1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/ASTMutationListener.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/CommentDiagnostic.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/EvaluatedExprVisitor.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/PartialDiagnostic.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
34 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
35 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
36 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
37 #include "clang/Parse/ParseDiagnostic.h"
38 #include "clang/Sema/CXXFieldCollector.h"
39 #include "clang/Sema/DeclSpec.h"
40 #include "clang/Sema/DelayedDiagnostic.h"
41 #include "clang/Sema/Initialization.h"
42 #include "clang/Sema/Lookup.h"
43 #include "clang/Sema/ParsedTemplate.h"
44 #include "clang/Sema/Scope.h"
45 #include "clang/Sema/ScopeInfo.h"
46 #include "clang/Sema/Template.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/Triple.h"
49 #include <algorithm>
50 #include <cstring>
51 #include <functional>
52 using namespace clang;
53 using namespace sema;
54
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)55 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
56 if (OwnedType) {
57 Decl *Group[2] = { OwnedType, Ptr };
58 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
59 }
60
61 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
62 }
63
64 namespace {
65
66 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
67 public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false,bool AllowTemplates=false)68 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
69 bool AllowTemplates=false)
70 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71 AllowClassTemplates(AllowTemplates) {
72 WantExpressionKeywords = false;
73 WantCXXNamedCasts = false;
74 WantRemainingKeywords = false;
75 }
76
ValidateCandidate(const TypoCorrection & candidate)77 bool ValidateCandidate(const TypoCorrection &candidate) override {
78 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
80 bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
81 return (IsType || AllowedTemplate) &&
82 (AllowInvalidDecl || !ND->isInvalidDecl());
83 }
84 return !WantClassName && candidate.isKeyword();
85 }
86
87 private:
88 bool AllowInvalidDecl;
89 bool WantClassName;
90 bool AllowClassTemplates;
91 };
92
93 }
94
95 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const96 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
97 switch (Kind) {
98 // FIXME: Take into account the current language when deciding whether a
99 // token kind is a valid type specifier
100 case tok::kw_short:
101 case tok::kw_long:
102 case tok::kw___int64:
103 case tok::kw___int128:
104 case tok::kw_signed:
105 case tok::kw_unsigned:
106 case tok::kw_void:
107 case tok::kw_char:
108 case tok::kw_int:
109 case tok::kw_half:
110 case tok::kw_float:
111 case tok::kw_double:
112 case tok::kw_wchar_t:
113 case tok::kw_bool:
114 case tok::kw___underlying_type:
115 return true;
116
117 case tok::annot_typename:
118 case tok::kw_char16_t:
119 case tok::kw_char32_t:
120 case tok::kw_typeof:
121 case tok::annot_decltype:
122 case tok::kw_decltype:
123 return getLangOpts().CPlusPlus;
124
125 default:
126 break;
127 }
128
129 return false;
130 }
131
132 namespace {
133 enum class UnqualifiedTypeNameLookupResult {
134 NotFound,
135 FoundNonType,
136 FoundType
137 };
138 } // namespace
139
140 /// \brief Tries to perform unqualified lookup of the type decls in bases for
141 /// dependent class.
142 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
143 /// type decl, \a FoundType if only type decls are found.
144 static UnqualifiedTypeNameLookupResult
lookupUnqualifiedTypeNameInBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc,const CXXRecordDecl * RD)145 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
146 SourceLocation NameLoc,
147 const CXXRecordDecl *RD) {
148 if (!RD->hasDefinition())
149 return UnqualifiedTypeNameLookupResult::NotFound;
150 // Look for type decls in base classes.
151 UnqualifiedTypeNameLookupResult FoundTypeDecl =
152 UnqualifiedTypeNameLookupResult::NotFound;
153 for (const auto &Base : RD->bases()) {
154 const CXXRecordDecl *BaseRD = nullptr;
155 if (auto *BaseTT = Base.getType()->getAs<TagType>())
156 BaseRD = BaseTT->getAsCXXRecordDecl();
157 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
158 // Look for type decls in dependent base classes that have known primary
159 // templates.
160 if (!TST || !TST->isDependentType())
161 continue;
162 auto *TD = TST->getTemplateName().getAsTemplateDecl();
163 if (!TD)
164 continue;
165 auto *BasePrimaryTemplate =
166 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl());
167 if (!BasePrimaryTemplate)
168 continue;
169 BaseRD = BasePrimaryTemplate;
170 }
171 if (BaseRD) {
172 for (NamedDecl *ND : BaseRD->lookup(&II)) {
173 if (!isa<TypeDecl>(ND))
174 return UnqualifiedTypeNameLookupResult::FoundNonType;
175 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
176 }
177 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
178 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
179 case UnqualifiedTypeNameLookupResult::FoundNonType:
180 return UnqualifiedTypeNameLookupResult::FoundNonType;
181 case UnqualifiedTypeNameLookupResult::FoundType:
182 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
183 break;
184 case UnqualifiedTypeNameLookupResult::NotFound:
185 break;
186 }
187 }
188 }
189 }
190
191 return FoundTypeDecl;
192 }
193
recoverFromTypeInKnownDependentBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc)194 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
195 const IdentifierInfo &II,
196 SourceLocation NameLoc) {
197 // Lookup in the parent class template context, if any.
198 const CXXRecordDecl *RD = nullptr;
199 UnqualifiedTypeNameLookupResult FoundTypeDecl =
200 UnqualifiedTypeNameLookupResult::NotFound;
201 for (DeclContext *DC = S.CurContext;
202 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
203 DC = DC->getParent()) {
204 // Look for type decls in dependent base classes that have known primary
205 // templates.
206 RD = dyn_cast<CXXRecordDecl>(DC);
207 if (RD && RD->getDescribedClassTemplate())
208 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
209 }
210 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
211 return ParsedType();
212
213 // We found some types in dependent base classes. Recover as if the user
214 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
215 // lookup during template instantiation.
216 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
217
218 ASTContext &Context = S.Context;
219 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
220 cast<Type>(Context.getRecordType(RD)));
221 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
222
223 CXXScopeSpec SS;
224 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
225
226 TypeLocBuilder Builder;
227 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
228 DepTL.setNameLoc(NameLoc);
229 DepTL.setElaboratedKeywordLoc(SourceLocation());
230 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
231 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
232 }
233
234 /// \brief If the identifier refers to a type name within this scope,
235 /// return the declaration of that type.
236 ///
237 /// This routine performs ordinary name lookup of the identifier II
238 /// within the given scope, with optional C++ scope specifier SS, to
239 /// determine whether the name refers to a type. If so, returns an
240 /// opaque pointer (actually a QualType) corresponding to that
241 /// type. Otherwise, returns NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)242 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
243 Scope *S, CXXScopeSpec *SS,
244 bool isClassName, bool HasTrailingDot,
245 ParsedType ObjectTypePtr,
246 bool IsCtorOrDtorName,
247 bool WantNontrivialTypeSourceInfo,
248 IdentifierInfo **CorrectedII) {
249 // Determine where we will perform name lookup.
250 DeclContext *LookupCtx = nullptr;
251 if (ObjectTypePtr) {
252 QualType ObjectType = ObjectTypePtr.get();
253 if (ObjectType->isRecordType())
254 LookupCtx = computeDeclContext(ObjectType);
255 } else if (SS && SS->isNotEmpty()) {
256 LookupCtx = computeDeclContext(*SS, false);
257
258 if (!LookupCtx) {
259 if (isDependentScopeSpecifier(*SS)) {
260 // C++ [temp.res]p3:
261 // A qualified-id that refers to a type and in which the
262 // nested-name-specifier depends on a template-parameter (14.6.2)
263 // shall be prefixed by the keyword typename to indicate that the
264 // qualified-id denotes a type, forming an
265 // elaborated-type-specifier (7.1.5.3).
266 //
267 // We therefore do not perform any name lookup if the result would
268 // refer to a member of an unknown specialization.
269 if (!isClassName && !IsCtorOrDtorName)
270 return ParsedType();
271
272 // We know from the grammar that this name refers to a type,
273 // so build a dependent node to describe the type.
274 if (WantNontrivialTypeSourceInfo)
275 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
276
277 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
278 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
279 II, NameLoc);
280 return ParsedType::make(T);
281 }
282
283 return ParsedType();
284 }
285
286 if (!LookupCtx->isDependentContext() &&
287 RequireCompleteDeclContext(*SS, LookupCtx))
288 return ParsedType();
289 }
290
291 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
292 // lookup for class-names.
293 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
294 LookupOrdinaryName;
295 LookupResult Result(*this, &II, NameLoc, Kind);
296 if (LookupCtx) {
297 // Perform "qualified" name lookup into the declaration context we
298 // computed, which is either the type of the base of a member access
299 // expression or the declaration context associated with a prior
300 // nested-name-specifier.
301 LookupQualifiedName(Result, LookupCtx);
302
303 if (ObjectTypePtr && Result.empty()) {
304 // C++ [basic.lookup.classref]p3:
305 // If the unqualified-id is ~type-name, the type-name is looked up
306 // in the context of the entire postfix-expression. If the type T of
307 // the object expression is of a class type C, the type-name is also
308 // looked up in the scope of class C. At least one of the lookups shall
309 // find a name that refers to (possibly cv-qualified) T.
310 LookupName(Result, S);
311 }
312 } else {
313 // Perform unqualified name lookup.
314 LookupName(Result, S);
315
316 // For unqualified lookup in a class template in MSVC mode, look into
317 // dependent base classes where the primary class template is known.
318 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
319 if (ParsedType TypeInBase =
320 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
321 return TypeInBase;
322 }
323 }
324
325 NamedDecl *IIDecl = nullptr;
326 switch (Result.getResultKind()) {
327 case LookupResult::NotFound:
328 case LookupResult::NotFoundInCurrentInstantiation:
329 if (CorrectedII) {
330 TypoCorrection Correction = CorrectTypo(
331 Result.getLookupNameInfo(), Kind, S, SS,
332 llvm::make_unique<TypeNameValidatorCCC>(true, isClassName),
333 CTK_ErrorRecovery);
334 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
335 TemplateTy Template;
336 bool MemberOfUnknownSpecialization;
337 UnqualifiedId TemplateName;
338 TemplateName.setIdentifier(NewII, NameLoc);
339 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
340 CXXScopeSpec NewSS, *NewSSPtr = SS;
341 if (SS && NNS) {
342 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
343 NewSSPtr = &NewSS;
344 }
345 if (Correction && (NNS || NewII != &II) &&
346 // Ignore a correction to a template type as the to-be-corrected
347 // identifier is not a template (typo correction for template names
348 // is handled elsewhere).
349 !(getLangOpts().CPlusPlus && NewSSPtr &&
350 isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
351 false, Template, MemberOfUnknownSpecialization))) {
352 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
353 isClassName, HasTrailingDot, ObjectTypePtr,
354 IsCtorOrDtorName,
355 WantNontrivialTypeSourceInfo);
356 if (Ty) {
357 diagnoseTypo(Correction,
358 PDiag(diag::err_unknown_type_or_class_name_suggest)
359 << Result.getLookupName() << isClassName);
360 if (SS && NNS)
361 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
362 *CorrectedII = NewII;
363 return Ty;
364 }
365 }
366 }
367 // If typo correction failed or was not performed, fall through
368 case LookupResult::FoundOverloaded:
369 case LookupResult::FoundUnresolvedValue:
370 Result.suppressDiagnostics();
371 return ParsedType();
372
373 case LookupResult::Ambiguous:
374 // Recover from type-hiding ambiguities by hiding the type. We'll
375 // do the lookup again when looking for an object, and we can
376 // diagnose the error then. If we don't do this, then the error
377 // about hiding the type will be immediately followed by an error
378 // that only makes sense if the identifier was treated like a type.
379 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
380 Result.suppressDiagnostics();
381 return ParsedType();
382 }
383
384 // Look to see if we have a type anywhere in the list of results.
385 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
386 Res != ResEnd; ++Res) {
387 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
388 if (!IIDecl ||
389 (*Res)->getLocation().getRawEncoding() <
390 IIDecl->getLocation().getRawEncoding())
391 IIDecl = *Res;
392 }
393 }
394
395 if (!IIDecl) {
396 // None of the entities we found is a type, so there is no way
397 // to even assume that the result is a type. In this case, don't
398 // complain about the ambiguity. The parser will either try to
399 // perform this lookup again (e.g., as an object name), which
400 // will produce the ambiguity, or will complain that it expected
401 // a type name.
402 Result.suppressDiagnostics();
403 return ParsedType();
404 }
405
406 // We found a type within the ambiguous lookup; diagnose the
407 // ambiguity and then return that type. This might be the right
408 // answer, or it might not be, but it suppresses any attempt to
409 // perform the name lookup again.
410 break;
411
412 case LookupResult::Found:
413 IIDecl = Result.getFoundDecl();
414 break;
415 }
416
417 assert(IIDecl && "Didn't find decl");
418
419 QualType T;
420 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
421 DiagnoseUseOfDecl(IIDecl, NameLoc);
422
423 T = Context.getTypeDeclType(TD);
424 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
425
426 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
427 // constructor or destructor name (in such a case, the scope specifier
428 // will be attached to the enclosing Expr or Decl node).
429 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
430 if (WantNontrivialTypeSourceInfo) {
431 // Construct a type with type-source information.
432 TypeLocBuilder Builder;
433 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
434
435 T = getElaboratedType(ETK_None, *SS, T);
436 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
437 ElabTL.setElaboratedKeywordLoc(SourceLocation());
438 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
439 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
440 } else {
441 T = getElaboratedType(ETK_None, *SS, T);
442 }
443 }
444 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
445 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
446 if (!HasTrailingDot)
447 T = Context.getObjCInterfaceType(IDecl);
448 }
449
450 if (T.isNull()) {
451 // If it's not plausibly a type, suppress diagnostics.
452 Result.suppressDiagnostics();
453 return ParsedType();
454 }
455 return ParsedType::make(T);
456 }
457
458 // Builds a fake NNS for the given decl context.
459 static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext & Context,DeclContext * DC)460 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
461 for (;; DC = DC->getLookupParent()) {
462 DC = DC->getPrimaryContext();
463 auto *ND = dyn_cast<NamespaceDecl>(DC);
464 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
465 return NestedNameSpecifier::Create(Context, nullptr, ND);
466 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
467 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
468 RD->getTypeForDecl());
469 else if (isa<TranslationUnitDecl>(DC))
470 return NestedNameSpecifier::GlobalSpecifier(Context);
471 }
472 llvm_unreachable("something isn't in TU scope?");
473 }
474
ActOnDelayedDefaultTemplateArg(const IdentifierInfo & II,SourceLocation NameLoc)475 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
476 SourceLocation NameLoc) {
477 // Accepting an undeclared identifier as a default argument for a template
478 // type parameter is a Microsoft extension.
479 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
480
481 // Build a fake DependentNameType that will perform lookup into CurContext at
482 // instantiation time. The name specifier isn't dependent, so template
483 // instantiation won't transform it. It will retry the lookup, however.
484 NestedNameSpecifier *NNS =
485 synthesizeCurrentNestedNameSpecifier(Context, CurContext);
486 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
487
488 // Build type location information. We synthesized the qualifier, so we have
489 // to build a fake NestedNameSpecifierLoc.
490 NestedNameSpecifierLocBuilder NNSLocBuilder;
491 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
492 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
493
494 TypeLocBuilder Builder;
495 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
496 DepTL.setNameLoc(NameLoc);
497 DepTL.setElaboratedKeywordLoc(SourceLocation());
498 DepTL.setQualifierLoc(QualifierLoc);
499 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
500 }
501
502 /// isTagName() - This method is called *for error recovery purposes only*
503 /// to determine if the specified name is a valid tag name ("struct foo"). If
504 /// so, this returns the TST for the tag corresponding to it (TST_enum,
505 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
506 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)507 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
508 // Do a tag name lookup in this scope.
509 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
510 LookupName(R, S, false);
511 R.suppressDiagnostics();
512 if (R.getResultKind() == LookupResult::Found)
513 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
514 switch (TD->getTagKind()) {
515 case TTK_Struct: return DeclSpec::TST_struct;
516 case TTK_Interface: return DeclSpec::TST_interface;
517 case TTK_Union: return DeclSpec::TST_union;
518 case TTK_Class: return DeclSpec::TST_class;
519 case TTK_Enum: return DeclSpec::TST_enum;
520 }
521 }
522
523 return DeclSpec::TST_unspecified;
524 }
525
526 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
527 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
528 /// then downgrade the missing typename error to a warning.
529 /// This is needed for MSVC compatibility; Example:
530 /// @code
531 /// template<class T> class A {
532 /// public:
533 /// typedef int TYPE;
534 /// };
535 /// template<class T> class B : public A<T> {
536 /// public:
537 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
538 /// };
539 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)540 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
541 if (CurContext->isRecord()) {
542 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
543 return true;
544
545 const Type *Ty = SS->getScopeRep()->getAsType();
546
547 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
548 for (const auto &Base : RD->bases())
549 if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
550 return true;
551 return S->isFunctionPrototypeScope();
552 }
553 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
554 }
555
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType,bool AllowClassTemplates)556 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
557 SourceLocation IILoc,
558 Scope *S,
559 CXXScopeSpec *SS,
560 ParsedType &SuggestedType,
561 bool AllowClassTemplates) {
562 // We don't have anything to suggest (yet).
563 SuggestedType = ParsedType();
564
565 // There may have been a typo in the name of the type. Look up typo
566 // results, in case we have something that we can suggest.
567 if (TypoCorrection Corrected =
568 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
569 llvm::make_unique<TypeNameValidatorCCC>(
570 false, false, AllowClassTemplates),
571 CTK_ErrorRecovery)) {
572 if (Corrected.isKeyword()) {
573 // We corrected to a keyword.
574 diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
575 II = Corrected.getCorrectionAsIdentifierInfo();
576 } else {
577 // We found a similarly-named type or interface; suggest that.
578 if (!SS || !SS->isSet()) {
579 diagnoseTypo(Corrected,
580 PDiag(diag::err_unknown_typename_suggest) << II);
581 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
582 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
583 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
584 II->getName().equals(CorrectedStr);
585 diagnoseTypo(Corrected,
586 PDiag(diag::err_unknown_nested_typename_suggest)
587 << II << DC << DroppedSpecifier << SS->getRange());
588 } else {
589 llvm_unreachable("could not have corrected a typo here");
590 }
591
592 CXXScopeSpec tmpSS;
593 if (Corrected.getCorrectionSpecifier())
594 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
595 SourceRange(IILoc));
596 SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
597 IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
598 false, ParsedType(),
599 /*IsCtorOrDtorName=*/false,
600 /*NonTrivialTypeSourceInfo=*/true);
601 }
602 return;
603 }
604
605 if (getLangOpts().CPlusPlus) {
606 // See if II is a class template that the user forgot to pass arguments to.
607 UnqualifiedId Name;
608 Name.setIdentifier(II, IILoc);
609 CXXScopeSpec EmptySS;
610 TemplateTy TemplateResult;
611 bool MemberOfUnknownSpecialization;
612 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
613 Name, ParsedType(), true, TemplateResult,
614 MemberOfUnknownSpecialization) == TNK_Type_template) {
615 TemplateName TplName = TemplateResult.get();
616 Diag(IILoc, diag::err_template_missing_args) << TplName;
617 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
618 Diag(TplDecl->getLocation(), diag::note_template_decl_here)
619 << TplDecl->getTemplateParameters()->getSourceRange();
620 }
621 return;
622 }
623 }
624
625 // FIXME: Should we move the logic that tries to recover from a missing tag
626 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
627
628 if (!SS || (!SS->isSet() && !SS->isInvalid()))
629 Diag(IILoc, diag::err_unknown_typename) << II;
630 else if (DeclContext *DC = computeDeclContext(*SS, false))
631 Diag(IILoc, diag::err_typename_nested_not_found)
632 << II << DC << SS->getRange();
633 else if (isDependentScopeSpecifier(*SS)) {
634 unsigned DiagID = diag::err_typename_missing;
635 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
636 DiagID = diag::ext_typename_missing;
637
638 Diag(SS->getRange().getBegin(), DiagID)
639 << SS->getScopeRep() << II->getName()
640 << SourceRange(SS->getRange().getBegin(), IILoc)
641 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
642 SuggestedType = ActOnTypenameType(S, SourceLocation(),
643 *SS, *II, IILoc).get();
644 } else {
645 assert(SS && SS->isInvalid() &&
646 "Invalid scope specifier has already been diagnosed");
647 }
648 }
649
650 /// \brief Determine whether the given result set contains either a type name
651 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)652 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
653 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
654 NextToken.is(tok::less);
655
656 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
657 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
658 return true;
659
660 if (CheckTemplate && isa<TemplateDecl>(*I))
661 return true;
662 }
663
664 return false;
665 }
666
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)667 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
668 Scope *S, CXXScopeSpec &SS,
669 IdentifierInfo *&Name,
670 SourceLocation NameLoc) {
671 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
672 SemaRef.LookupParsedName(R, S, &SS);
673 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
674 StringRef FixItTagName;
675 switch (Tag->getTagKind()) {
676 case TTK_Class:
677 FixItTagName = "class ";
678 break;
679
680 case TTK_Enum:
681 FixItTagName = "enum ";
682 break;
683
684 case TTK_Struct:
685 FixItTagName = "struct ";
686 break;
687
688 case TTK_Interface:
689 FixItTagName = "__interface ";
690 break;
691
692 case TTK_Union:
693 FixItTagName = "union ";
694 break;
695 }
696
697 StringRef TagName = FixItTagName.drop_back();
698 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
699 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
700 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
701
702 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
703 I != IEnd; ++I)
704 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
705 << Name << TagName;
706
707 // Replace lookup results with just the tag decl.
708 Result.clear(Sema::LookupTagName);
709 SemaRef.LookupParsedName(Result, S, &SS);
710 return true;
711 }
712
713 return false;
714 }
715
716 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)717 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
718 QualType T, SourceLocation NameLoc) {
719 ASTContext &Context = S.Context;
720
721 TypeLocBuilder Builder;
722 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
723
724 T = S.getElaboratedType(ETK_None, SS, T);
725 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
726 ElabTL.setElaboratedKeywordLoc(SourceLocation());
727 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
728 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
729 }
730
731 Sema::NameClassification
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,std::unique_ptr<CorrectionCandidateCallback> CCC)732 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
733 SourceLocation NameLoc, const Token &NextToken,
734 bool IsAddressOfOperand,
735 std::unique_ptr<CorrectionCandidateCallback> CCC) {
736 DeclarationNameInfo NameInfo(Name, NameLoc);
737 ObjCMethodDecl *CurMethod = getCurMethodDecl();
738
739 if (NextToken.is(tok::coloncolon)) {
740 BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
741 QualType(), false, SS, nullptr, false);
742 }
743
744 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
745 LookupParsedName(Result, S, &SS, !CurMethod);
746
747 // For unqualified lookup in a class template in MSVC mode, look into
748 // dependent base classes where the primary class template is known.
749 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
750 if (ParsedType TypeInBase =
751 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
752 return TypeInBase;
753 }
754
755 // Perform lookup for Objective-C instance variables (including automatically
756 // synthesized instance variables), if we're in an Objective-C method.
757 // FIXME: This lookup really, really needs to be folded in to the normal
758 // unqualified lookup mechanism.
759 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
760 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
761 if (E.get() || E.isInvalid())
762 return E;
763 }
764
765 bool SecondTry = false;
766 bool IsFilteredTemplateName = false;
767
768 Corrected:
769 switch (Result.getResultKind()) {
770 case LookupResult::NotFound:
771 // If an unqualified-id is followed by a '(', then we have a function
772 // call.
773 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
774 // In C++, this is an ADL-only call.
775 // FIXME: Reference?
776 if (getLangOpts().CPlusPlus)
777 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
778
779 // C90 6.3.2.2:
780 // If the expression that precedes the parenthesized argument list in a
781 // function call consists solely of an identifier, and if no
782 // declaration is visible for this identifier, the identifier is
783 // implicitly declared exactly as if, in the innermost block containing
784 // the function call, the declaration
785 //
786 // extern int identifier ();
787 //
788 // appeared.
789 //
790 // We also allow this in C99 as an extension.
791 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
792 Result.addDecl(D);
793 Result.resolveKind();
794 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
795 }
796 }
797
798 // In C, we first see whether there is a tag type by the same name, in
799 // which case it's likely that the user just forget to write "enum",
800 // "struct", or "union".
801 if (!getLangOpts().CPlusPlus && !SecondTry &&
802 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
803 break;
804 }
805
806 // Perform typo correction to determine if there is another name that is
807 // close to this name.
808 if (!SecondTry && CCC) {
809 SecondTry = true;
810 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
811 Result.getLookupKind(), S,
812 &SS, std::move(CCC),
813 CTK_ErrorRecovery)) {
814 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
815 unsigned QualifiedDiag = diag::err_no_member_suggest;
816
817 NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
818 NamedDecl *UnderlyingFirstDecl
819 = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
820 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
821 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
822 UnqualifiedDiag = diag::err_no_template_suggest;
823 QualifiedDiag = diag::err_no_member_template_suggest;
824 } else if (UnderlyingFirstDecl &&
825 (isa<TypeDecl>(UnderlyingFirstDecl) ||
826 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
827 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
828 UnqualifiedDiag = diag::err_unknown_typename_suggest;
829 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
830 }
831
832 if (SS.isEmpty()) {
833 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
834 } else {// FIXME: is this even reachable? Test it.
835 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
836 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
837 Name->getName().equals(CorrectedStr);
838 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
839 << Name << computeDeclContext(SS, false)
840 << DroppedSpecifier << SS.getRange());
841 }
842
843 // Update the name, so that the caller has the new name.
844 Name = Corrected.getCorrectionAsIdentifierInfo();
845
846 // Typo correction corrected to a keyword.
847 if (Corrected.isKeyword())
848 return Name;
849
850 // Also update the LookupResult...
851 // FIXME: This should probably go away at some point
852 Result.clear();
853 Result.setLookupName(Corrected.getCorrection());
854 if (FirstDecl)
855 Result.addDecl(FirstDecl);
856
857 // If we found an Objective-C instance variable, let
858 // LookupInObjCMethod build the appropriate expression to
859 // reference the ivar.
860 // FIXME: This is a gross hack.
861 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
862 Result.clear();
863 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
864 return E;
865 }
866
867 goto Corrected;
868 }
869 }
870
871 // We failed to correct; just fall through and let the parser deal with it.
872 Result.suppressDiagnostics();
873 return NameClassification::Unknown();
874
875 case LookupResult::NotFoundInCurrentInstantiation: {
876 // We performed name lookup into the current instantiation, and there were
877 // dependent bases, so we treat this result the same way as any other
878 // dependent nested-name-specifier.
879
880 // C++ [temp.res]p2:
881 // A name used in a template declaration or definition and that is
882 // dependent on a template-parameter is assumed not to name a type
883 // unless the applicable name lookup finds a type name or the name is
884 // qualified by the keyword typename.
885 //
886 // FIXME: If the next token is '<', we might want to ask the parser to
887 // perform some heroics to see if we actually have a
888 // template-argument-list, which would indicate a missing 'template'
889 // keyword here.
890 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
891 NameInfo, IsAddressOfOperand,
892 /*TemplateArgs=*/nullptr);
893 }
894
895 case LookupResult::Found:
896 case LookupResult::FoundOverloaded:
897 case LookupResult::FoundUnresolvedValue:
898 break;
899
900 case LookupResult::Ambiguous:
901 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
902 hasAnyAcceptableTemplateNames(Result)) {
903 // C++ [temp.local]p3:
904 // A lookup that finds an injected-class-name (10.2) can result in an
905 // ambiguity in certain cases (for example, if it is found in more than
906 // one base class). If all of the injected-class-names that are found
907 // refer to specializations of the same class template, and if the name
908 // is followed by a template-argument-list, the reference refers to the
909 // class template itself and not a specialization thereof, and is not
910 // ambiguous.
911 //
912 // This filtering can make an ambiguous result into an unambiguous one,
913 // so try again after filtering out template names.
914 FilterAcceptableTemplateNames(Result);
915 if (!Result.isAmbiguous()) {
916 IsFilteredTemplateName = true;
917 break;
918 }
919 }
920
921 // Diagnose the ambiguity and return an error.
922 return NameClassification::Error();
923 }
924
925 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
926 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
927 // C++ [temp.names]p3:
928 // After name lookup (3.4) finds that a name is a template-name or that
929 // an operator-function-id or a literal- operator-id refers to a set of
930 // overloaded functions any member of which is a function template if
931 // this is followed by a <, the < is always taken as the delimiter of a
932 // template-argument-list and never as the less-than operator.
933 if (!IsFilteredTemplateName)
934 FilterAcceptableTemplateNames(Result);
935
936 if (!Result.empty()) {
937 bool IsFunctionTemplate;
938 bool IsVarTemplate;
939 TemplateName Template;
940 if (Result.end() - Result.begin() > 1) {
941 IsFunctionTemplate = true;
942 Template = Context.getOverloadedTemplateName(Result.begin(),
943 Result.end());
944 } else {
945 TemplateDecl *TD
946 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
947 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
948 IsVarTemplate = isa<VarTemplateDecl>(TD);
949
950 if (SS.isSet() && !SS.isInvalid())
951 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
952 /*TemplateKeyword=*/false,
953 TD);
954 else
955 Template = TemplateName(TD);
956 }
957
958 if (IsFunctionTemplate) {
959 // Function templates always go through overload resolution, at which
960 // point we'll perform the various checks (e.g., accessibility) we need
961 // to based on which function we selected.
