page.title=RenderScript Mathematical Constants and Functions @jd:body
The mathematical functions below can be applied to scalars and vectors. When applied to vectors, the returned value is a vector of the function applied to each entry of the input.
For example:
float3 a, b;
// The following call sets
// a.x to sin(b.x),
// a.y to sin(b.y), and
// a.z to sin(b.z).
a = sin(b);
See Vector Math Functions for functions like distance() and length() that interpret instead the input as a single vector in n-dimensional space.
The precision of the mathematical operations on 32 bit floats is affected by the pragmas rs_fp_relaxed and rs_fp_full. Under rs_fp_relaxed, subnormal values may be flushed to zero and rounding may be done towards zero. In comparison, rs_fp_full requires correct handling of subnormal values, i.e. smaller than 1.17549435e-38f. rs_fp_rull also requires round to nearest with ties to even.
Different precision/speed tradeoffs can be achieved by using variants of the common math functions. Functions with a name starting with
Constants | |
---|---|
M_1_PI | 1 / pi, as a 32 bit float |
M_2_PI | 2 / pi, as a 32 bit float |
M_2_SQRTPI | 2 / sqrt(pi), as a 32 bit float |
M_E | e, as a 32 bit float |
M_LN10 | log_e(10), as a 32 bit float |
M_LN2 | log_e(2), as a 32 bit float |
M_LOG10E | log_10(e), as a 32 bit float |
M_LOG2E | log_2(e), as a 32 bit float |
M_PI | pi, as a 32 bit float |
M_PI_2 | pi / 2, as a 32 bit float |
M_PI_4 | pi / 4, as a 32 bit float |
M_SQRT1_2 | 1 / sqrt(2), as a 32 bit float |
M_SQRT2 | sqrt(2), as a 32 bit float |
Functions | |
---|---|
abs | Absolute value of an integer |
acos | Inverse cosine |
acosh | Inverse hyperbolic cosine |
acospi | Inverse cosine divided by pi |
asin | Inverse sine |
asinh | Inverse hyperbolic sine |
asinpi | Inverse sine divided by pi |
atan | Inverse tangent |
atan2 | Inverse tangent of a ratio |
atan2pi | Inverse tangent of a ratio, divided by pi |
atanh | Inverse hyperbolic tangent |
atanpi | Inverse tangent divided by pi |
cbrt | Cube root |
ceil | Smallest integer not less than a value |
clamp | Restrain a value to a range |
clz | Number of leading 0 bits |
copysign | Copies the sign of a number to another |
cos | Cosine |
cosh | Hypebolic cosine |
cospi | Cosine of a number multiplied by pi |
degrees | Converts radians into degrees |
erf | Mathematical error function |
erfc | Mathematical complementary error function |
exp | e raised to a number |
exp10 | 10 raised to a number |
exp2 | 2 raised to a number |
expm1 | e raised to a number minus one |
fabs | Absolute value of a float |
fdim | Positive difference between two values |
floor | Smallest integer not greater than a value |
fma | Multiply and add |
fmax | Maximum of two floats |
fmin | Minimum of two floats |
fmod | Modulo |
fract | Positive fractional part |
frexp | Binary mantissa and exponent |
half_recip | Reciprocal computed to 16 bit precision |
half_rsqrt | Reciprocal of a square root computed to 16 bit precision |
half_sqrt | Square root computed to 16 bit precision |
hypot | Hypotenuse |
ilogb | Base two exponent |
ldexp | Creates a floating point from mantissa and exponent |
lgamma | Natural logarithm of the gamma function |
log | Natural logarithm |
log10 | Base 10 logarithm |
log1p | Natural logarithm of a value plus 1 |
log2 | Base 2 logarithm |
logb | Base two exponent |
mad | Multiply and add |
max | Maximum |
min | Minimum |
mix | Mixes two values |
modf | Integral and fractional components |
nan | Not a Number |
native_acos | Approximate inverse cosine |
native_acosh | Approximate inverse hyperbolic cosine |
native_acospi | Approximate inverse cosine divided by pi |
native_asin | Approximate inverse sine |
native_asinh | Approximate inverse hyperbolic sine |
native_asinpi | Approximate inverse sine divided by pi |
native_atan | Approximate inverse tangent |
native_atan2 | Approximate inverse tangent of a ratio |
native_atan2pi | Approximate inverse tangent of a ratio, divided by pi |
native_atanh | Approximate inverse hyperbolic tangent |
native_atanpi | Approximate inverse tangent divided by pi |
native_cbrt | Approximate cube root |
native_cos | Approximate cosine |
native_cosh | Approximate hypebolic cosine |
native_cospi | Approximate cosine of a number multiplied by pi |
native_divide | Approximate division |
native_exp | Approximate e raised to a number |
native_exp10 | Approximate 10 raised to a number |
native_exp2 | Approximate 2 raised to a number |
native_expm1 | Approximate e raised to a number minus one |
native_hypot | Approximate hypotenuse |
native_log | Approximate natural logarithm |
native_log10 | Approximate base 10 logarithm |
native_log1p | Approximate natural logarithm of a value plus 1 |
native_log2 | Approximate base 2 logarithm |
native_powr | Approximate positive base raised to an exponent |
native_recip | Approximate reciprocal |
native_rootn | Approximate nth root |
native_rsqrt | Approximate reciprocal of a square root |
native_sin | Approximate sine |
native_sincos | Approximate sine and cosine |
native_sinh | Approximate hyperbolic sine |
native_sinpi | Approximate sine of a number multiplied by pi |
native_sqrt | Approximate square root |
native_tan | Approximate tangent |
native_tanh | Approximate hyperbolic tangent |
native_tanpi | Approximate tangent of a number multiplied by pi |
nextafter | Next floating point number |
pow | Base raised to an exponent |
pown | Base raised to an integer exponent |
powr | Positive base raised to an exponent |
radians | Converts degrees into radians |
remainder | Remainder of a division |
remquo | Remainder and quotient of a division |
rint | Round to even |
rootn | Nth root |
round | Round away from zero |
rsRand | Pseudo-random number |
rsqrt | Reciprocal of a square root |
sign | Sign of a value |
sin | Sine |
sincos | Sine and cosine |
sinh | Hyperbolic sine |
sinpi | Sine of a number multiplied by pi |
sqrt | Square root |
step | 0 if less than a value, 0 otherwise |
tan | Tangent |
tanh | Hyperbolic tangent |
tanpi | Tangent of a number multiplied by pi |
tgamma | Gamma function |
trunc | Truncates a floating point |
Deprecated Functions | |
---|---|
rsClamp | Deprecated. Restrain a value to a range |
rsFrac | Deprecated. Returns the fractional part of a float |
Value: 0.318309886183790671537767526745028724f |
The inverse of pi, as a 32 bit float.
