1 
2 /*---------------------------------------------------------------*/
3 /*--- begin                                guest_amd64_defs.h ---*/
4 /*---------------------------------------------------------------*/
5 
6 /*
7    This file is part of Valgrind, a dynamic binary instrumentation
8    framework.
9 
10    Copyright (C) 2004-2013 OpenWorks LLP
11       info@open-works.net
12 
13    This program is free software; you can redistribute it and/or
14    modify it under the terms of the GNU General Public License as
15    published by the Free Software Foundation; either version 2 of the
16    License, or (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful, but
19    WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21    General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
26    02110-1301, USA.
27 
28    The GNU General Public License is contained in the file COPYING.
29 
30    Neither the names of the U.S. Department of Energy nor the
31    University of California nor the names of its contributors may be
32    used to endorse or promote products derived from this software
33    without prior written permission.
34 */
35 
36 /* Only to be used within the guest-amd64 directory. */
37 
38 #ifndef __VEX_GUEST_AMD64_DEFS_H
39 #define __VEX_GUEST_AMD64_DEFS_H
40 
41 #include "libvex_basictypes.h"
42 #include "libvex_emnote.h"              // VexEmNote
43 #include "libvex_guest_amd64.h"         // VexGuestAMD64State
44 #include "guest_generic_bb_to_IR.h"     // DisResult
45 
46 /*---------------------------------------------------------*/
47 /*--- amd64 to IR conversion                            ---*/
48 /*---------------------------------------------------------*/
49 
50 /* Convert one amd64 insn to IR.  See the type DisOneInstrFn in
51    bb_to_IR.h. */
52 extern
53 DisResult disInstr_AMD64 ( IRSB*        irbb,
54                            Bool         (*resteerOkFn) ( void*, Addr ),
55                            Bool         resteerCisOk,
56                            void*        callback_opaque,
57                            const UChar* guest_code,
58                            Long         delta,
59                            Addr         guest_IP,
60                            VexArch      guest_arch,
61                            const VexArchInfo* archinfo,
62                            const VexAbiInfo*  abiinfo,
63                            VexEndness   host_endness,
64                            Bool         sigill_diag );
65 
66 /* Used by the optimiser to specialise calls to helpers. */
67 extern
68 IRExpr* guest_amd64_spechelper ( const HChar* function_name,
69                                  IRExpr** args,
70                                  IRStmt** precedingStmts,
71                                  Int      n_precedingStmts );
72 
73 /* Describes to the optimiser which part of the guest state require
74    precise memory exceptions.  This is logically part of the guest
75    state description. */
76 extern
77 Bool guest_amd64_state_requires_precise_mem_exns ( Int, Int,
78                                                    VexRegisterUpdates );
79 
80 extern
81 VexGuestLayout amd64guest_layout;
82 
83 
84 /*---------------------------------------------------------*/
85 /*--- amd64 guest helpers                               ---*/
86 /*---------------------------------------------------------*/
87 
88 /* --- CLEAN HELPERS --- */
89 
90 extern ULong amd64g_calculate_rflags_all (
91                 ULong cc_op,
92                 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep
93              );
94 
95 extern ULong amd64g_calculate_rflags_c (
96                 ULong cc_op,
97                 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep
98              );
99 
100 extern ULong amd64g_calculate_condition (
101                 ULong/*AMD64Condcode*/ cond,
102                 ULong cc_op,
103                 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep
104              );
105 
106 extern ULong amd64g_calculate_FXAM ( ULong tag, ULong dbl );
107 
108 extern ULong amd64g_calculate_RCR  (
109                 ULong arg, ULong rot_amt, ULong rflags_in, Long sz
110              );
111 
112 extern ULong amd64g_calculate_RCL  (
113                 ULong arg, ULong rot_amt, ULong rflags_in, Long sz
114              );
115 
116 extern ULong amd64g_calculate_pclmul(ULong s1, ULong s2, ULong which);
117 
118 extern ULong amd64g_check_fldcw ( ULong fpucw );
119 
120 extern ULong amd64g_create_fpucw ( ULong fpround );
121 
122 extern ULong amd64g_check_ldmxcsr ( ULong mxcsr );
123 
124 extern ULong amd64g_create_mxcsr ( ULong sseround );
125 
126 extern VexEmNote amd64g_dirtyhelper_FLDENV  ( VexGuestAMD64State*, HWord );
127 extern VexEmNote amd64g_dirtyhelper_FRSTOR  ( VexGuestAMD64State*, HWord );
128 extern VexEmNote amd64g_dirtyhelper_FRSTORS ( VexGuestAMD64State*, HWord );
129 
130 extern void amd64g_dirtyhelper_FSTENV  ( VexGuestAMD64State*, HWord );
131 extern void amd64g_dirtyhelper_FNSAVE  ( VexGuestAMD64State*, HWord );
132 extern void amd64g_dirtyhelper_FNSAVES ( VexGuestAMD64State*, HWord );
133 
134 /* Translate a guest virtual_addr into a guest linear address by
135    consulting the supplied LDT/GDT structures.  Their representation
136    must be as specified in pub/libvex_guest_amd64.h.  To indicate a
137    translation failure, 1<<32 is returned.  On success, the lower 32
138    bits of the returned result indicate the linear address.
