1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for C++ lambda expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/DeclSpec.h"
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Sema/Initialization.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/SemaInternal.h"
23 #include "clang/Sema/SemaLambda.h"
24 using namespace clang;
25 using namespace sema;
26 
27 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
32 ///
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
39 ///
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 ///  - its enclosing context is non-dependent
42 ///  - and if the chain of lambdas between L and the lambda in which
43 ///    V is potentially used (i.e. the lambda at the top of the scope info
44 ///    stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
46 ///
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
50 /// capture.
51 ///
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 ///  LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
54 ///  is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
56 ///
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready.  If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
61 
62 static inline Optional<unsigned>
getStackIndexOfNearestEnclosingCaptureReadyLambda(ArrayRef<const clang::sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture)63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64     ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
65     VarDecl *VarToCapture) {
66   // Label failure to capture.
67   const Optional<unsigned> NoLambdaIsCaptureReady;
68 
69   assert(
70       isa<clang::sema::LambdaScopeInfo>(
71           FunctionScopes[FunctionScopes.size() - 1]) &&
72       "The function on the top of sema's function-info stack must be a lambda");
73 
74   // If VarToCapture is null, we are attempting to capture 'this'.
75   const bool IsCapturingThis = !VarToCapture;
76   const bool IsCapturingVariable = !IsCapturingThis;
77 
78   // Start with the current lambda at the top of the stack (highest index).
79   unsigned CurScopeIndex = FunctionScopes.size() - 1;
80   DeclContext *EnclosingDC =
81       cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
82 
83   do {
84     const clang::sema::LambdaScopeInfo *LSI =
85         cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
86     // IF we have climbed down to an intervening enclosing lambda that contains
87     // the variable declaration - it obviously can/must not capture the
88     // variable.
89     // Since its enclosing DC is dependent, all the lambdas between it and the
90     // innermost nested lambda are dependent (otherwise we wouldn't have
91     // arrived here) - so we don't yet have a lambda that can capture the
92     // variable.
93     if (IsCapturingVariable &&
94         VarToCapture->getDeclContext()->Equals(EnclosingDC))
95       return NoLambdaIsCaptureReady;
96 
97     // For an enclosing lambda to be capture ready for an entity, all
98     // intervening lambda's have to be able to capture that entity. If even
99     // one of the intervening lambda's is not capable of capturing the entity
100     // then no enclosing lambda can ever capture that entity.
101     // For e.g.
102     // const int x = 10;
103     // [=](auto a) {    #1
104     //   [](auto b) {   #2 <-- an intervening lambda that can never capture 'x'
105     //    [=](auto c) { #3
106     //       f(x, c);  <-- can not lead to x's speculative capture by #1 or #2
107     //    }; }; };
108     // If they do not have a default implicit capture, check to see
109     // if the entity has already been explicitly captured.
110     // If even a single dependent enclosing lambda lacks the capability
111     // to ever capture this variable, there is no further enclosing
112     // non-dependent lambda that can capture this variable.
113     if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
114       if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
115         return NoLambdaIsCaptureReady;
116       if (IsCapturingThis && !LSI->isCXXThisCaptured())
117         return NoLambdaIsCaptureReady;
118     }
119     EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
120 
121     assert(CurScopeIndex);
122     --CurScopeIndex;
123   } while (!EnclosingDC->isTranslationUnit() &&
124            EnclosingDC->isDependentContext() &&
125            isLambdaCallOperator(EnclosingDC));
126 
127   assert(CurScopeIndex < (FunctionScopes.size() - 1));
128   // If the enclosingDC is not dependent, then the immediately nested lambda
129   // (one index above) is capture-ready.
130   if (!EnclosingDC->isDependentContext())
131     return CurScopeIndex + 1;
132   return NoLambdaIsCaptureReady;
133 }
134 
135 /// \brief Examines the FunctionScopeInfo stack to determine the nearest
136 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
137 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
138 /// If successful, returns the index into Sema's FunctionScopeInfo stack
139 /// of the capture-capable lambda's LambdaScopeInfo.
140 ///
141 /// Given the current stack of lambdas being processed by Sema and
142 /// the variable of interest, to identify the nearest enclosing lambda (to the
143 /// current lambda at the top of the stack) that can truly capture
144 /// a variable, it has to have the following two properties:
145 ///  a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
146 ///     - climb down the stack (i.e. starting from the innermost and examining
147 ///       each outer lambda step by step) checking if each enclosing
148 ///       lambda can either implicitly or explicitly capture the variable.
149 ///       Record the first such lambda that is enclosed in a non-dependent
150 ///       context. If no such lambda currently exists return failure.
151 ///  b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
152 ///  capture the variable by checking all its enclosing lambdas:
153 ///     - check if all outer lambdas enclosing the 'capture-ready' lambda
154 ///       identified above in 'a' can also capture the variable (this is done
155 ///       via tryCaptureVariable for variables and CheckCXXThisCapture for
156 ///       'this' by passing in the index of the Lambda identified in step 'a')
157 ///
158 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
159 /// LambdaScopeInfo inherits from).  The current/deepest/innermost lambda
160 /// is at the top of the stack.
161 ///
162 /// \param VarToCapture - the variable to capture.  If NULL, capture 'this'.
163 ///
164 ///
165 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
166 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
167 /// which is capture-capable.  If the return value evaluates to 'false' then
168 /// no lambda is capture-capable for \p VarToCapture.
169 
getStackIndexOfNearestEnclosingCaptureCapableLambda(ArrayRef<const sema::FunctionScopeInfo * > FunctionScopes,VarDecl * VarToCapture,Sema & S)170 Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
171     ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
172     VarDecl *VarToCapture, Sema &S) {
173 
174   const Optional<unsigned> NoLambdaIsCaptureCapable;
175 
176   const Optional<unsigned> OptionalStackIndex =
177       getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
178                                                         VarToCapture);
179   if (!OptionalStackIndex)
180     return NoLambdaIsCaptureCapable;
181 
182   const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
183   assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
184           S.getCurGenericLambda()) &&
185          "The capture ready lambda for a potential capture can only be the "
186          "current lambda if it is a generic lambda");
187 
188   const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
189       cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
190 
191   // If VarToCapture is null, we are attempting to capture 'this'
192   const bool IsCapturingThis = !VarToCapture;
193   const bool IsCapturingVariable = !IsCapturingThis;
194 
195   if (IsCapturingVariable) {
196     // Check if the capture-ready lambda can truly capture the variable, by
197     // checking whether all enclosing lambdas of the capture-ready lambda allow
198     // the capture - i.e. make sure it is capture-capable.
199     QualType CaptureType, DeclRefType;
200     const bool CanCaptureVariable =
201         !S.tryCaptureVariable(VarToCapture,
202                               /*ExprVarIsUsedInLoc*/ SourceLocation(),
203                               clang::Sema::TryCapture_Implicit,
204                               /*EllipsisLoc*/ SourceLocation(),
205                               /*BuildAndDiagnose*/ false, CaptureType,
206                               DeclRefType, &IndexOfCaptureReadyLambda);
207     if (!CanCaptureVariable)
208       return NoLambdaIsCaptureCapable;
209   } else {
210     // Check if the capture-ready lambda can truly capture 'this' by checking
211     // whether all enclosing lambdas of the capture-ready lambda can capture
212     // 'this'.
