1 //===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Represent a range of possible values that may occur when the program is run 11 // for an integral value. This keeps track of a lower and upper bound for the 12 // constant, which MAY wrap around the end of the numeric range. To do this, it 13 // keeps track of a [lower, upper) bound, which specifies an interval just like 14 // STL iterators. When used with boolean values, the following are important 15 // ranges: : 16 // 17 // [F, F) = {} = Empty set 18 // [T, F) = {T} 19 // [F, T) = {F} 20 // [T, T) = {F, T} = Full set 21 // 22 // The other integral ranges use min/max values for special range values. For 23 // example, for 8-bit types, it uses: 24 // [0, 0) = {} = Empty set 25 // [255, 255) = {0..255} = Full Set 26 // 27 // Note that ConstantRange can be used to represent either signed or 28 // unsigned ranges. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #ifndef LLVM_IR_CONSTANTRANGE_H 33 #define LLVM_IR_CONSTANTRANGE_H 34 35 #include "llvm/ADT/APInt.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/Support/DataTypes.h" 38 39 namespace llvm { 40 41 /// This class represents a range of values. 42 /// 43 class ConstantRange { 44 APInt Lower, Upper; 45 46 // If we have move semantics, pass APInts by value and move them into place. 47 typedef APInt APIntMoveTy; 48 49 public: 50 /// Initialize a full (the default) or empty set for the specified bit width. 51 /// 52 explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true); 53 54 /// Initialize a range to hold the single specified value. 55 /// 56 ConstantRange(APIntMoveTy Value); 57 58 /// @brief Initialize a range of values explicitly. This will assert out if 59 /// Lower==Upper and Lower != Min or Max value for its type. It will also 60 /// assert out if the two APInt's are not the same bit width. 61 ConstantRange(APIntMoveTy Lower, APIntMoveTy Upper); 62 63 /// Produce the smallest range such that all values that may satisfy the given 64 /// predicate with any value contained within Other is contained in the 65 /// returned range. Formally, this returns a superset of 66 /// 'union over all y in Other . { x : icmp op x y is true }'. If the exact 67 /// answer is not representable as a ConstantRange, the return value will be a 68 /// proper superset of the above. 69 /// 70 /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4) 71 static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, 72 const ConstantRange &Other); 73 74 /// Produce the largest range such that all values in the returned range 75 /// satisfy the given predicate with all values contained within Other. 76 /// Formally, this returns a subset of 77 /// 'intersection over all y in Other . { x : icmp op x y is true }'. If the 78 /// exact answer is not representable as a ConstantRange, the return value 79 /// will be a proper subset of the above. 80 /// 81 /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2) 82 static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred, 83 const ConstantRange &Other); 84 85 /// Return the lower value for this range. 86 /// getLower()87 const APInt &getLower() const { return Lower; } 88 89 /// Return the upper value for this range. 90 /// getUpper()91 const APInt &getUpper() const { return Upper; } 92 93 /// Get the bit width of this ConstantRange. 94 /// getBitWidth()95 uint32_t getBitWidth() const { return Lower.getBitWidth(); } 96 97 /// Return true if this set contains all of the elements possible 98 /// for this data-type. 99 /// 100 bool isFullSet() const; 101 102 /// Return true if this set contains no members. 103 /// 104 bool isEmptySet() const; 105 106 /// Return true if this set wraps around the top of the range. 107 /// For example: [100, 8). 108 /// 109 bool isWrappedSet() const; 110 111 /// Return true if this set wraps around the INT_MIN of 112 /// its bitwidth. For example: i8 [120, 140). 113 /// 114 bool isSignWrappedSet() const; 115 116 /// Return true if the specified value is in the set. 117 /// 118 bool contains(const APInt &Val) const; 119 120 /// Return true if the other range is a subset of this one. 121 /// 122 bool contains(const ConstantRange &CR) const; 123 124 /// If this set contains a single element, return it, otherwise return null. 125 /// getSingleElement()126 const APInt *getSingleElement() const { 127 if (Upper == Lower + 1) 128 return &Lower; 129 return nullptr; 130 } 131 132 /// Return true if this set contains exactly one member. 133 /// isSingleElement()134 bool isSingleElement() const { return getSingleElement() != nullptr; } 135 136 /// Return the number of elements in this set. 137 /// 138 APInt getSetSize() const; 139 140 /// Return the largest unsigned value contained in the ConstantRange. 141 /// 142 APInt getUnsignedMax() const; 143 144 /// Return the smallest unsigned value contained in the ConstantRange. 145 /// 146 APInt getUnsignedMin() const; 147 148 /// Return the largest signed value contained in the ConstantRange. 149 /// 150 APInt getSignedMax() const; 151 152 /// Return the smallest signed value contained in the ConstantRange. 153 /// 154 APInt getSignedMin() const; 155 156 /// Return true if this range is equal to another range. 157 /// 158 bool operator==(const ConstantRange &CR) const { 159 return Lower == CR.Lower && Upper == CR.Upper; 160 } 161 bool operator!