Value: 0.636619772367581343075535053490057448f |
2 divided by pi, as a 32 bit float.
Value: 1.128379167095512573896158903121545172f |
2 divided by the square root of pi, as a 32 bit float.
Value: 2.718281828459045235360287471352662498f |
The number e, the base of the natural logarithm, as a 32 bit float.
Value: 2.302585092994045684017991454684364208f |
The natural logarithm of 10, as a 32 bit float.
Value: 0.693147180559945309417232121458176568f |
The natural logarithm of 2, as a 32 bit float.
Value: 0.434294481903251827651128918916605082f |
The logarithm base 10 of e, as a 32 bit float.
Value: 1.442695040888963407359924681001892137f |
The logarithm base 2 of e, as a 32 bit float.
Value: 3.141592653589793238462643383279502884f |
The constant pi, as a 32 bit float.
Value: 1.570796326794896619231321691639751442f |
Pi divided by 2, as a 32 bit float.
Value: 0.785398163397448309615660845819875721f |
Pi divided by 4, as a 32 bit float.
Value: 0.707106781186547524400844362104849039f |
The inverse of the square root of 2, as a 32 bit float.
Value: 1.414213562373095048801688724209698079f |
The square root of 2, as a 32 bit float.
uchar abs(char v); | |
uchar2 abs(char2 v); | |
uchar3 abs(char3 v); | |
uchar4 abs(char4 v); | |
uint abs(int v); | |
uint2 abs(int2 v); | |
uint3 abs(int3 v); | |
uint4 abs(int4 v); | |
ushort abs(short v); | |
ushort2 abs(short2 v); | |
ushort3 abs(short3 v); | |
ushort4 abs(short4 v); |
Returns the absolute value of an integer.
For floats, use fabs().
Returns the inverse cosine, in radians.
See also native_acos().
Returns the inverse hyperbolic cosine, in radians.
See also native_acosh().
Returns the inverse cosine in radians, divided by pi.
To get an inverse cosine measured in degrees, use acospi(a) * 180.f
.
See also native_acospi().
Returns the inverse sine, in radians.
See also native_asin().
Returns the inverse hyperbolic sine, in radians.
See also native_asinh().
Returns the inverse sine in radians, divided by pi.
To get an inverse sine measured in degrees, use asinpi(a) * 180.f
.
See also native_asinpi().
Returns the inverse tangent, in radians.
See also native_atan().
float atan2(float numerator, float denominator); | |
float2 atan2(float2 numerator, float2 denominator); | |
float3 atan2(float3 numerator, float3 denominator); | |
float4 atan2(float4 numerator, float4 denominator); |
numerator | Numerator. |
---|---|
denominator | Denominator. Can be 0. |
Returns the inverse tangent of (numerator / denominator)
, in radians.
See also native_atan2().
float atan2pi(float numerator, float denominator); | |
float2 atan2pi(float2 numerator, float2 denominator); | |
float3 atan2pi(float3 numerator, float3 denominator); | |
float4 atan2pi(float4 numerator, float4 denominator); |
numerator | Numerator. |
---|---|
denominator | Denominator. Can be 0. |
Returns the inverse tangent of (numerator / denominator)
, in radians, divided by pi.
To get an inverse tangent measured in degrees, use atan2pi(n, d) * 180.f
.
See also native_atan2pi().
Returns the inverse hyperbolic tangent, in radians.
See also native_atanh().
Returns the inverse tangent in radians, divided by pi.
To get an inverse tangent measured in degrees, use atanpi(a) * 180.f
.
See also native_atanpi().
Returns the cube root.
See also native_cbrt().
Returns the smallest integer not less than a value.
For example, ceil(1.2f)
returns 2.f, and ceil(-1.2f)
returns -1.f.
See also floor().
char clamp(char value, char min_value, char max_value); | Added in API level 19 |
char2 clamp(char2 value, char min_value, char max_value); | Added in API level 19 |
char2 clamp(char2 value, char2 min_value, char2 max_value); | Added in API level 19 |
char3 clamp(char3 value, char min_value, char max_value); | Added in API level 19 |
char3 clamp(char3 value, char3 min_value, char3 max_value); | Added in API level 19 |
char4 clamp(char4 value, char min_value, char max_value); | Added in API level 19 |
char4 clamp(char4 value, char4 min_value, char4 max_value); | Added in API level 19 |
float clamp(float value, float min_value, float max_value); | |
float2 clamp(float2 value, float min_value, float max_value); | |
float2 clamp(float2 value, float2 min_value, float2 max_value); | |
float3 clamp(float3 value, float min_value, float max_value); | |
float3 clamp(float3 value, float3 min_value, float3 max_value); | |
float4 clamp(float4 value, float min_value, float max_value); | |
float4 clamp(float4 value, float4 min_value, float4 max_value); | |
int clamp(int value, int min_value, int max_value); | Added in API level 19 |
int2 clamp(int2 value, int min_value, int max_value); | Added in API level 19 |
int2 clamp(int2 value, int2 min_value, int2 max_value); | Added in API level 19 |
int3 clamp(int3 value, int min_value, int max_value); | Added in API level 19 |
int3 clamp(int3 value, int3 min_value, int3 max_value); | Added in API level 19 |
int4 clamp(int4 value, int min_value, int max_value); | Added in API level 19 |
int4 clamp(int4 value, int4 min_value, int4 max_value); | Added in API level 19 |
long clamp(long value, long min_value, long max_value); | Added in API level 19 |
long2 clamp(long2 value, long min_value, long max_value); | Added in API level 19 |
long2 clamp(long2 value, long2 min_value, long2 max_value); | Added in API level 19 |
long3 clamp(long3 value, long min_value, long max_value); | Added in API level 19 |
long3 clamp(long3 value, long3 min_value, long3 max_value); | Added in API level 19 |