213     const bool CanCaptureThis =
214         !S.CheckCXXThisCapture(
215              CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
216              /*Explicit*/ false, /*BuildAndDiagnose*/ false,
217              &IndexOfCaptureReadyLambda);
218     if (!CanCaptureThis)
219       return NoLambdaIsCaptureCapable;
220   }
221   return IndexOfCaptureReadyLambda;
222 }
223 
224 static inline TemplateParameterList *
getGenericLambdaTemplateParameterList(LambdaScopeInfo * LSI,Sema & SemaRef)225 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
226   if (LSI->GLTemplateParameterList)
227     return LSI->GLTemplateParameterList;
228 
229   if (LSI->AutoTemplateParams.size()) {
230     SourceRange IntroRange = LSI->IntroducerRange;
231     SourceLocation LAngleLoc = IntroRange.getBegin();
232     SourceLocation RAngleLoc = IntroRange.getEnd();
233     LSI->GLTemplateParameterList = TemplateParameterList::Create(
234         SemaRef.Context,
235         /*Template kw loc*/ SourceLocation(), LAngleLoc,
236         (NamedDecl **)LSI->AutoTemplateParams.data(),
237         LSI->AutoTemplateParams.size(), RAngleLoc);
238   }
239   return LSI->GLTemplateParameterList;
240 }
241 
createLambdaClosureType(SourceRange IntroducerRange,TypeSourceInfo * Info,bool KnownDependent,LambdaCaptureDefault CaptureDefault)242 CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
243                                              TypeSourceInfo *Info,
244                                              bool KnownDependent,
245                                              LambdaCaptureDefault CaptureDefault) {
246   DeclContext *DC = CurContext;
247   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
248     DC = DC->getParent();
249   bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
250                                                                *this);
251   // Start constructing the lambda class.
252   CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
253                                                      IntroducerRange.getBegin(),
254                                                      KnownDependent,
255                                                      IsGenericLambda,
256                                                      CaptureDefault);
257   DC->addDecl(Class);
258 
259   return Class;
260 }
261 
262 /// \brief Determine whether the given context is or is enclosed in an inline
263 /// function.
isInInlineFunction(const DeclContext * DC)264 static bool isInInlineFunction(const DeclContext *DC) {
265   while (!DC->isFileContext()) {
266     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
267       if (FD->isInlined())
268         return true;
269 
270     DC = DC->getLexicalParent();
271   }
272 
273   return false;
274 }
275 
276 MangleNumberingContext *
getCurrentMangleNumberContext(const DeclContext * DC,Decl * & ManglingContextDecl)277 Sema::getCurrentMangleNumberContext(const DeclContext *DC,
278                                     Decl *&ManglingContextDecl) {
279   // Compute the context for allocating mangling numbers in the current
280   // expression, if the ABI requires them.
281   ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
282 
283   enum ContextKind {
284     Normal,
285     DefaultArgument,
286     DataMember,
287     StaticDataMember
288   } Kind = Normal;
289 
290   // Default arguments of member function parameters that appear in a class
291   // definition, as well as the initializers of data members, receive special
292   // treatment. Identify them.
293   if (ManglingContextDecl) {
294     if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
295       if (const DeclContext *LexicalDC
296           = Param->getDeclContext()->getLexicalParent())
297         if (LexicalDC->isRecord())
298           Kind = DefaultArgument;
299     } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
300       if (Var->getDeclContext()->isRecord())
301         Kind = StaticDataMember;
302     } else if (isa<FieldDecl>(ManglingContextDecl)) {
303       Kind = DataMember;
304     }
305   }
306 
307   // Itanium ABI [5.1.7]:
308   //   In the following contexts [...] the one-definition rule requires closure
309   //   types in different translation units to "correspond":
310   bool IsInNonspecializedTemplate =
311     !ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
312   switch (Kind) {
313   case Normal:
314     //  -- the bodies of non-exported nonspecialized template functions
315     //  -- the bodies of inline functions
316     if ((IsInNonspecializedTemplate &&
317          !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
318         isInInlineFunction(CurContext)) {
319       ManglingContextDecl = nullptr;
320       return &Context.getManglingNumberContext(DC);
321     }
322 
323     ManglingContextDecl = nullptr;
324     return nullptr;
325 
326   case StaticDataMember:
327     //  -- the initializers of nonspecialized static members of template classes
328     if (!IsInNonspecializedTemplate) {
329       ManglingContextDecl = nullptr;
330       return nullptr;
331     }
332     // Fall through to get the current context.
333 
334   case DataMember:
335     //  -- the in-class initializers of class members
336   case DefaultArgument:
337     //  -- default arguments appearing in class definitions
338     return &ExprEvalContexts.back().getMangleNumberingContext(Context);
339   }
340 
341   llvm_unreachable("unexpected context");
342 }
343 
344 MangleNumberingContext &
getMangleNumberingContext(ASTContext & Ctx)345 Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
346     ASTContext &Ctx) {
347   assert(ManglingContextDecl && "Need to have a context declaration");
348   if (!MangleNumbering)
349     MangleNumbering = Ctx.createMangleNumberingContext();
350   return *MangleNumbering;
351 }
352 
startLambdaDefinition(CXXRecordDecl * Class,SourceRange IntroducerRange,TypeSourceInfo * MethodTypeInfo,SourceLocation EndLoc,ArrayRef<ParmVarDecl * > Params)353 CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
354                                            SourceRange IntroducerRange,
355                                            TypeSourceInfo *MethodTypeInfo,
356                                            SourceLocation EndLoc,
357                                            ArrayRef<ParmVarDecl *> Params) {
358   QualType MethodType = MethodTypeInfo->getType();
359   TemplateParameterList *TemplateParams =
360             getGenericLambdaTemplateParameterList(getCurLambda(), *this);
361   // If a lambda appears in a dependent context or is a generic lambda (has
362   // template parameters) and has an 'auto' return type, deduce it to a
363   // dependent type.
364   if (Class->isDependentContext() || TemplateParams) {
365     const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
366     QualType Result = FPT->getReturnType();
367     if (Result->isUndeducedType()) {
368       Result = SubstAutoType(Result, Context.DependentTy);
369       MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
370                                            FPT->getExtProtoInfo());
371     }
372   }
373 
374   // C++11 [expr.prim.lambda]p5:
375   //   The closure type for a lambda-expression has a public inline function
376   //   call operator (13.5.4) whose parameters and return type are described by
377   //   the lambda-expression's parameter-declaration-clause and
378   //   trailing-return-type respectively.
379   DeclarationName MethodName
380     = Context.DeclarationNames.getCXXOperatorName(OO_Call);
381   DeclarationNameLoc MethodNameLoc;
382   MethodNameLoc.CXXOperatorName.BeginOpNameLoc
383     = IntroducerRange.getBegin().getRawEncoding();
384   MethodNameLoc.CXXOperatorName.EndOpNameLoc
385     = IntroducerRange.getEnd().getRawEncoding();
386   CXXMethodDecl *Method
387     = CXXMethodDecl::Create(Context, Class, EndLoc,
388                             DeclarationNameInfo(MethodName,
389                                                 IntroducerRange.getBegin(),
390                                                 MethodNameLoc),
391                             MethodType, MethodTypeInfo,
392                             SC_None,
393                             /*isInline=*/true,
394                             /*isConstExpr=*/false,
395                             EndLoc);
396   Method->setAccess(AS_public);
397 
398   // Temporarily set the lexical declaration context to the current
399   // context, so that the Scope stack matches the lexical nesting.
400   Method->setLexicalDeclContext(CurContext);
401   // Create a function template if we have a template parameter list
402   FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
403             FunctionTemplateDecl::Create(Context, Class,
404                                          Method->getLocation(), MethodName,
405                                          TemplateParams,
406                                          Method) : nullptr;
407   if (TemplateMethod) {
408     TemplateMethod->setLexicalDeclContext(CurContext);
409     TemplateMethod->setAccess(AS_public);
410     Method->setDescribedFunctionTemplate(TemplateMethod);
411   }
412 
413   // Add parameters.