962 Result.suppressDiagnostics();
963
964 return NameClassification::FunctionTemplate(Template);
965 }
966
967 return IsVarTemplate ? NameClassification::VarTemplate(Template)
968 : NameClassification::TypeTemplate(Template);
969 }
970 }
971
972 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
973 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
974 DiagnoseUseOfDecl(Type, NameLoc);
975 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
976 QualType T = Context.getTypeDeclType(Type);
977 if (SS.isNotEmpty())
978 return buildNestedType(*this, SS, T, NameLoc);
979 return ParsedType::make(T);
980 }
981
982 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
983 if (!Class) {
984 // FIXME: It's unfortunate that we don't have a Type node for handling this.
985 if (ObjCCompatibleAliasDecl *Alias =
986 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
987 Class = Alias->getClassInterface();
988 }
989
990 if (Class) {
991 DiagnoseUseOfDecl(Class, NameLoc);
992
993 if (NextToken.is(tok::period)) {
994 // Interface. <something> is parsed as a property reference expression.
995 // Just return "unknown" as a fall-through for now.
996 Result.suppressDiagnostics();
997 return NameClassification::Unknown();
998 }
999
1000 QualType T = Context.getObjCInterfaceType(Class);
1001 return ParsedType::make(T);
1002 }
1003
1004 // We can have a type template here if we're classifying a template argument.
1005 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
1006 return NameClassification::TypeTemplate(
1007 TemplateName(cast<TemplateDecl>(FirstDecl)));
1008
1009 // Check for a tag type hidden by a non-type decl in a few cases where it
1010 // seems likely a type is wanted instead of the non-type that was found.
1011 bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
1012 if ((NextToken.is(tok::identifier) ||
1013 (NextIsOp &&
1014 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1015 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1016 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1017 DiagnoseUseOfDecl(Type, NameLoc);
1018 QualType T = Context.getTypeDeclType(Type);
1019 if (SS.isNotEmpty())
1020 return buildNestedType(*this, SS, T, NameLoc);
1021 return ParsedType::make(T);
1022 }
1023
1024 if (FirstDecl->isCXXClassMember())
1025 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1026 nullptr);
1027
1028 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1029 return BuildDeclarationNameExpr(SS, Result, ADL);
1030 }
1031
1032 // Determines the context to return to after temporarily entering a
1033 // context. This depends in an unnecessarily complicated way on the
1034 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)1035 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1036
1037 // Functions defined inline within classes aren't parsed until we've
1038 // finished parsing the top-level class, so the top-level class is
1039 // the context we'll need to return to.
1040 // A Lambda call operator whose parent is a class must not be treated
1041 // as an inline member function. A Lambda can be used legally
1042 // either as an in-class member initializer or a default argument. These
1043 // are parsed once the class has been marked complete and so the containing
1044 // context would be the nested class (when the lambda is defined in one);
1045 // If the class is not complete, then the lambda is being used in an
1046 // ill-formed fashion (such as to specify the width of a bit-field, or
1047 // in an array-bound) - in which case we still want to return the
1048 // lexically containing DC (which could be a nested class).
1049 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1050 DC = DC->getLexicalParent();
1051
1052 // A function not defined within a class will always return to its
1053 // lexical context.
1054 if (!isa<CXXRecordDecl>(DC))
1055 return DC;
1056
1057 // A C++ inline method/friend is parsed *after* the topmost class
1058 // it was declared in is fully parsed ("complete"); the topmost
1059 // class is the context we need to return to.
1060 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1061 DC = RD;
1062
1063 // Return the declaration context of the topmost class the inline method is
1064 // declared in.
1065 return DC;
1066 }
1067
1068 return DC->getLexicalParent();
1069 }
1070
PushDeclContext(Scope * S,DeclContext * DC)1071 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1072 assert(getContainingDC(DC) == CurContext &&
1073 "The next DeclContext should be lexically contained in the current one.");
1074 CurContext = DC;
1075 S->setEntity(DC);
1076 }
1077
PopDeclContext()1078 void Sema::PopDeclContext() {
1079 assert(CurContext && "DeclContext imbalance!");
1080
1081 CurContext = getContainingDC(CurContext);
1082 assert(CurContext && "Popped translation unit!");
1083 }
1084
1085 /// EnterDeclaratorContext - Used when we must lookup names in the context
1086 /// of a declarator's nested name specifier.
1087 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)1088 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1089 // C++0x [basic.lookup.unqual]p13:
1090 // A name used in the definition of a static data member of class
1091 // X (after the qualified-id of the static member) is looked up as
1092 // if the name was used in a member function of X.
1093 // C++0x [basic.lookup.unqual]p14:
1094 // If a variable member of a namespace is defined outside of the
1095 // scope of its namespace then any name used in the definition of
1096 // the variable member (after the declarator-id) is looked up as
1097 // if the definition of the variable member occurred in its
1098 // namespace.
1099 // Both of these imply that we should push a scope whose context
1100 // is the semantic context of the declaration. We can't use
1101 // PushDeclContext here because that context is not necessarily
1102 // lexically contained in the current context. Fortunately,
1103 // the containing scope should have the appropriate information.
1104
1105 assert(!S->getEntity() && "scope already has entity");
1106
1107 #ifndef NDEBUG
1108 Scope *Ancestor = S->getParent();
1109 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1110 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1111 #endif
1112
1113 CurContext = DC;
1114 S->setEntity(DC);
1115 }
1116
ExitDeclaratorContext(Scope * S)1117 void Sema::ExitDeclaratorContext(Scope *S) {
1118 assert(S->getEntity() == CurContext && "Context imbalance!");
1119
1120 // Switch back to the lexical context. The safety of this is
1121 // enforced by an assert in EnterDeclaratorContext.
1122 Scope *Ancestor = S->getParent();
1123 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1124 CurContext = Ancestor->getEntity();
1125
1126 // We don't need to do anything with the scope, which is going to
1127 // disappear.
1128 }
1129
1130
ActOnReenterFunctionContext(Scope * S,Decl * D)1131 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1132 // We assume that the caller has already called
1133 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1134 FunctionDecl *FD = D->getAsFunction();
1135 if (!FD)
1136 return;
1137
1138 // Same implementation as PushDeclContext, but enters the context
1139 // from the lexical parent, rather than the top-level class.
1140 assert(CurContext == FD->getLexicalParent() &&
1141 "The next DeclContext should be lexically contained in the current one.");
1142 CurContext = FD;
1143 S->setEntity(CurContext);
1144
1145 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1146 ParmVarDecl *Param = FD->getParamDecl(P);
1147 // If the parameter has an identifier, then add it to the scope
1148 if (Param->getIdentifier()) {
1149 S->AddDecl(Param);
1150 IdResolver.AddDecl(Param);
1151 }
1152 }
1153 }
1154
1155
ActOnExitFunctionContext()1156 void Sema::ActOnExitFunctionContext() {
1157 // Same implementation as PopDeclContext, but returns to the lexical parent,
1158 // rather than the top-level class.
1159 assert(CurContext && "DeclContext imbalance!");
1160 CurContext = CurContext->getLexicalParent();
1161 assert(CurContext && "Popped translation unit!");
1162 }
1163
1164
1165 /// \brief Determine whether we allow overloading of the function
1166 /// PrevDecl with another declaration.
1167 ///
1168 /// This routine determines whether overloading is possible, not
1169 /// whether some new function is actually an overload. It will return
1170 /// true in C++ (where we can always provide overloads) or, as an
1171 /// extension, in C when the previous function is already an
1172 /// overloaded function declaration or has the "overloadable"
1173 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1174 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1175 ASTContext &Context) {
1176 if (Context.getLangOpts().CPlusPlus)
1177 return true;
1178
1179 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1180 return true;
1181
1182 return (Previous.getResultKind() == LookupResult::Found
1183 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1184 }
1185
1186 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1187 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1188 // Move up the scope chain until we find the nearest enclosing
1189 // non-transparent context. The declaration will be introduced into this
1190 // scope.
1191 while (S->getEntity() && S->getEntity()->isTransparentContext())
1192 S = S->getParent();
1193
1194 // Add scoped declarations into their context, so that they can be
1195 // found later. Declarations without a context won't be inserted
1196 // into any context.
1197 if (AddToContext)
1198 CurContext->addDecl(D);
1199
1200 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1201 // are function-local declarations.
1202 if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1203 !D->getDeclContext()->getRedeclContext()->Equals(
1204 D->getLexicalDeclContext()->getRedeclContext()) &&
1205 !D->getLexicalDeclContext()->isFunctionOrMethod())
1206 return;
1207
1208 // Template instantiations should also not be pushed into scope.
1209 if (isa<FunctionDecl>(D) &&
1210 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1211 return;
1212
1213 // If this replaces anything in the current scope,
1214 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1215 IEnd = IdResolver.end();
1216 for (; I != IEnd; ++I) {
1217 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1218 S->RemoveDecl(*I);
1219 IdResolver.RemoveDecl(*I);
1220
1221 // Should only need to replace one decl.
1222 break;
1223 }
1224 }
1225
1226 S->AddDecl(D);
1227
1228 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1229 // Implicitly-generated labels may end up getting generated in an order that
1230 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1231 // the label at the appropriate place in the identifier chain.
1232 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1233 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1234 if (IDC == CurContext) {
1235 if (!S->isDeclScope(*I))
1236 continue;
1237 } else if (IDC->Encloses(CurContext))
1238 break;
1239 }
1240
1241 IdResolver.InsertDeclAfter(I, D);
1242 } else {
1243 IdResolver.AddDecl(D);
1244 }
1245 }
1246
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1247 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1248 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1249 TUScope->AddDecl(D);
1250 }
1251
isDeclInScope(NamedDecl * D,DeclContext * Ctx,Scope * S,bool AllowInlineNamespace)1252 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1253 bool AllowInlineNamespace) {
1254 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1255 }
1256
getScopeForDeclContext(Scope * S,DeclContext * DC)1257 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1258 DeclContext *TargetDC = DC->getPrimaryContext();
1259 do {
1260 if (DeclContext *ScopeDC = S->getEntity())
1261 if (ScopeDC->getPrimaryContext() == TargetDC)
1262 return S;
1263 } while ((S = S->getParent()));
1264
1265 return nullptr;
1266 }
1267
1268 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1269 DeclContext*,
1270 ASTContext&);
1271
1272 /// Filters out lookup results that don't fall within the given scope
1273 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool AllowInlineNamespace)1274 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1275 bool ConsiderLinkage,
1276 bool AllowInlineNamespace) {
1277 LookupResult::Filter F = R.makeFilter();
1278 while (F.hasNext()) {
1279 NamedDecl *D = F.next();
1280
1281 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1282 continue;
1283
1284 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1285 continue;
1286
1287 F.erase();
1288 }
1289
1290 F.done();
1291 }
1292
isUsingDecl(NamedDecl * D)1293 static bool isUsingDecl(NamedDecl *D) {
1294 return isa<UsingShadowDecl>(D) ||
1295 isa<UnresolvedUsingTypenameDecl>(D) ||
1296 isa<UnresolvedUsingValueDecl>(D);
1297 }
1298
1299 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1300 static void RemoveUsingDecls(LookupResult &R) {
1301 LookupResult::Filter F = R.makeFilter();
1302 while (F.hasNext())
1303 if (isUsingDecl(F.next()))
1304 F.erase();
1305
1306 F.done();
1307 }
1308
1309 /// \brief Check for this common pattern:
1310 /// @code
1311 /// class S {
1312 /// S(const S&); // DO NOT IMPLEMENT
1313 /// void operator=(const S&); // DO NOT IMPLEMENT
1314 /// };
1315 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1316 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1317 // FIXME: Should check for private access too but access is set after we get
1318 // the decl here.
1319 if (D->doesThisDeclarationHaveABody())
1320 return false;
1321
1322 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1323 return CD->isCopyConstructor();
1324 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1325 return Method->isCopyAssignmentOperator();
1326 return false;
1327 }
1328
1329 // We need this to handle
1330 //
1331 // typedef struct {
1332 // void *foo() { return 0; }
1333 // } A;
1334 //
1335 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1336 // for example. If 'A', foo will have external linkage. If we have '*A',
1337 // foo will have no linkage. Since we can't know until we get to the end
1338 // of the typedef, this function finds out if D might have non-external linkage.
1339 // Callers should verify at the end of the TU if it D has external linkage or
1340 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1341 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1342 const DeclContext *DC = D->getDeclContext();
1343 while (!DC->isTranslationUnit()) {
1344 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1345 if (!RD->hasNameForLinkage())
1346 return true;
1347 }
1348 DC = DC->getParent();
1349 }
1350
1351 return !D->isExternallyVisible();
1352 }
1353
1354 // FIXME: This needs to be refactored; some other isInMainFile users want
1355 // these semantics.
isMainFileLoc(const Sema & S,SourceLocation Loc)1356 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1357 if (S.TUKind != TU_Complete)
1358 return false;
1359 return S.SourceMgr.isInMainFile(Loc);
1360 }
1361
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1362 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1363 assert(D);
1364
1365 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1366 return false;
1367
1368 // Ignore all entities declared within templates, and out-of-line definitions
1369 // of members of class templates.
1370 if (D->getDeclContext()->isDependentContext() ||
1371 D->getLexicalDeclContext()->isDependentContext())
1372 return false;
1373
1374 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1375 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1376 return false;
1377
1378 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1379 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1380 return false;
1381 } else {
1382 // 'static inline' functions are defined in headers; don't warn.
1383 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1384 return false;
1385 }
1386
1387 if (FD->doesThisDeclarationHaveABody() &&
1388 Context.DeclMustBeEmitted(FD))
1389 return false;
1390 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1391 // Constants and utility variables are defined in headers with internal
1392 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1393 // like "inline".)
1394 if (!isMainFileLoc(*this, VD->getLocation()))
1395 return false;
1396
1397 if (Context.DeclMustBeEmitted(VD))
1398 return false;
1399
1400 if (VD->isStaticDataMember() &&
1401 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1402 return false;
1403 } else {
1404 return false;
1405 }
1406
1407 // Only warn for unused decls internal to the translation unit.
1408 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1409 // for inline functions defined in the main source file, for instance.
1410 return mightHaveNonExternalLinkage(D);
1411 }
1412
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1413 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1414 if (!D)
1415 return;
1416
1417 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1418 const FunctionDecl *First = FD->getFirstDecl();
1419 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1420 return; // First should already be in the vector.
1421 }
1422
1423 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1424 const VarDecl *First = VD->getFirstDecl();
1425 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1426 return; // First should already be in the vector.
1427 }
1428
1429 if (ShouldWarnIfUnusedFileScopedDecl(D))
1430 UnusedFileScopedDecls.push_back(D);
1431 }
1432
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1433 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1434 if (D->isInvalidDecl())
1435 return false;
1436
1437 if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
1438 D->hasAttr<ObjCPreciseLifetimeAttr>())
1439 return false;
1440
1441 if (isa<LabelDecl>(D))
1442 return true;
1443
1444 // Except for labels, we only care about unused decls that are local to
1445 // functions.
1446 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1447 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1448 // For dependent types, the diagnostic is deferred.
1449 WithinFunction =
1450 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1451 if (!WithinFunction)
1452 return false;
1453
1454 if (isa<TypedefNameDecl>(D))
1455 return true;
1456
1457 // White-list anything that isn't a local variable.
1458 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1459 return false;
1460
1461 // Types of valid local variables should be complete, so this should succeed.
1462 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1463
1464 // White-list anything with an __attribute__((unused)) type.
1465 QualType Ty = VD->getType();
1466
1467 // Only look at the outermost level of typedef.
1468 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1469 if (TT->getDecl()->hasAttr<UnusedAttr>())
1470 return false;
1471 }
1472
1473 // If we failed to complete the type for some reason, or if the type is
1474 // dependent, don't diagnose the variable.
1475 if (Ty->isIncompleteType() || Ty->isDependentType())
1476 return false;
1477
1478 if (const TagType *TT = Ty->getAs<TagType>()) {
1479 const TagDecl *Tag = TT->getDecl();
1480 if (Tag->hasAttr<UnusedAttr>())
1481 return false;
1482
1483 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1484 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1485 return false;
1486
1487 if (const Expr *Init = VD->getInit()) {
1488 if (const ExprWithCleanups *Cleanups =
1489 dyn_cast<ExprWithCleanups>(Init))
1490 Init = Cleanups->getSubExpr();
1491 const CXXConstructExpr *Construct =
1492 dyn_cast<CXXConstructExpr>(Init);
1493 if (Construct && !Construct->isElidable()) {
1494 CXXConstructorDecl *CD = Construct->getConstructor();
1495 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1496 return false;
1497 }
1498 }
1499 }
1500 }
1501
1502 // TODO: __attribute__((unused)) templates?
1503 }
1504
1505 return true;
1506 }
1507
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1508 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1509 FixItHint &Hint) {
1510 if (isa<LabelDecl>(D)) {
1511 SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1512 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1513 if (AfterColon.isInvalid())
1514 return;
1515 Hint = FixItHint::CreateRemoval(CharSourceRange::
1516 getCharRange(D->getLocStart(), AfterColon));
1517 }
1518 return;
1519 }
1520
DiagnoseUnusedNestedTypedefs(const RecordDecl * D)1521 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1522 if (D->getTypeForDecl()->isDependentType())
1523 return;
1524
1525 for (auto *TmpD : D->decls()) {
1526 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1527 DiagnoseUnusedDecl(T);
1528 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1529 DiagnoseUnusedNestedTypedefs(R);
1530 }
1531 }
1532
1533 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1534 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1535 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1536 if (!ShouldDiagnoseUnusedDecl(D))
1537 return;
1538
1539 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1540 // typedefs can be referenced later on, so the diagnostics are emitted
1541 // at end-of-translation-unit.
1542 UnusedLocalTypedefNameCandidates.insert(TD);
1543 return;
1544 }
1545
1546 FixItHint Hint;
1547 GenerateFixForUnusedDecl(D, Context, Hint);
1548
1549 unsigned DiagID;
1550 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1551 DiagID = diag::warn_unused_exception_param;
1552 else if (isa<LabelDecl>(D))
1553 DiagID = diag::warn_unused_label;
1554 else
1555 DiagID = diag::warn_unused_variable;
1556
1557 Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1558 }
1559
CheckPoppedLabel(LabelDecl * L,Sema & S)1560 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1561 // Verify that we have no forward references left. If so, there was a goto
1562 // or address of a label taken, but no definition of it. Label fwd
1563 // definitions are indicated with a null substmt which is also not a resolved
1564 // MS inline assembly label name.
1565 bool Diagnose = false;
1566 if (L->isMSAsmLabel())
1567 Diagnose = !L->isResolvedMSAsmLabel();
1568 else
1569 Diagnose = L->getStmt() == nullptr;
1570 if (Diagnose)
1571 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1572 }
1573
ActOnPopScope(SourceLocation Loc,Scope * S)1574 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1575 S->mergeNRVOIntoParent();
1576
1577 if (S->decl_empty()) return;
1578 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1579 "Scope shouldn't contain decls!");
1580
1581 for (auto *TmpD : S->decls()) {
1582 assert(TmpD && "This decl didn't get pushed??");
1583
1584 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1585 NamedDecl *D = cast<NamedDecl>(TmpD);
1586
1587 if (!D->getDeclName()) continue;
1588
1589 // Diagnose unused variables in this scope.
1590 if (!S->hasUnrecoverableErrorOccurred()) {
1591 DiagnoseUnusedDecl(D);
1592 if (const auto *RD = dyn_cast<RecordDecl>(D))
1593 DiagnoseUnusedNestedTypedefs(RD);
1594 }
1595
1596 // If this was a forward reference to a label, verify it was defined.
1597 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1598 CheckPoppedLabel(LD, *this);
1599
1600 // Remove this name from our lexical scope.
1601 IdResolver.RemoveDecl(D);
1602 }
1603 }
1604
1605 /// \brief Look for an Objective-C class in the translation unit.
1606 ///
1607 /// \param Id The name of the Objective-C class we're looking for. If
1608 /// typo-correction fixes this name, the Id will be updated
1609 /// to the fixed name.
1610 ///
1611 /// \param IdLoc The location of the name in the translation unit.
1612 ///
1613 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1614 /// if there is no class with the given name.
1615 ///
1616 /// \returns The declaration of the named Objective-C class, or NULL if the
1617 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1618 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1619 SourceLocation IdLoc,
1620 bool DoTypoCorrection) {
1621 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1622 // creation from this context.
1623 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1624
1625 if (!IDecl && DoTypoCorrection) {
1626 // Perform typo correction at the given location, but only if we
1627 // find an Objective-C class name.
1628 if (TypoCorrection C = CorrectTypo(
1629 DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1630 llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1631 CTK_ErrorRecovery)) {
1632 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1633 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1634 Id = IDecl->getIdentifier();
1635 }
1636 }
1637 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1638 // This routine must always return a class definition, if any.
1639 if (Def && Def->getDefinition())
1640 Def = Def->getDefinition();
1641 return Def;
1642 }
1643
1644 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1645 /// from S, where a non-field would be declared. This routine copes
1646 /// with the difference between C and C++ scoping rules in structs and
1647 /// unions. For example, the following code is well-formed in C but
1648 /// ill-formed in C++:
1649 /// @code
1650 /// struct S6 {
1651 /// enum { BAR } e;
1652 /// };
1653 ///
1654 /// void test_S6() {
1655 /// struct S6 a;
1656 /// a.e = BAR;
1657 /// }
1658 /// @endcode
1659 /// For the declaration of BAR, this routine will return a different
1660 /// scope. The scope S will be the scope of the unnamed enumeration
1661 /// within S6. In C++, this routine will return the scope associated
1662 /// with S6, because the enumeration's scope is a transparent
1663 /// context but structures can contain non-field names. In C, this
1664 /// routine will return the translation unit scope, since the
1665 /// enumeration's scope is a transparent context and structures cannot
1666 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1667 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1668 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1669 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1670 (S->isClassScope() && !getLangOpts().CPlusPlus))
1671 S = S->getParent();
1672 return S;
1673 }
1674
1675 /// \brief Looks up the declaration of "struct objc_super" and
1676 /// saves it for later use in building builtin declaration of
1677 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1678 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1679 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1680 IdentifierInfo *II) {
1681 if (!II->isStr("objc_msgSendSuper"))
1682 return;
1683 ASTContext &Context = ThisSema.Context;
1684
1685 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1686 SourceLocation(), Sema::LookupTagName);
1687 ThisSema.LookupName(Result, S);
1688 if (Result.getResultKind() == LookupResult::Found)
1689 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1690 Context.setObjCSuperType(Context.getTagDeclType(TD));
1691 }
1692
getHeaderName(ASTContext::GetBuiltinTypeError Error)1693 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1694 switch (Error) {
1695 case ASTContext::GE_None:
1696 return "";
1697 case ASTContext::GE_Missing_stdio:
1698 return "stdio.h";
1699 case ASTContext::GE_Missing_setjmp:
1700 return "setjmp.h";
1701 case ASTContext::GE_Missing_ucontext:
1702 return "ucontext.h";
1703 }
1704 llvm_unreachable("unhandled error kind");
1705 }
1706
1707 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1708 /// file scope. lazily create a decl for it. ForRedeclaration is true
1709 /// if we're creating this built-in in anticipation of redeclaring the
1710 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned ID,Scope * S,bool ForRedeclaration,SourceLocation Loc)1711 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1712 Scope *S, bool ForRedeclaration,
1713 SourceLocation Loc) {
1714 LookupPredefedObjCSuperType(*this, S, II);
1715
1716 ASTContext::GetBuiltinTypeError Error;
1717 QualType R = Context.GetBuiltinType(ID, Error);
1718 if (Error) {
1719 if (ForRedeclaration)
1720 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1721 << getHeaderName(Error)
1722 << Context.BuiltinInfo.GetName(ID);
1723 return nullptr;
1724 }
1725
1726 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) {
1727 Diag(Loc, diag::ext_implicit_lib_function_decl)
1728 << Context.BuiltinInfo.GetName(ID)
1729 << R;
1730 if (Context.BuiltinInfo.getHeaderName(ID) &&
1731 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1732 Diag(Loc, diag::note_include_header_or_declare)
1733 << Context.BuiltinInfo.getHeaderName(ID)
1734 << Context.BuiltinInfo.GetName(ID);
1735 }
1736
1737 DeclContext *Parent = Context.getTranslationUnitDecl();
1738 if (getLangOpts().CPlusPlus) {
1739 LinkageSpecDecl *CLinkageDecl =
1740 LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1741 LinkageSpecDecl::lang_c, false);
1742 CLinkageDecl->setImplicit();
1743 Parent->addDecl(CLinkageDecl);
1744 Parent = CLinkageDecl;
1745 }
1746
1747 FunctionDecl *New = FunctionDecl::Create(Context,
1748 Parent,
1749 Loc, Loc, II, R, /*TInfo=*/nullptr,
1750 SC_Extern,
1751 false,
1752 /*hasPrototype=*/true);
1753 New->setImplicit();
1754
1755 // Create Decl objects for each parameter, adding them to the
1756 // FunctionDecl.
1757 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1758 SmallVector<ParmVarDecl*, 16> Params;
1759 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1760 ParmVarDecl *parm =
1761 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
1762 nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
1763 SC_None, nullptr);
1764 parm->setScopeInfo(0, i);
1765 Params.push_back(parm);
1766 }
1767 New->setParams(Params);
1768 }
1769
1770 AddKnownFunctionAttributes(New);
1771 RegisterLocallyScopedExternCDecl(New, S);
1772
1773 // TUScope is the translation-unit scope to insert this function into.
1774 // FIXME: This is hideous. We need to teach PushOnScopeChains to
1775 // relate Scopes to DeclContexts, and probably eliminate CurContext
1776 // entirely, but we're not there yet.
1777 DeclContext *SavedContext = CurContext;
1778 CurContext = Parent;
1779 PushOnScopeChains(New, TUScope);
1780 CurContext = SavedContext;
1781 return New;
1782 }
1783
1784 /// \brief Filter out any previous declarations that the given declaration
1785 /// should not consider because they are not permitted to conflict, e.g.,
1786 /// because they come from hidden sub-modules and do not refer to the same
1787 /// entity.
filterNonConflictingPreviousDecls(ASTContext & context,NamedDecl * decl,LookupResult & previous)1788 static void filterNonConflictingPreviousDecls(ASTContext &context,
1789 NamedDecl *decl,
1790 LookupResult &previous){
1791 // This is only interesting when modules are enabled.
1792 if (!context.getLangOpts().Modules)
1793 return;
1794
1795 // Empty sets are uninteresting.
1796 if (previous.empty())
1797 return;
1798
1799 LookupResult::Filter filter = previous.makeFilter();
1800 while (filter.hasNext()) {
1801 NamedDecl *old = filter.next();
1802
1803 // Non-hidden declarations are never ignored.
1804 if (!old->isHidden())
1805 continue;
1806
1807 if (!old->isExternallyVisible())
1808 filter.erase();
1809 }
1810
1811 filter.done();
1812 }
1813
1814 /// Typedef declarations don't have linkage, but they still denote the same
1815 /// entity if their types are the same.
1816 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
1817 /// isSameEntity.
filterNonConflictingPreviousTypedefDecls(ASTContext & Context,TypedefNameDecl * Decl,LookupResult & Previous)1818 static void filterNonConflictingPreviousTypedefDecls(ASTContext &Context,
1819 TypedefNameDecl *Decl,
1820 LookupResult &Previous) {
1821 // This is only interesting when modules are enabled.
1822 if (!Context.getLangOpts().Modules)
1823 return;
1824
1825 // Empty sets are uninteresting.
1826 if (Previous.empty())
1827 return;
1828
1829 LookupResult::Filter Filter = Previous.makeFilter();
1830 while (Filter.hasNext()) {
1831 NamedDecl *Old = Filter.next();
1832
1833 // Non-hidden declarations are never ignored.
1834 if (!Old->isHidden())
1835 continue;
1836
1837 // Declarations of the same entity are not ignored, even if they have
1838 // different linkages.
1839 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1840 if (Context.hasSameType(OldTD->getUnderlyingType(),
1841 Decl->getUnderlyingType()))
1842 continue;
1843
1844 // If both declarations give a tag declaration a typedef name for linkage
1845 // purposes, then they declare the same entity.
1846 if (OldTD->getAnonDeclWithTypedefName() &&
1847 Decl->getAnonDeclWithTypedefName())
1848 continue;
1849 }
1850
1851 if (!Old->isExternallyVisible())
1852 Filter.erase();
1853 }
1854
1855 Filter.done();
1856 }
1857
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1858 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1859 QualType OldType;
1860 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1861 OldType = OldTypedef->getUnderlyingType();
1862 else
1863 OldType = Context.getTypeDeclType(Old);
1864 QualType NewType = New->getUnderlyingType();
1865
1866 if (NewType->isVariablyModifiedType()) {
1867 // Must not redefine a typedef with a variably-modified type.