139 */
140 //extern
141 //ULong amd64g_use_seg_selector ( HWord ldt, HWord gdt,
142 //                              UInt seg_selector, UInt virtual_addr );
143 
144 extern ULong amd64g_calculate_mmx_pmaddwd  ( ULong, ULong );
145 extern ULong amd64g_calculate_mmx_psadbw   ( ULong, ULong );
146 
147 extern ULong amd64g_calculate_sse_phminposuw ( ULong sLo, ULong sHi );
148 
149 extern ULong amd64g_calc_crc32b ( ULong crcIn, ULong b );
150 extern ULong amd64g_calc_crc32w ( ULong crcIn, ULong w );
151 extern ULong amd64g_calc_crc32l ( ULong crcIn, ULong l );
152 extern ULong amd64g_calc_crc32q ( ULong crcIn, ULong q );
153 
154 extern ULong amd64g_calc_mpsadbw ( ULong sHi, ULong sLo,
155                                    ULong dHi, ULong dLo,
156                                    ULong imm_and_return_control_bit );
157 
158 extern ULong amd64g_calculate_pext  ( ULong, ULong );
159 extern ULong amd64g_calculate_pdep  ( ULong, ULong );
160 
161 /* --- DIRTY HELPERS --- */
162 
163 extern ULong amd64g_dirtyhelper_loadF80le  ( Addr/*addr*/ );
164 
165 extern void  amd64g_dirtyhelper_storeF80le ( Addr/*addr*/, ULong/*data*/ );
166 
167 extern void  amd64g_dirtyhelper_CPUID_baseline ( VexGuestAMD64State* st );
168 extern void  amd64g_dirtyhelper_CPUID_sse3_and_cx16 ( VexGuestAMD64State* st );
169 extern void  amd64g_dirtyhelper_CPUID_sse42_and_cx16 ( VexGuestAMD64State* st );
170 extern void  amd64g_dirtyhelper_CPUID_avx_and_cx16 ( VexGuestAMD64State* st );
171 
172 extern void  amd64g_dirtyhelper_FINIT ( VexGuestAMD64State* );
173 
174 extern void      amd64g_dirtyhelper_FXSAVE_ALL_EXCEPT_XMM
175                     ( VexGuestAMD64State*, HWord );
176 extern VexEmNote amd64g_dirtyhelper_FXRSTOR_ALL_EXCEPT_XMM
177                     ( VexGuestAMD64State*, HWord );
178 
179 extern ULong amd64g_dirtyhelper_RDTSC ( void );
180 extern void  amd64g_dirtyhelper_RDTSCP ( VexGuestAMD64State* st );
181 
182 extern ULong amd64g_dirtyhelper_IN  ( ULong portno, ULong sz/*1,2 or 4*/ );
183 extern void  amd64g_dirtyhelper_OUT ( ULong portno, ULong data,
184                                       ULong sz/*1,2 or 4*/ );
185 
186 extern void amd64g_dirtyhelper_SxDT ( void* address,
187                                       ULong op /* 0 or 1 */ );
188 
189 /* Helps with PCMP{I,E}STR{I,M}.
190 
191    CALLED FROM GENERATED CODE: DIRTY HELPER(s).  (But not really,
192    actually it could be a clean helper, but for the fact that we can't
193    pass by value 2 x V128 to a clean helper, nor have one returned.)
194    Reads guest state, writes to guest state for the xSTRM cases, no
195    accesses of memory, is a pure function.