414   if (!Params.empty()) {
415     Method->setParams(Params);
416     CheckParmsForFunctionDef(const_cast<ParmVarDecl **>(Params.begin()),
417                              const_cast<ParmVarDecl **>(Params.end()),
418                              /*CheckParameterNames=*/false);
419 
420     for (auto P : Method->params())
421       P->setOwningFunction(Method);
422   }
423 
424   Decl *ManglingContextDecl;
425   if (MangleNumberingContext *MCtx =
426           getCurrentMangleNumberContext(Class->getDeclContext(),
427                                         ManglingContextDecl)) {
428     unsigned ManglingNumber = MCtx->getManglingNumber(Method);
429     Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
430   }
431 
432   return Method;
433 }
434 
buildLambdaScope(LambdaScopeInfo * LSI,CXXMethodDecl * CallOperator,SourceRange IntroducerRange,LambdaCaptureDefault CaptureDefault,SourceLocation CaptureDefaultLoc,bool ExplicitParams,bool ExplicitResultType,bool Mutable)435 void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
436                                         CXXMethodDecl *CallOperator,
437                                         SourceRange IntroducerRange,
438                                         LambdaCaptureDefault CaptureDefault,
439                                         SourceLocation CaptureDefaultLoc,
440                                         bool ExplicitParams,
441                                         bool ExplicitResultType,
442                                         bool Mutable) {
443   LSI->CallOperator = CallOperator;
444   CXXRecordDecl *LambdaClass = CallOperator->getParent();
445   LSI->Lambda = LambdaClass;
446   if (CaptureDefault == LCD_ByCopy)
447     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
448   else if (CaptureDefault == LCD_ByRef)
449     LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
450   LSI->CaptureDefaultLoc = CaptureDefaultLoc;
451   LSI->IntroducerRange = IntroducerRange;
452   LSI->ExplicitParams = ExplicitParams;
453   LSI->Mutable = Mutable;
454 
455   if (ExplicitResultType) {
456     LSI->ReturnType = CallOperator->getReturnType();
457 
458     if (!LSI->ReturnType->isDependentType() &&
459         !LSI->ReturnType->isVoidType()) {
460       if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
461                               diag::err_lambda_incomplete_result)) {
462         // Do nothing.
463       }
464     }
465   } else {
466     LSI->HasImplicitReturnType = true;
467   }
468 }
469 
finishLambdaExplicitCaptures(LambdaScopeInfo * LSI)470 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
471   LSI->finishedExplicitCaptures();
472 }
473 
addLambdaParameters(CXXMethodDecl * CallOperator,Scope * CurScope)474 void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
475   // Introduce our parameters into the function scope
476   for (unsigned p = 0, NumParams = CallOperator->getNumParams();
477        p < NumParams; ++p) {
478     ParmVarDecl *Param = CallOperator->getParamDecl(p);
479 
480     // If this has an identifier, add it to the scope stack.
481     if (CurScope && Param->getIdentifier()) {
482       CheckShadow(CurScope, Param);
483 
484       PushOnScopeChains(Param, CurScope);
485     }
486   }
487 }
488 
489 /// If this expression is an enumerator-like expression of some type
490 /// T, return the type T; otherwise, return null.
491 ///
492 /// Pointer comparisons on the result here should always work because
493 /// it's derived from either the parent of an EnumConstantDecl
494 /// (i.e. the definition) or the declaration returned by
495 /// EnumType::getDecl() (i.e. the definition).
findEnumForBlockReturn(Expr * E)496 static EnumDecl *findEnumForBlockReturn(Expr *E) {
497   // An expression is an enumerator-like expression of type T if,
498   // ignoring parens and parens-like expressions:
499   E = E->IgnoreParens();
500 
501   //  - it is an enumerator whose enum type is T or
502   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
503     if (EnumConstantDecl *D
504           = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
505       return cast<EnumDecl>(D->getDeclContext());
506     }
507     return nullptr;
508   }
509 
510   //  - it is a comma expression whose RHS is an enumerator-like
511   //    expression of type T or
512   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
513     if (BO->getOpcode() == BO_Comma)
514       return findEnumForBlockReturn(BO->getRHS());
515     return nullptr;
516   }
517 
518   //  - it is a statement-expression whose value expression is an
519   //    enumerator-like expression of type T or
520   if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
521     if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
522       return findEnumForBlockReturn(last);
523     return nullptr;
524   }
525 
526   //   - it is a ternary conditional operator (not the GNU ?:
527   //     extension) whose second and third operands are
528   //     enumerator-like expressions of type T or
529   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
530     if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
531       if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
532         return ED;
533     return nullptr;
534   }
535 
536   // (implicitly:)
537   //   - it is an implicit integral conversion applied to an
538   //     enumerator-like expression of type T or
539   if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
540     // We can sometimes see integral conversions in valid
541     // enumerator-like expressions.
542     if (ICE->getCastKind() == CK_IntegralCast)
543       return findEnumForBlockReturn(ICE->getSubExpr());
544 
545     // Otherwise, just rely on the type.
546   }
547 
548   //   - it is an expression of that formal enum type.
549   if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
550     return ET->getDecl();
551   }
552 
553   // Otherwise, nope.
554   return nullptr;
555 }
556 
557 /// Attempt to find a type T for which the returned expression of the
558 /// given statement is an enumerator-like expression of that type.
findEnumForBlockReturn(ReturnStmt * ret)559 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
560   if (Expr *retValue = ret->getRetValue())
561     return findEnumForBlockReturn(retValue);
562   return nullptr;
563 }
564 
565 /// Attempt to find a common type T for which all of the returned
566 /// expressions in a block are enumerator-like expressions of that
567 /// type.
findCommonEnumForBlockReturns(ArrayRef<ReturnStmt * > returns)568 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
569   ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
570 
571   // Try to find one for the first return.
572   EnumDecl *ED = findEnumForBlockReturn(*i);
573   if (!ED) return nullptr;
574 
575   // Check that the rest of the returns have the same enum.
576   for (++i; i != e; ++i) {
577     if (findEnumForBlockReturn(*i) != ED)
578       return nullptr;
579   }
580 
581   // Never infer an anonymous enum type.
582   if (!ED->hasNameForLinkage()) return nullptr;
583 
584   return ED;
585 }
586 
587 /// Adjust the given return statements so that they formally return
588 /// the given type.  It should require, at most, an IntegralCast.
adjustBlockReturnsToEnum(Sema & S,ArrayRef<ReturnStmt * > returns,QualType returnType)589 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
590                                      QualType returnType) {
591   for (ArrayRef<ReturnStmt*>::iterator
592          i = returns.begin(), e = returns.end(); i != e; ++i) {
593     ReturnStmt *ret = *i;
594     Expr *retValue = ret->getRetValue();
595     if (S.Context.hasSameType(retValue->getType(), returnType))
596       continue;
597 
598     // Right now we only support integral fixup casts.
599     assert(returnType->isIntegralOrUnscopedEnumerationType());
600     assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
601 
602     ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
603 
604     Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
605     E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
606                                  E, /*base path*/ nullptr, VK_RValue);
607     if (cleanups) {
608       cleanups->setSubExpr(E);
609     } else {
610       ret->setRetValue(E);
611     }
612   }
613 }
614 
deduceClosureReturnType(CapturingScopeInfo & CSI)615 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
616   assert(CSI.HasImplicitReturnType);
617   // If it was ever a placeholder, it had to been deduced to DependentTy.
618   assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
619 
620   // C++ core issue 975:
621   //   If a lambda-expression does not include a trailing-return-type,
622   //   it is as if the trailing-return-type denotes the following type:
623   //     - if there are no return statements in the compound-statement,
624   //       or all return statements return either an expression of type
625   //       void or no expression or braced-init-list, the type void;
626   //     - otherwise, if all return statements return an expression
627   //       and the types of the returned expressions after
628   //       lvalue-to-rvalue conversion (4.1 [conv.lval]),
629   //       array-to-pointer conversion (4.2 [conv.array]), and
630   //       function-to-pointer conversion (4.3 [conv.func]) are the
631   //       same, that common type;
632   //     - otherwise, the program is ill-formed.
633   //
634   // C++ core issue 1048 additionally removes top-level cv-qualifiers
635   // from the types of returned expressions to match the C++14 auto
636   // deduction rules.
637   //
638   // In addition, in blocks in non-C++ modes, if all of the return
639   // statements are enumerator-like expressions of some type T, where
640   // T has a name for linkage, then we infer the return type of the
641   // block to be that type.
642 
643   // First case: no return statements, implicit void return type.
644   ASTContext &Ctx = getASTContext();
645   if (CSI.Returns.empty()) {
646     // It's possible there were simply no /valid/ return statements.
647     // In this case, the first one we found may have at least given us a type.
648     if (CSI.ReturnType.isNull())
649       CSI.ReturnType = Ctx.VoidTy;
650     return;
651   }
652 
653   // Second case: at least one return statement has dependent type.
654   // Delay type checking until instantiation.