1868 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1869 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1870 << Kind << NewType;
1871 if (Old->getLocation().isValid())
1872 Diag(Old->getLocation(), diag::note_previous_definition);
1873 New->setInvalidDecl();
1874 return true;
1875 }
1876
1877 if (OldType != NewType &&
1878 !OldType->isDependentType() &&
1879 !NewType->isDependentType() &&
1880 !Context.hasSameType(OldType, NewType)) {
1881 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1882 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1883 << Kind << NewType << OldType;
1884 if (Old->getLocation().isValid())
1885 Diag(Old->getLocation(), diag::note_previous_definition);
1886 New->setInvalidDecl();
1887 return true;
1888 }
1889 return false;
1890 }
1891
1892 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1893 /// same name and scope as a previous declaration 'Old'. Figure out
1894 /// how to resolve this situation, merging decls or emitting
1895 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1896 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1897 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1898 // If the new decl is known invalid already, don't bother doing any
1899 // merging checks.
1900 if (New->isInvalidDecl()) return;
1901
1902 // Allow multiple definitions for ObjC built-in typedefs.
1903 // FIXME: Verify the underlying types are equivalent!
1904 if (getLangOpts().ObjC1) {
1905 const IdentifierInfo *TypeID = New->getIdentifier();
1906 switch (TypeID->getLength()) {
1907 default: break;
1908 case 2:
1909 {
1910 if (!TypeID->isStr("id"))
1911 break;
1912 QualType T = New->getUnderlyingType();
1913 if (!T->isPointerType())
1914 break;
1915 if (!T->isVoidPointerType()) {
1916 QualType PT = T->getAs<PointerType>()->getPointeeType();
1917 if (!PT->isStructureType())
1918 break;
1919 }
1920 Context.setObjCIdRedefinitionType(T);
1921 // Install the built-in type for 'id', ignoring the current definition.
1922 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1923 return;
1924 }
1925 case 5:
1926 if (!TypeID->isStr("Class"))
1927 break;
1928 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1929 // Install the built-in type for 'Class', ignoring the current definition.
1930 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1931 return;
1932 case 3:
1933 if (!TypeID->isStr("SEL"))
1934 break;
1935 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1936 // Install the built-in type for 'SEL', ignoring the current definition.
1937 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1938 return;
1939 }
1940 // Fall through - the typedef name was not a builtin type.
1941 }
1942
1943 // Verify the old decl was also a type.
1944 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1945 if (!Old) {
1946 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1947 << New->getDeclName();
1948
1949 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1950 if (OldD->getLocation().isValid())
1951 Diag(OldD->getLocation(), diag::note_previous_definition);
1952
1953 return New->setInvalidDecl();
1954 }
1955
1956 // If the old declaration is invalid, just give up here.
1957 if (Old->isInvalidDecl())
1958 return New->setInvalidDecl();
1959
1960 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1961 auto *OldTag = OldTD->getAnonDeclWithTypedefName();
1962 auto *NewTag = New->getAnonDeclWithTypedefName();
1963 NamedDecl *Hidden = nullptr;
1964 if (getLangOpts().CPlusPlus && OldTag && NewTag &&
1965 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
1966 !hasVisibleDefinition(OldTag, &Hidden)) {
1967 // There is a definition of this tag, but it is not visible. Use it
1968 // instead of our tag.
1969 New->setTypeForDecl(OldTD->getTypeForDecl());
1970 if (OldTD->isModed())
1971 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
1972 OldTD->getUnderlyingType());
1973 else
1974 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
1975
1976 // Make the old tag definition visible.
1977 if (auto *Listener = getASTMutationListener())
1978 Listener->RedefinedHiddenDefinition(Hidden, NewTag->getLocation());
1979 Hidden->setHidden(false);
1980 }
1981 }
1982
1983 // If the typedef types are not identical, reject them in all languages and
1984 // with any extensions enabled.
1985 if (isIncompatibleTypedef(Old, New))
1986 return;
1987
1988 // The types match. Link up the redeclaration chain and merge attributes if
1989 // the old declaration was a typedef.
1990 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1991 New->setPreviousDecl(Typedef);
1992 mergeDeclAttributes(New, Old);
1993 }
1994
1995 if (getLangOpts().MicrosoftExt)
1996 return;
1997
1998 if (getLangOpts().CPlusPlus) {
1999 // C++ [dcl.typedef]p2:
2000 // In a given non-class scope, a typedef specifier can be used to
2001 // redefine the name of any type declared in that scope to refer
2002 // to the type to which it already refers.
2003 if (!isa<CXXRecordDecl>(CurContext))
2004 return;
2005
2006 // C++0x [dcl.typedef]p4:
2007 // In a given class scope, a typedef specifier can be used to redefine
2008 // any class-name declared in that scope that is not also a typedef-name
2009 // to refer to the type to which it already refers.
2010 //
2011 // This wording came in via DR424, which was a correction to the
2012 // wording in DR56, which accidentally banned code like:
2013 //
2014 // struct S {
2015 // typedef struct A { } A;
2016 // };
2017 //
2018 // in the C++03 standard. We implement the C++0x semantics, which
2019 // allow the above but disallow
2020 //
2021 // struct S {
2022 // typedef int I;
2023 // typedef int I;
2024 // };
2025 //
2026 // since that was the intent of DR56.
2027 if (!isa<TypedefNameDecl>(Old))
2028 return;
2029
2030 Diag(New->getLocation(), diag::err_redefinition)
2031 << New->getDeclName();
2032 Diag(Old->getLocation(), diag::note_previous_definition);
2033 return New->setInvalidDecl();
2034 }
2035
2036 // Modules always permit redefinition of typedefs, as does C11.
2037 if (getLangOpts().Modules || getLangOpts().C11)
2038 return;
2039
2040 // If we have a redefinition of a typedef in C, emit a warning. This warning
2041 // is normally mapped to an error, but can be controlled with
2042 // -Wtypedef-redefinition. If either the original or the redefinition is
2043 // in a system header, don't emit this for compatibility with GCC.
2044 if (getDiagnostics().getSuppressSystemWarnings() &&
2045 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2046 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2047 return;
2048
2049 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2050 << New->getDeclName();
2051 Diag(Old->getLocation(), diag::note_previous_definition);
2052 }
2053
2054 /// DeclhasAttr - returns true if decl Declaration already has the target
2055 /// attribute.
DeclHasAttr(const Decl * D,const Attr * A)2056 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2057 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2058 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2059 for (const auto *i : D->attrs())
2060 if (i->getKind() == A->getKind()) {
2061 if (Ann) {
2062 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2063 return true;
2064 continue;
2065 }
2066 // FIXME: Don't hardcode this check
2067 if (OA && isa<OwnershipAttr>(i))
2068 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2069 return true;
2070 }
2071
2072 return false;
2073 }
2074
isAttributeTargetADefinition(Decl * D)2075 static bool isAttributeTargetADefinition(Decl *D) {
2076 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2077 return VD->isThisDeclarationADefinition();
2078 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2079 return TD->isCompleteDefinition() || TD->isBeingDefined();
2080 return true;
2081 }
2082
2083 /// Merge alignment attributes from \p Old to \p New, taking into account the
2084 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2085 ///
2086 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)2087 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2088 // Look for alignas attributes on Old, and pick out whichever attribute
2089 // specifies the strictest alignment requirement.
2090 AlignedAttr *OldAlignasAttr = nullptr;
2091 AlignedAttr *OldStrictestAlignAttr = nullptr;
2092 unsigned OldAlign = 0;
2093 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2094 // FIXME: We have no way of representing inherited dependent alignments
2095 // in a case like:
2096 // template<int A, int B> struct alignas(A) X;
2097 // template<int A, int B> struct alignas(B) X {};
2098 // For now, we just ignore any alignas attributes which are not on the
2099 // definition in such a case.
2100 if (I->isAlignmentDependent())
2101 return false;
2102
2103 if (I->isAlignas())
2104 OldAlignasAttr = I;
2105
2106 unsigned Align = I->getAlignment(S.Context);
2107 if (Align > OldAlign) {
2108 OldAlign = Align;
2109 OldStrictestAlignAttr = I;
2110 }
2111 }
2112
2113 // Look for alignas attributes on New.
2114 AlignedAttr *NewAlignasAttr = nullptr;
2115 unsigned NewAlign = 0;
2116 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2117 if (I->isAlignmentDependent())
2118 return false;
2119
2120 if (I->isAlignas())
2121 NewAlignasAttr = I;
2122
2123 unsigned Align = I->getAlignment(S.Context);
2124 if (Align > NewAlign)
2125 NewAlign = Align;
2126 }
2127
2128 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2129 // Both declarations have 'alignas' attributes. We require them to match.
2130 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2131 // fall short. (If two declarations both have alignas, they must both match
2132 // every definition, and so must match each other if there is a definition.)
2133
2134 // If either declaration only contains 'alignas(0)' specifiers, then it
2135 // specifies the natural alignment for the type.
2136 if (OldAlign == 0 || NewAlign == 0) {
2137 QualType Ty;
2138 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2139 Ty = VD->getType();
2140 else
2141 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2142
2143 if (OldAlign == 0)
2144 OldAlign = S.Context.getTypeAlign(Ty);
2145 if (NewAlign == 0)
2146 NewAlign = S.Context.getTypeAlign(Ty);
2147 }
2148
2149 if (OldAlign != NewAlign) {
2150 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2151 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2152 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2153 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2154 }
2155 }
2156
2157 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2158 // C++11 [dcl.align]p6:
2159 // if any declaration of an entity has an alignment-specifier,
2160 // every defining declaration of that entity shall specify an
2161 // equivalent alignment.
2162 // C11 6.7.5/7:
2163 // If the definition of an object does not have an alignment
2164 // specifier, any other declaration of that object shall also
2165 // have no alignment specifier.
2166 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2167 << OldAlignasAttr;
2168 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2169 << OldAlignasAttr;
2170 }
2171
2172 bool AnyAdded = false;
2173
2174 // Ensure we have an attribute representing the strictest alignment.
2175 if (OldAlign > NewAlign) {
2176 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2177 Clone->setInherited(true);
2178 New->addAttr(Clone);
2179 AnyAdded = true;
2180 }
2181
2182 // Ensure we have an alignas attribute if the old declaration had one.
2183 if (OldAlignasAttr && !NewAlignasAttr &&
2184 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2185 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2186 Clone->setInherited(true);
2187 New->addAttr(Clone);
2188 AnyAdded = true;
2189 }
2190
2191 return AnyAdded;
2192 }
2193
mergeDeclAttribute(Sema & S,NamedDecl * D,const InheritableAttr * Attr,bool Override)2194 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2195 const InheritableAttr *Attr, bool Override) {
2196 InheritableAttr *NewAttr = nullptr;
2197 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2198 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2199 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2200 AA->getIntroduced(), AA->getDeprecated(),
2201 AA->getObsoleted(), AA->getUnavailable(),
2202 AA->getMessage(), Override,
2203 AttrSpellingListIndex);
2204 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2205 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2206 AttrSpellingListIndex);
2207 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2208 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2209 AttrSpellingListIndex);
2210 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2211 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2212 AttrSpellingListIndex);
2213 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2214 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2215 AttrSpellingListIndex);
2216 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2217 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2218 FA->getFormatIdx(), FA->getFirstArg(),
2219 AttrSpellingListIndex);
2220 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2221 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2222 AttrSpellingListIndex);
2223 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2224 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2225 AttrSpellingListIndex,
2226 IA->getSemanticSpelling());
2227 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2228 NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2229 &S.Context.Idents.get(AA->getSpelling()),
2230 AttrSpellingListIndex);
2231 else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2232 NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2233 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2234 NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2235 else if (isa<AlignedAttr>(Attr))
2236 // AlignedAttrs are handled separately, because we need to handle all
2237 // such attributes on a declaration at the same time.
2238 NewAttr = nullptr;
2239 else if (isa<DeprecatedAttr>(Attr) && Override)
2240 NewAttr = nullptr;
2241 else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
2242 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2243
2244 if (NewAttr) {
2245 NewAttr->setInherited(true);
2246 D->addAttr(NewAttr);
2247 return true;
2248 }
2249
2250 return false;
2251 }
2252
getDefinition(const Decl * D)2253 static const Decl *getDefinition(const Decl *D) {
2254 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2255 return TD->getDefinition();
2256 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2257 const VarDecl *Def = VD->getDefinition();
2258 if (Def)
2259 return Def;
2260 return VD->getActingDefinition();
2261 }
2262 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2263 const FunctionDecl* Def;
2264 if (FD->isDefined(Def))
2265 return Def;
2266 }
2267 return nullptr;
2268 }
2269
hasAttribute(const Decl * D,attr::Kind Kind)2270 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2271 for (const auto *Attribute : D->attrs())
2272 if (Attribute->getKind() == Kind)
2273 return true;
2274 return false;
2275 }
2276
2277 /// checkNewAttributesAfterDef - If we already have a definition, check that
2278 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2279 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2280 if (!New->hasAttrs())
2281 return;
2282
2283 const Decl *Def = getDefinition(Old);
2284 if (!Def || Def == New)
2285 return;
2286
2287 AttrVec &NewAttributes = New->getAttrs();
2288 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2289 const Attr *NewAttribute = NewAttributes[I];
2290
2291 if (isa<AliasAttr>(NewAttribute)) {
2292 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
2293 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
2294 else {
2295 VarDecl *VD = cast<VarDecl>(New);
2296 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2297 VarDecl::TentativeDefinition
2298 ? diag::err_alias_after_tentative
2299 : diag::err_redefinition;
2300 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2301 S.Diag(Def->getLocation(), diag::note_previous_definition);
2302 VD->setInvalidDecl();
2303 }
2304 ++I;
2305 continue;
2306 }
2307
2308 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2309 // Tentative definitions are only interesting for the alias check above.
2310 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2311 ++I;
2312 continue;
2313 }
2314 }
2315
2316 if (hasAttribute(Def, NewAttribute->getKind())) {
2317 ++I;
2318 continue; // regular attr merging will take care of validating this.
2319 }
2320
2321 if (isa<C11NoReturnAttr>(NewAttribute)) {
2322 // C's _Noreturn is allowed to be added to a function after it is defined.
2323 ++I;
2324 continue;
2325 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2326 if (AA->isAlignas()) {
2327 // C++11 [dcl.align]p6:
2328 // if any declaration of an entity has an alignment-specifier,
2329 // every defining declaration of that entity shall specify an
2330 // equivalent alignment.
2331 // C11 6.7.5/7:
2332 // If the definition of an object does not have an alignment
2333 // specifier, any other declaration of that object shall also
2334 // have no alignment specifier.
2335 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2336 << AA;
2337 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2338 << AA;
2339 NewAttributes.erase(NewAttributes.begin() + I);
2340 --E;
2341 continue;
2342 }
2343 }
2344
2345 S.Diag(NewAttribute->getLocation(),
2346 diag::warn_attribute_precede_definition);
2347 S.Diag(Def->getLocation(), diag::note_previous_definition);
2348 NewAttributes.erase(NewAttributes.begin() + I);
2349 --E;
2350 }
2351 }
2352
2353 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2354 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2355 AvailabilityMergeKind AMK) {
2356 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2357 UsedAttr *NewAttr = OldAttr->clone(Context);
2358 NewAttr->setInherited(true);
2359 New->addAttr(NewAttr);
2360 }
2361
2362 if (!Old->hasAttrs() && !New->hasAttrs())
2363 return;
2364
2365 // attributes declared post-definition are currently ignored
2366 checkNewAttributesAfterDef(*this, New, Old);
2367
2368 if (!Old->hasAttrs())
2369 return;
2370
2371 bool foundAny = New->hasAttrs();
2372
2373 // Ensure that any moving of objects within the allocated map is done before
2374 // we process them.
2375 if (!foundAny) New->setAttrs(AttrVec());
2376
2377 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2378 bool Override = false;
2379 // Ignore deprecated/unavailable/availability attributes if requested.
2380 if (isa<DeprecatedAttr>(I) ||
2381 isa<UnavailableAttr>(I) ||
2382 isa<AvailabilityAttr>(I)) {
2383 switch (AMK) {
2384 case AMK_None:
2385 continue;
2386
2387 case AMK_Redeclaration:
2388 break;
2389
2390 case AMK_Override:
2391 Override = true;
2392 break;
2393 }
2394 }
2395
2396 // Already handled.
2397 if (isa<UsedAttr>(I))
2398 continue;
2399
2400 if (mergeDeclAttribute(*this, New, I, Override))
2401 foundAny = true;
2402 }
2403
2404 if (mergeAlignedAttrs(*this, New, Old))
2405 foundAny = true;
2406
2407 if (!foundAny) New->dropAttrs();
2408 }
2409
2410 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2411 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2412 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2413 const ParmVarDecl *oldDecl,
2414 Sema &S) {
2415 // C++11 [dcl.attr.depend]p2:
2416 // The first declaration of a function shall specify the
2417 // carries_dependency attribute for its declarator-id if any declaration
2418 // of the function specifies the carries_dependency attribute.
2419 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2420 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2421 S.Diag(CDA->getLocation(),
2422 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2423 // Find the first declaration of the parameter.
2424 // FIXME: Should we build redeclaration chains for function parameters?
2425 const FunctionDecl *FirstFD =
2426 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2427 const ParmVarDecl *FirstVD =
2428 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2429 S.Diag(FirstVD->getLocation(),
2430 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2431 }
2432
2433 if (!oldDecl->hasAttrs())
2434 return;
2435
2436 bool foundAny = newDecl->hasAttrs();
2437
2438 // Ensure that any moving of objects within the allocated map is
2439 // done before we process them.
2440 if (!foundAny) newDecl->setAttrs(AttrVec());
2441
2442 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2443 if (!DeclHasAttr(newDecl, I)) {
2444 InheritableAttr *newAttr =
2445 cast<InheritableParamAttr>(I->clone(S.Context));
2446 newAttr->setInherited(true);
2447 newDecl->addAttr(newAttr);
2448 foundAny = true;
2449 }
2450 }
2451
2452 if (!foundAny) newDecl->dropAttrs();
2453 }
2454
2455 namespace {
2456
2457 /// Used in MergeFunctionDecl to keep track of function parameters in
2458 /// C.
2459 struct GNUCompatibleParamWarning {
2460 ParmVarDecl *OldParm;
2461 ParmVarDecl *NewParm;
2462 QualType PromotedType;
2463 };
2464
2465 }
2466
2467 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2468 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2469 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2470 if (Ctor->isDefaultConstructor())
2471 return Sema::CXXDefaultConstructor;
2472
2473 if (Ctor->isCopyConstructor())
2474 return Sema::CXXCopyConstructor;
2475
2476 if (Ctor->isMoveConstructor())
2477 return Sema::CXXMoveConstructor;
2478 } else if (isa<CXXDestructorDecl>(MD)) {
2479 return Sema::CXXDestructor;
2480 } else if (MD->isCopyAssignmentOperator()) {
2481 return Sema::CXXCopyAssignment;
2482 } else if (MD->isMoveAssignmentOperator()) {
2483 return Sema::CXXMoveAssignment;
2484 }
2485
2486 return Sema::CXXInvalid;
2487 }
2488
2489 // Determine whether the previous declaration was a definition, implicit
2490 // declaration, or a declaration.
2491 template <typename T>
2492 static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T * Old,const T * New)2493 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2494 diag::kind PrevDiag;
2495 SourceLocation OldLocation = Old->getLocation();
2496 if (Old->isThisDeclarationADefinition())
2497 PrevDiag = diag::note_previous_definition;
2498 else if (Old->isImplicit()) {
2499 PrevDiag = diag::note_previous_implicit_declaration;
2500 if (OldLocation.isInvalid())
2501 OldLocation = New->getLocation();
2502 } else
2503 PrevDiag = diag::note_previous_declaration;
2504 return std::make_pair(PrevDiag, OldLocation);
2505 }
2506
2507 /// canRedefineFunction - checks if a function can be redefined. Currently,
2508 /// only extern inline functions can be redefined, and even then only in
2509 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2510 static bool canRedefineFunction(const FunctionDecl *FD,
2511 const LangOptions& LangOpts) {
2512 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2513 !LangOpts.CPlusPlus &&
2514 FD->isInlineSpecified() &&
2515 FD->getStorageClass() == SC_Extern);
2516 }
2517
getCallingConvAttributedType(QualType T) const2518 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2519 const AttributedType *AT = T->getAs<AttributedType>();
2520 while (AT && !AT->isCallingConv())
2521 AT = AT->getModifiedType()->getAs<AttributedType>();
2522 return AT;
2523 }
2524
2525 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2526 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2527 const DeclContext *DC = Old->getDeclContext();
2528 if (DC->isRecord())
2529 return false;
2530
2531 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2532 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2533 return true;
2534 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2535 return true;
2536 return false;
2537 }
2538
2539 /// MergeFunctionDecl - We just parsed a function 'New' from
2540 /// declarator D which has the same name and scope as a previous
2541 /// declaration 'Old'. Figure out how to resolve this situation,
2542 /// merging decls or emitting diagnostics as appropriate.
2543 ///
2544 /// In C++, New and Old must be declarations that are not
2545 /// overloaded. Use IsOverload to determine whether New and Old are
2546 /// overloaded, and to select the Old declaration that New should be
2547 /// merged with.
2548 ///
2549 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,NamedDecl * & OldD,Scope * S,bool MergeTypeWithOld)2550 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2551 Scope *S, bool MergeTypeWithOld) {
2552 // Verify the old decl was also a function.
2553 FunctionDecl *Old = OldD->getAsFunction();
2554 if (!Old) {
2555 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2556 if (New->getFriendObjectKind()) {
2557 Diag(New->getLocation(), diag::err_using_decl_friend);
2558 Diag(Shadow->getTargetDecl()->getLocation(),
2559 diag::note_using_decl_target);
2560 Diag(Shadow->getUsingDecl()->getLocation(),
2561 diag::note_using_decl) << 0;
2562 return true;
2563 }
2564
2565 // C++11 [namespace.udecl]p14:
2566 // If a function declaration in namespace scope or block scope has the
2567 // same name and the same parameter-type-list as a function introduced
2568 // by a using-declaration, and the declarations do not declare the same
2569 // function, the program is ill-formed.
2570
2571 // Check whether the two declarations might declare the same function.
2572 Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl());
2573 if (Old &&
2574 !Old->getDeclContext()->getRedeclContext()->Equals(
2575 New->getDeclContext()->getRedeclContext()) &&
2576 !(Old->isExternC() && New->isExternC()))
2577 Old = nullptr;
2578
2579 if (!Old) {
2580 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2581 Diag(Shadow->getTargetDecl()->getLocation(),
2582 diag::note_using_decl_target);
2583 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2584 return true;
2585 }
2586 OldD = Old;
2587 } else {
2588 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2589 << New->getDeclName();
2590 Diag(OldD->getLocation(), diag::note_previous_definition);
2591 return true;
2592 }
2593 }
2594
2595 // If the old declaration is invalid, just give up here.
2596 if (Old->isInvalidDecl())
2597 return true;
2598
2599 diag::kind PrevDiag;
2600 SourceLocation OldLocation;
2601 std::tie(PrevDiag, OldLocation) =
2602 getNoteDiagForInvalidRedeclaration(Old, New);
2603
2604 // Don't complain about this if we're in GNU89 mode and the old function
2605 // is an extern inline function.
2606 // Don't complain about specializations. They are not supposed to have
2607 // storage classes.
2608 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2609 New->getStorageClass() == SC_Static &&
2610 Old->hasExternalFormalLinkage() &&
2611 !New->getTemplateSpecializationInfo() &&
2612 !canRedefineFunction(Old, getLangOpts())) {
2613 if (getLangOpts().MicrosoftExt) {
2614 Diag(New->getLocation(), diag::ext_static_non_static) << New;
2615 Diag(OldLocation, PrevDiag);
2616 } else {
2617 Diag(New->getLocation(), diag::err_static_non_static) << New;
2618 Diag(OldLocation, PrevDiag);
2619 return true;
2620 }
2621 }
2622
2623
2624 // If a function is first declared with a calling convention, but is later
2625 // declared or defined without one, all following decls assume the calling
2626 // convention of the first.
2627 //
2628 // It's OK if a function is first declared without a calling convention,
2629 // but is later declared or defined with the default calling convention.
2630 //
2631 // To test if either decl has an explicit calling convention, we look for
2632 // AttributedType sugar nodes on the type as written. If they are missing or
2633 // were canonicalized away, we assume the calling convention was implicit.
2634 //
2635 // Note also that we DO NOT return at this point, because we still have
2636 // other tests to run.
2637 QualType OldQType = Context.getCanonicalType(Old->getType());
2638 QualType NewQType = Context.getCanonicalType(New->getType());
2639 const FunctionType *OldType = cast<FunctionType>(OldQType);
2640 const FunctionType *NewType = cast<FunctionType>(NewQType);
2641 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2642 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2643 bool RequiresAdjustment = false;
2644
2645 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2646 FunctionDecl *First = Old->getFirstDecl();
2647 const FunctionType *FT =
2648 First->getType().getCanonicalType()->castAs<FunctionType>();
2649 FunctionType::ExtInfo FI = FT->getExtInfo();
2650 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2651 if (!NewCCExplicit) {
2652 // Inherit the CC from the previous declaration if it was specified
2653 // there but not here.
2654 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2655 RequiresAdjustment = true;
2656 } else {
2657 // Calling conventions aren't compatible, so complain.
2658 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2659 Diag(New->getLocation(), diag::err_cconv_change)
2660 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2661 << !FirstCCExplicit
2662 << (!FirstCCExplicit ? "" :
2663 FunctionType::getNameForCallConv(FI.getCC()));
2664
2665 // Put the note on the first decl, since it is the one that matters.
2666 Diag(First->getLocation(), diag::note_previous_declaration);
2667 return true;
2668 }
2669 }
2670
2671 // FIXME: diagnose the other way around?
2672 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2673 NewTypeInfo = NewTypeInfo.withNoReturn(true);
2674 RequiresAdjustment = true;
2675 }
2676
2677 // Merge regparm attribute.
2678 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2679 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2680 if (NewTypeInfo.getHasRegParm()) {
2681 Diag(New->getLocation(), diag::err_regparm_mismatch)
2682 << NewType->getRegParmType()
2683 << OldType->getRegParmType();
2684 Diag(OldLocation, diag::note_previous_declaration);
2685 return true;
2686 }
2687
2688 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2689 RequiresAdjustment = true;
2690 }
2691
2692 // Merge ns_returns_retained attribute.
2693 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2694 if (NewTypeInfo.getProducesResult()) {
2695 Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2696 Diag(OldLocation, diag::note_previous_declaration);
2697 return true;
2698 }
2699
2700 NewTypeInfo = NewTypeInfo.withProducesResult(true);
2701 RequiresAdjustment = true;
2702 }
2703
2704 if (RequiresAdjustment) {
2705 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2706 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2707 New->setType(QualType(AdjustedType, 0));
2708 NewQType = Context.getCanonicalType(New->getType());
2709 NewType = cast<FunctionType>(NewQType);
2710 }
2711
2712 // If this redeclaration makes the function inline, we may need to add it to
2713 // UndefinedButUsed.
2714 if (!Old->isInlined() && New->isInlined() &&
2715 !New->hasAttr<GNUInlineAttr>() &&
2716 (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2717 Old->isUsed(false) &&
2718 !Old->isDefined() && !New->isThisDeclarationADefinition())
2719 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2720 SourceLocation()));
2721
2722 // If this redeclaration makes it newly gnu_inline, we don't want to warn
2723 // about it.
2724 if (New->hasAttr<GNUInlineAttr>() &&
2725 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2726 UndefinedButUsed.erase(Old->getCanonicalDecl());
2727 }
2728
2729 if (getLangOpts().CPlusPlus) {
2730 // (C++98 13.1p2):
2731 // Certain function declarations cannot be overloaded:
2732 // -- Function declarations that differ only in the return type
2733 // cannot be overloaded.
2734
2735 // Go back to the type source info to compare the declared return types,
2736 // per C++1y [dcl.type.auto]p13:
2737 // Redeclarations or specializations of a function or function template
2738 // with a declared return type that uses a placeholder type shall also
2739 // use that placeholder, not a deduced type.
2740 QualType OldDeclaredReturnType =
2741 (Old->getTypeSourceInfo()
2742 ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2743 : OldType)->getReturnType();
2744 QualType NewDeclaredReturnType =
2745 (New->getTypeSourceInfo()
2746 ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2747 : NewType)->getReturnType();
2748 QualType ResQT;
2749 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2750 !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2751 New->isLocalExternDecl())) {
2752 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2753 OldDeclaredReturnType->isObjCObjectPointerType())
2754 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2755 if (ResQT.isNull()) {
2756 if (New->isCXXClassMember() && New->isOutOfLine())
2757 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
2758 << New << New->getReturnTypeSourceRange();
2759 else
2760 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
2761 << New->getReturnTypeSourceRange();
2762 Diag(OldLocation, PrevDiag) << Old << Old->getType()
2763 << Old->getReturnTypeSourceRange();
2764 return true;
2765 }
2766 else
2767 NewQType = ResQT;
2768 }
2769
2770 QualType OldReturnType = OldType->getReturnType();
2771 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
2772 if (OldReturnType != NewReturnType) {
2773 // If this function has a deduced return type and has already been
2774 // defined, copy the deduced value from the old declaration.
