// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "test/cctest/cctest.h" #include "src/compiler/code-generator.h" #include "src/compiler/common-operator.h" #include "src/compiler/graph.h" #include "src/compiler/instruction.h" #include "src/compiler/linkage.h" #include "src/compiler/machine-operator.h" #include "src/compiler/node.h" #include "src/compiler/operator.h" #include "src/compiler/schedule.h" #include "src/compiler/scheduler.h" #include "src/lithium.h" using namespace v8::internal; using namespace v8::internal::compiler; typedef v8::internal::compiler::Instruction TestInstr; typedef v8::internal::compiler::InstructionSequence TestInstrSeq; // A testing helper for the register code abstraction. class InstructionTester : public HandleAndZoneScope { public: // We're all friends here. InstructionTester() : isolate(main_isolate()), graph(zone()), schedule(zone()), info(static_cast(NULL), main_isolate()), linkage(&info), common(zone()), code(NULL) {} ~InstructionTester() { delete code; } Isolate* isolate; Graph graph; Schedule schedule; CompilationInfoWithZone info; Linkage linkage; CommonOperatorBuilder common; MachineOperatorBuilder machine; TestInstrSeq* code; Zone* zone() { return main_zone(); } void allocCode() { if (schedule.rpo_order()->size() == 0) { // Compute the RPO order. Scheduler::ComputeSpecialRPO(&schedule); DCHECK(schedule.rpo_order()->size() > 0); } code = new TestInstrSeq(&linkage, &graph, &schedule); } Node* Int32Constant(int32_t val) { Node* node = graph.NewNode(common.Int32Constant(val)); schedule.AddNode(schedule.start(), node); return node; } Node* Float64Constant(double val) { Node* node = graph.NewNode(common.Float64Constant(val)); schedule.AddNode(schedule.start(), node); return node; } Node* Parameter(int32_t which) { Node* node = graph.NewNode(common.Parameter(which)); schedule.AddNode(schedule.start(), node); return node; } Node* NewNode(BasicBlock* block) { Node* node = graph.NewNode(common.Int32Constant(111)); schedule.AddNode(block, node); return node; } int NewInstr(BasicBlock* block) { InstructionCode opcode = static_cast(110); TestInstr* instr = TestInstr::New(zone(), opcode); return code->AddInstruction(instr, block); } UnallocatedOperand* NewUnallocated(int vreg) { UnallocatedOperand* unallocated = new (zone()) UnallocatedOperand(UnallocatedOperand::ANY); unallocated->set_virtual_register(vreg); return unallocated; } }; TEST(InstructionBasic) { InstructionTester R; for (int i = 0; i < 10; i++) { R.Int32Constant(i); // Add some nodes to the graph. } BasicBlock* last = R.schedule.start(); for (int i = 0; i < 5; i++) { BasicBlock* block = R.schedule.NewBasicBlock(); R.schedule.AddGoto(last, block); last = block; } R.allocCode(); CHECK_EQ(R.graph.NodeCount(), R.code->ValueCount()); BasicBlockVector* blocks = R.schedule.rpo_order(); CHECK_EQ(static_cast(blocks->size()), R.code->BasicBlockCount()); int index = 0; for (BasicBlockVectorIter i = blocks->begin(); i != blocks->end(); i++, index++) { BasicBlock* block = *i; CHECK_EQ(block, R.code->BlockAt(index)); CHECK_EQ(-1, R.code->GetLoopEnd(block)); } } TEST(InstructionGetBasicBlock) { InstructionTester R; BasicBlock* b0 = R.schedule.start(); BasicBlock* b1 = R.schedule.NewBasicBlock(); BasicBlock* b2 = R.schedule.NewBasicBlock(); BasicBlock* b3 = R.schedule.end(); R.schedule.AddGoto(b0, b1); R.schedule.AddGoto(b1, b2); R.schedule.AddGoto(b2, b3); R.allocCode(); R.code->StartBlock(b0); int i0 = R.NewInstr(b0); int i1 = R.NewInstr(b0); R.code->EndBlock(b0); R.code->StartBlock(b1); int i2 = R.NewInstr(b1); int i3 = R.NewInstr(b1); int i4 = R.NewInstr(b1); int i5 = R.NewInstr(b1); R.code->EndBlock(b1); R.code->StartBlock(b2); int i6 = R.NewInstr(b2); int i7 = R.NewInstr(b2); int i8 = R.NewInstr(b2); R.code->EndBlock(b2); R.code->StartBlock(b3); R.code->EndBlock(b3); CHECK_EQ(b0, R.code->GetBasicBlock(i0)); CHECK_EQ(b0, R.code->GetBasicBlock(i1)); CHECK_EQ(b1, R.code->GetBasicBlock(i2)); CHECK_EQ(b1, R.code->GetBasicBlock(i3)); CHECK_EQ(b1, R.code->GetBasicBlock(i4)); CHECK_EQ(b1, R.code->GetBasicBlock(i5)); CHECK_EQ(b2, R.code->GetBasicBlock(i6)); CHECK_EQ(b2, R.code->GetBasicBlock(i7)); CHECK_EQ(b2, R.code->GetBasicBlock(i8)); CHECK_EQ(b0, R.code->GetBasicBlock(b0->first_instruction_index())); CHECK_EQ(b0, R.code->GetBasicBlock(b0->last_instruction_index())); CHECK_EQ(b1, R.code->GetBasicBlock(b1->first_instruction_index())); CHECK_EQ(b1, R.code->GetBasicBlock(b1->last_instruction_index())); CHECK_EQ(b2, R.code->GetBasicBlock(b2->first_instruction_index())); CHECK_EQ(b2, R.code->GetBasicBlock(b2->last_instruction_index())); CHECK_EQ(b3, R.code->GetBasicBlock(b3->first_instruction_index())); CHECK_EQ(b3, R.code->GetBasicBlock(b3->last_instruction_index())); } TEST(InstructionIsGapAt) { InstructionTester R; BasicBlock* b0 = R.schedule.start(); R.schedule.AddReturn(b0, R.Int32Constant(1)); R.allocCode(); TestInstr* i0 = TestInstr::New(R.zone(), 100); TestInstr* g = TestInstr::New(R.zone(), 103)->MarkAsControl(); R.code->StartBlock(b0); R.code->AddInstruction(i0, b0); R.code->AddInstruction(g, b0); R.code->EndBlock(b0); CHECK_EQ(true, R.code->InstructionAt(0)->IsBlockStart()); CHECK_EQ(true, R.code->IsGapAt(0)); // Label CHECK_EQ(true, R.code->IsGapAt(1)); // Gap CHECK_EQ(false, R.code->IsGapAt(2)); // i0 CHECK_EQ(true, R.code->IsGapAt(3)); // Gap CHECK_EQ(true, R.code->IsGapAt(4)); // Gap CHECK_EQ(false, R.code->IsGapAt(5)); // g } TEST(InstructionIsGapAt2) { InstructionTester R; BasicBlock* b0 = R.schedule.start(); BasicBlock* b1 = R.schedule.end(); R.schedule.AddGoto(b0, b1); R.schedule.AddReturn(b1, R.Int32Constant(1)); R.allocCode(); TestInstr* i0 = TestInstr::New(R.zone(), 100); TestInstr* g = TestInstr::New(R.zone(), 103)->MarkAsControl(); R.code->StartBlock(b0); R.code->AddInstruction(i0, b0); R.code->AddInstruction(g, b0); R.code->EndBlock(b0); TestInstr* i1 = TestInstr::New(R.zone(), 102); TestInstr* g1 = TestInstr::New(R.zone(), 104)->MarkAsControl(); R.code->StartBlock(b1); R.code->AddInstruction(i1, b1); R.code->AddInstruction(g1, b1); R.code->EndBlock(b1); CHECK_EQ(true, R.code->InstructionAt(0)->IsBlockStart()); CHECK_EQ(true, R.code->IsGapAt(0)); // Label CHECK_EQ(true, R.code->IsGapAt(1)); // Gap CHECK_EQ(false, R.code->IsGapAt(2)); // i0 CHECK_EQ(true, R.code->IsGapAt(3)); // Gap CHECK_EQ(true, R.code->IsGapAt(4)); // Gap CHECK_EQ(false, R.code->IsGapAt(5)); // g