655   assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
656   if (CSI.ReturnType->isDependentType())
657     return;
658 
659   // Try to apply the enum-fuzz rule.
660   if (!getLangOpts().CPlusPlus) {
661     assert(isa<BlockScopeInfo>(CSI));
662     const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
663     if (ED) {
664       CSI.ReturnType = Context.getTypeDeclType(ED);
665       adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
666       return;
667     }
668   }
669 
670   // Third case: only one return statement. Don't bother doing extra work!
671   SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
672                                          E = CSI.Returns.end();
673   if (I+1 == E)
674     return;
675 
676   // General case: many return statements.
677   // Check that they all have compatible return types.
678 
679   // We require the return types to strictly match here.
680   // Note that we've already done the required promotions as part of
681   // processing the return statement.
682   for (; I != E; ++I) {
683     const ReturnStmt *RS = *I;
684     const Expr *RetE = RS->getRetValue();
685 
686     QualType ReturnType =
687         (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
688     if (Context.hasSameType(ReturnType, CSI.ReturnType))
689       continue;
690 
691     // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
692     // TODO: It's possible that the *first* return is the divergent one.
693     Diag(RS->getLocStart(),
694          diag::err_typecheck_missing_return_type_incompatible)
695       << ReturnType << CSI.ReturnType
696       << isa<LambdaScopeInfo>(CSI);
697     // Continue iterating so that we keep emitting diagnostics.
698   }
699 }
700 
performLambdaInitCaptureInitialization(SourceLocation Loc,bool ByRef,IdentifierInfo * Id,Expr * & Init)701 QualType Sema::performLambdaInitCaptureInitialization(SourceLocation Loc,
702                                                       bool ByRef,
703                                                       IdentifierInfo *Id,
704                                                       Expr *&Init) {
705 
706   // We do not need to distinguish between direct-list-initialization
707   // and copy-list-initialization here, because we will always deduce
708   // std::initializer_list<T>, and direct- and copy-list-initialization
709   // always behave the same for such a type.
710   // FIXME: We should model whether an '=' was present.
711   const bool IsDirectInit = isa<ParenListExpr>(Init) || isa<InitListExpr>(Init);
712 
713   // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
714   // deduce against.
715   QualType DeductType = Context.getAutoDeductType();
716   TypeLocBuilder TLB;
717   TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
718   if (ByRef) {
719     DeductType = BuildReferenceType(DeductType, true, Loc, Id);
720     assert(!DeductType.isNull() && "can't build reference to auto");
721     TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
722   }
723   TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
724 
725   // Are we a non-list direct initialization?
726   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
727 
728   Expr *DeduceInit = Init;
729   // Initializer could be a C++ direct-initializer. Deduction only works if it
730   // contains exactly one expression.
731   if (CXXDirectInit) {
732     if (CXXDirectInit->getNumExprs() == 0) {
733       Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_no_expression)
734           << DeclarationName(Id) << TSI->getType() << Loc;
735       return QualType();
736     } else if (CXXDirectInit->getNumExprs() > 1) {
737       Diag(CXXDirectInit->getExpr(1)->getLocStart(),
738            diag::err_init_capture_multiple_expressions)
739           << DeclarationName(Id) << TSI->getType() << Loc;
740       return QualType();
741     } else {
742       DeduceInit = CXXDirectInit->getExpr(0);
743       if (isa<InitListExpr>(DeduceInit))
744         Diag(CXXDirectInit->getLocStart(), diag::err_init_capture_paren_braces)
745           << DeclarationName(Id) << Loc;
746     }
747   }
748 
749   // Now deduce against the initialization expression and store the deduced
750   // type below.
751   QualType DeducedType;
752   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
753     if (isa<InitListExpr>(Init))
754       Diag(Loc, diag::err_init_capture_deduction_failure_from_init_list)
755           << DeclarationName(Id)
756           << (DeduceInit->getType().isNull() ? TSI->getType()
757                                              : DeduceInit->getType())
758           << DeduceInit->getSourceRange();
759     else
760       Diag(Loc, diag::err_init_capture_deduction_failure)
761           << DeclarationName(Id) << TSI->getType()
762           << (DeduceInit->getType().isNull() ? TSI->getType()
763                                              : DeduceInit->getType())
764           << DeduceInit->getSourceRange();
765   }
766   if (DeducedType.isNull())
767     return QualType();
768 
769   // Perform initialization analysis and ensure any implicit conversions
770   // (such as lvalue-to-rvalue) are enforced.
771   InitializedEntity Entity =
772       InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
773   InitializationKind Kind =
774       IsDirectInit
775           ? (CXXDirectInit ? InitializationKind::CreateDirect(
776                                  Loc, Init->getLocStart(), Init->getLocEnd())
777                            : InitializationKind::CreateDirectList(Loc))
778           : InitializationKind::CreateCopy(Loc, Init->getLocStart());
779 
780   MultiExprArg Args = Init;
781   if (CXXDirectInit)
782     Args =
783         MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
784   QualType DclT;
785   InitializationSequence InitSeq(*this, Entity, Kind, Args);
786   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
787 
788   if (Result.isInvalid())
789     return QualType();
790   Init = Result.getAs<Expr>();
791 
792   // The init-capture initialization is a full-expression that must be
793   // processed as one before we enter the declcontext of the lambda's
794   // call-operator.
795   Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
796                                /*IsConstexpr*/ false,
797                                /*IsLambdaInitCaptureInitalizer*/ true);
798   if (Result.isInvalid())
799     return QualType();
800 
801   Init = Result.getAs<Expr>();
802   return DeducedType;
803 }
804 
createLambdaInitCaptureVarDecl(SourceLocation Loc,QualType InitCaptureType,IdentifierInfo * Id,Expr * Init)805 VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
806     QualType InitCaptureType, IdentifierInfo *Id, Expr *Init) {
807 
808   TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
809       Loc);
810   // Create a dummy variable representing the init-capture. This is not actually
811   // used as a variable, and only exists as a way to name and refer to the
812   // init-capture.
813   // FIXME: Pass in separate source locations for '&' and identifier.
814   VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
815                                    Loc, Id, InitCaptureType, TSI, SC_Auto);
816   NewVD->setInitCapture(true);
817   NewVD->setReferenced(true);
818   NewVD->markUsed(Context);
819   NewVD->setInit(Init);
820   return NewVD;
821 
822 }
823 
buildInitCaptureField(LambdaScopeInfo * LSI,VarDecl * Var)824 FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
825   FieldDecl *Field = FieldDecl::Create(
826       Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
827       nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
828       ICIS_NoInit);
829   Field->setImplicit(true);
830   Field->setAccess(AS_private);
831   LSI->Lambda->addDecl(Field);
832 
833   LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
834                   /*isNested*/false, Var->getLocation(), SourceLocation(),
835                   Var->getType(), Var->getInit());
836   return Field;
837 }
838 
ActOnStartOfLambdaDefinition(LambdaIntroducer & Intro,Declarator & ParamInfo,Scope * CurScope)839 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
840                   Declarator &ParamInfo, Scope *CurScope) {
841   // Determine if we're within a context where we know that the lambda will
842   // be dependent, because there are template parameters in scope.
843   bool KnownDependent = false;
844   LambdaScopeInfo *const LSI = getCurLambda();
845   assert(LSI && "LambdaScopeInfo should be on stack!");
846   TemplateParameterList *TemplateParams =
847             getGenericLambdaTemplateParameterList(LSI, *this);
848 
849   if (Scope *TmplScope = CurScope->getTemplateParamParent()) {
850     // Since we have our own TemplateParams, so check if an outer scope
851     // has template params, only then are we in a dependent scope.
852     if (TemplateParams)  {
853       TmplScope = TmplScope->getParent();
854       TmplScope = TmplScope ? TmplScope->getTemplateParamParent() : nullptr;
855     }
856     if (TmplScope && !TmplScope->decl_empty())
857       KnownDependent = true;
858   }
859   // Determine the signature of the call operator.