2775 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
2776 if (OldAT && OldAT->isDeduced()) {
2777 New->setType(
2778 SubstAutoType(New->getType(),
2779 OldAT->isDependentType() ? Context.DependentTy
2780 : OldAT->getDeducedType()));
2781 NewQType = Context.getCanonicalType(
2782 SubstAutoType(NewQType,
2783 OldAT->isDependentType() ? Context.DependentTy
2784 : OldAT->getDeducedType()));
2785 }
2786 }
2787
2788 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2789 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2790 if (OldMethod && NewMethod) {
2791 // Preserve triviality.
2792 NewMethod->setTrivial(OldMethod->isTrivial());
2793
2794 // MSVC allows explicit template specialization at class scope:
2795 // 2 CXXMethodDecls referring to the same function will be injected.
2796 // We don't want a redeclaration error.
2797 bool IsClassScopeExplicitSpecialization =
2798 OldMethod->isFunctionTemplateSpecialization() &&
2799 NewMethod->isFunctionTemplateSpecialization();
2800 bool isFriend = NewMethod->getFriendObjectKind();
2801
2802 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2803 !IsClassScopeExplicitSpecialization) {
2804 // -- Member function declarations with the same name and the
2805 // same parameter types cannot be overloaded if any of them
2806 // is a static member function declaration.
2807 if (OldMethod->isStatic() != NewMethod->isStatic()) {
2808 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2809 Diag(OldLocation, PrevDiag) << Old << Old->getType();
2810 return true;
2811 }
2812
2813 // C++ [class.mem]p1:
2814 // [...] A member shall not be declared twice in the
2815 // member-specification, except that a nested class or member
2816 // class template can be declared and then later defined.
2817 if (ActiveTemplateInstantiations.empty()) {
2818 unsigned NewDiag;
2819 if (isa<CXXConstructorDecl>(OldMethod))
2820 NewDiag = diag::err_constructor_redeclared;
2821 else if (isa<CXXDestructorDecl>(NewMethod))
2822 NewDiag = diag::err_destructor_redeclared;
2823 else if (isa<CXXConversionDecl>(NewMethod))
2824 NewDiag = diag::err_conv_function_redeclared;
2825 else
2826 NewDiag = diag::err_member_redeclared;
2827
2828 Diag(New->getLocation(), NewDiag);
2829 } else {
2830 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2831 << New << New->getType();
2832 }
2833 Diag(OldLocation, PrevDiag) << Old << Old->getType();
2834 return true;
2835
2836 // Complain if this is an explicit declaration of a special
2837 // member that was initially declared implicitly.
2838 //
2839 // As an exception, it's okay to befriend such methods in order
2840 // to permit the implicit constructor/destructor/operator calls.
2841 } else if (OldMethod->isImplicit()) {
2842 if (isFriend) {
2843 NewMethod->setImplicit();
2844 } else {
2845 Diag(NewMethod->getLocation(),
2846 diag::err_definition_of_implicitly_declared_member)
2847 << New << getSpecialMember(OldMethod);
2848 return true;
2849 }
2850 } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2851 Diag(NewMethod->getLocation(),
2852 diag::err_definition_of_explicitly_defaulted_member)
2853 << getSpecialMember(OldMethod);
2854 return true;
2855 }
2856 }
2857
2858 // C++11 [dcl.attr.noreturn]p1:
2859 // The first declaration of a function shall specify the noreturn
2860 // attribute if any declaration of that function specifies the noreturn
2861 // attribute.
2862 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
2863 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
2864 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
2865 Diag(Old->getFirstDecl()->getLocation(),
2866 diag::note_noreturn_missing_first_decl);
2867 }
2868
2869 // C++11 [dcl.attr.depend]p2:
2870 // The first declaration of a function shall specify the
2871 // carries_dependency attribute for its declarator-id if any declaration
2872 // of the function specifies the carries_dependency attribute.
2873 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
2874 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
2875 Diag(CDA->getLocation(),
2876 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2877 Diag(Old->getFirstDecl()->getLocation(),
2878 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2879 }
2880
2881 // (C++98 8.3.5p3):
2882 // All declarations for a function shall agree exactly in both the
2883 // return type and the parameter-type-list.
2884 // We also want to respect all the extended bits except noreturn.
2885
2886 // noreturn should now match unless the old type info didn't have it.
2887 QualType OldQTypeForComparison = OldQType;
2888 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2889 assert(OldQType == QualType(OldType, 0));
2890 const FunctionType *OldTypeForComparison
2891 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2892 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2893 assert(OldQTypeForComparison.isCanonical());
2894 }
2895
2896 if (haveIncompatibleLanguageLinkages(Old, New)) {
2897 // As a special case, retain the language linkage from previous
2898 // declarations of a friend function as an extension.
2899 //
2900 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
2901 // and is useful because there's otherwise no way to specify language
2902 // linkage within class scope.
2903 //
2904 // Check cautiously as the friend object kind isn't yet complete.
2905 if (New->getFriendObjectKind() != Decl::FOK_None) {
2906 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
2907 Diag(OldLocation, PrevDiag);
2908 } else {
2909 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2910 Diag(OldLocation, PrevDiag);
2911 return true;
2912 }
2913 }
2914
2915 if (OldQTypeForComparison == NewQType)
2916 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2917
2918 if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2919 New->isLocalExternDecl()) {
2920 // It's OK if we couldn't merge types for a local function declaraton
2921 // if either the old or new type is dependent. We'll merge the types
2922 // when we instantiate the function.
2923 return false;
2924 }
2925
2926 // Fall through for conflicting redeclarations and redefinitions.
2927 }
2928
2929 // C: Function types need to be compatible, not identical. This handles
2930 // duplicate function decls like "void f(int); void f(enum X);" properly.
2931 if (!getLangOpts().CPlusPlus &&
2932 Context.typesAreCompatible(OldQType, NewQType)) {
2933 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2934 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2935 const FunctionProtoType *OldProto = nullptr;
2936 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2937 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2938 // The old declaration provided a function prototype, but the
2939 // new declaration does not. Merge in the prototype.
2940 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2941 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
2942 NewQType =
2943 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
2944 OldProto->getExtProtoInfo());
2945 New->setType(NewQType);
2946 New->setHasInheritedPrototype();
2947
2948 // Synthesize parameters with the same types.
2949 SmallVector<ParmVarDecl*, 16> Params;
2950 for (const auto &ParamType : OldProto->param_types()) {
2951 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
2952 SourceLocation(), nullptr,
2953 ParamType, /*TInfo=*/nullptr,
2954 SC_None, nullptr);
2955 Param->setScopeInfo(0, Params.size());
2956 Param->setImplicit();
2957 Params.push_back(Param);
2958 }
2959
2960 New->setParams(Params);
2961 }
2962
2963 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2964 }
2965
2966 // GNU C permits a K&R definition to follow a prototype declaration
2967 // if the declared types of the parameters in the K&R definition
2968 // match the types in the prototype declaration, even when the
2969 // promoted types of the parameters from the K&R definition differ
2970 // from the types in the prototype. GCC then keeps the types from
2971 // the prototype.
2972 //
2973 // If a variadic prototype is followed by a non-variadic K&R definition,
2974 // the K&R definition becomes variadic. This is sort of an edge case, but
2975 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2976 // C99 6.9.1p8.
2977 if (!getLangOpts().CPlusPlus &&
2978 Old->hasPrototype() && !New->hasPrototype() &&
2979 New->getType()->getAs<FunctionProtoType>() &&
2980 Old->getNumParams() == New->getNumParams()) {
2981 SmallVector<QualType, 16> ArgTypes;
2982 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2983 const FunctionProtoType *OldProto
2984 = Old->getType()->getAs<FunctionProtoType>();
2985 const FunctionProtoType *NewProto
2986 = New->getType()->getAs<FunctionProtoType>();
2987
2988 // Determine whether this is the GNU C extension.
2989 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
2990 NewProto->getReturnType());
2991 bool LooseCompatible = !MergedReturn.isNull();
2992 for (unsigned Idx = 0, End = Old->getNumParams();
2993 LooseCompatible && Idx != End; ++Idx) {
2994 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2995 ParmVarDecl *NewParm = New->getParamDecl(Idx);
2996 if (Context.typesAreCompatible(OldParm->getType(),
2997 NewProto->getParamType(Idx))) {
2998 ArgTypes.push_back(NewParm->getType());
2999 } else if (Context.typesAreCompatible(OldParm->getType(),
3000 NewParm->getType(),
3001 /*CompareUnqualified=*/true)) {
3002 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3003 NewProto->getParamType(Idx) };
3004 Warnings.push_back(Warn);
3005 ArgTypes.push_back(NewParm->getType());
3006 } else
3007 LooseCompatible = false;
3008 }
3009
3010 if (LooseCompatible) {
3011 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3012 Diag(Warnings[Warn].NewParm->getLocation(),
3013 diag::ext_param_promoted_not_compatible_with_prototype)
3014 << Warnings[Warn].PromotedType
3015 << Warnings[Warn].OldParm->getType();
3016 if (Warnings[Warn].OldParm->getLocation().isValid())
3017 Diag(Warnings[Warn].OldParm->getLocation(),
3018 diag::note_previous_declaration);
3019 }
3020
3021 if (MergeTypeWithOld)
3022 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3023 OldProto->getExtProtoInfo()));
3024 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3025 }
3026
3027 // Fall through to diagnose conflicting types.
3028 }
3029
3030 // A function that has already been declared has been redeclared or
3031 // defined with a different type; show an appropriate diagnostic.
3032
3033 // If the previous declaration was an implicitly-generated builtin
3034 // declaration, then at the very least we should use a specialized note.
3035 unsigned BuiltinID;
3036 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3037 // If it's actually a library-defined builtin function like 'malloc'
3038 // or 'printf', just warn about the incompatible redeclaration.
3039 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3040 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3041 Diag(OldLocation, diag::note_previous_builtin_declaration)
3042 << Old << Old->getType();
3043
3044 // If this is a global redeclaration, just forget hereafter
3045 // about the "builtin-ness" of the function.
3046 //
3047 // Doing this for local extern declarations is problematic. If
3048 // the builtin declaration remains visible, a second invalid
3049 // local declaration will produce a hard error; if it doesn't
3050 // remain visible, a single bogus local redeclaration (which is
3051 // actually only a warning) could break all the downstream code.
3052 if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3053 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
3054
3055 return false;
3056 }
3057
3058 PrevDiag = diag::note_previous_builtin_declaration;
3059 }
3060
3061 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3062 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3063 return true;
3064 }
3065
3066 /// \brief Completes the merge of two function declarations that are
3067 /// known to be compatible.
3068 ///
3069 /// This routine handles the merging of attributes and other
3070 /// properties of function declarations from the old declaration to
3071 /// the new declaration, once we know that New is in fact a
3072 /// redeclaration of Old.
3073 ///
3074 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S,bool MergeTypeWithOld)3075 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3076 Scope *S, bool MergeTypeWithOld) {
3077 // Merge the attributes
3078 mergeDeclAttributes(New, Old);
3079
3080 // Merge "pure" flag.
3081 if (Old->isPure())
3082 New->setPure();
3083
3084 // Merge "used" flag.
3085 if (Old->getMostRecentDecl()->isUsed(false))
3086 New->setIsUsed();
3087
3088 // Merge attributes from the parameters. These can mismatch with K&R
3089 // declarations.
3090 if (New->getNumParams() == Old->getNumParams())
3091 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
3092 mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
3093 *this);
3094
3095 if (getLangOpts().CPlusPlus)
3096 return MergeCXXFunctionDecl(New, Old, S);
3097
3098 // Merge the function types so the we get the composite types for the return
3099 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3100 // was visible.
3101 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3102 if (!Merged.isNull() && MergeTypeWithOld)
3103 New->setType(Merged);
3104
3105 return false;
3106 }
3107
3108
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)3109 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3110 ObjCMethodDecl *oldMethod) {
3111
3112 // Merge the attributes, including deprecated/unavailable
3113 AvailabilityMergeKind MergeKind =
3114 isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3115 : AMK_Override;
3116 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3117
3118 // Merge attributes from the parameters.
3119 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3120 oe = oldMethod->param_end();
3121 for (ObjCMethodDecl::param_iterator
3122 ni = newMethod->param_begin(), ne = newMethod->param_end();
3123 ni != ne && oi != oe; ++ni, ++oi)
3124 mergeParamDeclAttributes(*ni, *oi, *this);
3125
3126 CheckObjCMethodOverride(newMethod, oldMethod);
3127 }
3128
3129 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3130 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
3131 /// emitting diagnostics as appropriate.
3132 ///
3133 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3134 /// to here in AddInitializerToDecl. We can't check them before the initializer
3135 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool MergeTypeWithOld)3136 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3137 bool MergeTypeWithOld) {
3138 if (New->isInvalidDecl() || Old->isInvalidDecl())
3139 return;
3140
3141 QualType MergedT;
3142 if (getLangOpts().CPlusPlus) {
3143 if (New->getType()->isUndeducedType()) {
3144 // We don't know what the new type is until the initializer is attached.
3145 return;
3146 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3147 // These could still be something that needs exception specs checked.
3148 return MergeVarDeclExceptionSpecs(New, Old);
3149 }
3150 // C++ [basic.link]p10:
3151 // [...] the types specified by all declarations referring to a given
3152 // object or function shall be identical, except that declarations for an
3153 // array object can specify array types that differ by the presence or
3154 // absence of a major array bound (8.3.4).
3155 else if (Old->getType()->isIncompleteArrayType() &&
3156 New->getType()->isArrayType()) {
3157 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3158 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3159 if (Context.hasSameType(OldArray->getElementType(),
3160 NewArray->getElementType()))
3161 MergedT = New->getType();
3162 } else if (Old->getType()->isArrayType() &&
3163 New->getType()->isIncompleteArrayType()) {
3164 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3165 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3166 if (Context.hasSameType(OldArray->getElementType(),
3167 NewArray->getElementType()))
3168 MergedT = Old->getType();
3169 } else if (New->getType()->isObjCObjectPointerType() &&
3170 Old->getType()->isObjCObjectPointerType()) {
3171 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3172 Old->getType());
3173 }
3174 } else {
3175 // C 6.2.7p2:
3176 // All declarations that refer to the same object or function shall have
3177 // compatible type.
3178 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3179 }
3180 if (MergedT.isNull()) {
3181 // It's OK if we couldn't merge types if either type is dependent, for a
3182 // block-scope variable. In other cases (static data members of class
3183 // templates, variable templates, ...), we require the types to be
3184 // equivalent.
3185 // FIXME: The C++ standard doesn't say anything about this.
3186 if ((New->getType()->isDependentType() ||
3187 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3188 // If the old type was dependent, we can't merge with it, so the new type
3189 // becomes dependent for now. We'll reproduce the original type when we
3190 // instantiate the TypeSourceInfo for the variable.
3191 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3192 New->setType(Context.DependentTy);
3193 return;
3194 }
3195
3196 // FIXME: Even if this merging succeeds, some other non-visible declaration
3197 // of this variable might have an incompatible type. For instance:
3198 //
3199 // extern int arr[];
3200 // void f() { extern int arr[2]; }
3201 // void g() { extern int arr[3]; }
3202 //
3203 // Neither C nor C++ requires a diagnostic for this, but we should still try
3204 // to diagnose it.
3205 Diag(New->getLocation(), diag::err_redefinition_different_type)
3206 << New->getDeclName() << New->getType() << Old->getType();
3207 Diag(Old->getLocation(), diag::note_previous_definition);
3208 return New->setInvalidDecl();
3209 }
3210
3211 // Don't actually update the type on the new declaration if the old
3212 // declaration was an extern declaration in a different scope.
3213 if (MergeTypeWithOld)
3214 New->setType(MergedT);
3215 }
3216
mergeTypeWithPrevious(Sema & S,VarDecl * NewVD,VarDecl * OldVD,LookupResult & Previous)3217 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3218 LookupResult &Previous) {
3219 // C11 6.2.7p4:
3220 // For an identifier with internal or external linkage declared
3221 // in a scope in which a prior declaration of that identifier is
3222 // visible, if the prior declaration specifies internal or
3223 // external linkage, the type of the identifier at the later
3224 // declaration becomes the composite type.
3225 //
3226 // If the variable isn't visible, we do not merge with its type.
3227 if (Previous.isShadowed())
3228 return false;
3229
3230 if (S.getLangOpts().CPlusPlus) {
3231 // C++11 [dcl.array]p3:
3232 // If there is a preceding declaration of the entity in the same
3233 // scope in which the bound was specified, an omitted array bound
3234 // is taken to be the same as in that earlier declaration.
3235 return NewVD->isPreviousDeclInSameBlockScope() ||
3236 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3237 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3238 } else {
3239 // If the old declaration was function-local, don't merge with its
3240 // type unless we're in the same function.
3241 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3242 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3243 }
3244 }
3245
3246 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3247 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
3248 /// situation, merging decls or emitting diagnostics as appropriate.
3249 ///
3250 /// Tentative definition rules (C99 6.9.2p2) are checked by
3251 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3252 /// definitions here, since the initializer hasn't been attached.
3253 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)3254 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3255 // If the new decl is already invalid, don't do any other checking.
3256 if (New->isInvalidDecl())
3257 return;
3258
3259 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3260
3261 // Verify the old decl was also a variable or variable template.
3262 VarDecl *Old = nullptr;
3263 VarTemplateDecl *OldTemplate = nullptr;
3264 if (Previous.isSingleResult()) {
3265 if (NewTemplate) {
3266 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3267 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3268 } else
3269 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3270 }
3271 if (!Old) {
3272 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3273 << New->getDeclName();
3274 Diag(Previous.getRepresentativeDecl()->getLocation(),
3275 diag::note_previous_definition);
3276 return New->setInvalidDecl();
3277 }
3278
3279 if (!shouldLinkPossiblyHiddenDecl(Old, New))
3280 return;
3281
3282 // Ensure the template parameters are compatible.
3283 if (NewTemplate &&
3284 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3285 OldTemplate->getTemplateParameters(),
3286 /*Complain=*/true, TPL_TemplateMatch))
3287 return;
3288
3289 // C++ [class.mem]p1:
3290 // A member shall not be declared twice in the member-specification [...]
3291 //
3292 // Here, we need only consider static data members.
3293 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3294 Diag(New->getLocation(), diag::err_duplicate_member)
3295 << New->getIdentifier();
3296 Diag(Old->getLocation(), diag::note_previous_declaration);
3297 New->setInvalidDecl();
3298 }
3299
3300 mergeDeclAttributes(New, Old);
3301 // Warn if an already-declared variable is made a weak_import in a subsequent
3302 // declaration
3303 if (New->hasAttr<WeakImportAttr>() &&
3304 Old->getStorageClass() == SC_None &&
3305 !Old->hasAttr<WeakImportAttr>()) {
3306 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3307 Diag(Old->getLocation(), diag::note_previous_definition);
3308 // Remove weak_import attribute on new declaration.
3309 New->dropAttr<WeakImportAttr>();
3310 }
3311
3312 // Merge the types.
3313 VarDecl *MostRecent = Old->getMostRecentDecl();
3314 if (MostRecent != Old) {
3315 MergeVarDeclTypes(New, MostRecent,
3316 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3317 if (New->isInvalidDecl())
3318 return;
3319 }
3320
3321 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3322 if (New->isInvalidDecl())
3323 return;
3324
3325 diag::kind PrevDiag;
3326 SourceLocation OldLocation;
3327 std::tie(PrevDiag, OldLocation) =
3328 getNoteDiagForInvalidRedeclaration(Old, New);
3329
3330 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3331 if (New->getStorageClass() == SC_Static &&
3332 !New->isStaticDataMember() &&
3333 Old->hasExternalFormalLinkage()) {
3334 if (getLangOpts().MicrosoftExt) {
3335 Diag(New->getLocation(), diag::ext_static_non_static)
3336 << New->getDeclName();
3337 Diag(OldLocation, PrevDiag);
3338 } else {
3339 Diag(New->getLocation(), diag::err_static_non_static)
3340 << New->getDeclName();
3341 Diag(OldLocation, PrevDiag);
3342 return New->setInvalidDecl();
3343 }
3344 }
3345 // C99 6.2.2p4:
3346 // For an identifier declared with the storage-class specifier
3347 // extern in a scope in which a prior declaration of that
3348 // identifier is visible,23) if the prior declaration specifies
3349 // internal or external linkage, the linkage of the identifier at
3350 // the later declaration is the same as the linkage specified at
3351 // the prior declaration. If no prior declaration is visible, or
3352 // if the prior declaration specifies no linkage, then the
3353 // identifier has external linkage.
3354 if (New->hasExternalStorage() && Old->hasLinkage())
3355 /* Okay */;
3356 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3357 !New->isStaticDataMember() &&
3358 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3359 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3360 Diag(OldLocation, PrevDiag);
3361 return New->setInvalidDecl();
3362 }
3363
3364 // Check if extern is followed by non-extern and vice-versa.
3365 if (New->hasExternalStorage() &&
3366 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3367 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3368 Diag(OldLocation, PrevDiag);
3369 return New->setInvalidDecl();
3370 }
3371 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3372 !New->hasExternalStorage()) {
3373 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3374 Diag(OldLocation, PrevDiag);
3375 return New->setInvalidDecl();
3376 }
3377
3378 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3379
3380 // FIXME: The test for external storage here seems wrong? We still
3381 // need to check for mismatches.
3382 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3383 // Don't complain about out-of-line definitions of static members.
3384 !(Old->getLexicalDeclContext()->isRecord() &&
3385 !New->getLexicalDeclContext()->isRecord())) {
3386 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3387 Diag(OldLocation, PrevDiag);
3388 return New->setInvalidDecl();
3389 }
3390
3391 if (New->getTLSKind() != Old->getTLSKind()) {
3392 if (!Old->getTLSKind()) {
3393 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3394 Diag(OldLocation, PrevDiag);
3395 } else if (!New->getTLSKind()) {
3396 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3397 Diag(OldLocation, PrevDiag);
3398 } else {
3399 // Do not allow redeclaration to change the variable between requiring
3400 // static and dynamic initialization.
3401 // FIXME: GCC allows this, but uses the TLS keyword on the first
3402 // declaration to determine the kind. Do we need to be compatible here?
3403 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3404 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3405 Diag(OldLocation, PrevDiag);
3406 }
3407 }
3408
3409 // C++ doesn't have tentative definitions, so go right ahead and check here.
3410 const VarDecl *Def;
3411 if (getLangOpts().CPlusPlus &&
3412 New->isThisDeclarationADefinition() == VarDecl::Definition &&
3413 (Def = Old->getDefinition())) {
3414 Diag(New->getLocation(), diag::err_redefinition) << New;
3415 Diag(Def->getLocation(), diag::note_previous_definition);
3416 New->setInvalidDecl();
3417 return;
3418 }
3419
3420 if (haveIncompatibleLanguageLinkages(Old, New)) {
3421 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3422 Diag(OldLocation, PrevDiag);
3423 New->setInvalidDecl();
3424 return;
3425 }
3426
3427 // Merge "used" flag.
3428 if (Old->getMostRecentDecl()->isUsed(false))
3429 New->setIsUsed();
3430
3431 // Keep a chain of previous declarations.
3432 New->setPreviousDecl(Old);
3433 if (NewTemplate)
3434 NewTemplate->setPreviousDecl(OldTemplate);
3435
3436 // Inherit access appropriately.
3437 New->setAccess(Old->getAccess());
3438 if (NewTemplate)
3439 NewTemplate->setAccess(New->getAccess());
3440 }
3441
3442 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3443 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)3444 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3445 DeclSpec &DS) {
3446 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3447 }
3448
3449 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
3450 // disambiguate entities defined in different scopes.
3451 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
3452 // compatibility.
3453 // We will pick our mangling number depending on which version of MSVC is being
3454 // targeted.
getMSManglingNumber(const LangOptions & LO,Scope * S)3455 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
3456 return LO.isCompatibleWithMSVC(19) ? S->getMSCurManglingNumber()
3457 : S->getMSLastManglingNumber();
3458 }
3459
handleTagNumbering(const TagDecl * Tag,Scope * TagScope)3460 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
3461 if (!Context.getLangOpts().CPlusPlus)
3462 return;
3463
3464 if (isa<CXXRecordDecl>(Tag->getParent())) {
3465 // If this tag is the direct child of a class, number it if
3466 // it is anonymous.
3467 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3468 return;
3469 MangleNumberingContext &MCtx =
3470 Context.getManglingNumberContext(Tag->getParent());
3471 Context.setManglingNumber(
3472 Tag, MCtx.getManglingNumber(
3473 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3474 return;
3475 }
3476
3477 // If this tag isn't a direct child of a class, number it if it is local.
3478 Decl *ManglingContextDecl;
3479 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
3480 Tag->getDeclContext(), ManglingContextDecl)) {
3481 Context.setManglingNumber(
3482 Tag, MCtx->getManglingNumber(
3483 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3484 }
3485 }
3486
setTagNameForLinkagePurposes(TagDecl * TagFromDeclSpec,TypedefNameDecl * NewTD)3487 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
3488 TypedefNameDecl *NewTD) {
3489 // Do nothing if the tag is not anonymous or already has an
3490 // associated typedef (from an earlier typedef in this decl group).
3491 if (TagFromDeclSpec->getIdentifier())
3492 return;
3493 if (TagFromDeclSpec->getTypedefNameForAnonDecl())
3494 return;
3495
3496 // A well-formed anonymous tag must always be a TUK_Definition.
3497 assert(TagFromDeclSpec->isThisDeclarationADefinition());
3498
3499 // The type must match the tag exactly; no qualifiers allowed.
3500 if (!Context.hasSameType(NewTD->getUnderlyingType(),
3501 Context.getTagDeclType(TagFromDeclSpec)))
3502 return;
3503
3504 // If we've already computed linkage for the anonymous tag, then
3505 // adding a typedef name for the anonymous decl can change that
3506 // linkage, which might be a serious problem. Diagnose this as
3507 // unsupported and ignore the typedef name. TODO: we should
3508 // pursue this as a language defect and establish a formal rule
3509 // for how to handle it.
3510 if (TagFromDeclSpec->hasLinkageBeenComputed()) {
3511 Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
3512
3513 SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
3514 tagLoc = getLocForEndOfToken(tagLoc);
3515
3516 llvm::SmallString<40> textToInsert;
3517 textToInsert += ' ';
3518 textToInsert += NewTD->getIdentifier()->getName();
3519 Diag(tagLoc, diag::note_typedef_changes_linkage)
3520 << FixItHint::CreateInsertion(tagLoc, textToInsert);
3521 return;
3522 }
3523
3524 // Otherwise, set this is the anon-decl typedef for the tag.
3525 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
3526 }
3527
3528 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3529 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3530 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation)3531 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3532 DeclSpec &DS,
3533 MultiTemplateParamsArg TemplateParams,
3534 bool IsExplicitInstantiation) {
3535 Decl *TagD = nullptr;
3536 TagDecl *Tag = nullptr;
3537 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3538 DS.getTypeSpecType() == DeclSpec::TST_struct ||
3539 DS.getTypeSpecType() == DeclSpec::TST_interface ||
3540 DS.getTypeSpecType() == DeclSpec::TST_union ||
3541 DS.getTypeSpecType() == DeclSpec::TST_enum) {
3542 TagD = DS.getRepAsDecl();
3543
3544 if (!TagD) // We probably had an error
3545 return nullptr;
3546
3547 // Note that the above type specs guarantee that the
3548 // type rep is a Decl, whereas in many of the others
3549 // it's a Type.
3550 if (isa<TagDecl>(TagD))
3551 Tag = cast<TagDecl>(TagD);
3552 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3553 Tag = CTD->getTemplatedDecl();
3554 }
3555
3556 if (Tag) {
3557 handleTagNumbering(Tag, S);
3558 Tag->setFreeStanding();
3559 if (Tag->isInvalidDecl())
3560 return Tag;
3561 }
3562
3563 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3564 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3565 // or incomplete types shall not be restrict-qualified."
3566 if (TypeQuals & DeclSpec::TQ_restrict)
3567 Diag(DS.getRestrictSpecLoc(),
3568 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3569 << DS.getSourceRange();
3570 }
3571
3572 if (DS.isConstexprSpecified()) {
3573 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3574 // and definitions of functions and variables.
3575 if (Tag)
3576 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3577 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3578 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3579 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3580 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3581 else
3582 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3583 // Don't emit warnings after this error.
3584 return TagD;
3585 }
3586
3587 DiagnoseFunctionSpecifiers(DS);
3588
3589 if (DS.isFriendSpecified()) {
3590 // If we're dealing with a decl but not a TagDecl, assume that
3591 // whatever routines created it handled the friendship aspect.