196 
197    opc_and_imm contains (4th byte of opcode << 8) | the-imm8-byte so
198    the callee knows which I/E and I/M variant it is dealing with and
199    what the specific operation is.  4th byte of opcode is in the range
200    0x60 to 0x63:
201        istri  66 0F 3A 63
202        istrm  66 0F 3A 62
203        estri  66 0F 3A 61
204        estrm  66 0F 3A 60
205 
206    gstOffL and gstOffR are the guest state offsets for the two XMM
207    register inputs.  We never have to deal with the memory case since
208    that is handled by pre-loading the relevant value into the fake
209    XMM16 register.
210 
211    For ESTRx variants, edxIN and eaxIN hold the values of those two
212    registers.
213 
214    In all cases, the bottom 16 bits of the result contain the new
215    OSZACP %rflags values.  For xSTRI variants, bits[31:16] of the
216    result hold the new %ecx value.  For xSTRM variants, the helper
217    writes the result directly to the guest XMM0.
218 
219    Declarable side effects: in all cases, reads guest state at
220    [gstOffL, +16) and [gstOffR, +16).  For xSTRM variants, also writes
221    guest_XMM0.
222 
223    Is expected to be called with opc_and_imm combinations which have
224    actually been validated, and will assert if otherwise.  The front
225    end should ensure we're only called with verified values.
226 */
227 extern ULong amd64g_dirtyhelper_PCMPxSTRx (
228           VexGuestAMD64State*,
229           HWord opc4_and_imm,
230           HWord gstOffL, HWord gstOffR,
231           HWord edxIN, HWord eaxIN
232        );
233 
234 /* Implementation of intel AES instructions as described in
235    Intel  Advanced Vector Extensions
236           Programming Reference
237           MARCH 2008
238           319433-002.
239 
240    CALLED FROM GENERATED CODE: DIRTY HELPER(s).  (But not really,
241    actually it could be a clean helper, but for the fact that we can't
242    pass by value 2 x V128 to a clean helper, nor have one returned.)
243    Reads guest state, writes to guest state, no
244    accesses of memory, is a pure function.
245 
246    opc4 contains the 4th byte of opcode. Front-end should only
247    give opcode corresponding to AESENC/AESENCLAST/AESDEC/AESDECLAST/AESIMC.
248    (will assert otherwise).
249 
250    gstOffL and gstOffR are the guest state offsets for the two XMM
251    register inputs, gstOffD is the guest state offset for the XMM register
252    output.  We never have to deal with the memory case since that is handled
253    by pre-loading the relevant value into the fake XMM16 register.
254 
255 */
256 extern void amd64g_dirtyhelper_AES (
257           VexGuestAMD64State* gst,
258           HWord opc4, HWord gstOffD,
259           HWord gstOffL, HWord gstOffR
260        );
261 
262 /* Implementation of AESKEYGENASSIST.
263 
264    CALLED FROM GENERATED CODE: DIRTY HELPER(s).  (But not really,
265    actually it could be a clean helper, but for the fact that we can't
266    pass by value 1 x V128 to a clean helper, nor have one returned.)
267    Reads guest state, writes to guest state, no
268    accesses of memory, is a pure function.
269 
270    imm8 is the Round Key constant.
271 
272    gstOffL and gstOffR are the guest state offsets for the two XMM
273    register input and output.  We never have to deal with the memory case since
274    that is handled by pre-loading the relevant value into the fake
275    XMM16 register.
276 
277 */
278 extern void amd64g_dirtyhelper_AESKEYGENASSIST (
279           VexGuestAMD64State* gst,
280           HWord imm8,
281           HWord gstOffL, HWord gstOffR
282        );
283 
284 //extern void  amd64g_dirtyhelper_CPUID_sse0 ( VexGuestAMD64State* );
285 //extern void  amd64g_dirtyhelper_CPUID_sse1 ( VexGuestAMD64State* );
286 //extern void  amd64g_dirtyhelper_CPUID_sse2 ( VexGuestAMD64State* );
287 
288 //extern void  amd64g_dirtyhelper_FSAVE ( VexGuestAMD64State*, HWord );
289 
290 //extern VexEmNote
291 //            amd64g_dirtyhelper_FRSTOR ( VexGuestAMD64State*, HWord );
292 
293 //extern void amd64g_dirtyhelper_FSTENV ( VexGuestAMD64State*, HWord );
294 
295 //extern VexEmNote
296 //            amd64g_dirtyhelper_FLDENV ( VexGuestAMD64State*, HWord );
297 
298 
299 
300 /*---------------------------------------------------------*/
301 /*--- Condition code stuff                              ---*/
302 /*---------------------------------------------------------*/
303 
304 /* rflags masks */