860   TypeSourceInfo *MethodTyInfo;
861   bool ExplicitParams = true;
862   bool ExplicitResultType = true;
863   bool ContainsUnexpandedParameterPack = false;
864   SourceLocation EndLoc;
865   SmallVector<ParmVarDecl *, 8> Params;
866   if (ParamInfo.getNumTypeObjects() == 0) {
867     // C++11 [expr.prim.lambda]p4:
868     //   If a lambda-expression does not include a lambda-declarator, it is as
869     //   if the lambda-declarator were ().
870     FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
871         /*IsVariadic=*/false, /*IsCXXMethod=*/true));
872     EPI.HasTrailingReturn = true;
873     EPI.TypeQuals |= DeclSpec::TQ_const;
874     // C++1y [expr.prim.lambda]:
875     //   The lambda return type is 'auto', which is replaced by the
876     //   trailing-return type if provided and/or deduced from 'return'
877     //   statements
878     // We don't do this before C++1y, because we don't support deduced return
879     // types there.
880     QualType DefaultTypeForNoTrailingReturn =
881         getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
882                                   : Context.DependentTy;
883     QualType MethodTy =
884         Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
885     MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
886     ExplicitParams = false;
887     ExplicitResultType = false;
888     EndLoc = Intro.Range.getEnd();
889   } else {
890     assert(ParamInfo.isFunctionDeclarator() &&
891            "lambda-declarator is a function");
892     DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
893 
894     // C++11 [expr.prim.lambda]p5:
895     //   This function call operator is declared const (9.3.1) if and only if
896     //   the lambda-expression's parameter-declaration-clause is not followed
897     //   by mutable. It is neither virtual nor declared volatile. [...]
898     if (!FTI.hasMutableQualifier())
899       FTI.TypeQuals |= DeclSpec::TQ_const;
900 
901     MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
902     assert(MethodTyInfo && "no type from lambda-declarator");
903     EndLoc = ParamInfo.getSourceRange().getEnd();
904 
905     ExplicitResultType = FTI.hasTrailingReturnType();
906 
907     if (FTIHasNonVoidParameters(FTI)) {
908       Params.reserve(FTI.NumParams);
909       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
910         Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
911     }
912 
913     // Check for unexpanded parameter packs in the method type.
914     if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
915       ContainsUnexpandedParameterPack = true;
916   }
917 
918   CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
919                                                  KnownDependent, Intro.Default);
920 
921   CXXMethodDecl *Method = startLambdaDefinition(Class, Intro.Range,
922                                                 MethodTyInfo, EndLoc, Params);
923   if (ExplicitParams)
924     CheckCXXDefaultArguments(Method);
925 
926   // Attributes on the lambda apply to the method.
927   ProcessDeclAttributes(CurScope, Method, ParamInfo);
928 
929   // Introduce the function call operator as the current declaration context.
930   PushDeclContext(CurScope, Method);
931 
932   // Build the lambda scope.
933   buildLambdaScope(LSI, Method,
934                        Intro.Range,
935                        Intro.Default, Intro.DefaultLoc,
936                        ExplicitParams,
937                        ExplicitResultType,
938                        !Method->isConst());
939 
940   // C++11 [expr.prim.lambda]p9:
941   //   A lambda-expression whose smallest enclosing scope is a block scope is a
942   //   local lambda expression; any other lambda expression shall not have a
943   //   capture-default or simple-capture in its lambda-introducer.
944   //
945   // For simple-captures, this is covered by the check below that any named
946   // entity is a variable that can be captured.
947   //
948   // For DR1632, we also allow a capture-default in any context where we can
949   // odr-use 'this' (in particular, in a default initializer for a non-static
950   // data member).
951   if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
952       (getCurrentThisType().isNull() ||
953        CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
954                            /*BuildAndDiagnose*/false)))
955     Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
956 
957   // Distinct capture names, for diagnostics.
958   llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
959 
960   // Handle explicit captures.
961   SourceLocation PrevCaptureLoc
962     = Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
963   for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
964        PrevCaptureLoc = C->Loc, ++C) {
965     if (C->Kind == LCK_This) {
966       // C++11 [expr.prim.lambda]p8:
967       //   An identifier or this shall not appear more than once in a
968       //   lambda-capture.
969       if (LSI->isCXXThisCaptured()) {
970         Diag(C->Loc, diag::err_capture_more_than_once)
971             << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
972             << FixItHint::CreateRemoval(
973                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
974         continue;
975       }
976 
977       // C++11 [expr.prim.lambda]p8:
978       //   If a lambda-capture includes a capture-default that is =, the
979       //   lambda-capture shall not contain this [...].
980       if (Intro.Default == LCD_ByCopy) {
981         Diag(C->Loc, diag::err_this_capture_with_copy_default)
982             << FixItHint::CreateRemoval(
983                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
984         continue;
985       }
986 
987       // C++11 [expr.prim.lambda]p12:
988       //   If this is captured by a local lambda expression, its nearest
989       //   enclosing function shall be a non-static member function.
990       QualType ThisCaptureType = getCurrentThisType();
991       if (ThisCaptureType.isNull()) {
992         Diag(C->Loc, diag::err_this_capture) << true;
993         continue;
994       }
995 
996       CheckCXXThisCapture(C->Loc, /*Explicit=*/true);
997       continue;
998     }
999 
1000     assert(C->Id && "missing identifier for capture");
1001 
1002     if (C->Init.isInvalid())
1003       continue;
1004 
1005     VarDecl *Var = nullptr;
1006     if (C->Init.isUsable()) {
1007       Diag(C->Loc, getLangOpts().CPlusPlus14
1008                        ? diag::warn_cxx11_compat_init_capture
1009                        : diag::ext_init_capture);
1010 
1011       if (C->Init.get()->containsUnexpandedParameterPack())
1012         ContainsUnexpandedParameterPack = true;
1013       // If the initializer expression is usable, but the InitCaptureType
1014       // is not, then an error has occurred - so ignore the capture for now.
1015       // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1016       // FIXME: we should create the init capture variable and mark it invalid
1017       // in this case.
1018       if (C->InitCaptureType.get().isNull())
1019         continue;
1020       Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1021             C->Id, C->Init.get());
1022       // C++1y [expr.prim.lambda]p11:
1023       //   An init-capture behaves as if it declares and explicitly
1024       //   captures a variable [...] whose declarative region is the
1025       //   lambda-expression's compound-statement
1026       if (Var)
1027         PushOnScopeChains(Var, CurScope, false);
1028     } else {
1029       // C++11 [expr.prim.lambda]p8:
1030       //   If a lambda-capture includes a capture-default that is &, the
1031       //   identifiers in the lambda-capture shall not be preceded by &.
1032       //   If a lambda-capture includes a capture-default that is =, [...]
1033       //   each identifier it contains shall be preceded by &.
1034       if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1035         Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1036             << FixItHint::CreateRemoval(
1037                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1038         continue;
1039       } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1040         Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1041             << FixItHint::CreateRemoval(
1042                 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1043         continue;
1044       }
1045 
1046       // C++11 [expr.prim.lambda]p10:
1047       //   The identifiers in a capture-list are looked up using the usual
1048       //   rules for unqualified name lookup (3.4.1)
1049       DeclarationNameInfo Name(C->Id, C->Loc);
1050       LookupResult R(*this, Name, LookupOrdinaryName);
1051       LookupName(R, CurScope);
1052       if (R.isAmbiguous())
1053         continue;
1054       if (R.empty()) {
1055         // FIXME: Disable corrections that would add qualification?
1056         CXXScopeSpec ScopeSpec;
1057         if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
1058                                 llvm::make_unique<DeclFilterCCC<VarDecl>>()))
1059           continue;
1060       }
1061 
1062       Var = R.getAsSingle<VarDecl>();
1063       if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1064         continue;
1065     }
1066 
1067     // C++11 [expr.prim.lambda]p8:
1068     //   An identifier or this shall not appear more than once in a
1069     //   lambda-capture.
1070     if (!CaptureNames.insert(C->Id).second) {
1071       if (Var && LSI->isCaptured(Var)) {
1072         Diag(C->Loc, diag::err_capture_more_than_once)
1073             << C->Id << SourceRange(LSI->getCapture(Var).getLocation())
1074             << FixItHint::CreateRemoval(
1075                    SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1076       } else
1077         // Previous capture captured something different (one or both was
1078         // an init-cpature): no fixit.