long4 clamp(long4 value, long min_value, long max_value); | Added in API level 19 |
long4 clamp(long4 value, long4 min_value, long4 max_value); | Added in API level 19 |
short clamp(short value, short min_value, short max_value); | Added in API level 19 |
short2 clamp(short2 value, short min_value, short max_value); | Added in API level 19 |
short2 clamp(short2 value, short2 min_value, short2 max_value); | Added in API level 19 |
short3 clamp(short3 value, short min_value, short max_value); | Added in API level 19 |
short3 clamp(short3 value, short3 min_value, short3 max_value); | Added in API level 19 |
short4 clamp(short4 value, short min_value, short max_value); | Added in API level 19 |
short4 clamp(short4 value, short4 min_value, short4 max_value); | Added in API level 19 |
uchar clamp(uchar value, uchar min_value, uchar max_value); | Added in API level 19 |
uchar2 clamp(uchar2 value, uchar min_value, uchar max_value); | Added in API level 19 |
uchar2 clamp(uchar2 value, uchar2 min_value, uchar2 max_value); | Added in API level 19 |
uchar3 clamp(uchar3 value, uchar min_value, uchar max_value); | Added in API level 19 |
uchar3 clamp(uchar3 value, uchar3 min_value, uchar3 max_value); | Added in API level 19 |
uchar4 clamp(uchar4 value, uchar min_value, uchar max_value); | Added in API level 19 |
uchar4 clamp(uchar4 value, uchar4 min_value, uchar4 max_value); | Added in API level 19 |
uint clamp(uint value, uint min_value, uint max_value); | Added in API level 19 |
uint2 clamp(uint2 value, uint min_value, uint max_value); | Added in API level 19 |
uint2 clamp(uint2 value, uint2 min_value, uint2 max_value); | Added in API level 19 |
uint3 clamp(uint3 value, uint min_value, uint max_value); | Added in API level 19 |
uint3 clamp(uint3 value, uint3 min_value, uint3 max_value); | Added in API level 19 |
uint4 clamp(uint4 value, uint min_value, uint max_value); | Added in API level 19 |
uint4 clamp(uint4 value, uint4 min_value, uint4 max_value); | Added in API level 19 |
ulong clamp(ulong value, ulong min_value, ulong max_value); | Added in API level 19 |
ulong2 clamp(ulong2 value, ulong min_value, ulong max_value); | Added in API level 19 |
ulong2 clamp(ulong2 value, ulong2 min_value, ulong2 max_value); | Added in API level 19 |
ulong3 clamp(ulong3 value, ulong min_value, ulong max_value); | Added in API level 19 |
ulong3 clamp(ulong3 value, ulong3 min_value, ulong3 max_value); | Added in API level 19 |
ulong4 clamp(ulong4 value, ulong min_value, ulong max_value); | Added in API level 19 |
ulong4 clamp(ulong4 value, ulong4 min_value, ulong4 max_value); | Added in API level 19 |
ushort clamp(ushort value, ushort min_value, ushort max_value); | Added in API level 19 |
ushort2 clamp(ushort2 value, ushort min_value, ushort max_value); | Added in API level 19 |
ushort2 clamp(ushort2 value, ushort2 min_value, ushort2 max_value); | Added in API level 19 |
ushort3 clamp(ushort3 value, ushort min_value, ushort max_value); | Added in API level 19 |
ushort3 clamp(ushort3 value, ushort3 min_value, ushort3 max_value); | Added in API level 19 |
ushort4 clamp(ushort4 value, ushort min_value, ushort max_value); | Added in API level 19 |
ushort4 clamp(ushort4 value, ushort4 min_value, ushort4 max_value); | Added in API level 19 |
value | Value to be clamped. |
---|---|
min_value | Lower bound, a scalar or matching vector. |
max_value | High bound, must match the type of low. |
Clamps a value to a specified high and low bound. clamp() returns min_value if value < min_value, max_value if value > max_value, otherwise value.
There are two variants of clamp: one where the min and max are scalars applied to all entries of the value, the other where the min and max are also vectors.
If min_value is greater than max_value, the results are undefined.
char clz(char value); | |
char2 clz(char2 value); | |
char3 clz(char3 value); | |
char4 clz(char4 value); | |
int clz(int value); | |
int2 clz(int2 value); | |
int3 clz(int3 value); | |
int4 clz(int4 value); | |
short clz(short value); | |
short2 clz(short2 value); | |
short3 clz(short3 value); | |
short4 clz(short4 value); | |
uchar clz(uchar value); | |
uchar2 clz(uchar2 value); | |
uchar3 clz(uchar3 value); | |
uchar4 clz(uchar4 value); | |
uint clz(uint value); | |
uint2 clz(uint2 value); | |
uint3 clz(uint3 value); | |
uint4 clz(uint4 value); | |
ushort clz(ushort value); | |
ushort2 clz(ushort2 value); | |
ushort3 clz(ushort3 value); | |
ushort4 clz(ushort4 value); |
Returns the number of leading 0-bits in a value.
For example, clz((char)0x03)
returns 6.
float copysign(float magnitude_value, float sign_value); | |
float2 copysign(float2 magnitude_value, float2 sign_value); | |
float3 copysign(float3 magnitude_value, float3 sign_value); | |
float4 copysign(float4 magnitude_value, float4 sign_value); |
Copies the sign from sign_value to magnitude_value.
The value returned is either magnitude_value or -magnitude_value.
For example, copysign(4.0f, -2.7f)
returns -4.0f and copysign(-4.0f, 2.7f)
returns 4.0f.
Returns the cosine of an angle measured in radians.
See also native_cos().
Returns the hypebolic cosine of v, where v is measured in radians.
See also native_cosh().
Returns the cosine of (v * pi)
, where (v * pi)
is measured in radians.
To get the cosine of a value measured in degrees, call cospi(v / 180.f)
.
See also native_cospi().
float degrees(float v); | |
float2 degrees(float2 v); | |
float3 degrees(float3 v); | |
float4 degrees(float4 v); |
Converts from radians to degrees.
Returns the error function.