305 #define AMD64G_CC_SHIFT_O   11
306 #define AMD64G_CC_SHIFT_S   7
307 #define AMD64G_CC_SHIFT_Z   6
308 #define AMD64G_CC_SHIFT_A   4
309 #define AMD64G_CC_SHIFT_C   0
310 #define AMD64G_CC_SHIFT_P   2
311 
312 #define AMD64G_CC_MASK_O    (1ULL << AMD64G_CC_SHIFT_O)
313 #define AMD64G_CC_MASK_S    (1ULL << AMD64G_CC_SHIFT_S)
314 #define AMD64G_CC_MASK_Z    (1ULL << AMD64G_CC_SHIFT_Z)
315 #define AMD64G_CC_MASK_A    (1ULL << AMD64G_CC_SHIFT_A)
316 #define AMD64G_CC_MASK_C    (1ULL << AMD64G_CC_SHIFT_C)
317 #define AMD64G_CC_MASK_P    (1ULL << AMD64G_CC_SHIFT_P)
318 
319 /* FPU flag masks */
320 #define AMD64G_FC_SHIFT_C3   14
321 #define AMD64G_FC_SHIFT_C2   10
322 #define AMD64G_FC_SHIFT_C1   9
323 #define AMD64G_FC_SHIFT_C0   8
324 
325 #define AMD64G_FC_MASK_C3    (1ULL << AMD64G_FC_SHIFT_C3)
326 #define AMD64G_FC_MASK_C2    (1ULL << AMD64G_FC_SHIFT_C2)
327 #define AMD64G_FC_MASK_C1    (1ULL << AMD64G_FC_SHIFT_C1)
328 #define AMD64G_FC_MASK_C0    (1ULL << AMD64G_FC_SHIFT_C0)
329 
330 
331 /* %RFLAGS thunk descriptors.  A four-word thunk is used to record
332    details of the most recent flag-setting operation, so the flags can
333    be computed later if needed.  It is possible to do this a little
334    more efficiently using a 3-word thunk, but that makes it impossible
335    to describe the flag data dependencies sufficiently accurately for
336    Memcheck.  Hence 4 words are used, with minimal loss of efficiency.
337 
338    The four words are:
339 
340       CC_OP, which describes the operation.
341 
342       CC_DEP1 and CC_DEP2.  These are arguments to the operation.
343          We want Memcheck to believe that the resulting flags are
344          data-dependent on both CC_DEP1 and CC_DEP2, hence the
345          name DEP.
346 
347       CC_NDEP.  This is a 3rd argument to the operation which is
348          sometimes needed.  We arrange things so that Memcheck does
349          not believe the resulting flags are data-dependent on CC_NDEP
350          ("not dependent").
351 
352    To make Memcheck believe that (the definedness of) the encoded
353    flags depends only on (the definedness of) CC_DEP1 and CC_DEP2
354    requires two things:
355 
356    (1) In the guest state layout info (amd64guest_layout), CC_OP and
357        CC_NDEP are marked as always defined.
358 
359    (2) When passing the thunk components to an evaluation function
360        (calculate_condition, calculate_eflags, calculate_eflags_c) the
361        IRCallee's mcx_mask must be set so as to exclude from
362        consideration all passed args except CC_DEP1 and CC_DEP2.
363 
364    Strictly speaking only (2) is necessary for correctness.  However,
365    (1) helps efficiency in that since (2) means we never ask about the
366    definedness of CC_OP or CC_NDEP, we may as well not even bother to
367    track their definedness.
368 
369    When building the thunk, it is always necessary to write words into
370    CC_DEP1 and CC_DEP2, even if those args are not used given the
371    CC_OP field (eg, CC_DEP2 is not used if CC_OP is CC_LOGIC1/2/4).
372    This is important because otherwise Memcheck could give false
373    positives as it does not understand the relationship between the
374    CC_OP field and CC_DEP1 and CC_DEP2, and so believes that the
375    definedness of the stored flags always depends on both CC_DEP1 and
376    CC_DEP2.
377 
378    However, it is only necessary to set CC_NDEP when the CC_OP value
379    requires it, because Memcheck ignores CC_NDEP, and the evaluation
380    functions do understand the CC_OP fields and will only examine
381    CC_NDEP for suitable values of CC_OP.
382 
383    A summary of the field usages is:
384 
385    Operation          DEP1               DEP2               NDEP
386    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
387 
388    add/sub/mul        first arg          second arg         unused
389 
390    adc/sbb            first arg          (second arg)
391                                          XOR old_carry      old_carry
392 
393    and/or/xor         result             zero               unused
394 
395    inc/dec            result             zero               old_carry
396 
397    shl/shr/sar        result             subshifted-        unused
398                                          result
399 
400    rol/ror            result             zero               old_flags
401 
402    copy               old_flags          zero               unused.