1079         Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1080       continue;
1081     }
1082 
1083     // C++11 [expr.prim.lambda]p10:
1084     //   [...] each such lookup shall find a variable with automatic storage
1085     //   duration declared in the reaching scope of the local lambda expression.
1086     // Note that the 'reaching scope' check happens in tryCaptureVariable().
1087     if (!Var) {
1088       Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1089       continue;
1090     }
1091 
1092     // Ignore invalid decls; they'll just confuse the code later.
1093     if (Var->isInvalidDecl())
1094       continue;
1095 
1096     if (!Var->hasLocalStorage()) {
1097       Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1098       Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1099       continue;
1100     }
1101 
1102     // C++11 [expr.prim.lambda]p23:
1103     //   A capture followed by an ellipsis is a pack expansion (14.5.3).
1104     SourceLocation EllipsisLoc;
1105     if (C->EllipsisLoc.isValid()) {
1106       if (Var->isParameterPack()) {
1107         EllipsisLoc = C->EllipsisLoc;
1108       } else {
1109         Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1110           << SourceRange(C->Loc);
1111 
1112         // Just ignore the ellipsis.
1113       }
1114     } else if (Var->isParameterPack()) {
1115       ContainsUnexpandedParameterPack = true;
1116     }
1117 
1118     if (C->Init.isUsable()) {
1119       buildInitCaptureField(LSI, Var);
1120     } else {
1121       TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
1122                                                    TryCapture_ExplicitByVal;
1123       tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1124     }
1125   }
1126   finishLambdaExplicitCaptures(LSI);
1127 
1128   LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1129 
1130   // Add lambda parameters into scope.
1131   addLambdaParameters(Method, CurScope);
1132 
1133   // Enter a new evaluation context to insulate the lambda from any
1134   // cleanups from the enclosing full-expression.
1135   PushExpressionEvaluationContext(PotentiallyEvaluated);
1136 }
1137 
ActOnLambdaError(SourceLocation StartLoc,Scope * CurScope,bool IsInstantiation)1138 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1139                             bool IsInstantiation) {
1140   LambdaScopeInfo *LSI = getCurLambda();
1141 
1142   // Leave the expression-evaluation context.
1143   DiscardCleanupsInEvaluationContext();
1144   PopExpressionEvaluationContext();
1145 
1146   // Leave the context of the lambda.
1147   if (!IsInstantiation)
1148     PopDeclContext();
1149 
1150   // Finalize the lambda.
1151   CXXRecordDecl *Class = LSI->Lambda;
1152   Class->setInvalidDecl();
1153   SmallVector<Decl*, 4> Fields(Class->fields());
1154   ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1155               SourceLocation(), nullptr);
1156   CheckCompletedCXXClass(Class);
1157 
1158   PopFunctionScopeInfo();
1159 }
1160 
1161 /// \brief Add a lambda's conversion to function pointer, as described in
1162 /// C++11 [expr.prim.lambda]p6.
addFunctionPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1163 static void addFunctionPointerConversion(Sema &S,
1164                                          SourceRange IntroducerRange,
1165                                          CXXRecordDecl *Class,
1166                                          CXXMethodDecl *CallOperator) {
1167   // Add the conversion to function pointer.
1168   const FunctionProtoType *CallOpProto =
1169       CallOperator->getType()->getAs<FunctionProtoType>();
1170   const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1171       CallOpProto->getExtProtoInfo();
1172   QualType PtrToFunctionTy;
1173   QualType InvokerFunctionTy;
1174   {
1175     FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1176     CallingConv CC = S.Context.getDefaultCallingConvention(
1177         CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1178     InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1179     InvokerExtInfo.TypeQuals = 0;
1180     assert(InvokerExtInfo.RefQualifier == RQ_None &&
1181         "Lambda's call operator should not have a reference qualifier");
1182     InvokerFunctionTy =
1183         S.Context.getFunctionType(CallOpProto->getReturnType(),
1184                                   CallOpProto->getParamTypes(), InvokerExtInfo);
1185     PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1186   }
1187 
1188   // Create the type of the conversion function.
1189   FunctionProtoType::ExtProtoInfo ConvExtInfo(
1190       S.Context.getDefaultCallingConvention(
1191       /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1192   // The conversion function is always const.
1193   ConvExtInfo.TypeQuals = Qualifiers::Const;
1194   QualType ConvTy =
1195       S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
1196 
1197   SourceLocation Loc = IntroducerRange.getBegin();
1198   DeclarationName ConversionName
1199     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1200         S.Context.getCanonicalType(PtrToFunctionTy));
1201   DeclarationNameLoc ConvNameLoc;
1202   // Construct a TypeSourceInfo for the conversion function, and wire
1203   // all the parameters appropriately for the FunctionProtoTypeLoc
1204   // so that everything works during transformation/instantiation of
1205   // generic lambdas.
1206   // The main reason for wiring up the parameters of the conversion
1207   // function with that of the call operator is so that constructs
1208   // like the following work:
1209   // auto L = [](auto b) {                <-- 1
1210   //   return [](auto a) -> decltype(a) { <-- 2
1211   //      return a;
1212   //   };
1213   // };
1214   // int (*fp)(int) = L(5);
1215   // Because the trailing return type can contain DeclRefExprs that refer
1216   // to the original call operator's variables, we hijack the call
1217   // operators ParmVarDecls below.
1218   TypeSourceInfo *ConvNamePtrToFunctionTSI =
1219       S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1220   ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
1221 
1222   // The conversion function is a conversion to a pointer-to-function.
1223   TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1224   FunctionProtoTypeLoc ConvTL =
1225       ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1226   // Get the result of the conversion function which is a pointer-to-function.
1227   PointerTypeLoc PtrToFunctionTL =
1228       ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1229   // Do the same for the TypeSourceInfo that is used to name the conversion
1230   // operator.
1231   PointerTypeLoc ConvNamePtrToFunctionTL =
1232       ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1233 
1234   // Get the underlying function types that the conversion function will
1235   // be converting to (should match the type of the call operator).
1236   FunctionProtoTypeLoc CallOpConvTL =
1237       PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1238   FunctionProtoTypeLoc CallOpConvNameTL =
1239     ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1240 
1241   // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1242   // These parameter's are essentially used to transform the name and
1243   // the type of the conversion operator.  By using the same parameters
1244   // as the call operator's we don't have to fix any back references that
1245   // the trailing return type of the call operator's uses (such as
1246   // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1247   // - we can simply use the return type of the call operator, and
1248   // everything should work.
1249   SmallVector<ParmVarDecl *, 4> InvokerParams;
1250   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1251     ParmVarDecl *From = CallOperator->getParamDecl(I);
1252 
1253     InvokerParams.push_back(ParmVarDecl::Create(S.Context,
1254            // Temporarily add to the TU. This is set to the invoker below.
1255                                              S.Context.getTranslationUnitDecl(),
1256                                              From->getLocStart(),
1257                                              From->getLocation(),
1258                                              From->getIdentifier(),
1259                                              From->getType(),
1260                                              From->getTypeSourceInfo(),
1261                                              From->getStorageClass(),
1262                                              /*DefaultArg=*/nullptr));
1263     CallOpConvTL.setParam(I, From);
1264     CallOpConvNameTL.setParam(I, From);
1265   }
1266 
1267   CXXConversionDecl *Conversion
1268     = CXXConversionDecl::Create(S.Context, Class, Loc,
1269                                 DeclarationNameInfo(ConversionName,
1270                                   Loc, ConvNameLoc),
1271                                 ConvTy,
1272                                 ConvTSI,
1273                                 /*isInline=*/true, /*isExplicit=*/false,
1274                                 /*isConstexpr=*/false,
1275                                 CallOperator->getBody()->getLocEnd());
1276   Conversion->setAccess(AS_public);
1277   Conversion->setImplicit(true);
1278 
1279   if (Class->isGenericLambda()) {
1280     // Create a template version of the conversion operator, using the template
1281     // parameter list of the function call operator.
