/* * Copyright 2012, The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "bcc/Assert.h" #include "bcc/Renderscript/RSTransforms.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bcc/Config/Config.h" #include "bcc/Support/Log.h" #include "bcinfo/MetadataExtractor.h" #define NUM_EXPANDED_FUNCTION_PARAMS 4 using namespace bcc; namespace { static const bool gEnableRsTbaa = true; /* RSForEachExpandPass - This pass operates on functions that are able to be * called via rsForEach() or "foreach_". We create an inner loop for the * ForEach-able function to be invoked over the appropriate data cells of the * input/output allocations (adjusting other relevant parameters as we go). We * support doing this for any ForEach-able compute kernels. The new function * name is the original function name followed by ".expand". Note that we * still generate code for the original function. */ class RSForEachExpandPass : public llvm::ModulePass { public: static char ID; private: static const size_t RS_KERNEL_INPUT_LIMIT = 8; // see frameworks/base/libs/rs/cpu_ref/rsCpuCoreRuntime.h enum RsLaunchDimensionsField { RsLaunchDimensionsFieldX, RsLaunchDimensionsFieldY, RsLaunchDimensionsFieldZ, RsLaunchDimensionsFieldLod, RsLaunchDimensionsFieldFace, RsLaunchDimensionsFieldArray, RsLaunchDimensionsFieldCount }; enum RsExpandKernelDriverInfoPfxField { RsExpandKernelDriverInfoPfxFieldInPtr, RsExpandKernelDriverInfoPfxFieldInStride, RsExpandKernelDriverInfoPfxFieldInLen, RsExpandKernelDriverInfoPfxFieldOutPtr, RsExpandKernelDriverInfoPfxFieldOutStride, RsExpandKernelDriverInfoPfxFieldOutLen, RsExpandKernelDriverInfoPfxFieldDim, RsExpandKernelDriverInfoPfxFieldCurrent, RsExpandKernelDriverInfoPfxFieldUsr, RsExpandKernelDriverInfoPfxFieldUsLenr, RsExpandKernelDriverInfoPfxFieldCount }; llvm::Module *Module; llvm::LLVMContext *Context; /* * Pointer to LLVM type information for the the function signature * for expanded kernels. This must be re-calculated for each * module the pass is run on. */ llvm::FunctionType *ExpandedFunctionType; uint32_t mExportForEachCount; const char **mExportForEachNameList; const uint32_t *mExportForEachSignatureList; // Turns on optimization of allocation stride values. bool mEnableStepOpt; uint32_t getRootSignature(llvm::Function *Function) { const llvm::NamedMDNode *ExportForEachMetadata = Module->getNamedMetadata("#rs_export_foreach"); if (!ExportForEachMetadata) { llvm::SmallVector RootArgTys; for (llvm::Function::arg_iterator B = Function->arg_begin(), E = Function->arg_end(); B != E; ++B) { RootArgTys.push_back(B->getType()); } // For pre-ICS bitcode, we may not have signature information. In that // case, we use the size of the RootArgTys to select the number of // arguments. return (1 << RootArgTys.size()) - 1; } if (ExportForEachMetadata->getNumOperands() == 0) { return 0; } bccAssert(ExportForEachMetadata->getNumOperands() > 0); // We only handle the case for legacy root() functions here, so this is // hard-coded to look at only the first such function. llvm::MDNode *SigNode = ExportForEachMetadata->getOperand(0); if (SigNode != nullptr && SigNode->getNumOperands() == 1) { llvm::Metadata *SigMD = SigNode->getOperand(0); if (llvm::MDString *SigS = llvm::dyn_cast(SigMD)) { llvm::StringRef SigString = SigS->getString(); uint32_t Signature = 0; if (SigString.getAsInteger(10, Signature)) { ALOGE("Non-integer signature value '%s'", SigString.str().c_str()); return 0; } return Signature; } } return 0; } bool isStepOptSupported(llvm::Type *AllocType) { llvm::PointerType *PT = llvm::dyn_cast(AllocType); llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*Context); if (mEnableStepOpt) { return false; } if (AllocType == VoidPtrTy) { return false; } if (!PT) { return false; } // remaining conditions are 64-bit only if (VoidPtrTy->getPrimitiveSizeInBits() == 32) { return true; } // coerce suggests an upconverted struct type, which we can't support if (AllocType->getStructName().find("coerce") != llvm::StringRef::npos) { return false; } // 2xi64 and i128 suggest an upconverted struct type, which are also unsupported llvm::Type *V2xi64Ty = llvm::VectorType::get(llvm::Type::getInt64Ty(*Context), 2); llvm::Type *Int128Ty = llvm::Type::getIntNTy(*Context, 128); if (AllocType == V2xi64Ty || AllocType == Int128Ty) { return false; } return true; } // Get the actual value we should use to step through an allocation. // // Normally the value we use to step through an allocation is given to us by // the driver. However, for certain primitive data types, we can derive an // integer constant for the step value. We use this integer constant whenever // possible to allow further compiler optimizations to take place. // // DL - Target Data size/layout information. // T - Type of allocation (should be a pointer). // OrigStep - Original step increment (root.expand() input from driver). llvm::Value *getStepValue(llvm::DataLayout *DL, llvm::Type *AllocType, llvm::Value *OrigStep) { bccAssert(DL); bccAssert(AllocType); bccAssert(OrigStep); llvm::PointerType *PT = llvm::dyn_cast(AllocType); if (isStepOptSupported(AllocType)) { llvm::Type *ET = PT->getElementType(); uint64_t ETSize = DL->getTypeAllocSize(ET); llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*Context); return llvm::ConstantInt::get(Int32Ty, ETSize); } else { return OrigStep; } } /// Builds the types required by the pass for the given context. void buildTypes(void) { // Create the RsLaunchDimensionsTy and RsExpandKernelDriverInfoPfxTy structs. llvm::Type *Int8Ty = llvm::Type::getInt8Ty(*Context); llvm::Type *Int8PtrTy = Int8Ty->getPointerTo(); llvm::Type *Int8PtrArrayInputLimitTy = llvm::ArrayType::get(Int8PtrTy, RS_KERNEL_INPUT_LIMIT); llvm::Type *Int32Ty = llvm::Type::getInt32Ty(*Context); llvm::Type *Int32ArrayInputLimitTy = llvm::ArrayType::get(Int32Ty, RS_KERNEL_INPUT_LIMIT); llvm::Type *VoidPtrTy = llvm::Type::getInt8PtrTy(*Context); llvm::Type *Int32Array4Ty = llvm::ArrayType::get(Int32Ty, 4); /* Defined in frameworks/base/libs/rs/cpu_ref/rsCpuCore.h: * * struct RsLaunchDimensions { * uint32_t x; * uint32_t y; * uint32_t z; * uint32_t lod; * uint32_t face; * uint32_t array[4]; * }; */ llvm::SmallVector RsLaunchDimensionsTypes; RsLaunchDimensionsTypes.push_back(Int32Ty); // uint32_t x RsLaunchDimensionsTypes.push_back(Int32Ty); // uint32_t y RsLaunchDimensionsTypes.push_back(Int32Ty); // uint32_t z RsLaunchDimensionsTypes.push_back(Int32Ty); // uint32_t lod RsLaunchDimensionsTypes.push_back(Int32Ty); // uint32_t face RsLaunchDimensionsTypes.push_back(Int32Array4Ty); // uint32_t array[4] llvm::StructType *RsLaunchDimensionsTy = llvm::StructType::create(RsLaunchDimensionsTypes, "RsLaunchDimensions"); /* Defined as the beginning of RsExpandKernelDriverInfo in frameworks/base/libs/rs/cpu_ref/rsCpuCoreRuntime.h: * * struct RsExpandKernelDriverInfoPfx { * const uint8_t *inPtr[RS_KERNEL_INPUT_LIMIT]; * uint32_t inStride[RS_KERNEL_INPUT_LIMIT]; * uint32_t inLen; * * uint8_t *outPtr[RS_KERNEL_INPUT_LIMIT]; * uint32_t outStride[RS_KERNEL_INPUT_LIMIT]; * uint32_t outLen; * * // Dimension of the launch * RsLaunchDimensions dim; * * // The walking iterator of the launch * RsLaunchDimensions current; * * const void *usr; * uint32_t usrLen; * * // Items below this line are not used by the compiler and can be change in the driver. * // So the compiler must assume there are an unknown number of fields of unknown type * // beginning here. * }; * * The name "RsExpandKernelDriverInfoPfx" is known to RSInvariantPass (RSInvariant.cpp). */ llvm::SmallVector RsExpandKernelDriverInfoPfxTypes; RsExpandKernelDriverInfoPfxTypes.push_back(Int8PtrArrayInputLimitTy); // const uint8_t *inPtr[RS_KERNEL_INPUT_LIMIT] RsExpandKernelDriverInfoPfxTypes.push_back(Int32ArrayInputLimitTy); // uint32_t inStride[RS_KERNEL_INPUT_LIMIT] RsExpandKernelDriverInfoPfxTypes.push_back(Int32Ty); // uint32_t inLen RsExpandKernelDriverInfoPfxTypes.push_back(Int8PtrArrayInputLimitTy); // uint8_t *outPtr[RS_KERNEL_INPUT_LIMIT] RsExpandKernelDriverInfoPfxTypes.push_back(Int32ArrayInputLimitTy); // uint32_t outStride[RS_KERNEL_INPUT_LIMIT] RsExpandKernelDriverInfoPfxTypes.push_back(Int32Ty); // uint32_t outLen RsExpandKernelDriverInfoPfxTypes.push_back(RsLaunchDimensionsTy); // RsLaunchDimensions dim RsExpandKernelDriverInfoPfxTypes.push_back(RsLaunchDimensionsTy); // RsLaunchDimensions current