/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Disk.h"
#include "PublicVolume.h"
#include "PrivateVolume.h"
#include "Utils.h"
#include "VolumeBase.h"
#include "VolumeManager.h"
#include "ResponseCode.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using android::base::ReadFileToString;
using android::base::WriteStringToFile;
using android::base::StringPrintf;
namespace android {
namespace vold {
static const char* kSgdiskPath = "/system/bin/sgdisk";
static const char* kSgdiskToken = " \t\n";
static const char* kSysfsMmcMaxMinors = "/sys/module/mmcblk/parameters/perdev_minors";
static const unsigned int kMajorBlockScsiA = 8;
static const unsigned int kMajorBlockScsiB = 65;
static const unsigned int kMajorBlockScsiC = 66;
static const unsigned int kMajorBlockScsiD = 67;
static const unsigned int kMajorBlockScsiE = 68;
static const unsigned int kMajorBlockScsiF = 69;
static const unsigned int kMajorBlockScsiG = 70;
static const unsigned int kMajorBlockScsiH = 71;
static const unsigned int kMajorBlockScsiI = 128;
static const unsigned int kMajorBlockScsiJ = 129;
static const unsigned int kMajorBlockScsiK = 130;
static const unsigned int kMajorBlockScsiL = 131;
static const unsigned int kMajorBlockScsiM = 132;
static const unsigned int kMajorBlockScsiN = 133;
static const unsigned int kMajorBlockScsiO = 134;
static const unsigned int kMajorBlockScsiP = 135;
static const unsigned int kMajorBlockMmc = 179;
static const char* kGptBasicData = "EBD0A0A2-B9E5-4433-87C0-68B6B72699C7";
static const char* kGptAndroidMeta = "19A710A2-B3CA-11E4-B026-10604B889DCF";
static const char* kGptAndroidExpand = "193D1EA4-B3CA-11E4-B075-10604B889DCF";
enum class Table {
kUnknown,
kMbr,
kGpt,
};
Disk::Disk(const std::string& eventPath, dev_t device,
const std::string& nickname, int flags) :
mDevice(device), mSize(-1), mNickname(nickname), mFlags(flags), mCreated(
false), mJustPartitioned(false) {
mId = StringPrintf("disk:%u,%u", major(device), minor(device));
mEventPath = eventPath;
mSysPath = StringPrintf("/sys/%s", eventPath.c_str());
mDevPath = StringPrintf("/dev/block/vold/%s", mId.c_str());
CreateDeviceNode(mDevPath, mDevice);
}
Disk::~Disk() {
CHECK(!mCreated);
DestroyDeviceNode(mDevPath);
}
std::shared_ptr Disk::findVolume(const std::string& id) {
for (auto vol : mVolumes) {
if (vol->getId() == id) {
return vol;
}
auto stackedVol = vol->findVolume(id);
if (stackedVol != nullptr) {
return stackedVol;
}
}
return nullptr;
}
void Disk::listVolumes(VolumeBase::Type type, std::list& list) {
for (auto vol : mVolumes) {
if (vol->getType() == type) {
list.push_back(vol->getId());
}
// TODO: consider looking at stacked volumes
}
}
status_t Disk::create() {
CHECK(!mCreated);
mCreated = true;
notifyEvent(ResponseCode::DiskCreated, StringPrintf("%d", mFlags));
readMetadata();
readPartitions();
return OK;
}
status_t Disk::destroy() {
CHECK(mCreated);
destroyAllVolumes();
mCreated = false;
notifyEvent(ResponseCode::DiskDestroyed);
return OK;
}
void Disk::createPublicVolume(dev_t device) {
auto vol = std::shared_ptr(new PublicVolume(device));
if (mJustPartitioned) {
LOG(DEBUG) << "Device just partitioned; silently formatting";
vol->setSilent(true);