1282     FunctionTemplateDecl *TemplateCallOperator =
1283             CallOperator->getDescribedFunctionTemplate();
1284     FunctionTemplateDecl *ConversionTemplate =
1285                   FunctionTemplateDecl::Create(S.Context, Class,
1286                                       Loc, ConversionName,
1287                                       TemplateCallOperator->getTemplateParameters(),
1288                                       Conversion);
1289     ConversionTemplate->setAccess(AS_public);
1290     ConversionTemplate->setImplicit(true);
1291     Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1292     Class->addDecl(ConversionTemplate);
1293   } else
1294     Class->addDecl(Conversion);
1295   // Add a non-static member function that will be the result of
1296   // the conversion with a certain unique ID.
1297   DeclarationName InvokerName = &S.Context.Idents.get(
1298                                                  getLambdaStaticInvokerName());
1299   // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1300   // we should get a prebuilt TrivialTypeSourceInfo from Context
1301   // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1302   // then rewire the parameters accordingly, by hoisting up the InvokeParams
1303   // loop below and then use its Params to set Invoke->setParams(...) below.
1304   // This would avoid the 'const' qualifier of the calloperator from
1305   // contaminating the type of the invoker, which is currently adjusted
1306   // in SemaTemplateDeduction.cpp:DeduceTemplateArguments.  Fixing the
1307   // trailing return type of the invoker would require a visitor to rebuild
1308   // the trailing return type and adjusting all back DeclRefExpr's to refer
1309   // to the new static invoker parameters - not the call operator's.
1310   CXXMethodDecl *Invoke
1311     = CXXMethodDecl::Create(S.Context, Class, Loc,
1312                             DeclarationNameInfo(InvokerName, Loc),
1313                             InvokerFunctionTy,
1314                             CallOperator->getTypeSourceInfo(),
1315                             SC_Static, /*IsInline=*/true,
1316                             /*IsConstexpr=*/false,
1317                             CallOperator->getBody()->getLocEnd());
1318   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1319     InvokerParams[I]->setOwningFunction(Invoke);
1320   Invoke->setParams(InvokerParams);
1321   Invoke->setAccess(AS_private);
1322   Invoke->setImplicit(true);
1323   if (Class->isGenericLambda()) {
1324     FunctionTemplateDecl *TemplateCallOperator =
1325             CallOperator->getDescribedFunctionTemplate();
1326     FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
1327                           S.Context, Class, Loc, InvokerName,
1328                           TemplateCallOperator->getTemplateParameters(),
1329                           Invoke);
1330     StaticInvokerTemplate->setAccess(AS_private);
1331     StaticInvokerTemplate->setImplicit(true);
1332     Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1333     Class->addDecl(StaticInvokerTemplate);
1334   } else
1335     Class->addDecl(Invoke);
1336 }
1337 
1338 /// \brief Add a lambda's conversion to block pointer.
addBlockPointerConversion(Sema & S,SourceRange IntroducerRange,CXXRecordDecl * Class,CXXMethodDecl * CallOperator)1339 static void addBlockPointerConversion(Sema &S,
1340                                       SourceRange IntroducerRange,
1341                                       CXXRecordDecl *Class,
1342                                       CXXMethodDecl *CallOperator) {
1343   const FunctionProtoType *Proto =
1344       CallOperator->getType()->getAs<FunctionProtoType>();
1345 
1346   // The function type inside the block pointer type is the same as the call
1347   // operator with some tweaks. The calling convention is the default free
1348   // function convention, and the type qualifications are lost.
1349   FunctionProtoType::ExtProtoInfo BlockEPI = Proto->getExtProtoInfo();
1350   BlockEPI.ExtInfo =
1351       BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
1352           Proto->isVariadic(), /*IsCXXMethod=*/false));
1353   BlockEPI.TypeQuals = 0;
1354   QualType FunctionTy = S.Context.getFunctionType(
1355       Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
1356   QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1357 
1358   FunctionProtoType::ExtProtoInfo ConversionEPI(
1359       S.Context.getDefaultCallingConvention(
1360           /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1361   ConversionEPI.TypeQuals = Qualifiers::Const;
1362   QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
1363 
1364   SourceLocation Loc = IntroducerRange.getBegin();
1365   DeclarationName Name
1366     = S.Context.DeclarationNames.getCXXConversionFunctionName(
1367         S.Context.getCanonicalType(BlockPtrTy));
1368   DeclarationNameLoc NameLoc;
1369   NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
1370   CXXConversionDecl *Conversion
1371     = CXXConversionDecl::Create(S.Context, Class, Loc,
1372                                 DeclarationNameInfo(Name, Loc, NameLoc),
1373                                 ConvTy,
1374                                 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1375                                 /*isInline=*/true, /*isExplicit=*/false,
1376                                 /*isConstexpr=*/false,
1377                                 CallOperator->getBody()->getLocEnd());
1378   Conversion->setAccess(AS_public);
1379   Conversion->setImplicit(true);
1380   Class->addDecl(Conversion);
1381 }
1382 
ActOnLambdaExpr(SourceLocation StartLoc,Stmt * Body,Scope * CurScope,bool IsInstantiation)1383 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
1384                                  Scope *CurScope,
1385                                  bool IsInstantiation) {
1386   // Collect information from the lambda scope.
1387   SmallVector<LambdaCapture, 4> Captures;
1388   SmallVector<Expr *, 4> CaptureInits;
1389   LambdaCaptureDefault CaptureDefault;
1390   SourceLocation CaptureDefaultLoc;
1391   CXXRecordDecl *Class;
1392   CXXMethodDecl *CallOperator;
1393   SourceRange IntroducerRange;
1394   bool ExplicitParams;
1395   bool ExplicitResultType;
1396   bool LambdaExprNeedsCleanups;
1397   bool ContainsUnexpandedParameterPack;
1398   SmallVector<VarDecl *, 4> ArrayIndexVars;
1399   SmallVector<unsigned, 4> ArrayIndexStarts;
1400   {
1401     LambdaScopeInfo *LSI = getCurLambda();
1402     CallOperator = LSI->CallOperator;
1403     Class = LSI->Lambda;
1404     IntroducerRange = LSI->IntroducerRange;
1405     ExplicitParams = LSI->ExplicitParams;
1406     ExplicitResultType = !LSI->HasImplicitReturnType;
1407     LambdaExprNeedsCleanups = LSI->ExprNeedsCleanups;
1408     ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
1409     ArrayIndexVars.swap(LSI->ArrayIndexVars);
1410     ArrayIndexStarts.swap(LSI->ArrayIndexStarts);
1411 
1412     // Translate captures.
1413     for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
1414       LambdaScopeInfo::Capture From = LSI->Captures[I];
1415       assert(!From.isBlockCapture() && "Cannot capture __block variables");
1416       bool IsImplicit = I >= LSI->NumExplicitCaptures;
1417 
1418       // Handle 'this' capture.
1419       if (From.isThisCapture()) {
1420         Captures.push_back(
1421             LambdaCapture(From.getLocation(), IsImplicit, LCK_This));
1422         CaptureInits.push_back(new (Context) CXXThisExpr(From.getLocation(),
1423                                                          getCurrentThisType(),
1424                                                          /*isImplicit=*/true));
1425         continue;
1426       }
1427       if (From.isVLATypeCapture()) {
1428         Captures.push_back(
1429             LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
1430         CaptureInits.push_back(nullptr);
1431         continue;
1432       }
1433 
1434       VarDecl *Var = From.getVariable();
1435       LambdaCaptureKind Kind = From.isCopyCapture()? LCK_ByCopy : LCK_ByRef;
1436       Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
1437                                        Var, From.getEllipsisLoc()));
1438       CaptureInits.push_back(From.getInitExpr());
1439     }
1440 
1441     switch (LSI->ImpCaptureStyle) {
1442     case CapturingScopeInfo::ImpCap_None:
1443       CaptureDefault = LCD_None;
1444       break;
1445 
1446     case CapturingScopeInfo::ImpCap_LambdaByval:
1447       CaptureDefault = LCD_ByCopy;
1448       break;
1449 
1450     case CapturingScopeInfo::ImpCap_CapturedRegion:
1451     case CapturingScopeInfo::ImpCap_LambdaByref:
1452       CaptureDefault = LCD_ByRef;
1453       break;
1454 
1455     case CapturingScopeInfo::ImpCap_Block:
1456       llvm_unreachable("block capture in lambda");
1457       break;
1458     }
1459     CaptureDefaultLoc = LSI->CaptureDefaultLoc;
1460 
1461     // C++11 [expr.prim.lambda]p4:
1462     //   If a lambda-expression does not include a
1463     //   trailing-return-type, it is as if the trailing-return-type
1464     //   denotes the following type:
1465     //
1466     // Skip for C++1y return type deduction semantics which uses
1467     // different machinery.
