/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "event_fd.h" #include #include #include #include #include #include #include #include #include #include #include "event_type.h" #include "perf_event.h" #include "utils.h" static int perf_event_open(perf_event_attr* attr, pid_t pid, int cpu, int group_fd, unsigned long flags) { return syscall(__NR_perf_event_open, attr, pid, cpu, group_fd, flags); } std::unique_ptr EventFd::OpenEventFileForProcess(const perf_event_attr& attr, pid_t pid) { return OpenEventFile(attr, pid, -1); } std::unique_ptr EventFd::OpenEventFileForCpu(const perf_event_attr& attr, int cpu) { return OpenEventFile(attr, -1, cpu); } std::unique_ptr EventFd::OpenEventFile(const perf_event_attr& attr, pid_t pid, int cpu) { perf_event_attr perf_attr = attr; std::string event_name = "unknown event"; const EventType* event_type = EventTypeFactory::FindEventTypeByConfig(perf_attr.type, perf_attr.config); if (event_type != nullptr) { event_name = event_type->name; } int perf_event_fd = perf_event_open(&perf_attr, pid, cpu, -1, 0); if (perf_event_fd == -1) { // It depends whether the perf_event_file configuration is supported by the kernel and the // machine. So fail to open the file is not an error. PLOG(DEBUG) << "open perf_event_file (event " << event_name << ", pid " << pid << ", cpu " << cpu << ") failed"; return nullptr; } if (fcntl(perf_event_fd, F_SETFD, FD_CLOEXEC) == -1) { PLOG(ERROR) << "fcntl(FD_CLOEXEC) for perf_event_file (event " << event_name << ", pid " << pid << ", cpu " << cpu << ") failed"; return nullptr; } return std::unique_ptr(new EventFd(perf_event_fd, event_name, pid, cpu)); } EventFd::~EventFd() { if (mmap_addr_ != nullptr) { munmap(mmap_addr_, mmap_len_); } close(perf_event_fd_); } std::string EventFd::Name() const { return android::base::StringPrintf("perf_event_file(event %s, pid %d, cpu %d)", event_name_.c_str(), pid_, cpu_); } uint64_t EventFd::Id() const { if (id_ == 0) { PerfCounter counter; if (ReadCounter(&counter)) { id_ = counter.id; } } return id_; } bool EventFd::EnableEvent() { int result = ioctl(perf_event_fd_, PERF_EVENT_IOC_ENABLE, 0); if (result < 0) { PLOG(ERROR) << "ioctl(enable) " << Name() << " failed"; return false; } return true; } bool EventFd::DisableEvent() { int result = ioctl(perf_event_fd_, PERF_EVENT_IOC_DISABLE, 0); if (result < 0) { PLOG(ERROR) << "ioctl(disable) " << Name() << " failed"; return false; } return true; } bool EventFd::ReadCounter(PerfCounter* counter) const { CHECK(counter != nullptr); if (!android::base::ReadFully(perf_event_fd_, counter, sizeof(*counter))) { PLOG(ERROR) << "ReadCounter from " << Name() << " failed"; return false; } return true; } bool EventFd::MmapContent(size_t mmap_pages) { CHECK(IsPowerOfTwo(mmap_pages)); size_t page_size = sysconf(_SC_PAGE_SIZE); size_t mmap_len = (mmap_pages + 1) * page_size; void* mmap_addr = mmap(nullptr, mmap_len, PROT_READ | PROT_WRITE, MAP_SHARED, perf_event_fd_, 0); if (mmap_addr == MAP_FAILED) { PLOG(ERROR) << "mmap() failed for " << Name(); return false; } mmap_addr_ = mmap_addr; mmap_len_ = mmap_len; mmap_metadata_page_ = reinterpret_cast(mmap_addr_); mmap_data_buffer_ = reinterpret_cast(mmap_addr_) + page_size; mmap_data_buffer_size_ = mmap_len_ - page_size; return true; } size_t EventFd::GetAvailableMmapData(char** pdata) { // The mmap_data_buffer is used as a ring buffer like below. The kernel continuously writes // records to the buffer, and the user continuously read records out. // _________________________________________ // buffer | can write | can read | can write | // ^ ^ // read_head write_head // // So the user can read records in [read_head, write_head), and the kernel can write records // in [write_head, read_head). The kernel is responsible for updating write_head, and the user // is responsible for updating read_head. uint64_t buf_mask = mmap_data_buffer_size_ - 1; uint64_t write_head = mmap_metadata_page_->data_head & buf_mask; uint64_t read_head = mmap_metadata_page_->data_tail & buf_mask; if (read_head == write_head) { // No available data. return 0; } // Make sure we can see the data after the fence. std::atomic_thread_fence(std::memory_order_acquire); *pdata = mmap_data_buffer_ + read_head; if (read_head < write_head) { return write_head - read_head; } else { return mmap_data_buffer_size_ - read_head; } } void EventFd::DiscardMmapData(size_t discard_size) { mmap_metadata_page_->data_tail += discard_size; } void EventFd::PreparePollForMmapData(pollfd* poll_fd) { memset(poll_fd, 0, sizeof(pollfd)); poll_fd->fd = perf_event_fd_; poll_fd->events = POLLIN; }