403 
404 
405    Therefore Memcheck will believe the following:
406 
407    * add/sub/mul -- definedness of result flags depends on definedness
408      of both args.
409 
410    * adc/sbb -- definedness of result flags depends on definedness of
411      both args and definedness of the old C flag.  Because only two
412      DEP fields are available, the old C flag is XOR'd into the second
413      arg so that Memcheck sees the data dependency on it.  That means
414      the NDEP field must contain a second copy of the old C flag
415      so that the evaluation functions can correctly recover the second
416      arg.
417 
418    * and/or/xor are straightforward -- definedness of result flags
419      depends on definedness of result value.
420 
421    * inc/dec -- definedness of result flags depends only on
422      definedness of result.  This isn't really true -- it also depends
423      on the old C flag.  However, we don't want Memcheck to see that,
424      and so the old C flag must be passed in NDEP and not in DEP2.
425      It's inconceivable that a compiler would generate code that puts
426      the C flag in an undefined state, then does an inc/dec, which
427      leaves C unchanged, and then makes a conditional jump/move based
428      on C.  So our fiction seems a good approximation.
429 
430    * shl/shr/sar -- straightforward, again, definedness of result
431      flags depends on definedness of result value.  The subshifted
432      value (value shifted one less) is also needed, but its
433      definedness is the same as the definedness of the shifted value.
434 
435    * rol/ror -- these only set O and C, and leave A Z C P alone.
436      However it seems prudent (as per inc/dec) to say the definedness
437      of all resulting flags depends on the definedness of the result,
438      hence the old flags must go in as NDEP and not DEP2.
439 
440    * rcl/rcr are too difficult to do in-line, and so are done by a
441      helper function.  They are not part of this scheme.  The helper
442      function takes the value to be rotated, the rotate amount and the
443      old flags, and returns the new flags and the rotated value.
444      Since the helper's mcx_mask does not have any set bits, Memcheck
445      will lazily propagate undefinedness from any of the 3 args into
446      both results (flags and actual value).
447 */
448 enum {
449     AMD64G_CC_OP_COPY=0,  /* DEP1 = current flags, DEP2 = 0, NDEP = unused */
450                           /* just copy DEP1 to output */
451 
452     AMD64G_CC_OP_ADDB,    /* 1 */
453     AMD64G_CC_OP_ADDW,    /* 2 DEP1 = argL, DEP2 = argR, NDEP = unused */
454     AMD64G_CC_OP_ADDL,    /* 3 */
455     AMD64G_CC_OP_ADDQ,    /* 4 */
456 
457     AMD64G_CC_OP_SUBB,    /* 5 */
458     AMD64G_CC_OP_SUBW,    /* 6 DEP1 = argL, DEP2 = argR, NDEP = unused */
459     AMD64G_CC_OP_SUBL,    /* 7 */
460     AMD64G_CC_OP_SUBQ,    /* 8 */
461 
462     AMD64G_CC_OP_ADCB,    /* 9 */
463     AMD64G_CC_OP_ADCW,    /* 10 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */
464     AMD64G_CC_OP_ADCL,    /* 11 */
465     AMD64G_CC_OP_ADCQ,    /* 12 */
466 
467     AMD64G_CC_OP_SBBB,    /* 13 */
468     AMD64G_CC_OP_SBBW,    /* 14 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */
469     AMD64G_CC_OP_SBBL,    /* 15 */
470     AMD64G_CC_OP_SBBQ,    /* 16 */
471 
472     AMD64G_CC_OP_LOGICB,  /* 17 */
473     AMD64G_CC_OP_LOGICW,  /* 18 DEP1 = result, DEP2 = 0, NDEP = unused */
474     AMD64G_CC_OP_LOGICL,  /* 19 */
475     AMD64G_CC_OP_LOGICQ,  /* 20 */
476 