Returns the complementary error function.
Returns e raised to v, i.e. e ^ v.
See also native_exp().
Returns 10 raised to v, i.e. 10.f ^ v.
See also native_exp10().
Returns 2 raised to v, i.e. 2.f ^ v.
See also native_exp2().
Returns e raised to v minus 1, i.e. (e ^ v) - 1.
See also native_expm1().
Returns the absolute value of the float v.
For integers, use abs().
float fdim(float a, float b); | |
float2 fdim(float2 a, float2 b); | |
float3 fdim(float3 a, float3 b); | |
float4 fdim(float4 a, float4 b); |
Returns the positive difference between two values.
If a > b, returns (a - b) otherwise returns 0f.
Returns the smallest integer not greater than a value.
For example, floor(1.2f)
returns 1.f, and floor(-1.2f)
returns -2.f.
See also ceil().
float fma(float multiplicand1, float multiplicand2, float offset); | |
float2 fma(float2 multiplicand1, float2 multiplicand2, float2 offset); | |
float3 fma(float3 multiplicand1, float3 multiplicand2, float3 offset); | |
float4 fma(float4 multiplicand1, float4 multiplicand2, float4 offset); |
Multiply and add. Returns (multiplicand1 * multiplicand2) + offset
.
This function is similar to mad(). fma() retains full precision of the multiplied result and rounds only after the addition. mad() rounds after the multiplication and the addition. This extra precision is not guaranteed in rs_fp_relaxed mode.
float fmax(float a, float b); | |
float2 fmax(float2 a, float b); | |
float2 fmax(float2 a, float2 b); | |
float3 fmax(float3 a, float b); | |
float3 fmax(float3 a, float3 b); | |
float4 fmax(float4 a, float b); | |
float4 fmax(float4 a, float4 b); |
Returns the maximum of a and b, i.e. (a < b ? b : a)
.
The max() function returns identical results but can be applied to more data types.
float fmin(float a, float b); | |
float2 fmin(float2 a, float b); | |
float2 fmin(float2 a, float2 b); | |
float3 fmin(float3 a, float b); | |
float3 fmin(float3 a, float3 b); | |
float4 fmin(float4 a, float b); | |
float4 fmin(float4 a, float4 b); |
Returns the minimum of a and b, i.e. (a > b ? b : a)
.
The min() function returns identical results but can be applied to more data types.
float fract(float v); | |
float fract(float v, float* floor); | |
float2 fract(float2 v); | |
float2 fract(float2 v, float2* floor); | |
float3 fract(float3 v); | |
float3 fract(float3 v, float3* floor); | |
float4 fract(float4 v); | |
float4 fract(float4 v, float4* floor); |
v | Input value. |
---|---|
floor | If floor is not null, *floor will be set to the floor of v. |
Returns the positive fractional part of v, i.e. v - floor(v)
.
For example, fract(1.3f, &val)
returns 0.3f and sets val to 1.f.
fract(-1.3f, &val)
returns 0.7f and sets val to -2.f.
float frexp(float v, int* exponent); | |
float2 frexp(float2 v, int2* exponent); | |
float3 frexp(float3 v, int3* exponent); | |
float4 frexp(float4 v, int4* exponent); |
v | Input value. |
---|---|
exponent | If exponent is not null, *exponent will be set to the exponent of v. |
float half_recip(float v); | Added in API level 17 |
float2 half_recip(float2 v); | Added in API level 17 |
float3 half_recip(float3 v); | Added in API level 17 |
float4 half_recip(float4 v); | Added in API level 17 |
Returns the approximate reciprocal of a value.
The precision is that of a 16 bit floating point value.
See also native_recip().
float half_rsqrt(float v); | Added in API level 17 |
float2 half_rsqrt(float2 v); | Added in API level 17 |
float3 half_rsqrt(float3 v); | Added in API level 17 |
float4 half_rsqrt(float4 v); | Added in API level 17 |
Returns the approximate value of (1.f / sqrt(value))
.
The precision is that of a 16 bit floating point value.
See also rsqrt(), native_rsqrt().
float half_sqrt(float v); | Added in API level 17 |
float2 half_sqrt(float2 v); | Added in API level 17 |
float3 half_sqrt(float3 v); | Added in API level 17 |
float4 half_sqrt(float4 v); | Added in API level 17 |
Returns the approximate square root of a value.
The precision is that of a 16 bit floating point value.
See also sqrt(), native_sqrt().
float hypot(float a, float b); | |
float2 hypot(float2 a, float2 b); | |
float3 hypot(float3 a, float3 b); | |
float4 hypot(float4 a, float4 b); |
Returns the hypotenuse, i.e. sqrt(a * a + b * b)
.
See also native_hypot().
float ldexp(float mantissa, int exponent); | |
float2 ldexp(float2 mantissa, int exponent); | |
float2 ldexp(float2 mantissa, int2 exponent); | |
float3 ldexp(float3 mantissa, int exponent); | |
float3 ldexp(float3 mantissa, int3 exponent); | |
float4 ldexp(float4 mantissa, int exponent); | |
float4 ldexp(float4 mantissa, int4 exponent); |
mantissa | Mantissa. |
---|---|
exponent | Exponent, a single component or matching vector. |
Returns the floating point created from the mantissa and exponent, i.e. (mantissa * 2 ^ exponent).
See frexp() for the reverse operation.
float lgamma(float v); | |
float lgamma(float v, int* sign_of_gamma); | |
float2 lgamma(float2 v); | |
float2 lgamma(float2 v, int2* sign_of_gamma); | |
float3 lgamma(float3 v); | |
float3 lgamma(float3 v, int3* sign_of_gamma); | |
float4 lgamma(float4 v); | |
float4 lgamma(float4 v, int4* sign_of_gamma); |
v | |
---|---|
sign_of_gamma | If sign_of_gamma is not null, *sign_of_gamma will be set to -1.f if the gamma of v is negative, otherwise to 1.f. |
Returns the natural logarithm.
See also native_log().
Returns the base 10 logarithm.
See also native_log10().
Returns the natural logarithm of (v + 1.f)
.
See also native_log1p().
Returns the base 2 logarithm.
See also native_log2().
Returns the base two exponent of a value, where the mantissa is between 1.f (inclusive) and 2.f (exclusive).