vol->create();
vol->format("auto");
vol->destroy();
vol->setSilent(false);
}
mVolumes.push_back(vol);
vol->setDiskId(getId());
vol->create();
}
void Disk::createPrivateVolume(dev_t device, const std::string& partGuid) {
std::string normalizedGuid;
if (NormalizeHex(partGuid, normalizedGuid)) {
LOG(WARNING) << "Invalid GUID " << partGuid;
return;
}
std::string keyRaw;
if (!ReadFileToString(BuildKeyPath(normalizedGuid), &keyRaw)) {
PLOG(ERROR) << "Failed to load key for GUID " << normalizedGuid;
return;
}
LOG(DEBUG) << "Found key for GUID " << normalizedGuid;
auto vol = std::shared_ptr(new PrivateVolume(device, keyRaw));
if (mJustPartitioned) {
LOG(DEBUG) << "Device just partitioned; silently formatting";
vol->setSilent(true);
vol->create();
vol->format("auto");
vol->destroy();
vol->setSilent(false);
}
mVolumes.push_back(vol);
vol->setDiskId(getId());
vol->setPartGuid(partGuid);
vol->create();
}
void Disk::destroyAllVolumes() {
for (auto vol : mVolumes) {
vol->destroy();
}
mVolumes.clear();
}
status_t Disk::readMetadata() {
mSize = -1;
mLabel.clear();
int fd = open(mDevPath.c_str(), O_RDONLY | O_CLOEXEC);
if (fd != -1) {
if (ioctl(fd, BLKGETSIZE64, &mSize)) {
mSize = -1;
}
close(fd);
}
switch (major(mDevice)) {
case kMajorBlockScsiA: case kMajorBlockScsiB: case kMajorBlockScsiC: case kMajorBlockScsiD:
case kMajorBlockScsiE: case kMajorBlockScsiF: case kMajorBlockScsiG: case kMajorBlockScsiH:
case kMajorBlockScsiI: case kMajorBlockScsiJ: case kMajorBlockScsiK: case kMajorBlockScsiL:
case kMajorBlockScsiM: case kMajorBlockScsiN: case kMajorBlockScsiO: case kMajorBlockScsiP: {
std::string path(mSysPath + "/device/vendor");
std::string tmp;
if (!ReadFileToString(path, &tmp)) {
PLOG(WARNING) << "Failed to read vendor from " << path;
return -errno;
}
mLabel = tmp;
break;
}
case kMajorBlockMmc: {
std::string path(mSysPath + "/device/manfid");
std::string tmp;
if (!ReadFileToString(path, &tmp)) {
PLOG(WARNING) << "Failed to read manufacturer from " << path;
return -errno;
}
uint64_t manfid = strtoll(tmp.c_str(), nullptr, 16);
// Our goal here is to give the user a meaningful label, ideally
// matching whatever is silk-screened on the card. To reduce
// user confusion, this list doesn't contain white-label manfid.
switch (manfid) {
case 0x000003: mLabel = "SanDisk"; break;
case 0x00001b: mLabel = "Samsung"; break;
case 0x000028: mLabel = "Lexar"; break;
case 0x000074: mLabel = "Transcend"; break;
}
break;
}
default: {
LOG(WARNING) << "Unsupported block major type" << major(mDevice);
return -ENOTSUP;
}
}
notifyEvent(ResponseCode::DiskSizeChanged, StringPrintf("%" PRId64, mSize));
notifyEvent(ResponseCode::DiskLabelChanged, mLabel);
notifyEvent(ResponseCode::DiskSysPathChanged, mSysPath);
return OK;
}
status_t Disk::readPartitions() {
int8_t maxMinors = getMaxMinors();
if (maxMinors < 0) {
return -ENOTSUP;
}
destroyAllVolumes();
// Parse partition table
std::vector cmd;
cmd.push_back(kSgdiskPath);
cmd.push_back("--android-dump");
cmd.push_back(mDevPath);
std::vector output;
status_t res = ForkExecvp(cmd, output);
if (res != OK) {
LOG(WARNING) << "sgdisk failed to scan " << mDevPath;
notifyEvent(ResponseCode::DiskScanned);