3592 if (TagD && !Tag)
3593 return nullptr;
3594 return ActOnFriendTypeDecl(S, DS, TemplateParams);
3595 }
3596
3597 const CXXScopeSpec &SS = DS.getTypeSpecScope();
3598 bool IsExplicitSpecialization =
3599 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3600 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3601 !IsExplicitInstantiation && !IsExplicitSpecialization) {
3602 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3603 // nested-name-specifier unless it is an explicit instantiation
3604 // or an explicit specialization.
3605 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3606 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3607 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3608 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3609 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3610 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3611 << SS.getRange();
3612 return nullptr;
3613 }
3614
3615 // Track whether this decl-specifier declares anything.
3616 bool DeclaresAnything = true;
3617
3618 // Handle anonymous struct definitions.
3619 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3620 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3621 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3622 if (getLangOpts().CPlusPlus ||
3623 Record->getDeclContext()->isRecord())
3624 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
3625 Context.getPrintingPolicy());
3626
3627 DeclaresAnything = false;
3628 }
3629 }
3630
3631 // C11 6.7.2.1p2:
3632 // A struct-declaration that does not declare an anonymous structure or
3633 // anonymous union shall contain a struct-declarator-list.
3634 //
3635 // This rule also existed in C89 and C99; the grammar for struct-declaration
3636 // did not permit a struct-declaration without a struct-declarator-list.
3637 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
3638 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3639 // Check for Microsoft C extension: anonymous struct/union member.
3640 // Handle 2 kinds of anonymous struct/union:
3641 // struct STRUCT;
3642 // union UNION;
3643 // and
3644 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
3645 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
3646 if ((Tag && Tag->getDeclName()) ||
3647 DS.getTypeSpecType() == DeclSpec::TST_typename) {
3648 RecordDecl *Record = nullptr;
3649 if (Tag)
3650 Record = dyn_cast<RecordDecl>(Tag);
3651 else if (const RecordType *RT =
3652 DS.getRepAsType().get()->getAsStructureType())
3653 Record = RT->getDecl();
3654 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
3655 Record = UT->getDecl();
3656
3657 if (Record && getLangOpts().MicrosoftExt) {
3658 Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
3659 << Record->isUnion() << DS.getSourceRange();
3660 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3661 }
3662
3663 DeclaresAnything = false;
3664 }
3665 }
3666
3667 // Skip all the checks below if we have a type error.
3668 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3669 (TagD && TagD->isInvalidDecl()))
3670 return TagD;
3671
3672 if (getLangOpts().CPlusPlus &&
3673 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3674 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3675 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3676 !Enum->getIdentifier() && !Enum->isInvalidDecl())
3677 DeclaresAnything = false;
3678
3679 if (!DS.isMissingDeclaratorOk()) {
3680 // Customize diagnostic for a typedef missing a name.
3681 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3682 Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3683 << DS.getSourceRange();
3684 else
3685 DeclaresAnything = false;
3686 }
3687
3688 if (DS.isModulePrivateSpecified() &&
3689 Tag && Tag->getDeclContext()->isFunctionOrMethod())
3690 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3691 << Tag->getTagKind()
3692 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3693
3694 ActOnDocumentableDecl(TagD);
3695
3696 // C 6.7/2:
3697 // A declaration [...] shall declare at least a declarator [...], a tag,
3698 // or the members of an enumeration.
3699 // C++ [dcl.dcl]p3:
3700 // [If there are no declarators], and except for the declaration of an
3701 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
3702 // names into the program, or shall redeclare a name introduced by a
3703 // previous declaration.
3704 if (!DeclaresAnything) {
3705 // In C, we allow this as a (popular) extension / bug. Don't bother
3706 // producing further diagnostics for redundant qualifiers after this.
3707 Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3708 return TagD;
3709 }
3710
3711 // C++ [dcl.stc]p1:
3712 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3713 // init-declarator-list of the declaration shall not be empty.
3714 // C++ [dcl.fct.spec]p1:
3715 // If a cv-qualifier appears in a decl-specifier-seq, the
3716 // init-declarator-list of the declaration shall not be empty.
3717 //
3718 // Spurious qualifiers here appear to be valid in C.
3719 unsigned DiagID = diag::warn_standalone_specifier;
3720 if (getLangOpts().CPlusPlus)
3721 DiagID = diag::ext_standalone_specifier;
3722
3723 // Note that a linkage-specification sets a storage class, but
3724 // 'extern "C" struct foo;' is actually valid and not theoretically
3725 // useless.
3726 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3727 if (SCS == DeclSpec::SCS_mutable)
3728 // Since mutable is not a viable storage class specifier in C, there is
3729 // no reason to treat it as an extension. Instead, diagnose as an error.
3730 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
3731 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3732 Diag(DS.getStorageClassSpecLoc(), DiagID)
3733 << DeclSpec::getSpecifierName(SCS);
3734 }
3735
3736 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3737 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3738 << DeclSpec::getSpecifierName(TSCS);
3739 if (DS.getTypeQualifiers()) {
3740 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3741 Diag(DS.getConstSpecLoc(), DiagID) << "const";
3742 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3743 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3744 // Restrict is covered above.
3745 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3746 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3747 }
3748
3749 // Warn about ignored type attributes, for example:
3750 // __attribute__((aligned)) struct A;
3751 // Attributes should be placed after tag to apply to type declaration.
3752 if (!DS.getAttributes().empty()) {
3753 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3754 if (TypeSpecType == DeclSpec::TST_class ||
3755 TypeSpecType == DeclSpec::TST_struct ||
3756 TypeSpecType == DeclSpec::TST_interface ||
3757 TypeSpecType == DeclSpec::TST_union ||
3758 TypeSpecType == DeclSpec::TST_enum) {
3759 AttributeList* attrs = DS.getAttributes().getList();
3760 while (attrs) {
3761 Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3762 << attrs->getName()
3763 << (TypeSpecType == DeclSpec::TST_class ? 0 :
3764 TypeSpecType == DeclSpec::TST_struct ? 1 :
3765 TypeSpecType == DeclSpec::TST_union ? 2 :
3766 TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3767 attrs = attrs->getNext();
3768 }
3769 }
3770 }
3771
3772 return TagD;
3773 }
3774
3775 /// We are trying to inject an anonymous member into the given scope;
3776 /// check if there's an existing declaration that can't be overloaded.
3777 ///
3778 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)3779 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3780 Scope *S,
3781 DeclContext *Owner,
3782 DeclarationName Name,
3783 SourceLocation NameLoc,
3784 unsigned diagnostic) {
3785 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3786 Sema::ForRedeclaration);
3787 if (!SemaRef.LookupName(R, S)) return false;
3788
3789 if (R.getAsSingle<TagDecl>())
3790 return false;
3791
3792 // Pick a representative declaration.
3793 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3794 assert(PrevDecl && "Expected a non-null Decl");
3795
3796 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3797 return false;
3798
3799 SemaRef.Diag(NameLoc, diagnostic) << Name;
3800 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3801
3802 return true;
3803 }
3804
3805 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3806 /// anonymous struct or union AnonRecord into the owning context Owner
3807 /// and scope S. This routine will be invoked just after we realize
3808 /// that an unnamed union or struct is actually an anonymous union or
3809 /// struct, e.g.,
3810 ///
3811 /// @code
3812 /// union {
3813 /// int i;
3814 /// float f;
3815 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3816 /// // f into the surrounding scope.x
3817 /// @endcode
3818 ///
3819 /// This routine is recursive, injecting the names of nested anonymous
3820 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining,bool MSAnonStruct)3821 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3822 DeclContext *Owner,
3823 RecordDecl *AnonRecord,
3824 AccessSpecifier AS,
3825 SmallVectorImpl<NamedDecl *> &Chaining,
3826 bool MSAnonStruct) {
3827 unsigned diagKind
3828 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3829 : diag::err_anonymous_struct_member_redecl;
3830
3831 bool Invalid = false;
3832
3833 // Look every FieldDecl and IndirectFieldDecl with a name.
3834 for (auto *D : AnonRecord->decls()) {
3835 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
3836 cast<NamedDecl>(D)->getDeclName()) {
3837 ValueDecl *VD = cast<ValueDecl>(D);
3838 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3839 VD->getLocation(), diagKind)) {
3840 // C++ [class.union]p2:
3841 // The names of the members of an anonymous union shall be
3842 // distinct from the names of any other entity in the
3843 // scope in which the anonymous union is declared.
3844 Invalid = true;
3845 } else {
3846 // C++ [class.union]p2:
3847 // For the purpose of name lookup, after the anonymous union
3848 // definition, the members of the anonymous union are
3849 // considered to have been defined in the scope in which the
3850 // anonymous union is declared.
3851 unsigned OldChainingSize = Chaining.size();
3852 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3853 Chaining.append(IF->chain_begin(), IF->chain_end());
3854 else
3855 Chaining.push_back(VD);
3856
3857 assert(Chaining.size() >= 2);
3858 NamedDecl **NamedChain =
3859 new (SemaRef.Context)NamedDecl*[Chaining.size()];
3860 for (unsigned i = 0; i < Chaining.size(); i++)
3861 NamedChain[i] = Chaining[i];
3862
3863 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
3864 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
3865 VD->getType(), NamedChain, Chaining.size());
3866
3867 for (const auto *Attr : VD->attrs())
3868 IndirectField->addAttr(Attr->clone(SemaRef.Context));
3869
3870 IndirectField->setAccess(AS);
3871 IndirectField->setImplicit();
3872 SemaRef.PushOnScopeChains(IndirectField, S);
3873
3874 // That includes picking up the appropriate access specifier.
3875 if (AS != AS_none) IndirectField->setAccess(AS);
3876
3877 Chaining.resize(OldChainingSize);
3878 }
3879 }
3880 }
3881
3882 return Invalid;
3883 }
3884
3885 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3886 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
3887 /// illegal input values are mapped to SC_None.
3888 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)3889 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3890 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3891 assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3892 "Parser allowed 'typedef' as storage class VarDecl.");
3893 switch (StorageClassSpec) {
3894 case DeclSpec::SCS_unspecified: return SC_None;
3895 case DeclSpec::SCS_extern:
3896 if (DS.isExternInLinkageSpec())
3897 return SC_None;
3898 return SC_Extern;
3899 case DeclSpec::SCS_static: return SC_Static;
3900 case DeclSpec::SCS_auto: return SC_Auto;
3901 case DeclSpec::SCS_register: return SC_Register;
3902 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3903 // Illegal SCSs map to None: error reporting is up to the caller.
3904 case DeclSpec::SCS_mutable: // Fall through.
3905 case DeclSpec::SCS_typedef: return SC_None;
3906 }
3907 llvm_unreachable("unknown storage class specifier");
3908 }
3909
findDefaultInitializer(const CXXRecordDecl * Record)3910 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
3911 assert(Record->hasInClassInitializer());
3912
3913 for (const auto *I : Record->decls()) {
3914 const auto *FD = dyn_cast<FieldDecl>(I);
3915 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
3916 FD = IFD->getAnonField();
3917 if (FD && FD->hasInClassInitializer())
3918 return FD->getLocation();
3919 }
3920
3921 llvm_unreachable("couldn't find in-class initializer");
3922 }
3923
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,SourceLocation DefaultInitLoc)3924 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3925 SourceLocation DefaultInitLoc) {
3926 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3927 return;
3928
3929 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
3930 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
3931 }
3932
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,CXXRecordDecl * AnonUnion)3933 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3934 CXXRecordDecl *AnonUnion) {
3935 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3936 return;
3937
3938 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
3939 }
3940
3941 /// BuildAnonymousStructOrUnion - Handle the declaration of an
3942 /// anonymous structure or union. Anonymous unions are a C++ feature
3943 /// (C++ [class.union]) and a C11 feature; anonymous structures
3944 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record,const PrintingPolicy & Policy)3945 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3946 AccessSpecifier AS,
3947 RecordDecl *Record,
3948 const PrintingPolicy &Policy) {
3949 DeclContext *Owner = Record->getDeclContext();
3950
3951 // Diagnose whether this anonymous struct/union is an extension.
3952 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3953 Diag(Record->getLocation(), diag::ext_anonymous_union);
3954 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3955 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3956 else if (!Record->isUnion() && !getLangOpts().C11)
3957 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3958
3959 // C and C++ require different kinds of checks for anonymous
3960 // structs/unions.
3961 bool Invalid = false;
3962 if (getLangOpts().CPlusPlus) {
3963 const char *PrevSpec = nullptr;
3964 unsigned DiagID;
3965 if (Record->isUnion()) {
3966 // C++ [class.union]p6:
3967 // Anonymous unions declared in a named namespace or in the
3968 // global namespace shall be declared static.
3969 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3970 (isa<TranslationUnitDecl>(Owner) ||
3971 (isa<NamespaceDecl>(Owner) &&
3972 cast<NamespaceDecl>(Owner)->getDeclName()))) {
3973 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3974 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3975
3976 // Recover by adding 'static'.
3977 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3978 PrevSpec, DiagID, Policy);
3979 }
3980 // C++ [class.union]p6:
3981 // A storage class is not allowed in a declaration of an
3982 // anonymous union in a class scope.
3983 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3984 isa<RecordDecl>(Owner)) {
3985 Diag(DS.getStorageClassSpecLoc(),
3986 diag::err_anonymous_union_with_storage_spec)
3987 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3988
3989 // Recover by removing the storage specifier.
3990 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3991 SourceLocation(),
3992 PrevSpec, DiagID, Context.getPrintingPolicy());
3993 }
3994 }
3995
3996 // Ignore const/volatile/restrict qualifiers.
3997 if (DS.getTypeQualifiers()) {
3998 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3999 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4000 << Record->isUnion() << "const"
4001 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4002 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4003 Diag(DS.getVolatileSpecLoc(),
4004 diag::ext_anonymous_struct_union_qualified)
4005 << Record->isUnion() << "volatile"
4006 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4007 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4008 Diag(DS.getRestrictSpecLoc(),
4009 diag::ext_anonymous_struct_union_qualified)
4010 << Record->isUnion() << "restrict"
4011 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4012 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4013 Diag(DS.getAtomicSpecLoc(),
4014 diag::ext_anonymous_struct_union_qualified)
4015 << Record->isUnion() << "_Atomic"
4016 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4017
4018 DS.ClearTypeQualifiers();
4019 }
4020
4021 // C++ [class.union]p2:
4022 // The member-specification of an anonymous union shall only
4023 // define non-static data members. [Note: nested types and
4024 // functions cannot be declared within an anonymous union. ]
4025 for (auto *Mem : Record->decls()) {
4026 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4027 // C++ [class.union]p3:
4028 // An anonymous union shall not have private or protected
4029 // members (clause 11).
4030 assert(FD->getAccess() != AS_none);
4031 if (FD->getAccess() != AS_public) {
4032 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4033 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
4034 Invalid = true;
4035 }
4036
4037 // C++ [class.union]p1
4038 // An object of a class with a non-trivial constructor, a non-trivial
4039 // copy constructor, a non-trivial destructor, or a non-trivial copy
4040 // assignment operator cannot be a member of a union, nor can an
4041 // array of such objects.
4042 if (CheckNontrivialField(FD))
4043 Invalid = true;
4044 } else if (Mem->isImplicit()) {
4045 // Any implicit members are fine.
4046 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4047 // This is a type that showed up in an
4048 // elaborated-type-specifier inside the anonymous struct or
4049 // union, but which actually declares a type outside of the
4050 // anonymous struct or union. It's okay.
4051 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4052 if (!MemRecord->isAnonymousStructOrUnion() &&
4053 MemRecord->getDeclName()) {
4054 // Visual C++ allows type definition in anonymous struct or union.
4055 if (getLangOpts().MicrosoftExt)
4056 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4057 << (int)Record->isUnion();
4058 else {
4059 // This is a nested type declaration.
4060 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4061 << (int)Record->isUnion();
4062 Invalid = true;
4063 }
4064 } else {
4065 // This is an anonymous type definition within another anonymous type.
4066 // This is a popular extension, provided by Plan9, MSVC and GCC, but
4067 // not part of standard C++.
4068 Diag(MemRecord->getLocation(),
4069 diag::ext_anonymous_record_with_anonymous_type)
4070 << (int)Record->isUnion();
4071 }
4072 } else if (isa<AccessSpecDecl>(Mem)) {
4073 // Any access specifier is fine.
4074 } else if (isa<StaticAssertDecl>(Mem)) {
4075 // In C++1z, static_assert declarations are also fine.
4076 } else {
4077 // We have something that isn't a non-static data
4078 // member. Complain about it.
4079 unsigned DK = diag::err_anonymous_record_bad_member;
4080 if (isa<TypeDecl>(Mem))
4081 DK = diag::err_anonymous_record_with_type;
4082 else if (isa<FunctionDecl>(Mem))
4083 DK = diag::err_anonymous_record_with_function;
4084 else if (isa<VarDecl>(Mem))
4085 DK = diag::err_anonymous_record_with_static;
4086
4087 // Visual C++ allows type definition in anonymous struct or union.
4088 if (getLangOpts().MicrosoftExt &&
4089 DK == diag::err_anonymous_record_with_type)
4090 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4091 << (int)Record->isUnion();
4092 else {
4093 Diag(Mem->getLocation(), DK)
4094 << (int)Record->isUnion();
4095 Invalid = true;
4096 }
4097 }
4098 }
4099
4100 // C++11 [class.union]p8 (DR1460):
4101 // At most one variant member of a union may have a
4102 // brace-or-equal-initializer.
4103 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4104 Owner->isRecord())
4105 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4106 cast<CXXRecordDecl>(Record));
4107 }
4108
4109 if (!Record->isUnion() && !Owner->isRecord()) {
4110 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4111 << (int)getLangOpts().CPlusPlus;
4112 Invalid = true;
4113 }
4114
4115 // Mock up a declarator.
4116 Declarator Dc(DS, Declarator::MemberContext);
4117 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4118 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4119
4120 // Create a declaration for this anonymous struct/union.
4121 NamedDecl *Anon = nullptr;
4122 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4123 Anon = FieldDecl::Create(Context, OwningClass,
4124 DS.getLocStart(),
4125 Record->getLocation(),
4126 /*IdentifierInfo=*/nullptr,
4127 Context.getTypeDeclType(Record),
4128 TInfo,
4129 /*BitWidth=*/nullptr, /*Mutable=*/false,
4130 /*InitStyle=*/ICIS_NoInit);
4131 Anon->setAccess(AS);
4132 if (getLangOpts().CPlusPlus)
4133 FieldCollector->Add(cast<FieldDecl>(Anon));
4134 } else {
4135 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4136 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4137 if (SCSpec == DeclSpec::SCS_mutable) {
4138 // mutable can only appear on non-static class members, so it's always
4139 // an error here
4140 Diag(Record->getLocation(), diag::err_mutable_nonmember);
4141 Invalid = true;
4142 SC = SC_None;
4143 }
4144
4145 Anon = VarDecl::Create(Context, Owner,
4146 DS.getLocStart(),
4147 Record->getLocation(), /*IdentifierInfo=*/nullptr,
4148 Context.getTypeDeclType(Record),
4149 TInfo, SC);
4150
4151 // Default-initialize the implicit variable. This initialization will be
4152 // trivial in almost all cases, except if a union member has an in-class
4153 // initializer:
4154 // union { int n = 0; };
4155 ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
4156 }
4157 Anon->setImplicit();
4158
4159 // Mark this as an anonymous struct/union type.
4160 Record->setAnonymousStructOrUnion(true);
4161
4162 // Add the anonymous struct/union object to the current
4163 // context. We'll be referencing this object when we refer to one of
4164 // its members.
4165 Owner->addDecl(Anon);
4166
4167 // Inject the members of the anonymous struct/union into the owning
4168 // context and into the identifier resolver chain for name lookup
4169 // purposes.
4170 SmallVector<NamedDecl*, 2> Chain;
4171 Chain.push_back(Anon);
4172
4173 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
4174 Chain, false))
4175 Invalid = true;
4176
4177 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4178 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4179 Decl *ManglingContextDecl;
4180 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4181 NewVD->getDeclContext(), ManglingContextDecl)) {
4182 Context.setManglingNumber(
4183 NewVD, MCtx->getManglingNumber(
4184 NewVD, getMSManglingNumber(getLangOpts(), S)));
4185 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4186 }
4187 }
4188 }
4189
4190 if (Invalid)
4191 Anon->setInvalidDecl();
4192
4193 return Anon;
4194 }
4195
4196 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4197 /// Microsoft C anonymous structure.
4198 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4199 /// Example:
4200 ///
4201 /// struct A { int a; };
4202 /// struct B { struct A; int b; };
4203 ///
4204 /// void foo() {
4205 /// B var;
4206 /// var.a = 3;
4207 /// }
4208 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)4209 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4210 RecordDecl *Record) {
4211 assert(Record && "expected a record!");
4212
4213 // Mock up a declarator.
4214 Declarator Dc(DS, Declarator::TypeNameContext);
4215 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4216 assert(TInfo && "couldn't build declarator info for anonymous struct");
4217
4218 auto *ParentDecl = cast<RecordDecl>(CurContext);
4219 QualType RecTy = Context.getTypeDeclType(Record);
4220
4221 // Create a declaration for this anonymous struct.
4222 NamedDecl *Anon = FieldDecl::Create(Context,
4223 ParentDecl,
4224 DS.getLocStart(),
4225 DS.getLocStart(),
4226 /*IdentifierInfo=*/nullptr,
4227 RecTy,
4228 TInfo,
4229 /*BitWidth=*/nullptr, /*Mutable=*/false,
4230 /*InitStyle=*/ICIS_NoInit);
4231 Anon->setImplicit();
4232
4233 // Add the anonymous struct object to the current context.
4234 CurContext->addDecl(Anon);
4235
4236 // Inject the members of the anonymous struct into the current
4237 // context and into the identifier resolver chain for name lookup
4238 // purposes.
4239 SmallVector<NamedDecl*, 2> Chain;
4240 Chain.push_back(Anon);
4241
4242 RecordDecl *RecordDef = Record->getDefinition();
4243 if (RequireCompleteType(Anon->getLocation(), RecTy,
4244 diag::err_field_incomplete) ||
4245 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4246 AS_none, Chain, true)) {
4247 Anon->setInvalidDecl();
4248 ParentDecl->setInvalidDecl();
4249 }
4250
4251 return Anon;
4252 }
4253
4254 /// GetNameForDeclarator - Determine the full declaration name for the
4255 /// given Declarator.
GetNameForDeclarator(Declarator & D)4256 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4257 return GetNameFromUnqualifiedId(D.getName());
4258 }
4259
4260 /// \brief Retrieves the declaration name from a parsed unqualified-id.
4261 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)4262 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4263 DeclarationNameInfo NameInfo;
4264 NameInfo.setLoc(Name.StartLocation);
4265
4266 switch (Name.getKind()) {
4267
4268 case UnqualifiedId::IK_ImplicitSelfParam:
4269 case UnqualifiedId::IK_Identifier:
4270 NameInfo.setName(Name.Identifier);
4271 NameInfo.setLoc(Name.StartLocation);
4272 return NameInfo;
4273
4274 case UnqualifiedId::IK_OperatorFunctionId:
4275 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4276 Name.OperatorFunctionId.Operator));
4277 NameInfo.setLoc(Name.StartLocation);
4278 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4279 = Name.OperatorFunctionId.SymbolLocations[0];
4280 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4281 = Name.EndLocation.getRawEncoding();
4282 return NameInfo;
4283
4284 case UnqualifiedId::IK_LiteralOperatorId:
4285 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4286 Name.Identifier));
4287 NameInfo.setLoc(Name.StartLocation);
4288 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4289 return NameInfo;
4290
4291 case UnqualifiedId::IK_ConversionFunctionId: {
4292 TypeSourceInfo *TInfo;
4293 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4294 if (Ty.isNull())
4295 return DeclarationNameInfo();
4296 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4297 Context.getCanonicalType(Ty)));
4298 NameInfo.setLoc(Name.StartLocation);
4299 NameInfo.setNamedTypeInfo(TInfo);
4300 return NameInfo;
4301 }
4302
4303 case UnqualifiedId::IK_ConstructorName: {
4304 TypeSourceInfo *TInfo;
4305 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
4306 if (Ty.isNull())
4307 return DeclarationNameInfo();
4308 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4309 Context.getCanonicalType(Ty)));
4310 NameInfo.setLoc(Name.StartLocation);
4311 NameInfo.setNamedTypeInfo(TInfo);
4312 return NameInfo;
4313 }
4314
4315 case UnqualifiedId::IK_ConstructorTemplateId: {
4316 // In well-formed code, we can only have a constructor
4317 // template-id that refers to the current context, so go there
4318 // to find the actual type being constructed.
4319 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
4320 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
4321 return DeclarationNameInfo();
4322
4323 // Determine the type of the class being constructed.
4324 QualType CurClassType = Context.getTypeDeclType(CurClass);
4325
4326 // FIXME: Check two things: that the template-id names the same type as
4327 // CurClassType, and that the template-id does not occur when the name
4328 // was qualified.
4329
4330 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4331 Context.getCanonicalType(CurClassType)));
4332 NameInfo.setLoc(Name.StartLocation);
4333 // FIXME: should we retrieve TypeSourceInfo?
4334 NameInfo.setNamedTypeInfo(nullptr);
4335 return NameInfo;
4336 }
4337
4338 case UnqualifiedId::IK_DestructorName: {
4339 TypeSourceInfo *TInfo;
4340 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
4341 if (Ty.isNull())
4342 return DeclarationNameInfo();
4343 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
4344 Context.getCanonicalType(Ty)));
4345 NameInfo.setLoc(Name.StartLocation);
4346 NameInfo.setNamedTypeInfo(TInfo);
4347 return NameInfo;
4348 }
4349
4350 case UnqualifiedId::IK_TemplateId: {
4351 TemplateName TName = Name.TemplateId->Template.get();
4352 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
4353 return Context.getNameForTemplate(TName, TNameLoc);
4354 }
4355
4356 } // switch (Name.getKind())
4357
4358 llvm_unreachable("Unknown name kind");
4359 }
4360
getCoreType(QualType Ty)4361 static QualType getCoreType(QualType Ty) {
4362 do {
4363 if (Ty->isPointerType() || Ty->isReferenceType())
4364 Ty = Ty->getPointeeType();
4365 else if (Ty->isArrayType())
4366 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
4367 else
4368 return Ty.withoutLocalFastQualifiers();
4369 } while (true);
4370 }
4371
4372 /// hasSimilarParameters - Determine whether the C++ functions Declaration
4373 /// and Definition have "nearly" matching parameters. This heuristic is
4374 /// used to improve diagnostics in the case where an out-of-line function
4375 /// definition doesn't match any declaration within the class or namespace.
4376 /// Also sets Params to the list of indices to the parameters that differ
4377 /// between the declaration and the definition. If hasSimilarParameters
4378 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)4379 static bool hasSimilarParameters(ASTContext &Context,
4380 FunctionDecl *Declaration,
4381 FunctionDecl *Definition,
4382 SmallVectorImpl<unsigned> &Params) {
4383 Params.clear();
4384 if (Declaration->param_size() != Definition->param_size())
4385 return false;
4386 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
4387 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
4388 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
4389
4390 // The parameter types are identical
4391 if (Context.hasSameType(DefParamTy, DeclParamTy))
4392 continue;
4393
4394 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
4395 QualType DefParamBaseTy = getCoreType(DefParamTy);
4396 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
4397 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
4398
4399 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
4400 (DeclTyName && DeclTyName == DefTyName))
4401 Params.push_back(Idx);
4402 else // The two parameters aren't even close
4403 return false;
4404 }
4405
4406 return true;
4407 }
4408
4409 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4410 /// declarator needs to be rebuilt in the current instantiation.
4411 /// Any bits of declarator which appear before the name are valid for
4412 /// consideration here. That's specifically the type in the decl spec
4413 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)4414 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4415 DeclarationName Name) {
4416 // The types we specifically need to rebuild are:
4417 // - typenames, typeofs, and decltypes
4418 // - types which will become injected class names
4419 // Of course, we also need to rebuild any type referencing such a
4420 // type. It's safest to just say "dependent", but we call out a
4421 // few cases here.
4422
4423 DeclSpec &DS = D.getMutableDeclSpec();
4424 switch (DS.getTypeSpecType()) {
4425 case DeclSpec::TST_typename:
4426 case DeclSpec::TST_typeofType:
4427 case DeclSpec::TST_underlyingType:
4428 case DeclSpec::TST_atomic: {
4429 // Grab the type from the parser.
4430 TypeSourceInfo *TSI = nullptr;
4431 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4432 if (T.isNull() || !T->isDependentType()) break;
4433
4434 // Make sure there's a type source info. This isn't really much
4435 // of a waste; most dependent types should have type source info
4436 // attached already.
4437 if (!TSI)
4438 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4439
4440 // Rebuild the type in the current instantiation.
4441 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4442 if (!TSI) return true;
4443
4444 // Store the new type back in the decl spec.
4445 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4446 DS.UpdateTypeRep(LocType);
4447 break;
4448 }
4449
4450 case DeclSpec::TST_decltype:
4451 case DeclSpec::TST_typeofExpr: {
4452 Expr *E = DS.getRepAsExpr();
4453 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4454 if (Result.isInvalid()) return true;
4455 DS.UpdateExprRep(Result.get());
4456 break;
4457 }
4458
4459 default:
4460 // Nothing to do for these decl specs.