For example, logb(8.5f)
returns 3.f.
Because of the difference in mantissa, this number is one less than is returned by frexp().
ilogb() is similar but returns an integer.
float mad(float multiplicand1, float multiplicand2, float offset); | |
float2 mad(float2 multiplicand1, float2 multiplicand2, float2 offset); | |
float3 mad(float3 multiplicand1, float3 multiplicand2, float3 offset); | |
float4 mad(float4 multiplicand1, float4 multiplicand2, float4 offset); |
Multiply and add. Returns (multiplicand1 * multiplicand2) + offset
.
This function is similar to fma(). fma() retains full precision of the multiplied result and rounds only after the addition. mad() rounds after the multiplication and the addition. In rs_fp_relaxed mode, mad() may not do the rounding after multiplicaiton.
char max(char a, char b); | |
char2 max(char2 a, char2 b); | |
char3 max(char3 a, char3 b); | |
char4 max(char4 a, char4 b); | |
float max(float a, float b); | |
float2 max(float2 a, float2 b); | |
float3 max(float3 a, float3 b); | |
float4 max(float4 a, float4 b); | |
int max(int a, int b); | |
int2 max(int2 a, int2 b); | |
int3 max(int3 a, int3 b); | |
int4 max(int4 a, int4 b); | |
long max(long a, long b); | Added in API level 21 |
long2 max(long2 a, long2 b); | Added in API level 21 |
long3 max(long3 a, long3 b); | Added in API level 21 |
long4 max(long4 a, long4 b); | Added in API level 21 |
short max(short a, short b); | |
short2 max(short2 a, short2 b); | |
short3 max(short3 a, short3 b); | |
short4 max(short4 a, short4 b); | |
uchar max(uchar a, uchar b); | |
uchar2 max(uchar2 a, uchar2 b); | |
uchar3 max(uchar3 a, uchar3 b); | |
uchar4 max(uchar4 a, uchar4 b); | |
uint max(uint a, uint b); | |
uint2 max(uint2 a, uint2 b); | |
uint3 max(uint3 a, uint3 b); | |
uint4 max(uint4 a, uint4 b); | |
ulong max(ulong a, ulong b); | Added in API level 21 |
ulong2 max(ulong2 a, ulong2 b); | Added in API level 21 |
ulong3 max(ulong3 a, ulong3 b); | Added in API level 21 |
ulong4 max(ulong4 a, ulong4 b); | Added in API level 21 |
ushort max(ushort a, ushort b); | |
ushort2 max(ushort2 a, ushort2 b); | |
ushort3 max(ushort3 a, ushort3 b); | |
ushort4 max(ushort4 a, ushort4 b); |
Returns the maximum value of two arguments.
char min(char a, char b); | |
char2 min(char2 a, char2 b); | |
char3 min(char3 a, char3 b); | |
char4 min(char4 a, char4 b); | |
float min(float a, float b); | |
float2 min(float2 a, float2 b); | |
float3 min(float3 a, float3 b); | |
float4 min(float4 a, float4 b); | |
int min(int a, int b); | |
int2 min(int2 a, int2 b); | |
int3 min(int3 a, int3 b); | |
int4 min(int4 a, int4 b); | |
long min(long a, long b); | Added in API level 21 |
long2 min(long2 a, long2 b); | Added in API level 21 |
long3 min(long3 a, long3 b); | Added in API level 21 |
long4 min(long4 a, long4 b); | Added in API level 21 |
short min(short a, short b); | |
short2 min(short2 a, short2 b); | |
short3 min(short3 a, short3 b); | |
short4 min(short4 a, short4 b); | |
uchar min(uchar a, uchar b); | |
uchar2 min(uchar2 a, uchar2 b); | |
uchar3 min(uchar3 a, uchar3 b); | |
uchar4 min(uchar4 a, uchar4 b); | |
uint min(uint a, uint b); | |
uint2 min(uint2 a, uint2 b); | |
uint3 min(uint3 a, uint3 b); | |
uint4 min(uint4 a, uint4 b); | |
ulong min(ulong a, ulong b); | Added in API level 21 |
ulong2 min(ulong2 a, ulong2 b); | Added in API level 21 |
ulong3 min(ulong3 a, ulong3 b); | Added in API level 21 |
ulong4 min(ulong4 a, ulong4 b); | Added in API level 21 |
ushort min(ushort a, ushort b); | |
ushort2 min(ushort2 a, ushort2 b); | |
ushort3 min(ushort3 a, ushort3 b); | |
ushort4 min(ushort4 a, ushort4 b); |
Returns the minimum value of two arguments.
float mix(float start, float stop, float fraction); | |
float2 mix(float2 start, float2 stop, float fraction); | |
float2 mix(float2 start, float2 stop, float2 fraction); | |
float3 mix(float3 start, float3 stop, float fraction); | |
float3 mix(float3 start, float3 stop, float3 fraction); | |
float4 mix(float4 start, float4 stop, float fraction); | |
float4 mix(float4 start, float4 stop, float4 fraction); |
Returns start + ((stop - start) * fraction).
This can be useful for mixing two values. For example, to create a new color that is
40% color1 and 60% color2, use mix(color1, color2, 0.6f)
.
float modf(float v, float* integral_part); | |
float2 modf(float2 v, float2* integral_part); | |
float3 modf(float3 v, float3* integral_part); | |
float4 modf(float4 v, float4* integral_part); |
v | Source value. |
---|---|
integral_part | *integral_part will be set to the integral portion of the number. |
Floating point portion of the value. |
Returns the integral and fractional components of a number.
Both components will have the same sign as x. For example, for an input of -3.72f, iret will be set to -3.f and .72f will be returned.
float native_acos(float v); | Added in API level 21 |
float2 native_acos(float2 v); | Added in API level 21 |
float3 native_acos(float3 v); | Added in API level 21 |
float4 native_acos(float4 v); | Added in API level 21 |
Returns the approximate inverse cosine, in radians.
This function yields undefined results from input values less than -1 or greater than 1.
See also acos().
float native_acosh(float v); | Added in API level 21 |
float2 native_acosh(float2 v); | Added in API level 21 |
float3 native_acosh(float3 v); | Added in API level 21 |
float4 native_acosh(float4 v); | Added in API level 21 |
Returns the approximate inverse hyperbolic cosine, in radians.