477     AMD64G_CC_OP_INCB,    /* 21 */
478     AMD64G_CC_OP_INCW,    /* 22 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */
479     AMD64G_CC_OP_INCL,    /* 23 */
480     AMD64G_CC_OP_INCQ,    /* 24 */
481 
482     AMD64G_CC_OP_DECB,    /* 25 */
483     AMD64G_CC_OP_DECW,    /* 26 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */
484     AMD64G_CC_OP_DECL,    /* 27 */
485     AMD64G_CC_OP_DECQ,    /* 28 */
486 
487     AMD64G_CC_OP_SHLB,    /* 29 DEP1 = res, DEP2 = res', NDEP = unused */
488     AMD64G_CC_OP_SHLW,    /* 30 where res' is like res but shifted one bit less */
489     AMD64G_CC_OP_SHLL,    /* 31 */
490     AMD64G_CC_OP_SHLQ,    /* 32 */
491 
492     AMD64G_CC_OP_SHRB,    /* 33 DEP1 = res, DEP2 = res', NDEP = unused */
493     AMD64G_CC_OP_SHRW,    /* 34 where res' is like res but shifted one bit less */
494     AMD64G_CC_OP_SHRL,    /* 35 */
495     AMD64G_CC_OP_SHRQ,    /* 36 */
496 
497     AMD64G_CC_OP_ROLB,    /* 37 */
498     AMD64G_CC_OP_ROLW,    /* 38 DEP1 = res, DEP2 = 0, NDEP = old flags */
499     AMD64G_CC_OP_ROLL,    /* 39 */
500     AMD64G_CC_OP_ROLQ,    /* 40 */
501 
502     AMD64G_CC_OP_RORB,    /* 41 */
503     AMD64G_CC_OP_RORW,    /* 42 DEP1 = res, DEP2 = 0, NDEP = old flags */
504     AMD64G_CC_OP_RORL,    /* 43 */
505     AMD64G_CC_OP_RORQ,    /* 44 */
506 
507     AMD64G_CC_OP_UMULB,   /* 45 */
508     AMD64G_CC_OP_UMULW,   /* 46 DEP1 = argL, DEP2 = argR, NDEP = unused */
509     AMD64G_CC_OP_UMULL,   /* 47 */
510     AMD64G_CC_OP_UMULQ,   /* 48 */
511 
512     AMD64G_CC_OP_SMULB,   /* 49 */
513     AMD64G_CC_OP_SMULW,   /* 50 DEP1 = argL, DEP2 = argR, NDEP = unused */
514     AMD64G_CC_OP_SMULL,   /* 51 */
515     AMD64G_CC_OP_SMULQ,   /* 52 */
516 
517     AMD64G_CC_OP_ANDN32,  /* 53 */
518     AMD64G_CC_OP_ANDN64,  /* 54 DEP1 = res, DEP2 = 0, NDEP = unused */
519 
520     AMD64G_CC_OP_BLSI32,  /* 55 */
521     AMD64G_CC_OP_BLSI64,  /* 56 DEP1 = res, DEP2 = arg, NDEP = unused */
522 
523     AMD64G_CC_OP_BLSMSK32,/* 57 */
524     AMD64G_CC_OP_BLSMSK64,/* 58 DEP1 = res, DEP2 = arg, NDEP = unused */
525 
526     AMD64G_CC_OP_BLSR32,  /* 59 */
527     AMD64G_CC_OP_BLSR64,  /* 60 DEP1 = res, DEP2 = arg, NDEP = unused */
528 
529     AMD64G_CC_OP_NUMBER
530 };
531 
532 typedef
533    enum {
534       AMD64CondO      = 0,  /* overflow           */
535       AMD64CondNO     = 1,  /* no overflow        */
536 
537       AMD64CondB      = 2,  /* below              */
538       AMD64CondNB     = 3,  /* not below          */
539 
540       AMD64CondZ      = 4,  /* zero               */
541       AMD64CondNZ     = 5,  /* not zero           */
542 
543       AMD64CondBE     = 6,  /* below or equal     */
544       AMD64CondNBE    = 7,  /* not below or equal */
545 
546       AMD64CondS      = 8,  /* negative           */
547       AMD64CondNS     = 9,  /* not negative       */
548 
549       AMD64CondP      = 10, /* parity even        */
550       AMD64CondNP     = 11, /* not parity even    */
551 
552       AMD64CondL      = 12, /* less               */
553       AMD64CondNL     = 13, /* not less           */
554 
555       AMD64CondLE     = 14, /* less or equal      */
556       AMD64CondNLE    = 15, /* not less or equal  */
557 
558       AMD64CondAlways = 16  /* HACK */
559    }
560    AMD64Condcode;
561 
562 #endif /* ndef __VEX_GUEST_AMD64_DEFS_H */
563 
564 /*---------------------------------------------------------------*/
565 /*--- end                                  guest_amd64_defs.h ---*/
566 /*---------------------------------------------------------------*/
567