4461 break;
4462 }
4463
4464 // It doesn't matter what order we do this in.
4465 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4466 DeclaratorChunk &Chunk = D.getTypeObject(I);
4467
4468 // The only type information in the declarator which can come
4469 // before the declaration name is the base type of a member
4470 // pointer.
4471 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4472 continue;
4473
4474 // Rebuild the scope specifier in-place.
4475 CXXScopeSpec &SS = Chunk.Mem.Scope();
4476 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4477 return true;
4478 }
4479
4480 return false;
4481 }
4482
ActOnDeclarator(Scope * S,Declarator & D)4483 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4484 D.setFunctionDefinitionKind(FDK_Declaration);
4485 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4486
4487 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4488 Dcl && Dcl->getDeclContext()->isFileContext())
4489 Dcl->setTopLevelDeclInObjCContainer();
4490
4491 return Dcl;
4492 }
4493
4494 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4495 /// If T is the name of a class, then each of the following shall have a
4496 /// name different from T:
4497 /// - every static data member of class T;
4498 /// - every member function of class T
4499 /// - every member of class T that is itself a type;
4500 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)4501 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4502 DeclarationNameInfo NameInfo) {
4503 DeclarationName Name = NameInfo.getName();
4504
4505 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4506 if (Record->getIdentifier() && Record->getDeclName() == Name) {
4507 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4508 return true;
4509 }
4510
4511 return false;
4512 }
4513
4514 /// \brief Diagnose a declaration whose declarator-id has the given
4515 /// nested-name-specifier.
4516 ///
4517 /// \param SS The nested-name-specifier of the declarator-id.
4518 ///
4519 /// \param DC The declaration context to which the nested-name-specifier
4520 /// resolves.
4521 ///
4522 /// \param Name The name of the entity being declared.
4523 ///
4524 /// \param Loc The location of the name of the entity being declared.
4525 ///
4526 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)4527 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4528 DeclarationName Name,
4529 SourceLocation Loc) {
4530 DeclContext *Cur = CurContext;
4531 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4532 Cur = Cur->getParent();
4533
4534 // If the user provided a superfluous scope specifier that refers back to the
4535 // class in which the entity is already declared, diagnose and ignore it.
4536 //
4537 // class X {
4538 // void X::f();
4539 // };
4540 //
4541 // Note, it was once ill-formed to give redundant qualification in all
4542 // contexts, but that rule was removed by DR482.
4543 if (Cur->Equals(DC)) {
4544 if (Cur->isRecord()) {
4545 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
4546 : diag::err_member_extra_qualification)
4547 << Name << FixItHint::CreateRemoval(SS.getRange());
4548 SS.clear();
4549 } else {
4550 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
4551 }
4552 return false;
4553 }
4554
4555 // Check whether the qualifying scope encloses the scope of the original
4556 // declaration.
4557 if (!Cur->Encloses(DC)) {
4558 if (Cur->isRecord())
4559 Diag(Loc, diag::err_member_qualification)
4560 << Name << SS.getRange();
4561 else if (isa<TranslationUnitDecl>(DC))
4562 Diag(Loc, diag::err_invalid_declarator_global_scope)
4563 << Name << SS.getRange();
4564 else if (isa<FunctionDecl>(Cur))
4565 Diag(Loc, diag::err_invalid_declarator_in_function)
4566 << Name << SS.getRange();
4567 else if (isa<BlockDecl>(Cur))
4568 Diag(Loc, diag::err_invalid_declarator_in_block)
4569 << Name << SS.getRange();
4570 else
4571 Diag(Loc, diag::err_invalid_declarator_scope)
4572 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4573
4574 return true;
4575 }
4576
4577 if (Cur->isRecord()) {
4578 // Cannot qualify members within a class.
4579 Diag(Loc, diag::err_member_qualification)
4580 << Name << SS.getRange();
4581 SS.clear();
4582
4583 // C++ constructors and destructors with incorrect scopes can break
4584 // our AST invariants by having the wrong underlying types. If
4585 // that's the case, then drop this declaration entirely.
4586 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4587 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4588 !Context.hasSameType(Name.getCXXNameType(),
4589 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4590 return true;
4591
4592 return false;
4593 }
4594
4595 // C++11 [dcl.meaning]p1:
4596 // [...] "The nested-name-specifier of the qualified declarator-id shall
4597 // not begin with a decltype-specifer"
4598 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4599 while (SpecLoc.getPrefix())
4600 SpecLoc = SpecLoc.getPrefix();
4601 if (dyn_cast_or_null<DecltypeType>(
4602 SpecLoc.getNestedNameSpecifier()->getAsType()))
4603 Diag(Loc, diag::err_decltype_in_declarator)
4604 << SpecLoc.getTypeLoc().getSourceRange();
4605
4606 return false;
4607 }
4608
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)4609 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4610 MultiTemplateParamsArg TemplateParamLists) {
4611 // TODO: consider using NameInfo for diagnostic.
4612 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4613 DeclarationName Name = NameInfo.getName();
4614
4615 // All of these full declarators require an identifier. If it doesn't have
4616 // one, the ParsedFreeStandingDeclSpec action should be used.
4617 if (!Name) {
4618 if (!D.isInvalidType()) // Reject this if we think it is valid.
4619 Diag(D.getDeclSpec().getLocStart(),
4620 diag::err_declarator_need_ident)
4621 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4622 return nullptr;
4623 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4624 return nullptr;
4625
4626 // The scope passed in may not be a decl scope. Zip up the scope tree until
4627 // we find one that is.
4628 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4629 (S->getFlags() & Scope::TemplateParamScope) != 0)
4630 S = S->getParent();
4631
4632 DeclContext *DC = CurContext;
4633 if (D.getCXXScopeSpec().isInvalid())
4634 D.setInvalidType();
4635 else if (D.getCXXScopeSpec().isSet()) {
4636 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4637 UPPC_DeclarationQualifier))
4638 return nullptr;
4639
4640 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4641 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4642 if (!DC || isa<EnumDecl>(DC)) {
4643 // If we could not compute the declaration context, it's because the
4644 // declaration context is dependent but does not refer to a class,
4645 // class template, or class template partial specialization. Complain
4646 // and return early, to avoid the coming semantic disaster.
4647 Diag(D.getIdentifierLoc(),
4648 diag::err_template_qualified_declarator_no_match)
4649 << D.getCXXScopeSpec().getScopeRep()
4650 << D.getCXXScopeSpec().getRange();
4651 return nullptr;
4652 }
4653 bool IsDependentContext = DC->isDependentContext();
4654
4655 if (!IsDependentContext &&
4656 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4657 return nullptr;
4658
4659 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4660 Diag(D.getIdentifierLoc(),
4661 diag::err_member_def_undefined_record)
4662 << Name << DC << D.getCXXScopeSpec().getRange();
4663 D.setInvalidType();
4664 } else if (!D.getDeclSpec().isFriendSpecified()) {
4665 if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4666 Name, D.getIdentifierLoc())) {
4667 if (DC->isRecord())
4668 return nullptr;
4669
4670 D.setInvalidType();
4671 }
4672 }
4673
4674 // Check whether we need to rebuild the type of the given
4675 // declaration in the current instantiation.
4676 if (EnteringContext && IsDependentContext &&
4677 TemplateParamLists.size() != 0) {
4678 ContextRAII SavedContext(*this, DC);
4679 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4680 D.setInvalidType();
4681 }
4682 }
4683
4684 if (DiagnoseClassNameShadow(DC, NameInfo))
4685 // If this is a typedef, we'll end up spewing multiple diagnostics.
4686 // Just return early; it's safer.
4687 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4688 return nullptr;
4689
4690 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4691 QualType R = TInfo->getType();
4692
4693 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4694 UPPC_DeclarationType))
4695 D.setInvalidType();
4696
4697 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4698 ForRedeclaration);
4699
4700 // See if this is a redefinition of a variable in the same scope.
4701 if (!D.getCXXScopeSpec().isSet()) {
4702 bool IsLinkageLookup = false;
4703 bool CreateBuiltins = false;
4704
4705 // If the declaration we're planning to build will be a function
4706 // or object with linkage, then look for another declaration with
4707 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4708 //
4709 // If the declaration we're planning to build will be declared with
4710 // external linkage in the translation unit, create any builtin with
4711 // the same name.
4712 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4713 /* Do nothing*/;
4714 else if (CurContext->isFunctionOrMethod() &&
4715 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4716 R->isFunctionType())) {
4717 IsLinkageLookup = true;
4718 CreateBuiltins =
4719 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4720 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4721 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4722 CreateBuiltins = true;
4723
4724 if (IsLinkageLookup)
4725 Previous.clear(LookupRedeclarationWithLinkage);
4726
4727 LookupName(Previous, S, CreateBuiltins);
4728 } else { // Something like "int foo::x;"
4729 LookupQualifiedName(Previous, DC);
4730
4731 // C++ [dcl.meaning]p1:
4732 // When the declarator-id is qualified, the declaration shall refer to a
4733 // previously declared member of the class or namespace to which the
4734 // qualifier refers (or, in the case of a namespace, of an element of the
4735 // inline namespace set of that namespace (7.3.1)) or to a specialization
4736 // thereof; [...]
4737 //
4738 // Note that we already checked the context above, and that we do not have
4739 // enough information to make sure that Previous contains the declaration
4740 // we want to match. For example, given:
4741 //
4742 // class X {
4743 // void f();
4744 // void f(float);
4745 // };
4746 //
4747 // void X::f(int) { } // ill-formed
4748 //
4749 // In this case, Previous will point to the overload set
4750 // containing the two f's declared in X, but neither of them
4751 // matches.
4752
4753 // C++ [dcl.meaning]p1:
4754 // [...] the member shall not merely have been introduced by a
4755 // using-declaration in the scope of the class or namespace nominated by
4756 // the nested-name-specifier of the declarator-id.
4757 RemoveUsingDecls(Previous);
4758 }
4759
4760 if (Previous.isSingleResult() &&
4761 Previous.getFoundDecl()->isTemplateParameter()) {
4762 // Maybe we will complain about the shadowed template parameter.
4763 if (!D.isInvalidType())
4764 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4765 Previous.getFoundDecl());
4766
4767 // Just pretend that we didn't see the previous declaration.
4768 Previous.clear();
4769 }
4770
4771 // In C++, the previous declaration we find might be a tag type
4772 // (class or enum). In this case, the new declaration will hide the
4773 // tag type. Note that this does does not apply if we're declaring a
4774 // typedef (C++ [dcl.typedef]p4).
4775 if (Previous.isSingleTagDecl() &&
4776 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4777 Previous.clear();
4778
4779 // Check that there are no default arguments other than in the parameters
4780 // of a function declaration (C++ only).
4781 if (getLangOpts().CPlusPlus)
4782 CheckExtraCXXDefaultArguments(D);
4783
4784 NamedDecl *New;
4785
4786 bool AddToScope = true;
4787 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4788 if (TemplateParamLists.size()) {
4789 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4790 return nullptr;
4791 }
4792
4793 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4794 } else if (R->isFunctionType()) {
4795 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4796 TemplateParamLists,
4797 AddToScope);
4798 } else {
4799 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4800 AddToScope);
4801 }
4802
4803 if (!New)
4804 return nullptr;
4805
4806 // If this has an identifier and is not an invalid redeclaration or
4807 // function template specialization, add it to the scope stack.
4808 if (New->getDeclName() && AddToScope &&
4809 !(D.isRedeclaration() && New->isInvalidDecl())) {
4810 // Only make a locally-scoped extern declaration visible if it is the first
4811 // declaration of this entity. Qualified lookup for such an entity should
4812 // only find this declaration if there is no visible declaration of it.
4813 bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4814 PushOnScopeChains(New, S, AddToContext);
4815 if (!AddToContext)
4816 CurContext->addHiddenDecl(New);
4817 }
4818
4819 return New;
4820 }
4821
4822 /// Helper method to turn variable array types into constant array
4823 /// types in certain situations which would otherwise be errors (for
4824 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4825 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4826 ASTContext &Context,
4827 bool &SizeIsNegative,
4828 llvm::APSInt &Oversized) {
4829 // This method tries to turn a variable array into a constant
4830 // array even when the size isn't an ICE. This is necessary
4831 // for compatibility with code that depends on gcc's buggy
4832 // constant expression folding, like struct {char x[(int)(char*)2];}
4833 SizeIsNegative = false;
4834 Oversized = 0;
4835
4836 if (T->isDependentType())
4837 return QualType();
4838
4839 QualifierCollector Qs;
4840 const Type *Ty = Qs.strip(T);
4841
4842 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4843 QualType Pointee = PTy->getPointeeType();
4844 QualType FixedType =
4845 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4846 Oversized);
4847 if (FixedType.isNull()) return FixedType;
4848 FixedType = Context.getPointerType(FixedType);
4849 return Qs.apply(Context, FixedType);
4850 }
4851 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4852 QualType Inner = PTy->getInnerType();
4853 QualType FixedType =
4854 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4855 Oversized);
4856 if (FixedType.isNull()) return FixedType;
4857 FixedType = Context.getParenType(FixedType);
4858 return Qs.apply(Context, FixedType);
4859 }
4860
4861 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4862 if (!VLATy)
4863 return QualType();
4864 // FIXME: We should probably handle this case
4865 if (VLATy->getElementType()->isVariablyModifiedType())
4866 return QualType();
4867
4868 llvm::APSInt Res;
4869 if (!VLATy->getSizeExpr() ||
4870 !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4871 return QualType();
4872
4873 // Check whether the array size is negative.
4874 if (Res.isSigned() && Res.isNegative()) {
4875 SizeIsNegative = true;
4876 return QualType();
4877 }
4878
4879 // Check whether the array is too large to be addressed.
4880 unsigned ActiveSizeBits
4881 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4882 Res);
4883 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4884 Oversized = Res;
4885 return QualType();
4886 }
4887
4888 return Context.getConstantArrayType(VLATy->getElementType(),
4889 Res, ArrayType::Normal, 0);
4890 }
4891
4892 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)4893 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4894 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4895 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4896 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4897 DstPTL.getPointeeLoc());
4898 DstPTL.setStarLoc(SrcPTL.getStarLoc());
4899 return;
4900 }
4901 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4902 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4903 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4904 DstPTL.getInnerLoc());
4905 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4906 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4907 return;
4908 }
4909 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4910 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4911 TypeLoc SrcElemTL = SrcATL.getElementLoc();
4912 TypeLoc DstElemTL = DstATL.getElementLoc();
4913 DstElemTL.initializeFullCopy(SrcElemTL);
4914 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4915 DstATL.setSizeExpr(SrcATL.getSizeExpr());
4916 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4917 }
4918
4919 /// Helper method to turn variable array types into constant array
4920 /// types in certain situations which would otherwise be errors (for
4921 /// GCC compatibility).
4922 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4923 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4924 ASTContext &Context,
4925 bool &SizeIsNegative,
4926 llvm::APSInt &Oversized) {
4927 QualType FixedTy
4928 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4929 SizeIsNegative, Oversized);
4930 if (FixedTy.isNull())
4931 return nullptr;
4932 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4933 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4934 FixedTInfo->getTypeLoc());
4935 return FixedTInfo;
4936 }
4937
4938 /// \brief Register the given locally-scoped extern "C" declaration so
4939 /// that it can be found later for redeclarations. We include any extern "C"
4940 /// declaration that is not visible in the translation unit here, not just
4941 /// function-scope declarations.
4942 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)4943 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4944 if (!getLangOpts().CPlusPlus &&
4945 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4946 // Don't need to track declarations in the TU in C.
4947 return;
4948
4949 // Note that we have a locally-scoped external with this name.
4950 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
4951 }
4952
findLocallyScopedExternCDecl(DeclarationName Name)4953 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4954 // FIXME: We can have multiple results via __attribute__((overloadable)).
4955 auto Result = Context.getExternCContextDecl()->lookup(Name);
4956 return Result.empty() ? nullptr : *Result.begin();
4957 }
4958
4959 /// \brief Diagnose function specifiers on a declaration of an identifier that
4960 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)4961 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4962 // FIXME: We should probably indicate the identifier in question to avoid
4963 // confusion for constructs like "inline int a(), b;"
4964 if (DS.isInlineSpecified())
4965 Diag(DS.getInlineSpecLoc(),
4966 diag::err_inline_non_function);
4967
4968 if (DS.isVirtualSpecified())
4969 Diag(DS.getVirtualSpecLoc(),
4970 diag::err_virtual_non_function);
4971
4972 if (DS.isExplicitSpecified())
4973 Diag(DS.getExplicitSpecLoc(),
4974 diag::err_explicit_non_function);
4975
4976 if (DS.isNoreturnSpecified())
4977 Diag(DS.getNoreturnSpecLoc(),
4978 diag::err_noreturn_non_function);
4979 }
4980
4981 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)4982 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4983 TypeSourceInfo *TInfo, LookupResult &Previous) {
4984 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4985 if (D.getCXXScopeSpec().isSet()) {
4986 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4987 << D.getCXXScopeSpec().getRange();
4988 D.setInvalidType();
4989 // Pretend we didn't see the scope specifier.
4990 DC = CurContext;
4991 Previous.clear();
4992 }
4993
4994 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4995
4996 if (D.getDeclSpec().isConstexprSpecified())
4997 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4998 << 1;
4999
5000 if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
5001 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5002 << D.getName().getSourceRange();
5003 return nullptr;
5004 }
5005
5006 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5007 if (!NewTD) return nullptr;
5008
5009 // Handle attributes prior to checking for duplicates in MergeVarDecl
5010 ProcessDeclAttributes(S, NewTD, D);
5011
5012 CheckTypedefForVariablyModifiedType(S, NewTD);
5013
5014 bool Redeclaration = D.isRedeclaration();
5015 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5016 D.setRedeclaration(Redeclaration);
5017 return ND;
5018 }
5019
5020 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)5021 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5022 // C99 6.7.7p2: If a typedef name specifies a variably modified type
5023 // then it shall have block scope.
5024 // Note that variably modified types must be fixed before merging the decl so
5025 // that redeclarations will match.
5026 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5027 QualType T = TInfo->getType();
5028 if (T->isVariablyModifiedType()) {
5029 getCurFunction()->setHasBranchProtectedScope();
5030
5031 if (S->getFnParent() == nullptr) {
5032 bool SizeIsNegative;
5033 llvm::APSInt Oversized;
5034 TypeSourceInfo *FixedTInfo =
5035 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5036 SizeIsNegative,
5037 Oversized);
5038 if (FixedTInfo) {
5039 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5040 NewTD->setTypeSourceInfo(FixedTInfo);
5041 } else {
5042 if (SizeIsNegative)
5043 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5044 else if (T->isVariableArrayType())
5045 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5046 else if (Oversized.getBoolValue())
5047 Diag(NewTD->getLocation(), diag::err_array_too_large)
5048 << Oversized.toString(10);
5049 else
5050 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5051 NewTD->setInvalidDecl();
5052 }
5053 }
5054 }
5055 }
5056
5057
5058 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5059 /// declares a typedef-name, either using the 'typedef' type specifier or via
5060 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5061 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)5062 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5063 LookupResult &Previous, bool &Redeclaration) {
5064 // Merge the decl with the existing one if appropriate. If the decl is
5065 // in an outer scope, it isn't the same thing.
5066 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5067 /*AllowInlineNamespace*/false);
5068 filterNonConflictingPreviousTypedefDecls(Context, NewTD, Previous);
5069 if (!Previous.empty()) {
5070 Redeclaration = true;
5071 MergeTypedefNameDecl(NewTD, Previous);
5072 }
5073
5074 // If this is the C FILE type, notify the AST context.
5075 if (IdentifierInfo *II = NewTD->getIdentifier())
5076 if (!NewTD->isInvalidDecl() &&
5077 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5078 if (II->isStr("FILE"))
5079 Context.setFILEDecl(NewTD);
5080 else if (II->isStr("jmp_buf"))
5081 Context.setjmp_bufDecl(NewTD);
5082 else if (II->isStr("sigjmp_buf"))
5083 Context.setsigjmp_bufDecl(NewTD);
5084 else if (II->isStr("ucontext_t"))
5085 Context.setucontext_tDecl(NewTD);
5086 }
5087
5088 return NewTD;
5089 }
5090
5091 /// \brief Determines whether the given declaration is an out-of-scope
5092 /// previous declaration.
5093 ///
5094 /// This routine should be invoked when name lookup has found a
5095 /// previous declaration (PrevDecl) that is not in the scope where a
5096 /// new declaration by the same name is being introduced. If the new
5097 /// declaration occurs in a local scope, previous declarations with
5098 /// linkage may still be considered previous declarations (C99
5099 /// 6.2.2p4-5, C++ [basic.link]p6).
5100 ///
5101 /// \param PrevDecl the previous declaration found by name
5102 /// lookup
5103 ///
5104 /// \param DC the context in which the new declaration is being
5105 /// declared.
5106 ///
5107 /// \returns true if PrevDecl is an out-of-scope previous declaration
5108 /// for a new delcaration with the same name.
5109 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)5110 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5111 ASTContext &Context) {
5112 if (!PrevDecl)
5113 return false;
5114
5115 if (!PrevDecl->hasLinkage())
5116 return false;
5117
5118 if (Context.getLangOpts().CPlusPlus) {
5119 // C++ [basic.link]p6:
5120 // If there is a visible declaration of an entity with linkage
5121 // having the same name and type, ignoring entities declared
5122 // outside the innermost enclosing namespace scope, the block
5123 // scope declaration declares that same entity and receives the
5124 // linkage of the previous declaration.
5125 DeclContext *OuterContext = DC->getRedeclContext();
5126 if (!OuterContext->isFunctionOrMethod())
5127 // This rule only applies to block-scope declarations.
5128 return false;
5129
5130 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5131 if (PrevOuterContext->isRecord())
5132 // We found a member function: ignore it.
5133 return false;
5134
5135 // Find the innermost enclosing namespace for the new and
5136 // previous declarations.
5137 OuterContext = OuterContext->getEnclosingNamespaceContext();
5138 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5139
5140 // The previous declaration is in a different namespace, so it
5141 // isn't the same function.
5142 if (!OuterContext->Equals(PrevOuterContext))
5143 return false;
5144 }
5145
5146 return true;
5147 }
5148
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)5149 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5150 CXXScopeSpec &SS = D.getCXXScopeSpec();
5151 if (!SS.isSet()) return;
5152 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5153 }
5154
inferObjCARCLifetime(ValueDecl * decl)5155 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5156 QualType type = decl->getType();
5157 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5158 if (lifetime == Qualifiers::OCL_Autoreleasing) {
5159 // Various kinds of declaration aren't allowed to be __autoreleasing.
5160 unsigned kind = -1U;
5161 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5162 if (var->hasAttr<BlocksAttr>())
5163 kind = 0; // __block
5164 else if (!var->hasLocalStorage())
5165 kind = 1; // global
5166 } else if (isa<ObjCIvarDecl>(decl)) {
5167 kind = 3; // ivar
5168 } else if (isa<FieldDecl>(decl)) {
5169 kind = 2; // field
5170 }
5171
5172 if (kind != -1U) {
5173 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5174 << kind;
5175 }
5176 } else if (lifetime == Qualifiers::OCL_None) {
5177 // Try to infer lifetime.
5178 if (!type->isObjCLifetimeType())
5179 return false;
5180
5181 lifetime = type->getObjCARCImplicitLifetime();
5182 type = Context.getLifetimeQualifiedType(type, lifetime);
5183 decl->setType(type);
5184 }
5185
5186 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5187 // Thread-local variables cannot have lifetime.
5188 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5189 var->getTLSKind()) {
5190 Diag(var->getLocation(), diag::err_arc_thread_ownership)
5191 << var->getType();
5192 return true;
5193 }
5194 }
5195
5196 return false;
5197 }
5198
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)5199 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5200 // Ensure that an auto decl is deduced otherwise the checks below might cache
5201 // the wrong linkage.
5202 assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5203
5204 // 'weak' only applies to declarations with external linkage.
5205 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5206 if (!ND.isExternallyVisible()) {
5207 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5208 ND.dropAttr<WeakAttr>();
5209 }
5210 }
5211 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5212 if (ND.isExternallyVisible()) {
5213 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5214 ND.dropAttr<WeakRefAttr>();
5215 ND.dropAttr<AliasAttr>();
5216 }
5217 }
5218
5219 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5220 if (VD->hasInit()) {
5221 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5222 assert(VD->isThisDeclarationADefinition() &&
5223 !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5224 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD;
5225 VD->dropAttr<AliasAttr>();
5226 }
5227 }
5228 }
5229
5230 // 'selectany' only applies to externally visible varable declarations.
5231 // It does not apply to functions.
5232 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5233 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5234 S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
5235 ND.dropAttr<SelectAnyAttr>();
5236 }
5237 }
5238
5239 // dll attributes require external linkage.
5240 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5241 if (!ND.isExternallyVisible()) {
5242 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5243 << &ND << Attr;
5244 ND.setInvalidDecl();
5245 }
5246 }
5247 }
5248
checkDLLAttributeRedeclaration(Sema & S,NamedDecl * OldDecl,NamedDecl * NewDecl,bool IsSpecialization)5249 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5250 NamedDecl *NewDecl,
5251 bool IsSpecialization) {
5252 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
5253 OldDecl = OldTD->getTemplatedDecl();
5254 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
5255 NewDecl = NewTD->getTemplatedDecl();
5256
5257 if (!OldDecl || !NewDecl)
5258 return;
5259
5260 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
5261 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
5262 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
5263 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
5264
5265 // dllimport and dllexport are inheritable attributes so we have to exclude
5266 // inherited attribute instances.
5267 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
5268 (NewExportAttr && !NewExportAttr->isInherited());
5269
5270 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
5271 // the only exception being explicit specializations.
5272 // Implicitly generated declarations are also excluded for now because there
5273 // is no other way to switch these to use dllimport or dllexport.
5274 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
5275
5276 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
5277 // If the declaration hasn't been used yet, allow with a warning for
5278 // free functions and global variables.
5279 bool JustWarn = false;
5280 if (!OldDecl->isUsed() && !OldDecl->isCXXClassMember()) {
5281 auto *VD = dyn_cast<VarDecl>(OldDecl);
5282 if (VD && !VD->getDescribedVarTemplate())
5283 JustWarn = true;
5284 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
5285 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
5286 JustWarn = true;
5287 }
5288
5289 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
5290 : diag::err_attribute_dll_redeclaration;
5291 S.Diag(NewDecl->getLocation(), DiagID)
5292 << NewDecl
5293 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
5294 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5295 if (!JustWarn) {
5296 NewDecl->setInvalidDecl();
5297 return;
5298 }
5299 }
5300
5301 // A redeclaration is not allowed to drop a dllimport attribute, the only
5302 // exceptions being inline function definitions, local extern declarations,
5303 // and qualified friend declarations.
5304 // NB: MSVC converts such a declaration to dllexport.
5305 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
5306 if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
5307 // Ignore static data because out-of-line definitions are diagnosed
5308 // separately.
5309 IsStaticDataMember = VD->isStaticDataMember();
5310 else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
5311 IsInline = FD->isInlined();
5312 IsQualifiedFriend = FD->getQualifier() &&
5313 FD->getFriendObjectKind() == Decl::FOK_Declared;
5314 }
5315
5316 if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember &&
5317 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
5318 S.Diag(NewDecl->getLocation(),
5319 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5320 << NewDecl << OldImportAttr;
5321 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5322 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
5323 OldDecl->dropAttr<DLLImportAttr>();
5324 NewDecl->dropAttr<DLLImportAttr>();
5325 } else if (IsInline && OldImportAttr &&
5326 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5327 // In MinGW, seeing a function declared inline drops the dllimport attribute.
5328 OldDecl->dropAttr<DLLImportAttr>();
5329 NewDecl->dropAttr<DLLImportAttr>();
5330 S.Diag(NewDecl->getLocation(),
5331 diag::warn_dllimport_dropped_from_inline_function)
5332 << NewDecl << OldImportAttr;
5333 }
5334 }
5335
5336 /// Given that we are within the definition of the given function,
5337 /// will that definition behave like C99's 'inline', where the
5338 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)5339 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
5340 // Try to avoid calling GetGVALinkageForFunction.
5341
5342 // All cases of this require the 'inline' keyword.
5343 if (!FD->isInlined()) return false;
5344
5345 // This is only possible in C++ with the gnu_inline attribute.
5346 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
5347 return false;
5348
5349 // Okay, go ahead and call the relatively-more-expensive function.
5350
5351 #ifndef NDEBUG
5352 // AST quite reasonably asserts that it's working on a function
5353 // definition. We don't really have a way to tell it that we're
5354 // currently defining the function, so just lie to it in +Asserts
5355 // builds. This is an awful hack.