See also acosh().
float native_acospi(float v); | Added in API level 21 |
float2 native_acospi(float2 v); | Added in API level 21 |
float3 native_acospi(float3 v); | Added in API level 21 |
float4 native_acospi(float4 v); | Added in API level 21 |
Returns the approximate inverse cosine in radians, divided by pi.
To get an inverse cosine measured in degrees, use acospi(a) * 180.f
.
This function yields undefined results from input values less than -1 or greater than 1.
See also acospi().
float native_asin(float v); | Added in API level 21 |
float2 native_asin(float2 v); | Added in API level 21 |
float3 native_asin(float3 v); | Added in API level 21 |
float4 native_asin(float4 v); | Added in API level 21 |
Returns the approximate inverse sine, in radians.
This function yields undefined results from input values less than -1 or greater than 1.
See also asin().
float native_asinh(float v); | Added in API level 21 |
float2 native_asinh(float2 v); | Added in API level 21 |
float3 native_asinh(float3 v); | Added in API level 21 |
float4 native_asinh(float4 v); | Added in API level 21 |
Returns the approximate inverse hyperbolic sine, in radians.
See also asinh().
float native_asinpi(float v); | Added in API level 21 |
float2 native_asinpi(float2 v); | Added in API level 21 |
float3 native_asinpi(float3 v); | Added in API level 21 |
float4 native_asinpi(float4 v); | Added in API level 21 |
Returns the approximate inverse sine in radians, divided by pi.
To get an inverse sine measured in degrees, use asinpi(a) * 180.f
.
This function yields undefined results from input values less than -1 or greater than 1.
See also asinpi().
float native_atan(float v); | Added in API level 21 |
float2 native_atan(float2 v); | Added in API level 21 |
float3 native_atan(float3 v); | Added in API level 21 |
float4 native_atan(float4 v); | Added in API level 21 |
Returns the approximate inverse tangent, in radians.
See also atan().
float native_atan2(float numerator, float denominator); | Added in API level 21 |
float2 native_atan2(float2 numerator, float2 denominator); | Added in API level 21 |
float3 native_atan2(float3 numerator, float3 denominator); | Added in API level 21 |
float4 native_atan2(float4 numerator, float4 denominator); | Added in API level 21 |
numerator | Numerator. |
---|---|
denominator | Denominator. Can be 0. |
Returns the approximate inverse tangent of (numerator / denominator)
, in radians.
See also atan2().
float native_atan2pi(float numerator, float denominator); | Added in API level 21 |
float2 native_atan2pi(float2 numerator, float2 denominator); | Added in API level 21 |
float3 native_atan2pi(float3 numerator, float3 denominator); | Added in API level 21 |
float4 native_atan2pi(float4 numerator, float4 denominator); | Added in API level 21 |
numerator | Numerator. |
---|---|
denominator | Denominator. Can be 0. |
Returns the approximate inverse tangent of (numerator / denominator)
,
in radians, divided by pi.
To get an inverse tangent measured in degrees, use atan2pi(n, d) * 180.f
.
See also atan2pi().
float native_atanh(float v); | Added in API level 21 |
float2 native_atanh(float2 v); | Added in API level 21 |
float3 native_atanh(float3 v); | Added in API level 21 |
float4 native_atanh(float4 v); | Added in API level 21 |
Returns the approximate inverse hyperbolic tangent, in radians.
See also atanh().
float native_atanpi(float v); | Added in API level 21 |
float2 native_atanpi(float2 v); | Added in API level 21 |
float3 native_atanpi(float3 v); | Added in API level 21 |
float4 native_atanpi(float4 v); | Added in API level 21 |
Returns the approximate inverse tangent in radians, divided by pi.
To get an inverse tangent measured in degrees, use atanpi(a) * 180.f
.
See also atanpi().
float native_cbrt(float v); | Added in API level 21 |
float2 native_cbrt(float2 v); | Added in API level 21 |
float3 native_cbrt(float3 v); | Added in API level 21 |
float4 native_cbrt(float4 v); | Added in API level 21 |
Returns the approximate cubic root.
See also cbrt().
float native_cos(float v); | Added in API level 21 |
float2 native_cos(float2 v); | Added in API level 21 |
float3 native_cos(float3 v); | Added in API level 21 |
float4 native_cos(float4 v); | Added in API level 21 |
Returns the approximate cosine of an angle measured in radians.
See also cos().
float native_cosh(float v); | Added in API level 21 |
float2 native_cosh(float2 v); | Added in API level 21 |
float3 native_cosh(float3 v); | Added in API level 21 |
float4 native_cosh(float4 v); | Added in API level 21 |
Returns the approximate hypebolic cosine.
See also cosh().
float native_cospi(float v); | Added in API level 21 |
float2 native_cospi(float2 v); | Added in API level 21 |
float3 native_cospi(float3 v); | Added in API level 21 |
float4 native_cospi(float4 v); | Added in API level 21 |
Returns the approximate cosine of (v * pi), where (v * pi) is measured in radians.
To get the cosine of a value measured in degrees, call cospi(v / 180.f)
.
See also cospi().
float native_divide(float left_vector, float right_vector); | Added in API level 21 |
float2 native_divide(float2 left_vector, float2 right_vector); | Added in API level 21 |
float3 native_divide(float3 left_vector, float3 right_vector); | Added in API level 21 |
float4 native_divide(float4 left_vector, float4 right_vector); | Added in API level 21 |
Computes the approximate division of two values.
float native_exp(float v); | Added in API level 18 |
float2 native_exp(float2 v); | Added in API level 18 |
float3 native_exp(float3 v); | Added in API level 18 |
float4 native_exp(float4 v); | Added in API level 18 |
Fast approximate exp.
It is valid for inputs from -86.f to 86.f. The precision is no worse than what would be expected from using 16 bit floating point values.
See also exp().
float native_exp10(float v); | Added in API level 18 |
float2 native_exp10(float2 v); | Added in API level 18 |
float3 native_exp10(float3 v); | Added in API level 18 |
float4 native_exp10(float4 v); | Added in API level 18 |
Fast approximate exp10.