CHECK_EQ(true, R.code->InstructionAt(6)->IsBlockStart()); CHECK_EQ(true, R.code->IsGapAt(6)); // Label CHECK_EQ(true, R.code->IsGapAt(7)); // Gap CHECK_EQ(false, R.code->IsGapAt(8)); // i1 CHECK_EQ(true, R.code->IsGapAt(9)); // Gap CHECK_EQ(true, R.code->IsGapAt(10)); // Gap CHECK_EQ(false, R.code->IsGapAt(11)); // g1 } TEST(InstructionAddGapMove) { InstructionTester R; BasicBlock* b0 = R.schedule.start(); R.schedule.AddReturn(b0, R.Int32Constant(1)); R.allocCode(); TestInstr* i0 = TestInstr::New(R.zone(), 100); TestInstr* g = TestInstr::New(R.zone(), 103)->MarkAsControl(); R.code->StartBlock(b0); R.code->AddInstruction(i0, b0); R.code->AddInstruction(g, b0); R.code->EndBlock(b0); CHECK_EQ(true, R.code->InstructionAt(0)->IsBlockStart()); CHECK_EQ(true, R.code->IsGapAt(0)); // Label CHECK_EQ(true, R.code->IsGapAt(1)); // Gap CHECK_EQ(false, R.code->IsGapAt(2)); // i0 CHECK_EQ(true, R.code->IsGapAt(3)); // Gap CHECK_EQ(true, R.code->IsGapAt(4)); // Gap CHECK_EQ(false, R.code->IsGapAt(5)); // g int indexes[] = {0, 1, 3, 4, -1}; for (int i = 0; indexes[i] >= 0; i++) { int index = indexes[i]; UnallocatedOperand* op1 = R.NewUnallocated(index + 6); UnallocatedOperand* op2 = R.NewUnallocated(index + 12); R.code->AddGapMove(index, op1, op2); GapInstruction* gap = R.code->GapAt(index); ParallelMove* move = gap->GetParallelMove(GapInstruction::START); CHECK_NE(NULL, move); const ZoneList* move_operands = move->move_operands(); CHECK_EQ(1, move_operands->length()); MoveOperands* cur = &move_operands->at(0); CHECK_EQ(op1, cur->source()); CHECK_EQ(op2, cur->destination()); } } TEST(InstructionOperands) { Zone zone(CcTest::InitIsolateOnce()); { TestInstr* i = TestInstr::New(&zone, 101); CHECK_EQ(0, static_cast(i->OutputCount())); CHECK_EQ(0, static_cast(i->InputCount())); CHECK_EQ(0, static_cast(i->TempCount())); } InstructionOperand* outputs[] = { new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER), new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER), new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER), new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER)}; InstructionOperand* inputs[] = { new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER), new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER), new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER), new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER)}; InstructionOperand* temps[] = { new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER), new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER), new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER), new (&zone) UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER)}; for (size_t i = 0; i < arraysize(outputs); i++) { for (size_t j = 0; j < arraysize(inputs); j++) { for (size_t k = 0; k < arraysize(temps); k++) { TestInstr* m = TestInstr::New(&zone, 101, i, outputs, j, inputs, k, temps); CHECK(i == m->OutputCount()); CHECK(j == m->InputCount()); CHECK(k == m->TempCount()); for (size_t z = 0; z < i; z++) { CHECK_EQ(outputs[z], m->OutputAt(z)); } for (size_t z = 0; z < j; z++) { CHECK_EQ(inputs[z], m->InputAt(z)); } for (size_t z = 0; z < k; z++) { CHECK_EQ(temps[z], m->TempAt(z)); } } } } }