue(args->at(1)); // Load this to rax (= array) VisitForAccumulatorValue(args->at(0)); // All aliases of the same register have disjoint lifetimes. Register array = rax; Register elements = no_reg; // Will be rax. Register index = rdx; Register string_length = rcx; Register string = rsi; Register scratch = rbx; Register array_length = rdi; Register result_pos = no_reg; // Will be rdi. Operand separator_operand = Operand(rsp, 2 * kPointerSize); Operand result_operand = Operand(rsp, 1 * kPointerSize); Operand array_length_operand = Operand(rsp, 0 * kPointerSize); // Separator operand is already pushed. Make room for the two // other stack fields, and clear the direction flag in anticipation // of calling CopyBytes. __ subp(rsp, Immediate(2 * kPointerSize)); __ cld(); // Check that the array is a JSArray __ JumpIfSmi(array, &bailout); __ CmpObjectType(array, JS_ARRAY_TYPE, scratch); __ j(not_equal, &bailout); // Check that the array has fast elements. __ CheckFastElements(scratch, &bailout); // Array has fast elements, so its length must be a smi. // If the array has length zero, return the empty string. __ movp(array_length, FieldOperand(array, JSArray::kLengthOffset)); __ SmiCompare(array_length, Smi::FromInt(0)); __ j(not_zero, &non_trivial_array); __ LoadRoot(rax, Heap::kempty_stringRootIndex); __ jmp(&return_result); // Save the array length on the stack. __ bind(&non_trivial_array); __ SmiToInteger32(array_length, array_length); __ movl(array_length_operand, array_length); // Save the FixedArray containing array's elements. // End of array's live range. elements = array; __ movp(elements, FieldOperand(array, JSArray::kElementsOffset)); array = no_reg; // Check that all array elements are sequential one-byte strings, and // accumulate the sum of their lengths, as a smi-encoded value. __ Set(index, 0); __ Set(string_length, 0); // Loop condition: while (index < array_length). // Live loop registers: index(int32), array_length(int32), string(String*), // scratch, string_length(int32), elements(FixedArray*). if (generate_debug_code_) { __ cmpp(index, array_length); __ Assert(below, kNoEmptyArraysHereInEmitFastOneByteArrayJoin); } __ bind(&loop); __ movp(string, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ JumpIfSmi(string, &bailout); __ movp(scratch, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); __ andb(scratch, Immediate( kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); __ cmpb(scratch, Immediate(kStringTag | kOneByteStringTag | kSeqStringTag)); __ j(not_equal, &bailout); __ AddSmiField(string_length, FieldOperand(string, SeqOneByteString::kLengthOffset)); __ j(overflow, &bailout); __ incl(index); __ cmpl(index, array_length); __ j(less, &loop); // Live registers: // string_length: Sum of string lengths. // elements: FixedArray of strings. // index: Array length. // array_length: Array length. // If array_length is 1, return elements[0], a string. __ cmpl(array_length, Immediate(1)); __ j(not_equal, ¬_size_one_array); __ movp(rax, FieldOperand(elements, FixedArray::kHeaderSize)); __ jmp(&return_result); __ bind(¬_size_one_array); // End of array_length live range. result_pos = array_length; array_length = no_reg; // Live registers: // string_length: Sum of string lengths. // elements: FixedArray of strings. // index: Array length. // Check that the separator is a sequential one-byte string. __ movp(string, separator_operand); __ JumpIfSmi(string, &bailout); __ movp(scratch, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); __ andb(scratch, Immediate( kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); __ cmpb(scratch, Immediate(kStringTag | kOneByteStringTag | kSeqStringTag)); __ j(not_equal, &bailout); // Live registers: // string_length: Sum of string lengths. // elements: FixedArray of strings. // index: Array length. // string: Separator string. // Add (separator length times (array_length - 1)) to string_length. __ SmiToInteger32(scratch, FieldOperand(string, SeqOneByteString::kLengthOffset)); __ decl(index); __ imull(scratch, index); __ j(overflow, &bailout); __ addl(string_length, scratch); __ j(overflow, &bailout); // Live registers and stack values: // string_length: Total length of result string. // elements: FixedArray of strings. __ AllocateOneByteString(result_pos, string_length, scratch, index, string, &bailout); __ movp(result_operand, result_pos); __ leap(result_pos, FieldOperand(result_pos, SeqOneByteString::kHeaderSize)); __ movp(string, separator_operand); __ SmiCompare(FieldOperand(string, SeqOneByteString::kLengthOffset), Smi::FromInt(1)); __ j(equal, &one_char_separator); __ j(greater, &long_separator); // Empty separator case: __ Set(index, 0); __ movl(scratch, array_length_operand); __ jmp(&loop_1_condition); // Loop condition: while (index < array_length). __ bind(&loop_1); // Each iteration of the loop concatenates one string to the result. // Live values in registers: // index: which element of the elements array we are adding to the result. // result_pos: the position to which we are currently copying characters. // elements: the FixedArray of strings we are joining. // scratch: array length. // Get string = array[index]. __ movp(string, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ SmiToInteger32(string_length, FieldOperand(string, String::kLengthOffset)); __ leap(string, FieldOperand(string, SeqOneByteString::kHeaderSize)); __ CopyBytes(result_pos, string, string_length); __ incl(index); __ bind(&loop_1_condition); __ cmpl(index, scratch); __ j(less, &loop_1); // Loop while (index < array_length). __ jmp(&done); // Generic bailout code used from several places. __ bind(&bailout); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ jmp(&return_result); // One-character separator case __ bind(&one_char_separator); // Get the separator one-byte character value. // Register "string" holds the separator. __ movzxbl(scratch, FieldOperand(string, SeqOneByteString::kHeaderSize)); __ Set(index, 0); // Jump into the loop after the code that copies the separator, so the first // element is not preceded by a separator __ jmp(&loop_2_entry); // Loop condition: while (index < length). __ bind(&loop_2); // Each iteration of the loop concatenates one string to the result. // Live values in registers: // elements: The FixedArray of strings we are joining. // index: which element of the elements array we are adding to the result. // result_pos: the position to which we are currently copying characters. // scratch: Separator character. // Copy the separator character to the result. __ movb(Operand(result_pos, 0), scratch); __ incp(result_pos); __ bind(&loop_2_entry); // Get string = array[index]. __ movp(string, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ SmiToInteger32(string_length, FieldOperand(string, String::kLengthOffset)); __ leap(string, FieldOperand(string, SeqOneByteString::kHeaderSize)); __ CopyBytes(result_pos, string, string_length); __ incl(index); __ cmpl(index, array_length_operand); __ j(less, &loop_2); // End while (index < length). __ jmp(&done); // Long separator case (separator is more than one character). __ bind(&long_separator); // Make elements point to end of elements array, and index // count from -array_length to zero, so we don't need to maintain // a loop limit. __ movl(index, array_length_operand); __ leap(elements, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ negq(index); // Replace separator string with pointer to its first character, and // make scratch be its length. __ movp(string, separator_operand); __ SmiToInteger32(scratch, FieldOperand(string, String::kLengthOffset)); __ leap(string, FieldOperand(string, SeqOneByteString::kHeaderSize)); __ movp(separator_operand, string); // Jump into the loop after the code that copies the separator, so the first // element is not preceded by a separator __ jmp(&loop_3_entry); // Loop condition: while (index < length). __ bind(&loop_3); // Each iteration of the loop concatenates one string to the result. // Live values in registers: // index: which element of the elements array we are adding to the result. // result_pos: the position to which we are currently copying characters. // scratch: Separator length. // separator_operand (rsp[0x10]): Address of first char of separator. // Copy the separator to the result. __ movp(string, separator_operand); __ movl(string_length, scratch); __ CopyBytes(result_pos, string, string_length, 2); __ bind(&loop_3_entry); // Get string = array[index]. __ movp(string, Operand(elements, index, times_pointer_size, 0)); __ SmiToInteger32(string_length, FieldOperand(string, String::kLengthOffset)); __ leap(string, FieldOperand(string, SeqOneByteString::kHeaderSize)); __ CopyBytes(result_pos, string, string_length); __ incq(index); __ j(not_equal, &loop_3); // Loop while (index < 0). __ bind(&done); __ movp(rax, result_operand); __ bind(&return_result); // Drop temp values from the stack, and restore context register. __ addp(rsp, Immediate(3 * kPointerSize)); __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->Plug(rax); } void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); ExternalReference debug_is_active = ExternalReference::debug_is_active_address(isolate()); __ Move(kScratchRegister, debug_is_active); __ movzxbp(rax, Operand(kScratchRegister, 0)); __ Integer32ToSmi(rax, rax); context()->Plug(rax); } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { if (expr->function() != NULL && expr->function()->intrinsic_type == Runtime::INLINE) { Comment cmnt(masm_, "[ InlineRuntimeCall"); EmitInlineRuntimeCall(expr); return; } Comment cmnt(masm_, "[ CallRuntime"); ZoneList* args = expr->arguments(); int arg_count = args->length(); if (expr->is_jsruntime()) { // Push the builtins object as receiver. __ movp(rax, GlobalObjectOperand()); __ Push(FieldOperand(rax, GlobalObject::kBuiltinsOffset)); // Load the function from the receiver. __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0)); __ Move(LoadDescriptor::NameRegister(), expr->name()); if (FLAG_vector_ics) { __ Move(VectorLoadICDescriptor::SlotRegister(), Smi::FromInt(expr->CallRuntimeFeedbackSlot())); CallLoadIC(NOT_CONTEXTUAL); } else { CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId()); } // Push the target function under the receiver. __ Push(Operand(rsp, 0)); __ movp(Operand(rsp, kPointerSize), rax); // Push the arguments ("left-to-right"). for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Record source position of the IC call. SetSourcePosition(expr->position()); CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS); __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize)); __ CallStub(&stub); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, rax); } else { // Push the arguments ("left-to-right"). for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the C runtime. __ CallRuntime(expr->function(), arg_count); context()->Plug(rax); } } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* property = expr->expression()->AsProperty(); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (property != NULL) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ Push(Smi::FromInt(strict_mode())); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); context()->Plug(rax); } else if (proxy != NULL) { Variable* var = proxy->var(); // Delete of an unqualified identifier is disallowed in strict mode // but "delete this" is allowed. DCHECK(strict_mode() == SLOPPY || var->is_this()); if (var->IsUnallocated()) { __ Push(GlobalObjectOperand()); __ Push(var->name()); __ Push(Smi::FromInt(SLOPPY)); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); context()->Plug(rax); } else if (var->IsStackAllocated() || var->IsContextSlot()) { // Result of deleting non-global variables is false. 'this' is // not really a variable, though we implement it as one. The // subexpression does not have side effects. context()->Plug(var->is_this()); } else { // Non-global variable. Call the runtime to try to delete from the // context where the variable was introduced. __ Push(context_register()); __ Push(var->name()); __ CallRuntime(Runtime::kDeleteLookupSlot, 2); context()->Plug(rax); } } else { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(Heap::kUndefinedValueRootIndex); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); if (context()->IsEffect()) { // Unary NOT has no side effects so it's only necessary to visit the // subexpression. Match the optimizing compiler by not branching. VisitForEffect(expr->expression()); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); // The labels are swapped for the recursive call. VisitForControl(expr->expression(), test->false_label(), test->true_label(), test->fall_through()); context()->Plug(test->true_label(), test->false_label()); } else { // We handle value contexts explicitly rather than simply visiting // for control and plugging the control flow into the context, // because we need to prepare a pair of extra administrative AST ids // for the optimizing compiler. DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue()); Label materialize_true, materialize_false, done; VisitForControl(expr->expression(), &materialize_false, &materialize_true, &materialize_true); __ bind(&materialize_true); PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS); if (context()->IsAccumulatorValue()) { __ LoadRoot(rax, Heap::kTrueValueRootIndex); } else { __ PushRoot(Heap::kTrueValueRootIndex); } __ jmp(&done, Label::kNear); __ bind(&materialize_false); PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS); if (context()->IsAccumulatorValue()) { __ LoadRoot(rax, Heap::kFalseValueRootIndex); } else { __ PushRoot(Heap::kFalseValueRootIndex); } __ bind(&done); } break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { StackValueContext context(this); VisitForTypeofValue(expr->expression()); } __ CallRuntime(Runtime::kTypeof, 1); context()->Plug(rax); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { DCHECK(expr->expression()->IsValidReferenceExpression()); Comment cmnt(masm_, "[ CountOperation"); SetSourcePosition(expr->position()); // Expression can only be a property, a global or a (parameter or local) // slot. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->expression()->AsProperty(); // In case of a property we use the uninitialized expression context // of the key to detect a named property. if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate expression and get value. if (assign_type == VARIABLE) { DCHECK(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { __ Push(Smi::FromInt(0)); } if (assign_type == NAMED_PROPERTY) { VisitForStackValue(prop->obj()); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0)); EmitNamedPropertyLoad(prop); } else { VisitForStackValue(prop->obj()); VisitForStackValue(prop->key()); // Leave receiver on stack __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize)); // Copy of key, needed for later store. __ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0)); EmitKeyedPropertyLoad(prop); } } // We need a second deoptimization point after loading the value // in case evaluating the property load my have a side effect. if (assign_type == VARIABLE) { PrepareForBailout(expr->expression(), TOS_REG); } else { PrepareForBailoutForId(prop->LoadId(), TOS_REG); } // Inline smi case if we are in a loop. Label done, stub_call; JumpPatchSite patch_site(masm_); if (ShouldInlineSmiCase(expr->op())) { Label slow; patch_site.EmitJumpIfNotSmi(rax, &slow, Label::kNear); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ Push(rax); break; case NAMED_PROPERTY: __ movp(Operand(rsp, kPointerSize), rax); break; case KEYED_PROPERTY: __ movp(Operand(rsp, 2 * kPointerSize), rax); break; } } } SmiOperationExecutionMode mode; mode.Add(PRESERVE_SOURCE_REGISTER); mode.Add(BAILOUT_ON_NO_OVERFLOW); if (expr->op() == Token::INC) { __ SmiAddConstant(rax, rax, Smi::FromInt(1), mode, &done, Label::kNear); } else { __ SmiSubConstant(rax, rax, Smi::FromInt(1), mode, &done, Label::kNear); } __ jmp(&stub_call, Label::kNear); __ bind(&slow); } ToNumberStub convert_stub(isolate()); __ CallStub(&convert_stub); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ Push(rax); break; case NAMED_PROPERTY: __ movp(Operand(rsp, kPointerSize), rax); break; case KEYED_PROPERTY: __ movp(Operand(rsp, 2 * kPointerSize), rax); break; } } } // Record position before stub call. SetSourcePosition(expr->position()); // Call stub for +1/-1. __ bind(&stub_call); __ movp(rdx, rax); __ Move(rax, Smi::FromInt(1)); Handle code = CodeFactory::BinaryOpIC(isolate(), expr->binary_op(), NO_OVERWRITE).code(); CallIC(code, expr->CountBinOpFeedbackId()); patch_site.EmitPatchInfo(); __ bind(&done); // Store the value returned in rax. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { // Perform the assignment as if via '='. { EffectContext context(this); EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context.Plug(rax); } // For all contexts except kEffect: We have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { // Perform the assignment as if via '='. EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); } break; case NAMED_PROPERTY: { __ Move(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value()); __ Pop(StoreDescriptor::ReceiverRegister()); CallStoreIC(expr->CountStoreFeedbackId()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(rax); } break; } case KEYED_PROPERTY: { __ Pop(StoreDescriptor::NameRegister()); __ Pop(StoreDescriptor::ReceiverRegister()); Handle ic = CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code(); CallIC(ic, expr->CountStoreFeedbackId()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(rax); } break; } } } void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { VariableProxy* proxy = expr->AsVariableProxy(); DCHECK(!context()->IsEffect()); DCHECK(!context()->IsTest()); if (proxy != NULL && proxy->var()->IsUnallocated()) { Comment cmnt(masm_, "[ Global variable"); __ Move(LoadDescriptor::NameRegister(), proxy->name()); __ movp(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand()); if (FLAG_vector_ics) { __ Move(VectorLoadICDescriptor::SlotRegister(), Smi::FromInt(proxy->VariableFeedbackSlot())); } // Use a regular load, not a contextual load, to avoid a reference // error. CallLoadIC(NOT_CONTEXTUAL); PrepareForBailout(expr, TOS_REG); context()->Plug(rax); } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { Comment cmnt(masm_, "[ Lookup slot"); Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done); __ bind(&slow); __ Push(rsi); __ Push(proxy->name()); __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2); PrepareForBailout(expr, TOS_REG); __ bind(&done); context()->Plug(rax); } else { // This expression cannot throw a reference error at the top level. VisitInDuplicateContext(expr); } } void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, Expression* sub_expr, Handle check) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); { AccumulatorValueContext context(this); VisitForTypeofValue(sub_expr); } PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Factory* factory = isolate()->factory(); if (String::Equals(check, factory->number_string())) { __ JumpIfSmi(rax, if_true); __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset)); __ CompareRoot(rax, Heap::kHeapNumberMapRootIndex); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->string_string())) { __ JumpIfSmi(rax, if_false); // Check for undetectable objects => false. __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx); __ j(above_equal, if_false); __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(zero, if_true, if_false, fall_through); } else if (String::Equals(check, factory->symbol_string())) { __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, SYMBOL_TYPE, rdx); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->boolean_string())) { __ CompareRoot(rax, Heap::kTrueValueRootIndex); __ j(equal, if_true); __ CompareRoot(rax, Heap::kFalseValueRootIndex); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->undefined_string())) { __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, if_true); __ JumpIfSmi(rax, if_false); // Check for undetectable objects => true. __ movp(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); } else if (String::Equals(check, factory->function_string())) { __ JumpIfSmi(rax, if_false); STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rdx); __ j(equal, if_true); __ CmpInstanceType(rdx, JS_FUNCTION_PROXY_TYPE); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->object_string())) { __ JumpIfSmi(rax, if_false); __ CompareRoot(rax, Heap::kNullValueRootIndex); __ j(equal, if_true); __ CmpObjectType(rax, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, rdx); __ j(below, if_false); __ CmpInstanceType(rdx, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); __ j(above, if_false); // Check for undetectable objects => false. __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(zero, if_true, if_false, fall_through); } else { if (if_false != fall_through) __ jmp(if_false); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); SetSourcePosition(expr->position()); // First we try a fast inlined version of the compare when one of // the operands is a literal. if (TryLiteralCompare(expr)) return; // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Token::Value op = expr->op(); VisitForStackValue(expr->left()); switch (op) { case Token::IN: VisitForStackValue(expr->right()); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ CompareRoot(rax, Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForStackValue(expr->right()); InstanceofStub stub(isolate(), InstanceofStub::kNoFlags); __ CallStub(&stub); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ testp(rax, rax); // The stub returns 0 for true. Split(zero, if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); Condition cc = CompareIC::ComputeCondition(op); __ Pop(rdx); bool inline_smi_code = ShouldInlineSmiCase(op); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ movp(rcx, rdx); __ orp(rcx, rax); patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear); __ cmpp(rdx, rax); Split(cc, if_true, if_false, NULL); __ bind(&slow_case); } // Record position and call the compare IC. SetSourcePosition(expr->position()); Handle ic = CodeFactory::CompareIC(isolate(), op).code(); CallIC(ic, expr->CompareOperationFeedbackId()); patch_site.EmitPatchInfo(); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ testp(rax, rax); Split(cc, if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, Expression* sub_expr, NilValue nil) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(sub_expr); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); if (expr->op() == Token::EQ_STRICT) { Heap::RootListIndex nil_value = nil == kNullValue ? Heap::kNullValueRootIndex : Heap::kUndefinedValueRootIndex; __ CompareRoot(rax, nil_value); Split(equal, if_true, if_false, fall_through); } else { Handle ic = CompareNilICStub::GetUninitialized(isolate(), nil); CallIC(ic, expr->CompareOperationFeedbackId()); __ testp(rax, rax); Split(not_zero, if_true, if_false, fall_through); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); context()->Plug(rax); } Register FullCodeGenerator::result_register() { return rax; } Register FullCodeGenerator::context_register() { return rsi; } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { DCHECK(IsAligned(frame_offset, kPointerSize)); __ movp(Operand(rbp, frame_offset), value); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ movp(dst, ContextOperand(rsi, context_index)); } void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { Scope* declaration_scope = scope()->DeclarationScope(); if (declaration_scope->is_global_scope() || declaration_scope->is_module_scope()) { // Contexts nested in the native context have a canonical empty function // as their closure, not the anonymous closure containing the global // code. Pass a smi sentinel and let the runtime look up the empty // function. __ Push(Smi::FromInt(0)); } else