It is valid for inputs from -37.f to 37.f. The precision is no worse than what would be expected from using 16 bit floating point values.
See also exp10().
float native_exp2(float v); | Added in API level 18 |
float2 native_exp2(float2 v); | Added in API level 18 |
float3 native_exp2(float3 v); | Added in API level 18 |
float4 native_exp2(float4 v); | Added in API level 18 |
Fast approximate exp2.
It is valid for inputs from -125.f to 125.f. The precision is no worse than what would be expected from using 16 bit floating point values.
See also exp2().
float native_expm1(float v); | Added in API level 21 |
float2 native_expm1(float2 v); | Added in API level 21 |
float3 native_expm1(float3 v); | Added in API level 21 |
float4 native_expm1(float4 v); | Added in API level 21 |
Returns the approximate (e ^ v) - 1.
See also expm1().
float native_hypot(float a, float b); | Added in API level 21 |
float2 native_hypot(float2 a, float2 b); | Added in API level 21 |
float3 native_hypot(float3 a, float3 b); | Added in API level 21 |
float4 native_hypot(float4 a, float4 b); | Added in API level 21 |
Returns the approximate native_sqrt(a * a + b * b)
See also hypot().
float native_log(float v); | Added in API level 18 |
float2 native_log(float2 v); | Added in API level 18 |
float3 native_log(float3 v); | Added in API level 18 |
float4 native_log(float4 v); | Added in API level 18 |
float native_log10(float v); | Added in API level 18 |
float2 native_log10(float2 v); | Added in API level 18 |
float3 native_log10(float3 v); | Added in API level 18 |
float4 native_log10(float4 v); | Added in API level 18 |
float native_log1p(float v); | Added in API level 21 |
float2 native_log1p(float2 v); | Added in API level 21 |
float3 native_log1p(float3 v); | Added in API level 21 |
float4 native_log1p(float4 v); | Added in API level 21 |
Returns the approximate natural logarithm of (v + 1.0f)
See also log1p().
float native_log2(float v); | Added in API level 18 |
float2 native_log2(float2 v); | Added in API level 18 |
float3 native_log2(float3 v); | Added in API level 18 |
float4 native_log2(float4 v); | Added in API level 18 |
float native_powr(float base, float exponent); | Added in API level 18 |
float2 native_powr(float2 base, float2 exponent); | Added in API level 18 |
float3 native_powr(float3 base, float3 exponent); | Added in API level 18 |
float4 native_powr(float4 base, float4 exponent); | Added in API level 18 |
base | Must be between 0.f and 256.f. The function is not accurate for values very close to zero. |
---|---|
exponent | Must be between -15.f and 15.f. |
Fast approximate (base ^ exponent).
See also powr().
float native_recip(float v); | Added in API level 21 |
float2 native_recip(float2 v); | Added in API level 21 |
float3 native_recip(float3 v); | Added in API level 21 |
float4 native_recip(float4 v); | Added in API level 21 |
Returns the approximate approximate reciprocal of a value.
See also half_recip().
float native_rootn(float v, int n); | Added in API level 21 |
float2 native_rootn(float2 v, int2 n); | Added in API level 21 |
float3 native_rootn(float3 v, int3 n); | Added in API level 21 |
float4 native_rootn(float4 v, int4 n); | Added in API level 21 |
Compute the approximate Nth root of a value.
See also rootn().
float native_rsqrt(float v); | Added in API level 21 |
float2 native_rsqrt(float2 v); | Added in API level 21 |
float3 native_rsqrt(float3 v); | Added in API level 21 |
float4 native_rsqrt(float4 v); | Added in API level 21 |
Returns approximate (1 / sqrt(v)).
See also rsqrt(), half_rsqrt().
float native_sin(float v); | Added in API level 21 |
float2 native_sin(float2 v); | Added in API level 21 |
float3 native_sin(float3 v); | Added in API level 21 |
float4 native_sin(float4 v); | Added in API level 21 |
Returns the approximate sine of an angle measured in radians.
See also sin().
float native_sincos(float v, float* cos); | Added in API level 21 |
float2 native_sincos(float2 v, float2* cos); | Added in API level 21 |
float3 native_sincos(float3 v, float3* cos); | Added in API level 21 |
float4 native_sincos(float4 v, float4* cos); | Added in API level 21 |
v | Incoming value in radians. |
---|---|
cos | *cos will be set to the cosine value. |
Sine. |
Returns the approximate sine and cosine of a value.
See also sincos().
float native_sinh(float v); | Added in API level 21 |
float2 native_sinh(float2 v); | Added in API level 21 |
float3 native_sinh(float3 v); | Added in API level 21 |
float4 native_sinh(float4 v); | Added in API level 21 |
Returns the approximate hyperbolic sine of a value specified in radians.
See also sinh().
float native_sinpi(float v); | Added in API level 21 |
float2 native_sinpi(float2 v); | Added in API level 21 |
float3 native_sinpi(float3 v); | Added in API level 21 |
float4 native_sinpi(float4 v); | Added in API level 21 |
Returns the approximate sine of (v * pi), where (v * pi) is measured in radians.
To get the sine of a value measured in degrees, call sinpi(v / 180.f)
.
See also sinpi().
float native_sqrt(float v); | Added in API level 21 |
float2 native_sqrt(float2 v); | Added in API level 21 |
float3 native_sqrt(float3 v); | Added in API level 21 |
float4 native_sqrt(float4 v); | Added in API level 21 |
float native_tan(float v); | Added in API level 21 |
float2 native_tan(float2 v); | Added in API level 21 |
float3 native_tan(float3 v); | Added in API level 21 |
float4 native_tan(float4 v); | Added in API level 21 |
Returns the approximate tangent of an angle measured in radians.
float native_tanh(float v); | Added in API level 21 |
float2 native_tanh(float2 v); | Added in API level 21 |
float3 native_tanh(float3 v); | Added in API level 21 |
float4 native_tanh(float4 v); | Added in API level 21 |
Returns the approximate hyperbolic tangent of a value.
See also tanh().
float native_tanpi(float v); | Added in API level 21 |
float2 native_tanpi(float2 v); | Added in API level 21 |
float3 native_tanpi(float3 v); | Added in API level 21 |
float4 native_tanpi(float4 v); | Added in API level 21 |
Returns the approximate tangent of (v * pi), where (v * pi) is measured in radians.