mJustPartitioned = false;
return res;
}
Table table = Table::kUnknown;
bool foundParts = false;
for (auto line : output) {
char* cline = (char*) line.c_str();
char* token = strtok(cline, kSgdiskToken);
if (token == nullptr) continue;
if (!strcmp(token, "DISK")) {
const char* type = strtok(nullptr, kSgdiskToken);
if (!strcmp(type, "mbr")) {
table = Table::kMbr;
} else if (!strcmp(type, "gpt")) {
table = Table::kGpt;
}
} else if (!strcmp(token, "PART")) {
foundParts = true;
int i = strtol(strtok(nullptr, kSgdiskToken), nullptr, 10);
if (i <= 0 || i > maxMinors) {
LOG(WARNING) << mId << " is ignoring partition " << i
<< " beyond max supported devices";
continue;
}
dev_t partDevice = makedev(major(mDevice), minor(mDevice) + i);
if (table == Table::kMbr) {
const char* type = strtok(nullptr, kSgdiskToken);
switch (strtol(type, nullptr, 16)) {
case 0x06: // FAT16
case 0x0b: // W95 FAT32 (LBA)
case 0x0c: // W95 FAT32 (LBA)
case 0x0e: // W95 FAT16 (LBA)
createPublicVolume(partDevice);
break;
}
} else if (table == Table::kGpt) {
const char* typeGuid = strtok(nullptr, kSgdiskToken);
const char* partGuid = strtok(nullptr, kSgdiskToken);
if (!strcasecmp(typeGuid, kGptBasicData)) {
createPublicVolume(partDevice);
} else if (!strcasecmp(typeGuid, kGptAndroidExpand)) {
createPrivateVolume(partDevice, partGuid);
}
}
}
}
// Ugly last ditch effort, treat entire disk as partition
if (table == Table::kUnknown || !foundParts) {
LOG(WARNING) << mId << " has unknown partition table; trying entire device";
std::string fsType;
std::string unused;
if (ReadMetadataUntrusted(mDevPath, fsType, unused, unused) == OK) {
createPublicVolume(mDevice);
} else {
LOG(WARNING) << mId << " failed to identify, giving up";
}
}
notifyEvent(ResponseCode::DiskScanned);
mJustPartitioned = false;
return OK;
}
status_t Disk::unmountAll() {
for (auto vol : mVolumes) {
vol->unmount();
}
return OK;
}
status_t Disk::partitionPublic() {
// TODO: improve this code
destroyAllVolumes();
mJustPartitioned = true;
struct disk_info dinfo;
memset(&dinfo, 0, sizeof(dinfo));
if (!(dinfo.part_lst = (struct part_info *) malloc(
MAX_NUM_PARTS * sizeof(struct part_info)))) {
return -1;
}
memset(dinfo.part_lst, 0, MAX_NUM_PARTS * sizeof(struct part_info));
dinfo.device = strdup(mDevPath.c_str());
dinfo.scheme = PART_SCHEME_MBR;
dinfo.sect_size = 512;
dinfo.skip_lba = 2048;
dinfo.num_lba = 0;
dinfo.num_parts = 1;
struct part_info *pinfo = &dinfo.part_lst[0];
pinfo->name = strdup("android_sdcard");
pinfo->flags |= PART_ACTIVE_FLAG;
pinfo->type = PC_PART_TYPE_FAT32;
pinfo->len_kb = -1;
int rc = apply_disk_config(&dinfo, 0);
if (rc) {
LOG(ERROR) << "Failed to apply disk configuration: " << rc;
goto out;
}
out:
free(pinfo->name);
free(dinfo.device);
free(dinfo.part_lst);
return rc;
}
status_t Disk::partitionPrivate() {
return partitionMixed(0);
}
status_t Disk::partitionMixed(int8_t ratio) {
int res;
destroyAllVolumes();
mJustPartitioned = true;
// First nuke any existing partition table
std::vector cmd;
cmd.push_back(kSgdiskPath);
cmd.push_back("--zap-all");
cmd.push_back(mDevPath);
// Zap sometimes returns an error when it actually succeeded, so
// just log as warning and keep rolling forward.
