/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #ifdef HAVE_ANDROID_OS #include #else #include #endif #define XATTR_SELINUX_SUFFIX "selinux" #define XATTR_CAPS_SUFFIX "capability" #include "ext4_utils.h" #include "make_ext4fs.h" #include "allocate.h" #include "contents.h" #include "extent.h" #include "indirect.h" #ifdef USE_MINGW #define S_IFLNK 0 /* used by make_link, not needed under mingw */ #endif static struct block_allocation* saved_allocation_head = NULL; struct block_allocation* get_saved_allocation_chain() { return saved_allocation_head; } static u32 dentry_size(u32 entries, struct dentry *dentries) { u32 len = 24; unsigned int i; unsigned int dentry_len; for (i = 0; i < entries; i++) { dentry_len = 8 + EXT4_ALIGN(strlen(dentries[i].filename), 4); if (len % info.block_size + dentry_len > info.block_size) len += info.block_size - (len % info.block_size); len += dentry_len; } return len; } static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset, struct ext4_dir_entry_2 *prev, u32 inode, const char *name, u8 file_type) { u8 name_len = strlen(name); u16 rec_len = 8 + EXT4_ALIGN(name_len, 4); struct ext4_dir_entry_2 *dentry; u32 start_block = *offset / info.block_size; u32 end_block = (*offset + rec_len - 1) / info.block_size; if (start_block != end_block) { /* Adding this dentry will cross a block boundary, so pad the previous dentry to the block boundary */ if (!prev) critical_error("no prev"); prev->rec_len += end_block * info.block_size - *offset; *offset = end_block * info.block_size; } dentry = (struct ext4_dir_entry_2 *)(data + *offset); dentry->inode = inode; dentry->rec_len = rec_len; dentry->name_len = name_len; dentry->file_type = file_type; memcpy(dentry->name, name, name_len); *offset += rec_len; return dentry; } /* Creates a directory structure for an array of directory entries, dentries, and stores the location of the structure in an inode. The new inode's .. link is set to dir_inode_num. Stores the location of the inode number of each directory entry into dentries[i].inode, to be filled in later when the inode for the entry is allocated. Returns the inode number of the new directory */ u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries, u32 dirs) { struct ext4_inode *inode; u32 blocks; u32 len; u32 offset = 0; u32 inode_num; u8 *data; unsigned int i; struct ext4_dir_entry_2 *dentry; blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size); len = blocks * info.block_size; if (dir_inode_num) { inode_num = allocate_inode(info); } else { dir_inode_num = EXT4_ROOT_INO; inode_num = EXT4_ROOT_INO; } if (inode_num == EXT4_ALLOCATE_FAILED) { error("failed to allocate inode\n"); return EXT4_ALLOCATE_FAILED; } add_directory(inode_num); inode = get_inode(inode_num); if (inode == NULL) { error("failed to get inode %u", inode_num); return EXT4_ALLOCATE_FAILED; } data = inode_allocate_data_extents(inode, len, len); if (data == NULL) { error("failed to allocate %u extents", len); return EXT4_ALLOCATE_FAILED; } inode->i_mode = S_IFDIR; inode->i_links_count = dirs + 2; inode->i_flags |= aux_info.default_i_flags; dentry = NULL; dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR); if (!dentry) { error("failed to add . directory"); return EXT4_ALLOCATE_FAILED; } dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR); if (!dentry) { error("failed to add .. directory"); return EXT4_ALLOCATE_FAILED; } for (i = 0; i < entries; i++) { dentry = add_dentry(data, &offset, dentry, 0, dentries[i].filename, dentries[i].file_type); if (offset > len || (offset == len && i != entries - 1)) critical_error("internal error: dentry for %s ends at %d, past %d\n", dentries[i].filename, offset, len); dentries[i].inode = &dentry->inode; if (!dentry) { error("failed to add directory"); return EXT4_ALLOCATE_FAILED; } } /* pad the last dentry out to the end of the block */ dentry->rec_len += len - offset; return inode_num; } /* Creates a file on disk. Returns the inode number of the new file */ u32 make_file(const char *filename, u64 len) { struct ext4_inode *inode; u32 inode_num; inode_num = allocate_inode(info); if (inode_num == EXT4_ALLOCATE_FAILED) { error("failed to allocate inode\n"); return EXT4_ALLOCATE_FAILED; } inode = get_inode(inode_num); if (inode == NULL) { error("failed to get inode %u", inode_num); return EXT4_ALLOCATE_FAILED; } if (len > 0) { struct block_allocation* alloc = inode_allocate_file_extents(inode, len, filename); if (alloc) { alloc->filename = strdup(filename); alloc->next = saved_allocation_head; saved_allocation_head = alloc; } } inode->i_mode = S_IFREG; inode->i_links_count = 1; inode->i_flags |= aux_info.default_i_flags; return inode_num; } /* Creates a file on disk. Returns the inode number of the new file */ u32 make_link(const char *link) { struct ext4_inode *inode; u32 inode_num; u32 len = strlen(link); inode_num = allocate_inode(info); if (inode_num == EXT4_ALLOCATE_FAILED) { error("failed to allocate inode\n"); return EXT4_ALLOCATE_FAILED; } inode = get_inode(inode_num); if (inode == NULL) { error("failed to get inode %u", inode_num); return EXT4_ALLOCATE_FAILED; } inode->i_mode = S_IFLNK; inode->i_links_count = 1; inode->i_flags |= aux_info.default_i_flags; inode->i_size_lo = len; if (len + 1 <= sizeof(inode->i_block)) { /* Fast symlink */ memcpy((char*)inode->i_block, link, len); } else { u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size); memcpy(data, link, len); inode->i_blocks_lo = info.block_size / 512; } return inode_num; } int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime) { struct ext4_inode *inode = get_inode(inode_num); if (!inode) return -1; inode->i_mode |= mode; inode->i_uid = uid; inode->i_gid = gid; inode->i_mtime = mtime; inode->i_atime = mtime; inode->i_ctime = mtime; return 0; } /* * Returns the amount of free space available in the specified * xattr region */ static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end) { end -= sizeof(uint32_t); /* Required four null bytes */ while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) { end -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size)); entry = EXT4_XATTR_NEXT(entry); } if (((char *) entry) > end) { error("unexpected read beyond end of xattr space"); return 0; } return end - ((char *) entry); } /* * Returns a pointer to the free space immediately after the * last xattr element */ static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry) { for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { // skip entry } return entry; } /* * assert that the elements in the ext4 xattr section are in sorted order * * The ext4 filesystem requires extended attributes to be sorted when * they're not stored in the inode. The kernel ext4 code uses the following * sorting algorithm: * * 1) First sort extended attributes by their name_index. For example, * EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6). * 2) If the name_indexes are equal, then sorting is based on the length * of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before * XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability" * 3) If the name_index and name_length are equal, then memcmp() is used to determine * which name comes first. For example, "selinux" would come before "yelinux". * * This method is intended to implement the sorting function defined in * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry(). */ static void xattr_assert_sane(struct ext4_xattr_entry *entry) { for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry); if (IS_LAST_ENTRY(next)) { return; } int cmp = next->e_name_index - entry->e_name_index; if (cmp == 0) cmp = next->e_name_len - entry->e_name_len; if (cmp == 0) cmp = memcmp(next->e_name, entry->e_name, next->e_name_len); if (cmp < 0) { error("BUG: extended attributes are not sorted\n"); return; } if (cmp == 0) { error("BUG: duplicate extended attributes detected\n"); return; } } } #define NAME_HASH_SHIFT 5 #define VALUE_HASH_SHIFT 16 static void ext4_xattr_hash_entry(struct ext4_xattr_header *header, struct ext4_xattr_entry *entry) { u32 hash = 0; char *name = entry->e_name; int n; for (n = 0; n < entry->e_name_len; n++) { hash = (hash << NAME_HASH_SHIFT) ^ (hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^ *name++; } if (entry->e_value_block == 0 && entry->e_value_size != 0) { u32 *value = (u32 *)((char *)header + le16_to_cpu(entry->e_value_offs)); for (n = (le32_to_cpu(entry->e_value_size) + EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) { hash = (hash << VALUE_HASH_SHIFT) ^ (hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^ le32_to_cpu(*value++); } } entry->e_hash = cpu_to_le32(hash); } #undef NAME_HASH_SHIFT #undef VALUE_HASH_SHIFT static struct ext4_xattr_entry* xattr_addto_range( void *block_start, void *block_end, struct ext4_xattr_entry *first, int name_index, const char *name, const void *value, size_t value_len) { size_t name_len = strlen(name); if (name_len > 255) return NULL; size_t available_size = xattr_free_space(first, block_end); size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len); if (needed_size > available_size) return NULL; struct ext4_xattr_entry *new_entry = xattr_get_last(first); memset(new_entry, 0, EXT4_XATTR_LEN(name_len)); new_entry->e_name_len = name_len; new_entry->e_name_index = name_index; memcpy(new_entry->e_name, name, name_len); new_entry->e_value_block = 0; new_entry->e_value_size = cpu_to_le32(value_len); char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len); size_t e_value_offs = val - (char *) block_start; new_entry->e_value_offs = cpu_to_le16(e_value_offs); memset(val, 0, EXT4_XATTR_SIZE(value_len)); memcpy(val, value, value_len); xattr_assert_sane(first); return new_entry; } static int xattr_addto_inode(struct ext4_inode *inode, int name_index, const char *name, const void *value, size_t value_len) { struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1); struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1); char *block_end = ((char *) inode) + info.inode_size; struct ext4_xattr_entry *result = xattr_addto_range(first, block_end, first, name_index, name, value, value_len); if (result == NULL) return -1; hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC); inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE); return 0; } static int xattr_addto_block(struct ext4_inode *inode, int name_index, const char *name, const void *value, size_t value_len) { struct ext4_xattr_header *header = get_xattr_block_for_inode(inode); if (!header) return -1; struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1); char *block_end = ((char *) header) + info.block_size; struct ext4_xattr_entry *result = xattr_addto_range(header, block_end, first, name_index, name, value, value_len); if (result == NULL) return -1; ext4_xattr_hash_entry(header, result); return 0; } static int xattr_add(u32 inode_num, int name_index, const char *name, const void *value, size_t value_len) { if (!value) return 0; struct ext4_inode *inode = get_inode(inode_num); if (!inode) return -1; int result = xattr_addto_inode(inode, name_index, name, value, value_len); if (result != 0) { result = xattr_addto_block(inode, name_index, name, value, value_len); } return result; } int inode_set_selinux(u32 inode_num, const char *secon) { if (!secon) return 0; return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY, XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1); } int inode_set_capabilities(u32 inode_num, uint64_t capabilities) { if (capabilities == 0) return 0; struct vfs_cap_data cap_data; memset(&cap_data, 0, sizeof(cap_data)); cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE; cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff); cap_data.data[0].inheritable = 0; cap_data.data[1].permitted = (uint32_t) (capabilities >> 32); cap_data.data[1].inheritable = 0; return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY, XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data)); }