5356 FD->setLazyBody(1);
5357 #endif
5358
5359 bool isC99Inline =
5360 S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
5361
5362 #ifndef NDEBUG
5363 FD->setLazyBody(0);
5364 #endif
5365
5366 return isC99Inline;
5367 }
5368
5369 /// Determine whether a variable is extern "C" prior to attaching
5370 /// an initializer. We can't just call isExternC() here, because that
5371 /// will also compute and cache whether the declaration is externally
5372 /// visible, which might change when we attach the initializer.
5373 ///
5374 /// This can only be used if the declaration is known to not be a
5375 /// redeclaration of an internal linkage declaration.
5376 ///
5377 /// For instance:
5378 ///
5379 /// auto x = []{};
5380 ///
5381 /// Attaching the initializer here makes this declaration not externally
5382 /// visible, because its type has internal linkage.
5383 ///
5384 /// FIXME: This is a hack.
5385 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)5386 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
5387 if (S.getLangOpts().CPlusPlus) {
5388 // In C++, the overloadable attribute negates the effects of extern "C".
5389 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
5390 return false;
5391 }
5392 return D->isExternC();
5393 }
5394
shouldConsiderLinkage(const VarDecl * VD)5395 static bool shouldConsiderLinkage(const VarDecl *VD) {
5396 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
5397 if (DC->isFunctionOrMethod())
5398 return VD->hasExternalStorage();
5399 if (DC->isFileContext())
5400 return true;
5401 if (DC->isRecord())
5402 return false;
5403 llvm_unreachable("Unexpected context");
5404 }
5405
shouldConsiderLinkage(const FunctionDecl * FD)5406 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
5407 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
5408 if (DC->isFileContext() || DC->isFunctionOrMethod())
5409 return true;
5410 if (DC->isRecord())
5411 return false;
5412 llvm_unreachable("Unexpected context");
5413 }
5414
hasParsedAttr(Scope * S,const AttributeList * AttrList,AttributeList::Kind Kind)5415 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
5416 AttributeList::Kind Kind) {
5417 for (const AttributeList *L = AttrList; L; L = L->getNext())
5418 if (L->getKind() == Kind)
5419 return true;
5420 return false;
5421 }
5422
hasParsedAttr(Scope * S,const Declarator & PD,AttributeList::Kind Kind)5423 static bool hasParsedAttr(Scope *S, const Declarator &PD,
5424 AttributeList::Kind Kind) {
5425 // Check decl attributes on the DeclSpec.
5426 if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
5427 return true;
5428
5429 // Walk the declarator structure, checking decl attributes that were in a type
5430 // position to the decl itself.
5431 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
5432 if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
5433 return true;
5434 }
5435
5436 // Finally, check attributes on the decl itself.
5437 return hasParsedAttr(S, PD.getAttributes(), Kind);
5438 }
5439
5440 /// Adjust the \c DeclContext for a function or variable that might be a
5441 /// function-local external declaration.
adjustContextForLocalExternDecl(DeclContext * & DC)5442 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
5443 if (!DC->isFunctionOrMethod())
5444 return false;
5445
5446 // If this is a local extern function or variable declared within a function
5447 // template, don't add it into the enclosing namespace scope until it is
5448 // instantiated; it might have a dependent type right now.
5449 if (DC->isDependentContext())
5450 return true;
5451
5452 // C++11 [basic.link]p7:
5453 // When a block scope declaration of an entity with linkage is not found to
5454 // refer to some other declaration, then that entity is a member of the
5455 // innermost enclosing namespace.
5456 //
5457 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
5458 // semantically-enclosing namespace, not a lexically-enclosing one.
5459 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
5460 DC = DC->getParent();
5461 return true;
5462 }
5463
5464 NamedDecl *
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)5465 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5466 TypeSourceInfo *TInfo, LookupResult &Previous,
5467 MultiTemplateParamsArg TemplateParamLists,
5468 bool &AddToScope) {
5469 QualType R = TInfo->getType();
5470 DeclarationName Name = GetNameForDeclarator(D).getName();
5471
5472 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
5473 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
5474
5475 // dllimport globals without explicit storage class are treated as extern. We
5476 // have to change the storage class this early to get the right DeclContext.
5477 if (SC == SC_None && !DC->isRecord() &&
5478 hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
5479 !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
5480 SC = SC_Extern;
5481
5482 DeclContext *OriginalDC = DC;
5483 bool IsLocalExternDecl = SC == SC_Extern &&
5484 adjustContextForLocalExternDecl(DC);
5485
5486 if (getLangOpts().OpenCL) {
5487 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
5488 QualType NR = R;
5489 while (NR->isPointerType()) {
5490 if (NR->isFunctionPointerType()) {
5491 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
5492 D.setInvalidType();
5493 break;
5494 }
5495 NR = NR->getPointeeType();
5496 }
5497
5498 if (!getOpenCLOptions().cl_khr_fp16) {
5499 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
5500 // half array type (unless the cl_khr_fp16 extension is enabled).
5501 if (Context.getBaseElementType(R)->isHalfType()) {
5502 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
5503 D.setInvalidType();
5504 }
5505 }
5506 }
5507
5508 if (SCSpec == DeclSpec::SCS_mutable) {
5509 // mutable can only appear on non-static class members, so it's always
5510 // an error here
5511 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
5512 D.setInvalidType();
5513 SC = SC_None;
5514 }
5515
5516 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
5517 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
5518 D.getDeclSpec().getStorageClassSpecLoc())) {
5519 // In C++11, the 'register' storage class specifier is deprecated.
5520 // Suppress the warning in system macros, it's used in macros in some
5521 // popular C system headers, such as in glibc's htonl() macro.
5522 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5523 diag::warn_deprecated_register)
5524 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5525 }
5526
5527 IdentifierInfo *II = Name.getAsIdentifierInfo();
5528 if (!II) {
5529 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
5530 << Name;
5531 return nullptr;
5532 }
5533
5534 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5535
5536 if (!DC->isRecord() && S->getFnParent() == nullptr) {
5537 // C99 6.9p2: The storage-class specifiers auto and register shall not
5538 // appear in the declaration specifiers in an external declaration.
5539 // Global Register+Asm is a GNU extension we support.
5540 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
5541 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
5542 D.setInvalidType();
5543 }
5544 }
5545
5546 if (getLangOpts().OpenCL) {
5547 // Set up the special work-group-local storage class for variables in the
5548 // OpenCL __local address space.
5549 if (R.getAddressSpace() == LangAS::opencl_local) {
5550 SC = SC_OpenCLWorkGroupLocal;
5551 }
5552
5553 // OpenCL v1.2 s6.9.b p4:
5554 // The sampler type cannot be used with the __local and __global address
5555 // space qualifiers.
5556 if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5557 R.getAddressSpace() == LangAS::opencl_global)) {
5558 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5559 }
5560
5561 // OpenCL 1.2 spec, p6.9 r:
5562 // The event type cannot be used to declare a program scope variable.
5563 // The event type cannot be used with the __local, __constant and __global
5564 // address space qualifiers.
5565 if (R->isEventT()) {
5566 if (S->getParent() == nullptr) {
5567 Diag(D.getLocStart(), diag::err_event_t_global_var);
5568 D.setInvalidType();
5569 }
5570
5571 if (R.getAddressSpace()) {
5572 Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5573 D.setInvalidType();
5574 }
5575 }
5576 }
5577
5578 bool IsExplicitSpecialization = false;
5579 bool IsVariableTemplateSpecialization = false;
5580 bool IsPartialSpecialization = false;
5581 bool IsVariableTemplate = false;
5582 VarDecl *NewVD = nullptr;
5583 VarTemplateDecl *NewTemplate = nullptr;
5584 TemplateParameterList *TemplateParams = nullptr;
5585 if (!getLangOpts().CPlusPlus) {
5586 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5587 D.getIdentifierLoc(), II,
5588 R, TInfo, SC);
5589
5590 if (D.isInvalidType())
5591 NewVD->setInvalidDecl();
5592 } else {
5593 bool Invalid = false;
5594
5595 if (DC->isRecord() && !CurContext->isRecord()) {
5596 // This is an out-of-line definition of a static data member.
5597 switch (SC) {
5598 case SC_None:
5599 break;
5600 case SC_Static:
5601 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5602 diag::err_static_out_of_line)
5603 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5604 break;
5605 case SC_Auto:
5606 case SC_Register:
5607 case SC_Extern:
5608 // [dcl.stc] p2: The auto or register specifiers shall be applied only
5609 // to names of variables declared in a block or to function parameters.
5610 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5611 // of class members
5612
5613 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5614 diag::err_storage_class_for_static_member)
5615 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5616 break;
5617 case SC_PrivateExtern:
5618 llvm_unreachable("C storage class in c++!");
5619 case SC_OpenCLWorkGroupLocal:
5620 llvm_unreachable("OpenCL storage class in c++!");
5621 }
5622 }
5623
5624 if (SC == SC_Static && CurContext->isRecord()) {
5625 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5626 if (RD->isLocalClass())
5627 Diag(D.getIdentifierLoc(),
5628 diag::err_static_data_member_not_allowed_in_local_class)
5629 << Name << RD->getDeclName();
5630
5631 // C++98 [class.union]p1: If a union contains a static data member,
5632 // the program is ill-formed. C++11 drops this restriction.
5633 if (RD->isUnion())
5634 Diag(D.getIdentifierLoc(),
5635 getLangOpts().CPlusPlus11
5636 ? diag::warn_cxx98_compat_static_data_member_in_union
5637 : diag::ext_static_data_member_in_union) << Name;
5638 // We conservatively disallow static data members in anonymous structs.
5639 else if (!RD->getDeclName())
5640 Diag(D.getIdentifierLoc(),
5641 diag::err_static_data_member_not_allowed_in_anon_struct)
5642 << Name << RD->isUnion();
5643 }
5644 }
5645
5646 // Match up the template parameter lists with the scope specifier, then
5647 // determine whether we have a template or a template specialization.
5648 TemplateParams = MatchTemplateParametersToScopeSpecifier(
5649 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5650 D.getCXXScopeSpec(),
5651 D.getName().getKind() == UnqualifiedId::IK_TemplateId
5652 ? D.getName().TemplateId
5653 : nullptr,
5654 TemplateParamLists,
5655 /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5656
5657 if (TemplateParams) {
5658 if (!TemplateParams->size() &&
5659 D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5660 // There is an extraneous 'template<>' for this variable. Complain
5661 // about it, but allow the declaration of the variable.
5662 Diag(TemplateParams->getTemplateLoc(),
5663 diag::err_template_variable_noparams)
5664 << II
5665 << SourceRange(TemplateParams->getTemplateLoc(),
5666 TemplateParams->getRAngleLoc());
5667 TemplateParams = nullptr;
5668 } else {
5669 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5670 // This is an explicit specialization or a partial specialization.
5671 // FIXME: Check that we can declare a specialization here.
5672 IsVariableTemplateSpecialization = true;
5673 IsPartialSpecialization = TemplateParams->size() > 0;
5674 } else { // if (TemplateParams->size() > 0)
5675 // This is a template declaration.
5676 IsVariableTemplate = true;
5677
5678 // Check that we can declare a template here.
5679 if (CheckTemplateDeclScope(S, TemplateParams))
5680 return nullptr;
5681
5682 // Only C++1y supports variable templates (N3651).
5683 Diag(D.getIdentifierLoc(),
5684 getLangOpts().CPlusPlus14
5685 ? diag::warn_cxx11_compat_variable_template
5686 : diag::ext_variable_template);
5687 }
5688 }
5689 } else {
5690 assert(
5691 (Invalid || D.getName().getKind() != UnqualifiedId::IK_TemplateId) &&
5692 "should have a 'template<>' for this decl");
5693 }
5694
5695 if (IsVariableTemplateSpecialization) {
5696 SourceLocation TemplateKWLoc =
5697 TemplateParamLists.size() > 0
5698 ? TemplateParamLists[0]->getTemplateLoc()
5699 : SourceLocation();
5700 DeclResult Res = ActOnVarTemplateSpecialization(
5701 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5702 IsPartialSpecialization);
5703 if (Res.isInvalid())
5704 return nullptr;
5705 NewVD = cast<VarDecl>(Res.get());
5706 AddToScope = false;
5707 } else
5708 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5709 D.getIdentifierLoc(), II, R, TInfo, SC);
5710
5711 // If this is supposed to be a variable template, create it as such.
5712 if (IsVariableTemplate) {
5713 NewTemplate =
5714 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5715 TemplateParams, NewVD);
5716 NewVD->setDescribedVarTemplate(NewTemplate);
5717 }
5718
5719 // If this decl has an auto type in need of deduction, make a note of the
5720 // Decl so we can diagnose uses of it in its own initializer.
5721 if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5722 ParsingInitForAutoVars.insert(NewVD);
5723
5724 if (D.isInvalidType() || Invalid) {
5725 NewVD->setInvalidDecl();
5726 if (NewTemplate)
5727 NewTemplate->setInvalidDecl();
5728 }
5729
5730 SetNestedNameSpecifier(NewVD, D);
5731
5732 // If we have any template parameter lists that don't directly belong to
5733 // the variable (matching the scope specifier), store them.
5734 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
5735 if (TemplateParamLists.size() > VDTemplateParamLists)
5736 NewVD->setTemplateParameterListsInfo(
5737 Context, TemplateParamLists.size() - VDTemplateParamLists,
5738 TemplateParamLists.data());
5739
5740 if (D.getDeclSpec().isConstexprSpecified())
5741 NewVD->setConstexpr(true);
5742 }
5743
5744 // Set the lexical context. If the declarator has a C++ scope specifier, the
5745 // lexical context will be different from the semantic context.
5746 NewVD->setLexicalDeclContext(CurContext);
5747 if (NewTemplate)
5748 NewTemplate->setLexicalDeclContext(CurContext);
5749
5750 if (IsLocalExternDecl)
5751 NewVD->setLocalExternDecl();
5752
5753 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5754 // C++11 [dcl.stc]p4:
5755 // When thread_local is applied to a variable of block scope the
5756 // storage-class-specifier static is implied if it does not appear
5757 // explicitly.
5758 // Core issue: 'static' is not implied if the variable is declared
5759 // 'extern'.
5760 if (NewVD->hasLocalStorage() &&
5761 (SCSpec != DeclSpec::SCS_unspecified ||
5762 TSCS != DeclSpec::TSCS_thread_local ||
5763 !DC->isFunctionOrMethod()))
5764 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5765 diag::err_thread_non_global)
5766 << DeclSpec::getSpecifierName(TSCS);
5767 else if (!Context.getTargetInfo().isTLSSupported())
5768 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5769 diag::err_thread_unsupported);
5770 else
5771 NewVD->setTSCSpec(TSCS);
5772 }
5773
5774 // C99 6.7.4p3
5775 // An inline definition of a function with external linkage shall
5776 // not contain a definition of a modifiable object with static or
5777 // thread storage duration...
5778 // We only apply this when the function is required to be defined
5779 // elsewhere, i.e. when the function is not 'extern inline'. Note
5780 // that a local variable with thread storage duration still has to
5781 // be marked 'static'. Also note that it's possible to get these
5782 // semantics in C++ using __attribute__((gnu_inline)).
5783 if (SC == SC_Static && S->getFnParent() != nullptr &&
5784 !NewVD->getType().isConstQualified()) {
5785 FunctionDecl *CurFD = getCurFunctionDecl();
5786 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5787 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5788 diag::warn_static_local_in_extern_inline);
5789 MaybeSuggestAddingStaticToDecl(CurFD);
5790 }
5791 }
5792
5793 if (D.getDeclSpec().isModulePrivateSpecified()) {
5794 if (IsVariableTemplateSpecialization)
5795 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5796 << (IsPartialSpecialization ? 1 : 0)
5797 << FixItHint::CreateRemoval(
5798 D.getDeclSpec().getModulePrivateSpecLoc());
5799 else if (IsExplicitSpecialization)
5800 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5801 << 2
5802 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5803 else if (NewVD->hasLocalStorage())
5804 Diag(NewVD->getLocation(), diag::err_module_private_local)
5805 << 0 << NewVD->getDeclName()
5806 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5807 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5808 else {
5809 NewVD->setModulePrivate();
5810 if (NewTemplate)
5811 NewTemplate->setModulePrivate();
5812 }
5813 }
5814
5815 // Handle attributes prior to checking for duplicates in MergeVarDecl
5816 ProcessDeclAttributes(S, NewVD, D);
5817
5818 if (getLangOpts().CUDA) {
5819 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5820 // storage [duration]."
5821 if (SC == SC_None && S->getFnParent() != nullptr &&
5822 (NewVD->hasAttr<CUDASharedAttr>() ||
5823 NewVD->hasAttr<CUDAConstantAttr>())) {
5824 NewVD->setStorageClass(SC_Static);
5825 }
5826 }
5827
5828 // Ensure that dllimport globals without explicit storage class are treated as
5829 // extern. The storage class is set above using parsed attributes. Now we can
5830 // check the VarDecl itself.
5831 assert(!NewVD->hasAttr<DLLImportAttr>() ||
5832 NewVD->getAttr<DLLImportAttr>()->isInherited() ||
5833 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
5834
5835 // In auto-retain/release, infer strong retension for variables of
5836 // retainable type.
5837 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5838 NewVD->setInvalidDecl();
5839
5840 // Handle GNU asm-label extension (encoded as an attribute).
5841 if (Expr *E = (Expr*)D.getAsmLabel()) {
5842 // The parser guarantees this is a string.
5843 StringLiteral *SE = cast<StringLiteral>(E);
5844 StringRef Label = SE->getString();
5845 if (S->getFnParent() != nullptr) {
5846 switch (SC) {
5847 case SC_None:
5848 case SC_Auto:
5849 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5850 break;
5851 case SC_Register:
5852 // Local Named register
5853 if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5854 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5855 break;
5856 case SC_Static:
5857 case SC_Extern:
5858 case SC_PrivateExtern:
5859 case SC_OpenCLWorkGroupLocal:
5860 break;
5861 }
5862 } else if (SC == SC_Register) {
5863 // Global Named register
5864 if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5865 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5866 if (!R->isIntegralType(Context) && !R->isPointerType()) {
5867 Diag(D.getLocStart(), diag::err_asm_bad_register_type);
5868 NewVD->setInvalidDecl(true);
5869 }
5870 }
5871
5872 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5873 Context, Label, 0));
5874 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5875 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5876 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5877 if (I != ExtnameUndeclaredIdentifiers.end()) {
5878 NewVD->addAttr(I->second);
5879 ExtnameUndeclaredIdentifiers.erase(I);
5880 }
5881 }
5882
5883 // Diagnose shadowed variables before filtering for scope.
5884 if (D.getCXXScopeSpec().isEmpty())
5885 CheckShadow(S, NewVD, Previous);
5886
5887 // Don't consider existing declarations that are in a different
5888 // scope and are out-of-semantic-context declarations (if the new
5889 // declaration has linkage).
5890 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
5891 D.getCXXScopeSpec().isNotEmpty() ||
5892 IsExplicitSpecialization ||
5893 IsVariableTemplateSpecialization);
5894
5895 // Check whether the previous declaration is in the same block scope. This
5896 // affects whether we merge types with it, per C++11 [dcl.array]p3.
5897 if (getLangOpts().CPlusPlus &&
5898 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5899 NewVD->setPreviousDeclInSameBlockScope(
5900 Previous.isSingleResult() && !Previous.isShadowed() &&
5901 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
5902
5903 if (!getLangOpts().CPlusPlus) {
5904 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5905 } else {
5906 // If this is an explicit specialization of a static data member, check it.
5907 if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5908 CheckMemberSpecialization(NewVD, Previous))
5909 NewVD->setInvalidDecl();
5910
5911 // Merge the decl with the existing one if appropriate.
5912 if (!Previous.empty()) {
5913 if (Previous.isSingleResult() &&
5914 isa<FieldDecl>(Previous.getFoundDecl()) &&
5915 D.getCXXScopeSpec().isSet()) {
5916 // The user tried to define a non-static data member
5917 // out-of-line (C++ [dcl.meaning]p1).
5918 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5919 << D.getCXXScopeSpec().getRange();
5920 Previous.clear();
5921 NewVD->setInvalidDecl();
5922 }
5923 } else if (D.getCXXScopeSpec().isSet()) {
5924 // No previous declaration in the qualifying scope.
5925 Diag(D.getIdentifierLoc(), diag::err_no_member)
5926 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5927 << D.getCXXScopeSpec().getRange();
5928 NewVD->setInvalidDecl();
5929 }
5930
5931 if (!IsVariableTemplateSpecialization)
5932 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5933
5934 if (NewTemplate) {
5935 VarTemplateDecl *PrevVarTemplate =
5936 NewVD->getPreviousDecl()
5937 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
5938 : nullptr;
5939
5940 // Check the template parameter list of this declaration, possibly
5941 // merging in the template parameter list from the previous variable
5942 // template declaration.
5943 if (CheckTemplateParameterList(
5944 TemplateParams,
5945 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5946 : nullptr,
5947 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5948 DC->isDependentContext())
5949 ? TPC_ClassTemplateMember
5950 : TPC_VarTemplate))
5951 NewVD->setInvalidDecl();
5952
5953 // If we are providing an explicit specialization of a static variable
5954 // template, make a note of that.
5955 if (PrevVarTemplate &&
5956 PrevVarTemplate->getInstantiatedFromMemberTemplate())
5957 PrevVarTemplate->setMemberSpecialization();
5958 }
5959 }
5960
5961 ProcessPragmaWeak(S, NewVD);
5962
5963 // If this is the first declaration of an extern C variable, update
5964 // the map of such variables.
5965 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
5966 isIncompleteDeclExternC(*this, NewVD))
5967 RegisterLocallyScopedExternCDecl(NewVD, S);
5968
5969 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5970 Decl *ManglingContextDecl;
5971 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
5972 NewVD->getDeclContext(), ManglingContextDecl)) {
5973 Context.setManglingNumber(
5974 NewVD, MCtx->getManglingNumber(
5975 NewVD, getMSManglingNumber(getLangOpts(), S)));
5976 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5977 }
5978 }
5979
5980 if (D.isRedeclaration() && !Previous.empty()) {
5981 checkDLLAttributeRedeclaration(
5982 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
5983 IsExplicitSpecialization);
5984 }
5985
5986 if (NewTemplate) {
5987 if (NewVD->isInvalidDecl())
5988 NewTemplate->setInvalidDecl();
5989 ActOnDocumentableDecl(NewTemplate);
5990 return NewTemplate;
5991 }
5992
5993 return NewVD;
5994 }
5995
5996 /// \brief Diagnose variable or built-in function shadowing. Implements
5997 /// -Wshadow.
5998 ///
5999 /// This method is called whenever a VarDecl is added to a "useful"
6000 /// scope.
6001 ///
6002 /// \param S the scope in which the shadowing name is being declared
6003 /// \param R the lookup of the name
6004 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)6005 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
6006 // Return if warning is ignored.
6007 if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
6008 return;
6009
6010 // Don't diagnose declarations at file scope.
6011 if (D->hasGlobalStorage())
6012 return;
6013
6014 DeclContext *NewDC = D->getDeclContext();
6015
6016 // Only diagnose if we're shadowing an unambiguous field or variable.
6017 if (R.getResultKind() != LookupResult::Found)
6018 return;
6019
6020 NamedDecl* ShadowedDecl = R.getFoundDecl();
6021 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
6022 return;
6023
6024 // Fields are not shadowed by variables in C++ static methods.
6025 if (isa<FieldDecl>(ShadowedDecl))
6026 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
6027 if (MD->isStatic())
6028 return;
6029
6030 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
6031 if (shadowedVar->isExternC()) {
6032 // For shadowing external vars, make sure that we point to the global
6033 // declaration, not a locally scoped extern declaration.
6034 for (auto I : shadowedVar->redecls())
6035 if (I->isFileVarDecl()) {
6036 ShadowedDecl = I;
6037 break;
6038 }
6039 }
6040
6041 DeclContext *OldDC = ShadowedDecl->getDeclContext();
6042
6043 // Only warn about certain kinds of shadowing for class members.
6044 if (NewDC && NewDC->isRecord()) {
6045 // In particular, don't warn about shadowing non-class members.
6046 if (!OldDC->isRecord())
6047 return;
6048
6049 // TODO: should we warn about static data members shadowing
6050 // static data members from base classes?
6051
6052 // TODO: don't diagnose for inaccessible shadowed members.
6053 // This is hard to do perfectly because we might friend the
6054 // shadowing context, but that's just a false negative.
6055 }
6056
6057 // Determine what kind of declaration we're shadowing.
6058 unsigned Kind;
6059 if (isa<RecordDecl>(OldDC)) {
6060 if (isa<FieldDecl>(ShadowedDecl))
6061 Kind = 3; // field
6062 else
6063 Kind = 2; // static data member
6064 } else if (OldDC->isFileContext())
6065 Kind = 1; // global
6066 else
6067 Kind = 0; // local
6068
6069 DeclarationName Name = R.getLookupName();
6070
6071 // Emit warning and note.
6072 if (getSourceManager().isInSystemMacro(R.getNameLoc()))
6073 return;
6074 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
6075 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
6076 }
6077
6078 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)6079 void Sema::CheckShadow(Scope *S, VarDecl *D) {
6080 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
6081 return;
6082
6083 LookupResult R(*this, D->getDeclName(), D->getLocation(),
6084 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
6085 LookupName(R, S);
6086 CheckShadow(S, D, R);
6087 }
6088
6089 /// Check for conflict between this global or extern "C" declaration and
6090 /// previous global or extern "C" declarations. This is only used in C++.
6091 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)6092 static bool checkGlobalOrExternCConflict(
6093 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
6094 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
6095 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
6096
6097 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
6098 // The common case: this global doesn't conflict with any extern "C"
6099 // declaration.
6100 return false;
6101 }
6102
6103 if (Prev) {
6104 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
6105 // Both the old and new declarations have C language linkage. This is a
6106 // redeclaration.
6107 Previous.clear();
6108 Previous.addDecl(Prev);
6109 return true;
6110 }
6111
6112 // This is a global, non-extern "C" declaration, and there is a previous
6113 // non-global extern "C" declaration. Diagnose if this is a variable
6114 // declaration.
6115 if (!isa<VarDecl>(ND))
6116 return false;
6117 } else {
6118 // The declaration is extern "C". Check for any declaration in the
6119 // translation unit which might conflict.
6120 if (IsGlobal) {
6121 // We have already performed the lookup into the translation unit.
6122 IsGlobal = false;
6123 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6124 I != E; ++I) {
6125 if (isa<VarDecl>(*I)) {
6126 Prev = *I;
6127 break;
6128 }
6129 }
6130 } else {
6131 DeclContext::lookup_result R =
6132 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
6133 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
6134 I != E; ++I) {
6135 if (isa<VarDecl>(*I)) {
6136 Prev = *I;
6137 break;
6138 }
6139 // FIXME: If we have any other entity with this name in global scope,
6140 // the declaration is ill-formed, but that is a defect: it breaks the
6141 // 'stat' hack, for instance. Only variables can have mangled name
6142 // clashes with extern "C" declarations, so only they deserve a
6143 // diagnostic.
6144 }
6145 }
6146
6147 if (!Prev)
6148 return false;
6149 }
6150
6151 // Use the first declaration's location to ensure we point at something which
6152 // is lexically inside an extern "C" linkage-spec.
6153 assert(Prev && "should have found a previous declaration to diagnose");
6154 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
6155 Prev = FD->getFirstDecl();
6156 else
6157 Prev = cast<VarDecl>(Prev)->getFirstDecl();
6158
6159 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
6160 << IsGlobal << ND;
6161 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
6162 << IsGlobal;
6163 return false;
6164 }
6165
6166 /// Apply special rules for handling extern "C" declarations. Returns \c true
6167 /// if we have found that this is a redeclaration of some prior entity.
6168 ///
6169 /// Per C++ [dcl.link]p6:
6170 /// Two declarations [for a function or variable] with C language linkage
6171 /// with the same name that appear in different scopes refer to the same
6172 /// [entity]. An entity with C language linkage shall not be declared with
6173 /// the same name as an entity in global scope.
6174 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)6175 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
6176 LookupResult &Previous) {
6177 if (!S.getLangOpts().CPlusPlus) {
6178 // In C, when declaring a global variable, look for a corresponding 'extern'
6179 // variable declared in function scope. We don't need this in C++, because
6180 // we find local extern decls in the surrounding file-scope DeclContext.
6181 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6182 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
6183 Previous.clear();
6184 Previous.addDecl(Prev);
6185 return true;
6186 }
6187 }
6188 return false;
6189 }
6190
6191 // A declaration in the translation unit can conflict with an extern "C"
6192 // declaration.
6193 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
6194 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
6195
6196 // An extern "C" declaration can conflict with a declaration in the
6197 // translation unit or can be a redeclaration of an extern "C" declaration
6198 // in another scope.
6199 if (isIncompleteDeclExternC(S,ND))
6200 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
6201
6202 // Neither global nor extern "C": nothing to do.
6203 return false;
6204 }
6205
CheckVariableDeclarationType(VarDecl * NewVD)6206 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
6207 // If the decl is already known invalid, don't check it.
6208 if (NewVD->isInvalidDecl())
6209 return;
6210
6211 TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
6212 QualType T = TInfo->getType();
6213
6214 // Defer checking an 'auto' type until its initializer is attached.