if ((res = ForkExecvp(cmd)) != 0) {
LOG(WARNING) << "Failed to zap; status " << res;
}
// We've had some success above, so generate both the private partition
// GUID and encryption key and persist them.
std::string partGuidRaw;
std::string keyRaw;
if (ReadRandomBytes(16, partGuidRaw) || ReadRandomBytes(16, keyRaw)) {
LOG(ERROR) << "Failed to generate GUID or key";
return -EIO;
}
std::string partGuid;
StrToHex(partGuidRaw, partGuid);
if (!WriteStringToFile(keyRaw, BuildKeyPath(partGuid))) {
LOG(ERROR) << "Failed to persist key";
return -EIO;
} else {
LOG(DEBUG) << "Persisted key for GUID " << partGuid;
}
// Now let's build the new GPT table. We heavily rely on sgdisk to
// force optimal alignment on the created partitions.
cmd.clear();
cmd.push_back(kSgdiskPath);
// If requested, create a public partition first. Mixed-mode partitioning
// like this is an experimental feature.
if (ratio > 0) {
if (ratio < 10 || ratio > 90) {
LOG(ERROR) << "Mixed partition ratio must be between 10-90%";
return -EINVAL;
}
uint64_t splitMb = ((mSize / 100) * ratio) / 1024 / 1024;
cmd.push_back(StringPrintf("--new=0:0:+%" PRId64 "M", splitMb));
cmd.push_back(StringPrintf("--typecode=0:%s", kGptBasicData));
cmd.push_back("--change-name=0:shared");
}
// Define a metadata partition which is designed for future use; there
// should only be one of these per physical device, even if there are
// multiple private volumes.
cmd.push_back("--new=0:0:+16M");
cmd.push_back(StringPrintf("--typecode=0:%s", kGptAndroidMeta));
cmd.push_back("--change-name=0:android_meta");
// Define a single private partition filling the rest of disk.
cmd.push_back("--new=0:0:-0");
cmd.push_back(StringPrintf("--typecode=0:%s", kGptAndroidExpand));
cmd.push_back(StringPrintf("--partition-guid=0:%s", partGuid.c_str()));
cmd.push_back("--change-name=0:android_expand");
cmd.push_back(mDevPath);
if ((res = ForkExecvp(cmd)) != 0) {
LOG(ERROR) << "Failed to partition; status " << res;
return res;
}
return OK;
}
void Disk::notifyEvent(int event) {
VolumeManager::Instance()->getBroadcaster()->sendBroadcast(event,
getId().c_str(), false);
}
void Disk::notifyEvent(int event, const std::string& value) {
VolumeManager::Instance()->getBroadcaster()->sendBroadcast(event,
StringPrintf("%s %s", getId().c_str(), value.c_str()).c_str(), false);
}
int Disk::getMaxMinors() {
// Figure out maximum partition devices supported
switch (major(mDevice)) {
case kMajorBlockScsiA: case kMajorBlockScsiB: case kMajorBlockScsiC: case kMajorBlockScsiD:
case kMajorBlockScsiE: case kMajorBlockScsiF: case kMajorBlockScsiG: case kMajorBlockScsiH:
case kMajorBlockScsiI: case kMajorBlockScsiJ: case kMajorBlockScsiK: case kMajorBlockScsiL:
case kMajorBlockScsiM: case kMajorBlockScsiN: case kMajorBlockScsiO: case kMajorBlockScsiP: {
// Per Documentation/devices.txt this is static
return 15;
}
case kMajorBlockMmc: {
// Per Documentation/devices.txt this is dynamic
std::string tmp;
if (!ReadFileToString(kSysfsMmcMaxMinors, &tmp)) {
LOG(ERROR) << "Failed to read max minors";
return -errno;
}
return atoi(tmp.c_str());
}
}
LOG(ERROR) << "Unsupported block major type " << major(mDevice);
return -ENOTSUP;
}
} // namespace vold
} // namespace android