if (declaration_scope->is_eval_scope()) { // Contexts created by a call to eval have the same closure as the // context calling eval, not the anonymous closure containing the eval // code. Fetch it from the context. __ Push(ContextOperand(rsi, Context::CLOSURE_INDEX)); } else { DCHECK(declaration_scope->is_function_scope()); __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { DCHECK(!result_register().is(rdx)); DCHECK(!result_register().is(rcx)); // Cook return address on top of stack (smi encoded Code* delta) __ PopReturnAddressTo(rdx); __ Move(rcx, masm_->CodeObject()); __ subp(rdx, rcx); __ Integer32ToSmi(rdx, rdx); __ Push(rdx); // Store result register while executing finally block. __ Push(result_register()); // Store pending message while executing finally block. ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ Load(rdx, pending_message_obj); __ Push(rdx); ExternalReference has_pending_message = ExternalReference::address_of_has_pending_message(isolate()); __ Load(rdx, has_pending_message); __ Integer32ToSmi(rdx, rdx); __ Push(rdx); ExternalReference pending_message_script = ExternalReference::address_of_pending_message_script(isolate()); __ Load(rdx, pending_message_script); __ Push(rdx); } void FullCodeGenerator::ExitFinallyBlock() { DCHECK(!result_register().is(rdx)); DCHECK(!result_register().is(rcx)); // Restore pending message from stack. __ Pop(rdx); ExternalReference pending_message_script = ExternalReference::address_of_pending_message_script(isolate()); __ Store(pending_message_script, rdx); __ Pop(rdx); __ SmiToInteger32(rdx, rdx); ExternalReference has_pending_message = ExternalReference::address_of_has_pending_message(isolate()); __ Store(has_pending_message, rdx); __ Pop(rdx); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ Store(pending_message_obj, rdx); // Restore result register from stack. __ Pop(result_register()); // Uncook return address. __ Pop(rdx); __ SmiToInteger32(rdx, rdx); __ Move(rcx, masm_->CodeObject()); __ addp(rdx, rcx); __ jmp(rdx); } #undef __ #define __ ACCESS_MASM(masm()) FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit( int* stack_depth, int* context_length) { // The macros used here must preserve the result register. // Because the handler block contains the context of the finally // code, we can restore it directly from there for the finally code // rather than iteratively unwinding contexts via their previous // links. __ Drop(*stack_depth); // Down to the handler block. if (*context_length > 0) { // Restore the context to its dedicated register and the stack. __ movp(rsi, Operand(rsp, StackHandlerConstants::kContextOffset)); __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); } __ PopTryHandler(); __ call(finally_entry_); *stack_depth = 0; *context_length = 0; return previous_; } #undef __ static const byte kJnsInstruction = 0x79; static const byte kNopByteOne = 0x66; static const byte kNopByteTwo = 0x90; #ifdef DEBUG static const byte kCallInstruction = 0xe8; #endif void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc, BackEdgeState target_state, Code* replacement_code) { Address call_target_address = pc - kIntSize; Address jns_instr_address = call_target_address - 3; Address jns_offset_address = call_target_address - 2; switch (target_state) { case INTERRUPT: // sub , ;; Not changed // jns ok // call // ok: *jns_instr_address = kJnsInstruction; *jns_offset_address = kJnsOffset; break; case ON_STACK_REPLACEMENT: case OSR_AFTER_STACK_CHECK: // sub , ;; Not changed // nop // nop // call // ok: *jns_instr_address = kNopByteOne; *jns_offset_address = kNopByteTwo; break; } Assembler::set_target_address_at(call_target_address, unoptimized_code, replacement_code->entry()); unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, call_target_address, replacement_code); } BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState( Isolate* isolate, Code* unoptimized_code, Address pc) { Address call_target_address = pc - kIntSize; Address jns_instr_address = call_target_address - 3; DCHECK_EQ(kCallInstruction, *(call_target_address - 1)); if (*jns_instr_address == kJnsInstruction) { DCHECK_EQ(kJnsOffset, *(call_target_address - 2)); DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(), Assembler::target_address_at(call_target_address, unoptimized_code)); return INTERRUPT; } DCHECK_EQ(kNopByteOne, *jns_instr_address); DCHECK_EQ(kNopByteTwo, *(call_target_address - 2)); if (Assembler::target_address_at(call_target_address, unoptimized_code) == isolate->builtins()->OnStackReplacement()->entry()) { return ON_STACK_REPLACEMENT; } DCHECK_EQ(isolate->builtins()->OsrAfterStackCheck()->entry(), Assembler::target_address_at(call_target_address, unoptimized_code)); return OSR_AFTER_STACK_CHECK; } } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64