=(const ConstantRange &CR) const { 162 return !operator==(CR); 163 } 164 165 /// Subtract the specified constant from the endpoints of this constant range. 166 ConstantRange subtract(const APInt &CI) const; 167 168 /// \brief Subtract the specified range from this range (aka relative 169 /// complement of the sets). 170 ConstantRange difference(const ConstantRange &CR) const; 171 172 /// Return the range that results from the intersection of 173 /// this range with another range. The resultant range is guaranteed to 174 /// include all elements contained in both input ranges, and to have the 175 /// smallest possible set size that does so. Because there may be two 176 /// intersections with the same set size, A.intersectWith(B) might not 177 /// be equal to B.intersectWith(A). 178 /// 179 ConstantRange intersectWith(const ConstantRange &CR) const; 180 181 /// Return the range that results from the union of this range 182 /// with another range. The resultant range is guaranteed to include the 183 /// elements of both sets, but may contain more. For example, [3, 9) union 184 /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included 185 /// in either set before. 186 /// 187 ConstantRange unionWith(const ConstantRange &CR) const; 188 189 /// Return a new range in the specified integer type, which must 190 /// be strictly larger than the current type. The returned range will 191 /// correspond to the possible range of values if the source range had been 192 /// zero extended to BitWidth. 193 ConstantRange zeroExtend(uint32_t BitWidth) const; 194 195 /// Return a new range in the specified integer type, which must 196 /// be strictly larger than the current type. The returned range will 197 /// correspond to the possible range of values if the source range had been 198 /// sign extended to BitWidth. 199 ConstantRange signExtend(uint32_t BitWidth) const; 200 201 /// Return a new range in the specified integer type, which must be 202 /// strictly smaller than the current type. The returned range will 203 /// correspond to the possible range of values if the source range had been 204 /// truncated to the specified type. 205 ConstantRange truncate(uint32_t BitWidth) const; 206 207 /// Make this range have the bit width given by \p BitWidth. The 208 /// value is zero extended, truncated, or left alone to make it that width. 209 ConstantRange zextOrTrunc(uint32_t BitWidth) const; 210 211 /// Make this range have the bit width given by \p BitWidth. The 212 /// value is sign extended, truncated, or left alone to make it that width. 213 ConstantRange sextOrTrunc(uint32_t BitWidth) const; 214 215 /// Return a new range representing the possible values resulting 216 /// from an addition of a value in this range and a value in \p Other. 217 ConstantRange add(const ConstantRange &Other) const; 218 219 /// Return a new range representing the possible values resulting 220 /// from a subtraction of a value in this range and a value in \p Other. 221 ConstantRange sub(const ConstantRange &Other) const; 222 223 /// Return a new range representing the possible values resulting 224 /// from a multiplication of a value in this range and a value in \p Other, 225 /// treating both this and \p Other as unsigned ranges. 226 ConstantRange multiply(const ConstantRange &Other) const; 227 228 /// Return a new range representing the possible values resulting 229 /// from a signed maximum of a value in this range and a value in \p Other. 230 ConstantRange smax(const ConstantRange &Other) const; 231 232 /// Return a new range representing the possible values resulting 233 /// from an unsigned maximum of a value in this range and a value in \p Other. 234 ConstantRange umax(const ConstantRange &Other) const; 235 236 /// Return a new range representing the possible values resulting 237 /// from an unsigned division of a value in this range and a value in 238 /// \p Other. 239 ConstantRange udiv(const ConstantRange &Other) const; 240 241 /// Return a new range representing the possible values resulting 242 /// from a binary-and of a value in this range by a value in \p Other. 243 ConstantRange binaryAnd(const ConstantRange &Other) const; 244 245 /// Return a new range representing the possible values resulting 246 /// from a binary-or of a value in this range by a value in \p Other. 247 ConstantRange binaryOr(const ConstantRange &Other) const; 248 249 /// Return a new range representing the possible values resulting 250 /// from a left shift of a value in this range by a value in \p Other. 251 /// TODO: This isn't fully implemented yet. 252 ConstantRange shl(const ConstantRange &Other) const; 253 254 /// Return a new range representing the possible values resulting from a 255 /// logical right shift of a value in this range and a value in \p Other. 256 ConstantRange lshr(const ConstantRange &Other) const; 257 258 /// Return a new range that is the logical not of the current set. 259 /// 260 ConstantRange inverse() const; 261 262 /// Print out the bounds to a stream. 263 /// 264 void print(raw_ostream &OS) const; 265 266 /// Allow printing from a debugger easily. 267 /// 268 void dump() const; 269 }; 270 271 inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) { 272 CR.print(OS); 273 return OS; 274 } 275 276 } // End llvm namespace 277 278 #endif 279