1468     // FIXME: Refactor and Merge the return type deduction machinery.
1469     // FIXME: Assumes current resolution to core issue 975.
1470     if (LSI->HasImplicitReturnType && !getLangOpts().CPlusPlus14) {
1471       deduceClosureReturnType(*LSI);
1472 
1473       //   - if there are no return statements in the
1474       //     compound-statement, or all return statements return
1475       //     either an expression of type void or no expression or
1476       //     braced-init-list, the type void;
1477       if (LSI->ReturnType.isNull()) {
1478         LSI->ReturnType = Context.VoidTy;
1479       }
1480 
1481       // Create a function type with the inferred return type.
1482       const FunctionProtoType *Proto
1483         = CallOperator->getType()->getAs<FunctionProtoType>();
1484       QualType FunctionTy = Context.getFunctionType(
1485           LSI->ReturnType, Proto->getParamTypes(), Proto->getExtProtoInfo());
1486       CallOperator->setType(FunctionTy);
1487     }
1488     // C++ [expr.prim.lambda]p7:
1489     //   The lambda-expression's compound-statement yields the
1490     //   function-body (8.4) of the function call operator [...].
1491     ActOnFinishFunctionBody(CallOperator, Body, IsInstantiation);
1492     CallOperator->setLexicalDeclContext(Class);
1493     Decl *TemplateOrNonTemplateCallOperatorDecl =
1494         CallOperator->getDescribedFunctionTemplate()
1495         ? CallOperator->getDescribedFunctionTemplate()
1496         : cast<Decl>(CallOperator);
1497 
1498     TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
1499     Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
1500 
1501     PopExpressionEvaluationContext();
1502 
1503     // C++11 [expr.prim.lambda]p6:
1504     //   The closure type for a lambda-expression with no lambda-capture
1505     //   has a public non-virtual non-explicit const conversion function
1506     //   to pointer to function having the same parameter and return
1507     //   types as the closure type's function call operator.
1508     if (Captures.empty() && CaptureDefault == LCD_None)
1509       addFunctionPointerConversion(*this, IntroducerRange, Class,
1510                                    CallOperator);
1511 
1512     // Objective-C++:
1513     //   The closure type for a lambda-expression has a public non-virtual
1514     //   non-explicit const conversion function to a block pointer having the
1515     //   same parameter and return types as the closure type's function call
1516     //   operator.
1517     // FIXME: Fix generic lambda to block conversions.
1518     if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
1519                                               !Class->isGenericLambda())
1520       addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
1521 
1522     // Finalize the lambda class.
1523     SmallVector<Decl*, 4> Fields(Class->fields());
1524     ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1525                 SourceLocation(), nullptr);
1526     CheckCompletedCXXClass(Class);
1527   }
1528 
1529   if (LambdaExprNeedsCleanups)
1530     ExprNeedsCleanups = true;
1531 
1532   LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
1533                                           CaptureDefault, CaptureDefaultLoc,
1534                                           Captures,
1535                                           ExplicitParams, ExplicitResultType,
1536                                           CaptureInits, ArrayIndexVars,
1537                                           ArrayIndexStarts, Body->getLocEnd(),
1538                                           ContainsUnexpandedParameterPack);
1539 
1540   if (!CurContext->isDependentContext()) {
1541     switch (ExprEvalContexts.back().Context) {
1542     // C++11 [expr.prim.lambda]p2:
1543     //   A lambda-expression shall not appear in an unevaluated operand
1544     //   (Clause 5).
1545     case Unevaluated:
1546     case UnevaluatedAbstract:
1547     // C++1y [expr.const]p2:
1548     //   A conditional-expression e is a core constant expression unless the
1549     //   evaluation of e, following the rules of the abstract machine, would
1550     //   evaluate [...] a lambda-expression.
1551     //
1552     // This is technically incorrect, there are some constant evaluated contexts
1553     // where this should be allowed.  We should probably fix this when DR1607 is
1554     // ratified, it lays out the exact set of conditions where we shouldn't
1555     // allow a lambda-expression.
1556     case ConstantEvaluated:
1557       // We don't actually diagnose this case immediately, because we
1558       // could be within a context where we might find out later that
1559       // the expression is potentially evaluated (e.g., for typeid).
1560       ExprEvalContexts.back().Lambdas.push_back(Lambda);
1561       break;
1562 
1563     case PotentiallyEvaluated:
1564     case PotentiallyEvaluatedIfUsed:
1565       break;
1566     }
1567   }
1568 
1569   return MaybeBindToTemporary(Lambda);
1570 }
1571 
BuildBlockForLambdaConversion(SourceLocation CurrentLocation,SourceLocation ConvLocation,CXXConversionDecl * Conv,Expr * Src)1572 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
1573                                                SourceLocation ConvLocation,
1574                                                CXXConversionDecl *Conv,
1575                                                Expr *Src) {
1576   // Make sure that the lambda call operator is marked used.
1577   CXXRecordDecl *Lambda = Conv->getParent();
1578   CXXMethodDecl *CallOperator
1579     = cast<CXXMethodDecl>(
1580         Lambda->lookup(
1581           Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
1582   CallOperator->setReferenced();
1583   CallOperator->markUsed(Context);
1584 
1585   ExprResult Init = PerformCopyInitialization(
1586                       InitializedEntity::InitializeBlock(ConvLocation,
1587                                                          Src->getType(),
1588                                                          /*NRVO=*/false),
1589                       CurrentLocation, Src);
1590   if (!Init.isInvalid())
1591     Init = ActOnFinishFullExpr(Init.get());
1592 
1593   if (Init.isInvalid())
1594     return ExprError();
1595 
1596   // Create the new block to be returned.
1597   BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
1598 
1599   // Set the type information.
1600   Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
1601   Block->setIsVariadic(CallOperator->isVariadic());
1602   Block->setBlockMissingReturnType(false);
1603 
1604   // Add parameters.
1605   SmallVector<ParmVarDecl *, 4> BlockParams;
1606   for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1607     ParmVarDecl *From = CallOperator->getParamDecl(I);
1608     BlockParams.push_back(ParmVarDecl::Create(Context, Block,
1609                                               From->getLocStart(),
1610                                               From->getLocation(),
1611                                               From->getIdentifier(),
1612                                               From->getType(),
1613                                               From->getTypeSourceInfo(),
1614                                               From->getStorageClass(),
1615                                               /*DefaultArg=*/nullptr));
1616   }
1617   Block->setParams(BlockParams);
1618 
1619   Block->setIsConversionFromLambda(true);
1620 
1621   // Add capture. The capture uses a fake variable, which doesn't correspond
1622   // to any actual memory location. However, the initializer copy-initializes
1623   // the lambda object.
1624   TypeSourceInfo *CapVarTSI =
1625       Context.getTrivialTypeSourceInfo(Src->getType());
1626   VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
1627                                     ConvLocation, nullptr,
1628                                     Src->getType(), CapVarTSI,
1629                                     SC_None);
1630   BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
1631                              /*Nested=*/false, /*Copy=*/Init.get());
1632   Block->setCaptures(Context, &Capture, &Capture + 1,
1633                      /*CapturesCXXThis=*/false);
1634 
1635   // Add a fake function body to the block. IR generation is responsible
1636   // for filling in the actual body, which cannot be expressed as an AST.
1637   Block->setBody(new (Context) CompoundStmt(ConvLocation));
1638 
1639   // Create the block literal expression.
1640   Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
1641   ExprCleanupObjects.push_back(Block);
1642   ExprNeedsCleanups = true;
1643 
1644   return BuildBlock;
1645 }
1646