RsExpandKernelDriverInfoPfxTypes.push_back(VoidPtrTy); // const void *usr RsExpandKernelDriverInfoPfxTypes.push_back(Int32Ty); // uint32_t usrLen llvm::StructType *RsExpandKernelDriverInfoPfxTy = llvm::StructType::create(RsExpandKernelDriverInfoPfxTypes, "RsExpandKernelDriverInfoPfx"); // Create the function type for expanded kernels. llvm::Type *RsExpandKernelDriverInfoPfxPtrTy = RsExpandKernelDriverInfoPfxTy->getPointerTo(); llvm::SmallVector ParamTypes; ParamTypes.push_back(RsExpandKernelDriverInfoPfxPtrTy); // const RsExpandKernelDriverInfoPfx *p ParamTypes.push_back(Int32Ty); // uint32_t x1 ParamTypes.push_back(Int32Ty); // uint32_t x2 ParamTypes.push_back(Int32Ty); // uint32_t outstep ExpandedFunctionType = llvm::FunctionType::get(llvm::Type::getVoidTy(*Context), ParamTypes, false); } /// @brief Create skeleton of the expanded function. /// /// This creates a function with the following signature: /// /// void (const RsForEachStubParamStruct *p, uint32_t x1, uint32_t x2, /// uint32_t outstep) /// llvm::Function *createEmptyExpandedFunction(llvm::StringRef OldName) { llvm::Function *ExpandedFunction = llvm::Function::Create(ExpandedFunctionType, llvm::GlobalValue::ExternalLinkage, OldName + ".expand", Module); bccAssert(ExpandedFunction->arg_size() == NUM_EXPANDED_FUNCTION_PARAMS); llvm::Function::arg_iterator AI = ExpandedFunction->arg_begin(); (AI++)->setName("p"); (AI++)->setName("x1"); (AI++)->setName("x2"); (AI++)->setName("arg_outstep"); llvm::BasicBlock *Begin = llvm::BasicBlock::Create(*Context, "Begin", ExpandedFunction); llvm::IRBuilder<> Builder(Begin); Builder.CreateRetVoid(); return ExpandedFunction; } /// @brief Create an empty loop /// /// Create a loop of the form: /// /// for (i = LowerBound; i < UpperBound; i++) /// ; /// /// After the loop has been created, the builder is set such that /// instructions can be added to the loop body. /// /// @param Builder The builder to use to build this loop. The current /// position of the builder is the position the loop /// will be inserted. /// @param LowerBound The first value of the loop iterator /// @param UpperBound The maximal value of the loop iterator /// @param LoopIV A reference that will be set to the loop iterator. /// @return The BasicBlock that will be executed after the loop. llvm::BasicBlock *createLoop(llvm::IRBuilder<> &Builder, llvm::Value *LowerBound, llvm::Value *UpperBound, llvm::PHINode **LoopIV) { assert(LowerBound->getType() == UpperBound->getType()); llvm::BasicBlock *CondBB, *AfterBB, *HeaderBB; llvm::Value *Cond, *IVNext; llvm::PHINode *IV; CondBB = Builder.GetInsertBlock(); AfterBB = llvm::SplitBlock(CondBB, Builder.GetInsertPoint(), nullptr, nullptr); HeaderBB = llvm::BasicBlock::Create(*Context, "Loop", CondBB->getParent()); // if (LowerBound < Upperbound) // goto LoopHeader // else // goto AfterBB CondBB->getTerminator()->eraseFromParent(); Builder.SetInsertPoint(CondBB); Cond = Builder.CreateICmpULT(LowerBound, UpperBound); Builder.CreateCondBr(Cond, HeaderBB, AfterBB); // iv = PHI [CondBB -> LowerBound], [LoopHeader -> NextIV ] // iv.next = iv + 1 // if (iv.next < Upperbound) // goto LoopHeader // else // goto AfterBB Builder.SetInsertPoint(HeaderBB); IV = Builder.CreatePHI(LowerBound->getType(), 2, "X"); IV->addIncoming(LowerBound, CondBB); IVNext = Builder.CreateNUWAdd(IV, Builder.getInt32(1)); IV->addIncoming(IVNext, HeaderBB); Cond = Builder.CreateICmpULT(IVNext, UpperBound); Builder.CreateCondBr(Cond, HeaderBB, AfterBB); AfterBB->setName("Exit"); Builder.SetInsertPoint(HeaderBB->getFirstNonPHI()); *LoopIV = IV; return AfterBB; } // Finish building the outgoing argument list for calling a ForEach-able function. // // ArgVector - on input, the non-special arguments // on output, the non-special arguments combined with the special arguments // from SpecialArgVector // SpecialArgVector - special arguments (from ExpandSpecialArguments()) // SpecialArgContextIdx - return value of ExpandSpecialArguments() // (position of context argument in SpecialArgVector) // CalleeFunction - the ForEach-able function being called // Builder - for inserting code into the caller function template void finishArgList( llvm::SmallVector &ArgVector, const llvm::SmallVector &SpecialArgVector, const int SpecialArgContextIdx, const llvm::Function &CalleeFunction, llvm::IRBuilder<> &CallerBuilder) { /* The context argument (if any) is a pointer to an opaque user-visible type that differs from * the RsExpandKernelDriverInfoPfx type used in the function we are generating (although the * two types represent the same thing). Therefore, we must introduce a pointer cast when * generating a call to the kernel function. */ const int ArgContextIdx = SpecialArgContextIdx >= 0 ? (ArgVector.size() + SpecialArgContextIdx) : SpecialArgContextIdx; ArgVector.append(SpecialArgVector.begin(), SpecialArgVector.end()); if (ArgContextIdx >= 0) { llvm::Type *ContextArgType = nullptr; int ArgIdx = ArgContextIdx; for (const auto &Arg : CalleeFunction.getArgumentList()) { if (!ArgIdx--) { ContextArgType = Arg.getType(); break; } } bccAssert(ContextArgType); ArgVector[ArgContextIdx] = CallerBuilder.CreatePointerCast(ArgVector[ArgContextIdx], ContextArgType); } } public: RSForEachExpandPass(bool pEnableStepOpt = true) : ModulePass(ID), Module(nullptr), Context(nullptr), mEnableStepOpt(pEnableStepOpt) { } virtual void getAnalysisUsage(llvm::AnalysisUsage &AU) const override { // This pass does not use any other analysis passes, but it does // add/wrap the existing functions in the module (thus altering the CFG). } // Build contribution to outgoing argument list for calling a // ForEach-able function, based on the special parameters of that // function. // // Signature - metadata bits for the signature of the ForEach-able function // X, Arg_p - values derived directly from expanded function, // suitable for computing arguments for the ForEach-able function // CalleeArgs - contribution is accumulated here // Bump - invoked once for each contributed outgoing argument // // Return value is the (zero-based) position of the context (Arg_p) // argument in the CalleeArgs vector, or a negative value if the // context argument is not placed in the CalleeArgs vector. int ExpandSpecialArguments(uint32_t Signature, llvm::Value *X, llvm::Value *Arg_p, llvm::IRBuilder<> &Builder, llvm::SmallVector &CalleeArgs, std::function Bump) { bccAssert(CalleeArgs.empty()); int Return = -1; if (bcinfo::MetadataExtractor::hasForEachSignatureCtxt(Signature)) { CalleeArgs.push_back(Arg_p); Bump(); Return = CalleeArgs.size() - 1; } if (bcinfo::MetadataExtractor::hasForEachSignatureX(Signature)) { CalleeArgs.push_back(X); Bump(); } if (bcinfo::MetadataExtractor::hasForEachSignatureY(Signature) || bcinfo::MetadataExtractor::hasForEachSignatureZ(Signature)) { llvm::Value *Current = Builder.CreateStructGEP(nullptr, Arg_p, RsExpandKernelDriverInfoPfxFieldCurrent); if (bcinfo::MetadataExtractor::hasForEachSignatureY(Signature)) { llvm::Value *Y = Builder.CreateLoad( Builder.CreateStructGEP(nullptr, Current, RsLaunchDimensionsFieldY), "Y"); CalleeArgs.push_back(Y); Bump(); } if (bcinfo::MetadataExtractor::hasForEachSignatureZ(Signature)) { llvm::Value *Z = Builder.CreateLoad( Builder.CreateStructGEP(nullptr, Current, RsLaunchDimensionsFieldZ), "Z"); CalleeArgs.push_back(Z); Bump(); } } return Return; } /* Performs the actual optimization on a selected function. On success, the * Module will contain a new function of the name ".expand" that * invokes () in a loop with the appropriate parameters. */ bool ExpandFunction(llvm::Function *Function, uint32_t Signature) { ALOGV("Expanding ForEach-able Function %s", Function->getName().str().c_str()); if (!Signature) { Signature = getRootSignature(Function); if (!Signature) { // We couldn't determine how to expand this function based on its // function signature. return false; } } llvm::DataLayout DL(Module); llvm::Function *ExpandedFunction = createEmptyExpandedFunction(Function->getName()); /* * Extract the expanded function's parameters. It is guaranteed by * createEmptyExpandedFunction that there will be five parameters. */ bccAssert(ExpandedFunction->arg_size() == NUM_EXPANDED_FUNCTION_PARAMS); llvm::Function::arg_iterator ExpandedFunctionArgIter = ExpandedFunction->arg_begin(); llvm::Value *Arg_p = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_x1 = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_x2 = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_outstep = &*(ExpandedFunctionArgIter); llvm::Value *InStep = nullptr; llvm::Value *OutStep = nullptr; // Construct the actual function body. llvm::IRBuilder<> Builder(ExpandedFunction->getEntryBlock().begin()); // Collect and construct the arguments for the kernel(). // Note that we load any loop-invariant arguments before entering the Loop. llvm::Function::arg_iterator FunctionArgIter = Function->arg_begin(); llvm::Type *InTy = nullptr; llvm::Value *InBasePtr = nullptr; if (bcinfo::MetadataExtractor::hasForEachSignatureIn(Signature)) { llvm::Value *InsBasePtr = Builder.CreateStructGEP(nullptr, Arg_p, RsExpandKernelDriverInfoPfxFieldInPtr, "inputs_base"); llvm::Value *InStepsBase = Builder.CreateStructGEP(nullptr, Arg_p, RsExpandKernelDriverInfoPfxFieldInStride, "insteps_base"); llvm::Value *InStepAddr = Builder.CreateConstInBoundsGEP2_32(nullptr, InStepsBase, 0, 0); llvm::LoadInst *InStepArg = Builder.CreateLoad(InStepAddr, "instep_addr"); InTy = (FunctionArgIter++)->getType(); InStep = getStepValue(&DL, InTy, InStepArg); InStep->setName("instep"); llvm::Value *InputAddr = Builder.CreateConstInBoundsGEP2_32(nullptr, InsBasePtr, 0, 0); InBasePtr = Builder.CreateLoad(InputAddr, "input_base"); } llvm::Type *OutTy = nullptr; llvm::Value *OutBasePtr = nullptr; if (bcinfo::MetadataExtractor::hasForEachSignatureOut(Signature)) { OutTy = (FunctionArgIter++)->getType(); OutStep = getStepValue(&DL, OutTy, Arg_outstep); OutStep->setName("outstep"); OutBasePtr = Builder.CreateLoad( Builder.CreateConstInBoundsGEP2_32(nullptr, Builder.CreateStructGEP(nullptr, Arg_p, RsExpandKernelDriverInfoPfxFieldOutPtr), 0, 0)); } llvm::Value *UsrData = nullptr; if (bcinfo::MetadataExtractor::hasForEachSignatureUsrData(Signature)) { llvm::Type *UsrDataTy = (FunctionArgIter++)->getType(); UsrData = Builder.CreatePointerCast(Builder.CreateLoad( Builder.CreateStructGEP(nullptr, Arg_p, RsExpandKernelDriverInfoPfxFieldUsr)), UsrDataTy); UsrData->setName("UsrData"); } llvm::PHINode *IV; createLoop(Builder, Arg_x1, Arg_x2, &IV); llvm::SmallVector CalleeArgs; const int CalleeArgsContextIdx = ExpandSpecialArguments(Signature, IV, Arg_p, Builder, CalleeArgs, [&FunctionArgIter]() { FunctionArgIter++; }); bccAssert(FunctionArgIter == Function->arg_end()); // Populate the actual call to kernel(). llvm::SmallVector RootArgs; llvm::Value *InPtr = nullptr; llvm::Value *OutPtr = nullptr; // Calculate the current input and output pointers // // We always calculate the input/output pointers with a GEP operating on i8 // values and only cast at the very end to OutTy. This is because the step // between two values is given in bytes. // // TODO: We could further optimize the output by using a GEP operation of // type 'OutTy' in cases where the element type of the allocation allows. if (OutBasePtr) { llvm::Value *OutOffset = Builder.CreateSub(IV, Arg_x1); OutOffset = Builder.CreateMul(OutOffset, OutStep); OutPtr = Builder.CreateGEP(OutBasePtr, OutOffset); OutPtr = Builder.CreatePointerCast(OutPtr, OutTy); } if (InBasePtr) { llvm::Value *InOffset = Builder.CreateSub(IV, Arg_x1); InOffset = Builder.CreateMul(InOffset, InStep); InPtr = Builder.CreateGEP(InBasePtr, InOffset); InPtr = Builder.CreatePointerCast(InPtr, InTy); } if (InPtr) { RootArgs.push_back(InPtr); } if (OutPtr) { RootArgs.push_back(OutPtr); } if (UsrData) { RootArgs.push_back(UsrData); } finishArgList(RootArgs, CalleeArgs, CalleeArgsContextIdx, *Function, Builder); Builder.CreateCall(Function, RootArgs); return true; } /* Expand a pass-by-value kernel. */ bool ExpandKernel(llvm::Function *Function, uint32_t Signature) { bccAssert(bcinfo::MetadataExtractor::hasForEachSignatureKernel(Signature)); ALOGV("Expanding kernel Function %s", Function->getName().str().c_str()); // TODO: Refactor this to share functionality with ExpandFunction. llvm::DataLayout DL(Module); llvm::Function *ExpandedFunction = createEmptyExpandedFunction(Function->getName()); /* * Extract the expanded function's parameters. It is guaranteed by * createEmptyExpandedFunction that there will be five parameters. */ bccAssert(ExpandedFunction->arg_size() == NUM_EXPANDED_FUNCTION_PARAMS); llvm::Function::arg_iterator ExpandedFunctionArgIter = ExpandedFunction->arg_begin(); llvm::Value *Arg_p = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_x1 = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_x2 = &*(ExpandedFunctionArgIter++); llvm::Value *Arg_outstep = &*(ExpandedFunctionArgIter); // Construct the actual function body. llvm::IRBuilder<> Builder(ExpandedFunction->getEntryBlock().begin()); // Create TBAA meta-data. llvm::MDNode *TBAARenderScriptDistinct, *TBAARenderScript, *TBAAAllocation, *TBAAPointer; llvm::MDBuilder MDHelper(*Context); TBAARenderScriptDistinct = MDHelper.createTBAARoot("RenderScript Distinct TBAA"); TBAARenderScript = MDHelper.createTBAANode("RenderScript TBAA", TBAARenderScriptDistinct); TBAAAllocation = MDHelper.createTBAAScalarTypeNode("allocation", TBAARenderScript); TBAAAllocation = MDHelper.createTBAAStructTagNode(TBAAAllocation, TBAAAllocation, 0); TBAAPointer = MDHelper.createTBAAScalarTypeNode("pointer", TBAARenderScript); TBAAPointer = MDHelper.createTBAAStructTagNode(TBAAPointer, TBAAPointer, 0); llvm::MDNode *AliasingDomain, *AliasingScope; AliasingDomain = MDHelper.createAnonymousAliasScopeDomain("RS argument scope domain"); AliasingScope = MDHelper.createAnonymousAliasScope(AliasingDomain, "RS argument scope"); /* * Collect and construct the arguments for the kernel(). * * Note that we load any loop-invariant arguments before entering the Loop. */ size_t NumInputs = Function->arg_size(); // No usrData parameter on kernels. bccAssert( !bcinfo::MetadataExtractor::hasForEachSignatureUsrData(Signature)); llvm::Function::arg_iterator ArgIter = Function->arg_begin(); // Check the return type llvm::Type *OutTy = nullptr; llvm::Value *OutStep = nullptr; llvm::LoadInst *OutBasePtr = nullptr; llvm::Value *CastedOutBasePtr = nullptr; bool PassOutByPointer = false; if (bcinfo::MetadataExtractor::hasForEachSignatureOut(Signature)) { llvm::Type *OutBaseTy = Function->getReturnType(); if (OutBaseTy->isVoidTy()) { PassOutByPointer = true; OutTy = ArgIter->getType(); ArgIter++; --NumInputs; } else { // We don't increment Args, since we are using the actual return type. OutTy = OutBaseTy->getPointerTo(); } OutStep = getStepValue(&DL, OutTy, Arg_outstep); OutStep->setName("outstep"); OutBasePtr = Builder.CreateLoad( Builder.CreateConstInBoundsGEP2_32(nullptr, Builder.CreateStructGEP(nullptr, Arg_p, RsExpandKernelDriverInfoPfxFieldOutPtr), 0, 0)); if (gEnableRsTbaa) { OutBasePtr->setMetadata("tbaa", TBAAPointer); } OutBasePtr->setMetadata("alias.scope", AliasingScope); CastedOutBasePtr = Builder.CreatePointerCast(OutBasePtr, OutTy, "casted_out"); } llvm::PHINode *IV; createLoop(Builder, Arg_x1, Arg_x2, &IV); llvm::SmallVector CalleeArgs; const int CalleeArgsContextIdx = ExpandSpecialArguments(Signature, IV, Arg_p, Builder, CalleeArgs, [&NumInputs]() { --NumInputs; }); llvm::SmallVector InTypes; llvm::SmallVector InSteps; llvm::SmallVector InBasePtrs; llvm::SmallVector InStructTempSlots; bccAssert(NumInputs <= RS_KERNEL_INPUT_LIMIT); if (NumInputs > 0) { llvm::Value *InsBasePtr = Builder.CreateStructGEP(nullptr, Arg_p, RsExpandKernelDriverInfoPfxFieldInPtr, "inputs_base"); llvm::Value *InStepsBase = Builder.CreateStructGEP(nullptr, Arg_p, RsExpandKernelDriverInfoPfxFieldInStride, "insteps_base"); llvm::Instruction *AllocaInsertionPoint = &*ExpandedFunction->getEntryBlock().begin(); for (size_t InputIndex = 0; InputIndex < NumInputs; ++InputIndex, ArgIter++) { llvm::Value *InStepAddr = Builder.CreateConstInBoundsGEP2_32(nullptr, InStepsBase, 0, InputIndex); llvm::LoadInst *InStepArg = Builder.CreateLoad(InStepAddr, "instep_addr"); llvm::Type *InType = ArgIter->getType(); /* * AArch64 calling conventions dictate that structs of sufficient size * get passed by pointer instead of passed by value. This, combined * with the fact that we don't allow kernels to operate on pointer * data means that if we see a kernel with a pointer parameter we know * that it is struct input that has been promoted. As such we don't * need to convert its type to a pointer. Later we will need to know * to create