To get the tangent of a value measured in degrees, call tanpi(v / 180.f)
.
See also tanpi().
float nextafter(float v, float target); | |
float2 nextafter(float2 v, float2 target); | |
float3 nextafter(float3 v, float3 target); | |
float4 nextafter(float4 v, float4 target); |
Returns the next representable floating point number from v towards target.
In rs_fp_relaxed mode, a denormalized input value may not yield the next denormalized value, as support of denormalized values is optional in relaxed mode.
float powr(float base, float exponent); | |
float2 powr(float2 base, float2 exponent); | |
float3 powr(float3 base, float3 exponent); | |
float4 powr(float4 base, float4 exponent); |
Returns base raised to the power exponent, i.e. base ^ exponent. base must be >= 0.
pow() and pown() are similar. They both make no assumptions about the base. pow() takes a float exponent while pown() take an integer.
See also native_powr().
float radians(float v); | |
float2 radians(float2 v); | |
float3 radians(float3 v); | |
float4 radians(float4 v); |
Converts from degrees to radians.
float remainder(float numerator, float denominator); | |
float2 remainder(float2 numerator, float2 denominator); | |
float3 remainder(float3 numerator, float3 denominator); | |
float4 remainder(float4 numerator, float4 denominator); |
Returns the remainder of (numerator / denominator), where the quotient is rounded towards the nearest integer.
The function fmod() is similar but rounds toward the closest interger.
For example, fmod(-3.8f, 2.f)
returns -1.8f (-3.8f - -1.f * 2.f)
while remainder(-3.8f, 2.f)
returns 0.2f (-3.8f - -2.f * 2.f).
float remquo(float numerator, float denominator, int* quotient); | |
float2 remquo(float2 numerator, float2 denominator, int2* quotient); | |
float3 remquo(float3 numerator, float3 denominator, int3* quotient); | |
float4 remquo(float4 numerator, float4 denominator, int4* quotient); |
numerator | Numerator. |
---|---|
denominator | Denominator. |
quotient | *quotient will be set to the integer quotient. |
Remainder, precise only for the low three bits. |
Returns the quotient and the remainder of (numerator / denominator).
Only the sign and lowest three bits of the quotient are guaranteed to be accurate.
This function is useful for implementing periodic functions. The low three bits of the
quotient gives the quadrant and the remainder the distance within the quadrant.
For example, an implementation of sin(x) could call remquo(x, PI / 2.f, &quadrant)
to reduce very large value of x to something within a limited range.
Example: remquo(-23.5f, 8.f, ")
sets the lowest three bits of quot to 3
and the sign negative. It returns 0.5f.
float rootn(float v, int n); | |
float2 rootn(float2 v, int2 n); | |
float3 rootn(float3 v, int3 n); | |
float4 rootn(float4 v, int4 n); |
Compute the Nth root of a value.
See also native_rootn().
Round to the nearest integral value.
round() rounds half values away from zero. For example, round(0.5f)
returns 1.f
and round(1.5f)
returns 2.f. Similarly, round(-0.5f)
returns -1.f
and round(-1.5f)
returns -2.f.
rint() is similar but rounds half values toward even. trunc() truncates the decimal fraction.
char rsClamp(char amount, char low, char high); | |
int rsClamp(int amount, int low, int high); | |
short rsClamp(short amount, short low, short high); | |
uchar rsClamp(uchar amount, uchar low, uchar high); | |
uint rsClamp(uint amount, uint low, uint high); | |
ushort rsClamp(ushort amount, ushort low, ushort high); |
amount | Value to clamp. |
---|---|
low | Lower bound. |
high | Upper bound. |
Deprecated. Use clamp() instead.
Clamp a value between low and high.
float rsFrac(float v); |
Deprecated. Use fract() instead.
Returns the fractional part of a float
float rsRand(float max_value); | |
float rsRand(float min_value, float max_value); | |
int rsRand(int max_value); | |
int rsRand(int min_value, int max_value); |
Return a random value between 0 (or min_value) and max_malue.
Returns (1 / sqrt(v)).
See also half_rsqrt(), native_rsqrt().
Returns the sign of a value.
if (v < 0) return -1.f; else if (v > 0) return 1.f; else return 0.f;
Returns the sine of an angle measured in radians.
See also native_sin().
float sincos(float v, float* cos); | |
float2 sincos(float2 v, float2* cos); | |
float3 sincos(float3 v, float3* cos); | |
float4 sincos(float4 v, float4* cos); |
v | Incoming value in radians. |
---|---|
cos | *cos will be set to the cosine value. |
Sine of v. |
Returns the sine and cosine of a value.
See also native_sincos().
Returns the hyperbolic sine of v, where v is measured in radians.
See also native_sinh().
Returns the sine of (v * pi), where (v * pi) is measured in radians.
To get the sine of a value measured in degrees, call sinpi(v / 180.f)
.
See also native_sinpi().
Returns the square root of a value.
See also half_sqrt(), native_sqrt().
float step(float edge, float v); | |
float2 step(float edge, float2 v); | Added in API level 21 |
float2 step(float2 edge, float v); | |
float2 step(float2 edge, float2 v); | |
float3 step(float edge, float3 v); | Added in API level 21 |
float3 step(float3 edge, float v); | |
float3 step(float3 edge, float3 v); | |
float4 step(float edge, float4 v); | Added in API level 21 |
float4 step(float4 edge, float v); | |
float4 step(float4 edge, float4 v); |
Returns 0.f if v < edge, 1.f otherwise.
This can be useful to create conditional computations without using loops and branching
instructions. For example, instead of computing (a[i] < b[i]) ? 0.f : atan2(a[i], b[i])
for the corresponding elements of a vector, you could instead use step(a, b) * atan2(a, b)
.
Returns the tangent of an angle measured in radians.
See also native_tan().
Returns the hyperbolic tangent of a value.
See also native_tanh().
Returns the tangent of (v * pi), where (v * pi) is measured in radians.
To get the tangent of a value measured in degrees, call tanpi(v / 180.f)
.
See also native_tanpi().
Returns the gamma function of a value.
See also lgamma().