a temporary copy on the stack, so we save this information * in InStructTempSlots. */ if (auto PtrType = llvm::dyn_cast(InType)) { llvm::Type *ElementType = PtrType->getElementType(); uint64_t Alignment = DL.getABITypeAlignment(ElementType); llvm::Value *Slot = new llvm::AllocaInst(ElementType, nullptr, Alignment, "input_struct_slot", AllocaInsertionPoint); InStructTempSlots.push_back(Slot); } else { InType = InType->getPointerTo(); InStructTempSlots.push_back(nullptr); } llvm::Value *InStep = getStepValue(&DL, InType, InStepArg); InStep->setName("instep"); llvm::Value *InputAddr = Builder.CreateConstInBoundsGEP2_32(nullptr, InsBasePtr, 0, InputIndex); llvm::LoadInst *InBasePtr = Builder.CreateLoad(InputAddr, "input_base"); llvm::Value *CastInBasePtr = Builder.CreatePointerCast(InBasePtr, InType, "casted_in"); if (gEnableRsTbaa) { InBasePtr->setMetadata("tbaa", TBAAPointer); } InBasePtr->setMetadata("alias.scope", AliasingScope); InTypes.push_back(InType); InSteps.push_back(InStep); InBasePtrs.push_back(CastInBasePtr); } } // Populate the actual call to kernel(). llvm::SmallVector RootArgs; // Calculate the current input and output pointers // // // We always calculate the input/output pointers with a GEP operating on i8 // values combined with a multiplication and only cast at the very end to // OutTy. This is to account for dynamic stepping sizes when the value // isn't apparent at compile time. In the (very common) case when we know // the step size at compile time, due to haveing complete type information // this multiplication will optmized out and produces code equivalent to a // a GEP on a pointer of the correct type. // Output llvm::Value *OutPtr = nullptr; if (CastedOutBasePtr) { llvm::Value *OutOffset = Builder.CreateSub(IV, Arg_x1); OutPtr = Builder.CreateGEP(CastedOutBasePtr, OutOffset); if (PassOutByPointer) { RootArgs.push_back(OutPtr); } } // Inputs if (NumInputs > 0) { llvm::Value *Offset = Builder.CreateSub(IV, Arg_x1); for (size_t Index = 0; Index < NumInputs; ++Index) { llvm::Value *InPtr = Builder.CreateGEP(InBasePtrs[Index], Offset); llvm::Value *Input; if (llvm::Value *TemporarySlot = InStructTempSlots[Index]) { // Pass a pointer to a temporary on the stack, rather than // passing a pointer to the original value. We do not want // the kernel to potentially modify the input data. llvm::Type *ElementType = llvm::cast( InPtr->getType())->getElementType(); uint64_t StoreSize = DL.getTypeStoreSize(ElementType); uint64_t Alignment = DL.getABITypeAlignment(ElementType); Builder.CreateMemCpy(TemporarySlot, InPtr, StoreSize, Alignment, /* isVolatile = */ false, /* !tbaa = */ gEnableRsTbaa ? TBAAAllocation : nullptr, /* !tbaa.struct = */ nullptr, /* !alias.scope = */ AliasingScope); Input = TemporarySlot; } else { llvm::LoadInst *InputLoad = Builder.CreateLoad(InPtr, "input"); if (gEnableRsTbaa) { InputLoad->setMetadata("tbaa", TBAAAllocation); } InputLoad->setMetadata("alias.scope", AliasingScope); Input = InputLoad; } RootArgs.push_back(Input); } } finishArgList(RootArgs, CalleeArgs, CalleeArgsContextIdx, *Function, Builder); llvm::Value *RetVal = Builder.CreateCall(Function, RootArgs); if (OutPtr && !PassOutByPointer) { llvm::StoreInst *Store = Builder.CreateStore(RetVal, OutPtr); if (gEnableRsTbaa) { Store->setMetadata("tbaa", TBAAAllocation); } Store->setMetadata("alias.scope", AliasingScope); } return true; } /// @brief Checks if pointers to allocation internals are exposed /// /// This function verifies if through the parameters passed to the kernel /// or through calls to the runtime library the script gains access to /// pointers pointing to data within a RenderScript Allocation. /// If we know we control all loads from and stores to data within /// RenderScript allocations and if we know the run-time internal accesses /// are all annotated with RenderScript TBAA metadata, only then we /// can safely use TBAA to distinguish between generic and from-allocation /// pointers. bool allocPointersExposed(llvm::Module &Module) { // Old style kernel function can expose pointers to elements within // allocations. // TODO: Extend analysis to allow simple cases of old-style kernels. for (size_t i = 0; i < mExportForEachCount; ++i) { const char *Name = mExportForEachNameList[i]; uint32_t Signature = mExportForEachSignatureList[i]; if (Module.getFunction(Name) && !bcinfo::MetadataExtractor::hasForEachSignatureKernel(Signature)) { return true; } } // Check for library functions that expose a pointer to an Allocation or // that are not yet annotated with RenderScript-specific tbaa information. static std::vector Funcs; // rsGetElementAt(...) Funcs.push_back("_Z14rsGetElementAt13rs_allocationj"); Funcs.push_back("_Z14rsGetElementAt13rs_allocationjj"); Funcs.push_back("_Z14rsGetElementAt13rs_allocationjjj"); // rsSetElementAt() Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvj"); Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvjj"); Funcs.push_back("_Z14rsSetElementAt13rs_allocationPvjjj"); // rsGetElementAtYuv_uchar_Y() Funcs.push_back("_Z25rsGetElementAtYuv_uchar_Y13rs_allocationjj"); // rsGetElementAtYuv_uchar_U() Funcs.push_back("_Z25rsGetElementAtYuv_uchar_U13rs_allocationjj"); // rsGetElementAtYuv_uchar_V() Funcs.push_back("_Z25rsGetElementAtYuv_uchar_V13rs_allocationjj"); for (std::vector::iterator FI = Funcs.begin(), FE = Funcs.end(); FI != FE; ++FI) { llvm::Function *Function = Module.getFunction(*FI); if (!Function) { ALOGE("Missing run-time function '%s'", FI->c_str()); return true; } if (Function->getNumUses() > 0) { return true; } } return false; } /// @brief Connect RenderScript TBAA metadata to C/C++ metadata /// /// The TBAA metadata used to annotate loads/stores from RenderScript /// Allocations is generated in a separate TBAA tree with a /// "RenderScript Distinct TBAA" root node. LLVM does assume may-alias for /// all nodes in unrelated alias analysis trees. This function makes the /// "RenderScript TBAA" node (which is parented by the Distinct TBAA root), /// a subtree of the normal C/C++ TBAA tree aside of normal C/C++ types. With /// the connected trees every access to an Allocation is resolved to /// must-alias if compared to a normal C/C++ access. void connectRenderScriptTBAAMetadata(llvm::Module &Module) { llvm::MDBuilder MDHelper(*Context); llvm::MDNode *TBAARenderScriptDistinct = MDHelper.createTBAARoot("RenderScript Distinct TBAA"); llvm::MDNode *TBAARenderScript = MDHelper.createTBAANode( "RenderScript TBAA", TBAARenderScriptDistinct); llvm::MDNode *TBAARoot = MDHelper.createTBAARoot("Simple C/C++ TBAA"); TBAARenderScript->replaceOperandWith(1, TBAARoot); } virtual bool runOnModule(llvm::Module &Module) { bool Changed = false; this->Module = &Module; this->Context = &Module.getContext(); this->buildTypes(); bcinfo::MetadataExtractor me(&Module); if (!me.extract()) { ALOGE("Could not extract metadata from module!"); return false; } mExportForEachCount = me.getExportForEachSignatureCount(); mExportForEachNameList = me.getExportForEachNameList(); mExportForEachSignatureList = me.getExportForEachSignatureList(); bool AllocsExposed = allocPointersExposed(Module); for (size_t i = 0; i < mExportForEachCount; ++i) { const char *name = mExportForEachNameList[i]; uint32_t signature = mExportForEachSignatureList[i]; llvm::Function *kernel = Module.getFunction(name); if (kernel) { if (bcinfo::MetadataExtractor::hasForEachSignatureKernel(signature)) { Changed |= ExpandKernel(kernel, signature); kernel->setLinkage(llvm::GlobalValue::InternalLinkage); } else if (kernel->getReturnType()->isVoidTy()) { Changed |= ExpandFunction(kernel, signature); kernel->setLinkage(llvm::GlobalValue::InternalLinkage); } else { // There are some graphics root functions that are not // expanded, but that will be called directly. For those // functions, we can not set the linkage to internal. } } } if (gEnableRsTbaa && !AllocsExposed) { connectRenderScriptTBAAMetadata(Module); } return Changed; } virtual const char *getPassName() const { return "ForEach-able Function Expansion"; } }; // end RSForEachExpandPass } // end anonymous namespace char RSForEachExpandPass::ID = 0; static llvm::RegisterPass X("foreachexp", "ForEach Expand Pass"); namespace bcc { llvm::ModulePass * createRSForEachExpandPass(bool pEnableStepOpt){ return new RSForEachExpandPass(pEnableStepOpt); } } // end namespace bcc