6215 if (T->isUndeducedType())
6216 return;
6217
6218 if (NewVD->hasAttrs())
6219 CheckAlignasUnderalignment(NewVD);
6220
6221 if (T->isObjCObjectType()) {
6222 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
6223 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
6224 T = Context.getObjCObjectPointerType(T);
6225 NewVD->setType(T);
6226 }
6227
6228 // Emit an error if an address space was applied to decl with local storage.
6229 // This includes arrays of objects with address space qualifiers, but not
6230 // automatic variables that point to other address spaces.
6231 // ISO/IEC TR 18037 S5.1.2
6232 if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
6233 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
6234 NewVD->setInvalidDecl();
6235 return;
6236 }
6237
6238 // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
6239 // __constant address space.
6240 if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
6241 && T.getAddressSpace() != LangAS::opencl_constant
6242 && !T->isSamplerT()){
6243 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
6244 NewVD->setInvalidDecl();
6245 return;
6246 }
6247
6248 // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
6249 // scope.
6250 if ((getLangOpts().OpenCLVersion >= 120)
6251 && NewVD->isStaticLocal()) {
6252 Diag(NewVD->getLocation(), diag::err_static_function_scope);
6253 NewVD->setInvalidDecl();
6254 return;
6255 }
6256
6257 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
6258 && !NewVD->hasAttr<BlocksAttr>()) {
6259 if (getLangOpts().getGC() != LangOptions::NonGC)
6260 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
6261 else {
6262 assert(!getLangOpts().ObjCAutoRefCount);
6263 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
6264 }
6265 }
6266
6267 bool isVM = T->isVariablyModifiedType();
6268 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
6269 NewVD->hasAttr<BlocksAttr>())
6270 getCurFunction()->setHasBranchProtectedScope();
6271
6272 if ((isVM && NewVD->hasLinkage()) ||
6273 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
6274 bool SizeIsNegative;
6275 llvm::APSInt Oversized;
6276 TypeSourceInfo *FixedTInfo =
6277 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6278 SizeIsNegative, Oversized);
6279 if (!FixedTInfo && T->isVariableArrayType()) {
6280 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
6281 // FIXME: This won't give the correct result for
6282 // int a[10][n];
6283 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
6284
6285 if (NewVD->isFileVarDecl())
6286 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
6287 << SizeRange;
6288 else if (NewVD->isStaticLocal())
6289 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
6290 << SizeRange;
6291 else
6292 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
6293 << SizeRange;
6294 NewVD->setInvalidDecl();
6295 return;
6296 }
6297
6298 if (!FixedTInfo) {
6299 if (NewVD->isFileVarDecl())
6300 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
6301 else
6302 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
6303 NewVD->setInvalidDecl();
6304 return;
6305 }
6306
6307 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
6308 NewVD->setType(FixedTInfo->getType());
6309 NewVD->setTypeSourceInfo(FixedTInfo);
6310 }
6311
6312 if (T->isVoidType()) {
6313 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
6314 // of objects and functions.
6315 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
6316 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
6317 << T;
6318 NewVD->setInvalidDecl();
6319 return;
6320 }
6321 }
6322
6323 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
6324 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
6325 NewVD->setInvalidDecl();
6326 return;
6327 }
6328
6329 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
6330 Diag(NewVD->getLocation(), diag::err_block_on_vm);
6331 NewVD->setInvalidDecl();
6332 return;
6333 }
6334
6335 if (NewVD->isConstexpr() && !T->isDependentType() &&
6336 RequireLiteralType(NewVD->getLocation(), T,
6337 diag::err_constexpr_var_non_literal)) {
6338 NewVD->setInvalidDecl();
6339 return;
6340 }
6341 }
6342
6343 /// \brief Perform semantic checking on a newly-created variable
6344 /// declaration.
6345 ///
6346 /// This routine performs all of the type-checking required for a
6347 /// variable declaration once it has been built. It is used both to
6348 /// check variables after they have been parsed and their declarators
6349 /// have been translated into a declaration, and to check variables
6350 /// that have been instantiated from a template.
6351 ///
6352 /// Sets NewVD->isInvalidDecl() if an error was encountered.
6353 ///
6354 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)6355 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
6356 CheckVariableDeclarationType(NewVD);
6357
6358 // If the decl is already known invalid, don't check it.
6359 if (NewVD->isInvalidDecl())
6360 return false;
6361
6362 // If we did not find anything by this name, look for a non-visible
6363 // extern "C" declaration with the same name.
6364 if (Previous.empty() &&
6365 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
6366 Previous.setShadowed();
6367
6368 // Filter out any non-conflicting previous declarations.
6369 filterNonConflictingPreviousDecls(Context, NewVD, Previous);
6370
6371 if (!Previous.empty()) {
6372 MergeVarDecl(NewVD, Previous);
6373 return true;
6374 }
6375 return false;
6376 }
6377
6378 /// \brief Data used with FindOverriddenMethod
6379 struct FindOverriddenMethodData {
6380 Sema *S;
6381 CXXMethodDecl *Method;
6382 };
6383
6384 /// \brief Member lookup function that determines whether a given C++
6385 /// method overrides a method in a base class, to be used with
6386 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)6387 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
6388 CXXBasePath &Path,
6389 void *UserData) {
6390 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
6391
6392 FindOverriddenMethodData *Data
6393 = reinterpret_cast<FindOverriddenMethodData*>(UserData);
6394
6395 DeclarationName Name = Data->Method->getDeclName();
6396
6397 // FIXME: Do we care about other names here too?
6398 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6399 // We really want to find the base class destructor here.
6400 QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
6401 CanQualType CT = Data->S->Context.getCanonicalType(T);
6402
6403 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
6404 }
6405
6406 for (Path.Decls = BaseRecord->lookup(Name);
6407 !Path.Decls.empty();
6408 Path.Decls = Path.Decls.slice(1)) {
6409 NamedDecl *D = Path.Decls.front();
6410 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6411 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
6412 return true;
6413 }
6414 }
6415
6416 return false;
6417 }
6418
6419 namespace {
6420 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
6421 }
6422 /// \brief Report an error regarding overriding, along with any relevant
6423 /// overriden methods.
6424 ///
6425 /// \param DiagID the primary error to report.
6426 /// \param MD the overriding method.
6427 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)6428 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
6429 OverrideErrorKind OEK = OEK_All) {
6430 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6431 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6432 E = MD->end_overridden_methods();
6433 I != E; ++I) {
6434 // This check (& the OEK parameter) could be replaced by a predicate, but
6435 // without lambdas that would be overkill. This is still nicer than writing
6436 // out the diag loop 3 times.
6437 if ((OEK == OEK_All) ||
6438 (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
6439 (OEK == OEK_Deleted && (*I)->isDeleted()))
6440 S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
6441 }
6442 }
6443
6444 /// AddOverriddenMethods - See if a method overrides any in the base classes,
6445 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)6446 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
6447 // Look for methods in base classes that this method might override.
6448 CXXBasePaths Paths;
6449 FindOverriddenMethodData Data;
6450 Data.Method = MD;
6451 Data.S = this;
6452 bool hasDeletedOverridenMethods = false;
6453 bool hasNonDeletedOverridenMethods = false;
6454 bool AddedAny = false;
6455 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
6456 for (auto *I : Paths.found_decls()) {
6457 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
6458 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
6459 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
6460 !CheckOverridingFunctionAttributes(MD, OldMD) &&
6461 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
6462 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
6463 hasDeletedOverridenMethods |= OldMD->isDeleted();
6464 hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
6465 AddedAny = true;
6466 }
6467 }
6468 }
6469 }
6470
6471 if (hasDeletedOverridenMethods && !MD->isDeleted()) {
6472 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
6473 }
6474 if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
6475 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
6476 }
6477
6478 return AddedAny;
6479 }
6480
6481 namespace {
6482 // Struct for holding all of the extra arguments needed by
6483 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
6484 struct ActOnFDArgs {
6485 Scope *S;
6486 Declarator &D;
6487 MultiTemplateParamsArg TemplateParamLists;
6488 bool AddToScope;
6489 };
6490 }
6491
6492 namespace {
6493
6494 // Callback to only accept typo corrections that have a non-zero edit distance.
6495 // Also only accept corrections that have the same parent decl.
6496 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
6497 public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)6498 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
6499 CXXRecordDecl *Parent)
6500 : Context(Context), OriginalFD(TypoFD),
6501 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
6502
ValidateCandidate(const TypoCorrection & candidate)6503 bool ValidateCandidate(const TypoCorrection &candidate) override {
6504 if (candidate.getEditDistance() == 0)
6505 return false;
6506
6507 SmallVector<unsigned, 1> MismatchedParams;
6508 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6509 CDeclEnd = candidate.end();
6510 CDecl != CDeclEnd; ++CDecl) {
6511 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6512
6513 if (FD && !FD->hasBody() &&
6514 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6515 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6516 CXXRecordDecl *Parent = MD->getParent();
6517 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6518 return true;
6519 } else if (!ExpectedParent) {
6520 return true;
6521 }
6522 }
6523 }
6524
6525 return false;
6526 }
6527
6528 private:
6529 ASTContext &Context;
6530 FunctionDecl *OriginalFD;
6531 CXXRecordDecl *ExpectedParent;
6532 };
6533
6534 }
6535
6536 /// \brief Generate diagnostics for an invalid function redeclaration.
6537 ///
6538 /// This routine handles generating the diagnostic messages for an invalid
6539 /// function redeclaration, including finding possible similar declarations
6540 /// or performing typo correction if there are no previous declarations with
6541 /// the same name.
6542 ///
6543 /// Returns a NamedDecl iff typo correction was performed and substituting in
6544 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs,bool IsLocalFriend,Scope * S)6545 static NamedDecl *DiagnoseInvalidRedeclaration(
6546 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6547 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6548 DeclarationName Name = NewFD->getDeclName();
6549 DeclContext *NewDC = NewFD->getDeclContext();
6550 SmallVector<unsigned, 1> MismatchedParams;
6551 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6552 TypoCorrection Correction;
6553 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6554 unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6555 : diag::err_member_decl_does_not_match;
6556 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6557 IsLocalFriend ? Sema::LookupLocalFriendName
6558 : Sema::LookupOrdinaryName,
6559 Sema::ForRedeclaration);
6560
6561 NewFD->setInvalidDecl();
6562 if (IsLocalFriend)
6563 SemaRef.LookupName(Prev, S);
6564 else
6565 SemaRef.LookupQualifiedName(Prev, NewDC);
6566 assert(!Prev.isAmbiguous() &&
6567 "Cannot have an ambiguity in previous-declaration lookup");
6568 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6569 if (!Prev.empty()) {
6570 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6571 Func != FuncEnd; ++Func) {
6572 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6573 if (FD &&
6574 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6575 // Add 1 to the index so that 0 can mean the mismatch didn't
6576 // involve a parameter
6577 unsigned ParamNum =
6578 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6579 NearMatches.push_back(std::make_pair(FD, ParamNum));
6580 }
6581 }
6582 // If the qualified name lookup yielded nothing, try typo correction
6583 } else if ((Correction = SemaRef.CorrectTypo(
6584 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6585 &ExtraArgs.D.getCXXScopeSpec(),
6586 llvm::make_unique<DifferentNameValidatorCCC>(
6587 SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
6588 Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
6589 // Set up everything for the call to ActOnFunctionDeclarator
6590 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6591 ExtraArgs.D.getIdentifierLoc());
6592 Previous.clear();
6593 Previous.setLookupName(Correction.getCorrection());
6594 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6595 CDeclEnd = Correction.end();
6596 CDecl != CDeclEnd; ++CDecl) {
6597 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6598 if (FD && !FD->hasBody() &&
6599 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6600 Previous.addDecl(FD);
6601 }
6602 }
6603 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6604
6605 NamedDecl *Result;
6606 // Retry building the function declaration with the new previous
6607 // declarations, and with errors suppressed.
6608 {
6609 // Trap errors.
6610 Sema::SFINAETrap Trap(SemaRef);
6611
6612 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6613 // pieces need to verify the typo-corrected C++ declaration and hopefully
6614 // eliminate the need for the parameter pack ExtraArgs.
6615 Result = SemaRef.ActOnFunctionDeclarator(
6616 ExtraArgs.S, ExtraArgs.D,
6617 Correction.getCorrectionDecl()->getDeclContext(),
6618 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6619 ExtraArgs.AddToScope);
6620
6621 if (Trap.hasErrorOccurred())
6622 Result = nullptr;
6623 }
6624
6625 if (Result) {
6626 // Determine which correction we picked.
6627 Decl *Canonical = Result->getCanonicalDecl();
6628 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6629 I != E; ++I)
6630 if ((*I)->getCanonicalDecl() == Canonical)
6631 Correction.setCorrectionDecl(*I);
6632
6633 SemaRef.diagnoseTypo(
6634 Correction,
6635 SemaRef.PDiag(IsLocalFriend
6636 ? diag::err_no_matching_local_friend_suggest
6637 : diag::err_member_decl_does_not_match_suggest)
6638 << Name << NewDC << IsDefinition);
6639 return Result;
6640 }
6641
6642 // Pretend the typo correction never occurred
6643 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6644 ExtraArgs.D.getIdentifierLoc());
6645 ExtraArgs.D.setRedeclaration(wasRedeclaration);
6646 Previous.clear();
6647 Previous.setLookupName(Name);
6648 }
6649
6650 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6651 << Name << NewDC << IsDefinition << NewFD->getLocation();
6652
6653 bool NewFDisConst = false;
6654 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6655 NewFDisConst = NewMD->isConst();
6656
6657 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6658 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6659 NearMatch != NearMatchEnd; ++NearMatch) {
6660 FunctionDecl *FD = NearMatch->first;
6661 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6662 bool FDisConst = MD && MD->isConst();
6663 bool IsMember = MD || !IsLocalFriend;
6664
6665 // FIXME: These notes are poorly worded for the local friend case.
6666 if (unsigned Idx = NearMatch->second) {
6667 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6668 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6669 if (Loc.isInvalid()) Loc = FD->getLocation();
6670 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6671 : diag::note_local_decl_close_param_match)
6672 << Idx << FDParam->getType()
6673 << NewFD->getParamDecl(Idx - 1)->getType();
6674 } else if (FDisConst != NewFDisConst) {
6675 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6676 << NewFDisConst << FD->getSourceRange().getEnd();
6677 } else
6678 SemaRef.Diag(FD->getLocation(),
6679 IsMember ? diag::note_member_def_close_match
6680 : diag::note_local_decl_close_match);
6681 }
6682 return nullptr;
6683 }
6684
getFunctionStorageClass(Sema & SemaRef,Declarator & D)6685 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
6686 switch (D.getDeclSpec().getStorageClassSpec()) {
6687 default: llvm_unreachable("Unknown storage class!");
6688 case DeclSpec::SCS_auto:
6689 case DeclSpec::SCS_register:
6690 case DeclSpec::SCS_mutable:
6691 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6692 diag::err_typecheck_sclass_func);
6693 D.setInvalidType();
6694 break;
6695 case DeclSpec::SCS_unspecified: break;
6696 case DeclSpec::SCS_extern:
6697 if (D.getDeclSpec().isExternInLinkageSpec())
6698 return SC_None;
6699 return SC_Extern;
6700 case DeclSpec::SCS_static: {
6701 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6702 // C99 6.7.1p5:
6703 // The declaration of an identifier for a function that has
6704 // block scope shall have no explicit storage-class specifier
6705 // other than extern
6706 // See also (C++ [dcl.stc]p4).
6707 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6708 diag::err_static_block_func);
6709 break;
6710 } else
6711 return SC_Static;
6712 }
6713 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6714 }
6715
6716 // No explicit storage class has already been returned
6717 return SC_None;
6718 }
6719
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,StorageClass SC,bool & IsVirtualOkay)6720 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6721 DeclContext *DC, QualType &R,
6722 TypeSourceInfo *TInfo,
6723 StorageClass SC,
6724 bool &IsVirtualOkay) {
6725 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6726 DeclarationName Name = NameInfo.getName();
6727
6728 FunctionDecl *NewFD = nullptr;
6729 bool isInline = D.getDeclSpec().isInlineSpecified();
6730
6731 if (!SemaRef.getLangOpts().CPlusPlus) {
6732 // Determine whether the function was written with a
6733 // prototype. This true when:
6734 // - there is a prototype in the declarator, or
6735 // - the type R of the function is some kind of typedef or other reference
6736 // to a type name (which eventually refers to a function type).
6737 bool HasPrototype =
6738 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6739 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6740
6741 NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6742 D.getLocStart(), NameInfo, R,
6743 TInfo, SC, isInline,
6744 HasPrototype, false);
6745 if (D.isInvalidType())
6746 NewFD->setInvalidDecl();
6747
6748 return NewFD;
6749 }
6750
6751 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6752 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6753
6754 // Check that the return type is not an abstract class type.
6755 // For record types, this is done by the AbstractClassUsageDiagnoser once
6756 // the class has been completely parsed.
6757 if (!DC->isRecord() &&
6758 SemaRef.RequireNonAbstractType(
6759 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
6760 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
6761 D.setInvalidType();
6762
6763 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6764 // This is a C++ constructor declaration.
6765 assert(DC->isRecord() &&
6766 "Constructors can only be declared in a member context");
6767
6768 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6769 return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6770 D.getLocStart(), NameInfo,
6771 R, TInfo, isExplicit, isInline,
6772 /*isImplicitlyDeclared=*/false,
6773 isConstexpr);
6774
6775 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6776 // This is a C++ destructor declaration.
6777 if (DC->isRecord()) {
6778 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6779 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6780 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6781 SemaRef.Context, Record,
6782 D.getLocStart(),
6783 NameInfo, R, TInfo, isInline,
6784 /*isImplicitlyDeclared=*/false);
6785
6786 // If the class is complete, then we now create the implicit exception
6787 // specification. If the class is incomplete or dependent, we can't do
6788 // it yet.
6789 if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6790 Record->getDefinition() && !Record->isBeingDefined() &&
6791 R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6792 SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6793 }
6794
6795 IsVirtualOkay = true;
6796 return NewDD;
6797
6798 } else {
6799 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6800 D.setInvalidType();
6801
6802 // Create a FunctionDecl to satisfy the function definition parsing
6803 // code path.
6804 return FunctionDecl::Create(SemaRef.Context, DC,
6805 D.getLocStart(),
6806 D.getIdentifierLoc(), Name, R, TInfo,
6807 SC, isInline,
6808 /*hasPrototype=*/true, isConstexpr);
6809 }
6810
6811 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6812 if (!DC->isRecord()) {
6813 SemaRef.Diag(D.getIdentifierLoc(),
6814 diag::err_conv_function_not_member);
6815 return nullptr;
6816 }
6817
6818 SemaRef.CheckConversionDeclarator(D, R, SC);
6819 IsVirtualOkay = true;
6820 return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6821 D.getLocStart(), NameInfo,
6822 R, TInfo, isInline, isExplicit,
6823 isConstexpr, SourceLocation());
6824
6825 } else if (DC->isRecord()) {
6826 // If the name of the function is the same as the name of the record,
6827 // then this must be an invalid constructor that has a return type.
6828 // (The parser checks for a return type and makes the declarator a
6829 // constructor if it has no return type).
6830 if (Name.getAsIdentifierInfo() &&
6831 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6832 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6833 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6834 << SourceRange(D.getIdentifierLoc());
6835 return nullptr;
6836 }
6837
6838 // This is a C++ method declaration.
6839 CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6840 cast<CXXRecordDecl>(DC),
6841 D.getLocStart(), NameInfo, R,
6842 TInfo, SC, isInline,
6843 isConstexpr, SourceLocation());
6844 IsVirtualOkay = !Ret->isStatic();
6845 return Ret;
6846 } else {
6847 bool isFriend =
6848 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
6849 if (!isFriend && SemaRef.CurContext->isRecord())
6850 return nullptr;
6851
6852 // Determine whether the function was written with a
6853 // prototype. This true when:
6854 // - we're in C++ (where every function has a prototype),
6855 return FunctionDecl::Create(SemaRef.Context, DC,
6856 D.getLocStart(),
6857 NameInfo, R, TInfo, SC, isInline,
6858 true/*HasPrototype*/, isConstexpr);
6859 }
6860 }
6861
6862 enum OpenCLParamType {
6863 ValidKernelParam,
6864 PtrPtrKernelParam,
6865 PtrKernelParam,
6866 PrivatePtrKernelParam,
6867 InvalidKernelParam,
6868 RecordKernelParam
6869 };
6870
getOpenCLKernelParameterType(QualType PT)6871 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6872 if (PT->isPointerType()) {
6873 QualType PointeeType = PT->getPointeeType();
6874 if (PointeeType->isPointerType())
6875 return PtrPtrKernelParam;
6876 return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
6877 : PtrKernelParam;
6878 }
6879
6880 // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6881 // be used as builtin types.
6882
6883 if (PT->isImageType())
6884 return PtrKernelParam;
6885
6886 if (PT->isBooleanType())
6887 return InvalidKernelParam;
6888
6889 if (PT->isEventT())
6890 return InvalidKernelParam;
6891
6892 if (PT->isHalfType())
6893 return InvalidKernelParam;
6894
6895 if (PT->isRecordType())
6896 return RecordKernelParam;
6897
6898 return ValidKernelParam;
6899 }
6900
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSetImpl<const Type * > & ValidTypes)6901 static void checkIsValidOpenCLKernelParameter(
6902 Sema &S,
6903 Declarator &D,
6904 ParmVarDecl *Param,
6905 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
6906 QualType PT = Param->getType();
6907
6908 // Cache the valid types we encounter to avoid rechecking structs that are
6909 // used again
6910 if (ValidTypes.count(PT.getTypePtr()))
6911 return;
6912
6913 switch (getOpenCLKernelParameterType(PT)) {
6914 case PtrPtrKernelParam:
6915 // OpenCL v1.2 s6.9.a:
6916 // A kernel function argument cannot be declared as a
6917 // pointer to a pointer type.
6918 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6919 D.setInvalidType();
6920 return;
6921
6922 case PrivatePtrKernelParam:
6923 // OpenCL v1.2 s6.9.a:
6924 // A kernel function argument cannot be declared as a
6925 // pointer to the private address space.
6926 S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
6927 D.setInvalidType();
6928 return;
6929
6930 // OpenCL v1.2 s6.9.k:
6931 // Arguments to kernel functions in a program cannot be declared with the
6932 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6933 // uintptr_t or a struct and/or union that contain fields declared to be
6934 // one of these built-in scalar types.
6935
6936 case InvalidKernelParam:
6937 // OpenCL v1.2 s6.8 n:
6938 // A kernel function argument cannot be declared
6939 // of event_t type.
6940 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6941 D.setInvalidType();
6942 return;
6943
6944 case PtrKernelParam:
6945 case ValidKernelParam:
6946 ValidTypes.insert(PT.getTypePtr());
6947 return;
6948
6949 case RecordKernelParam:
6950 break;
6951 }
6952
6953 // Track nested structs we will inspect
6954 SmallVector<const Decl *, 4> VisitStack;
6955
6956 // Track where we are in the nested structs. Items will migrate from
6957 // VisitStack to HistoryStack as we do the DFS for bad field.
6958 SmallVector<const FieldDecl *, 4> HistoryStack;
6959 HistoryStack.push_back(nullptr);
6960
6961 const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6962 VisitStack.push_back(PD);
6963
6964 assert(VisitStack.back() && "First decl null?");
6965
6966 do {
6967 const Decl *Next = VisitStack.pop_back_val();
6968 if (!Next) {
6969 assert(!HistoryStack.empty());
6970 // Found a marker, we have gone up a level
6971 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6972 ValidTypes.insert(Hist->getType().getTypePtr());
6973
6974 continue;
6975 }
6976
6977 // Adds everything except the original parameter declaration (which is not a
6978 // field itself) to the history stack.
6979 const RecordDecl *RD;
6980 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6981 HistoryStack.push_back(Field);
6982 RD = Field->getType()->castAs<RecordType>()->getDecl();
6983 } else {
6984 RD = cast<RecordDecl>(Next);
6985 }
6986
6987 // Add a null marker so we know when we've gone back up a level
6988 VisitStack.push_back(nullptr);
6989
6990 for (const auto *FD : RD->fields()) {
6991 QualType QT = FD->getType();
6992
6993 if (ValidTypes.count(QT.getTypePtr()))
6994 continue;
6995
6996 OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6997 if (ParamType == ValidKernelParam)
6998 continue;
6999
7000 if (ParamType == RecordKernelParam) {
7001 VisitStack.push_back(FD);
7002 continue;
7003 }
7004
7005 // OpenCL v1.2 s6.9.p:
7006 // Arguments to kernel functions that are declared to be a struct or union
7007 // do not allow OpenCL objects to be passed as elements of the struct or
7008 // union.
7009 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
7010 ParamType == PrivatePtrKernelParam) {
7011 S.Diag(Param->getLocation(),
7012 diag::err_record_with_pointers_kernel_param)
7013 << PT->isUnionType()
7014 << PT;
7015 } else {
7016 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
7017 }
7018
7019 S.Diag(PD->getLocation(), diag::note_within_field_of_type)
7020 << PD->getDeclName();
7021
7022 // We have an error, now let's go back up through history and show where
7023 // the offending field came from
7024 for (ArrayRef<const FieldDecl *>::const_iterator
7025 I = HistoryStack.begin() + 1,
7026 E = HistoryStack.end();
7027 I != E; ++I) {
7028 const FieldDecl *OuterField = *I;
7029 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
7030 << OuterField->getType();
7031 }
7032
7033 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
7034 << QT->isPointerType()
7035 << QT;
7036 D.setInvalidType();
7037 return;
7038 }
7039 } while (!VisitStack.empty());
7040 }
7041
7042 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)7043 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
7044 TypeSourceInfo *TInfo, LookupResult &Previous,
7045 MultiTemplateParamsArg TemplateParamLists,
7046 bool &AddToScope) {
7047 QualType R = TInfo->getType();
7048
7049 assert(R.getTypePtr()->isFunctionType());
7050
7051 // TODO: consider using NameInfo for diagnostic.
7052 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7053 DeclarationName Name = NameInfo.getName();
7054 StorageClass SC = getFunctionStorageClass(*this, D);
7055
7056 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
7057 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7058 diag::err_invalid_thread)
7059 << DeclSpec::getSpecifierName(TSCS);
7060
7061 if (D.isFirstDeclarationOfMember())
7062 adjustMemberFunctionCC(R, D.isStaticMember());
7063
7064 bool isFriend = false;
7065 FunctionTemplateDecl *FunctionTemplate = nullptr;
7066 bool isExplicitSpecialization = false;
7067 bool isFunctionTemplateSpecialization = false;
7068
7069 bool isDependentClassScopeExplicitSpecialization = false;
7070 bool HasExplicitTemplateArgs = false;
7071 TemplateArgumentListInfo TemplateArgs;
7072
7073 bool isVirtualOkay = false;
7074
7075 DeclContext *OriginalDC = DC;
7076 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
7077
7078 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
7079 isVirtualOkay);
7080 if (!NewFD) return nullptr;
7081
7082 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
7083 NewFD->setTopLevelDeclInObjCContainer();
7084
7085 // Set the lexical context. If this is a function-scope declaration, or has a
7086 // C++ scope specifier, or is the object of a friend declaration, the lexical
7087 // context will be different from the semantic context.
7088 NewFD->setLexicalDeclContext(CurContext);
7089
7090 if (IsLocalExternDecl)
7091 NewFD->setLocalExternDecl();
7092
7093 if (getLangOpts().CPlusPlus) {
7094 bool isInline = D.getDeclSpec().isInlineSpecified();
7095 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7096 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7097 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7098 isFriend = D.getDeclSpec().isFriendSpecified();
7099 if (isFriend && !isInline && D.isFunctionDefinition()) {
7100 // C++ [class.friend]p5
7101 // A function can be defined in a friend declaration of a
7102 // class . . . . Such a function is implicitly inline.
7103 NewFD->setImplicitlyInline();
7104 }
7105
7106 // If this is a method defined in an __interface, and is not a constructor
7107 // or an overloaded operator, then set the pure flag (isVirtual will already
7108 // return true).
7109 if (const CXXRecordDecl *Parent =
7110 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
7111 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
7112 NewFD->setPure(true);
7113 }
7114
7115 SetNestedNameSpecifier(NewFD, D);
7116 isExplicitSpecialization = false;
7117 isFunctionTemplateSpecialization = false;
7118 if (D.isInvalidType())
7119 NewFD->setInvalidDecl();
7120
7121 // Match up the template parameter lists with the scope specifier, then
7122 // determine whether we have a template or a template specialization.
7123 bool Invalid = false;
7124 if (TemplateParameterList *TemplateParams =
7125 MatchTemplateParametersToScopeSpecifier(
7126 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
7127 D.getCXXScopeSpec(),
7128 D.getName().getKind() == UnqualifiedId::IK_TemplateId
7129 ? D.getName().TemplateId
7130 : nullptr,
7131 TemplateParamLists, isFriend, isExplicitSpecialization,
7132 Invalid)) {
7133 if (TemplateParams->size() > 0) {
7134 // This is a function template
7135
7136 // Check that we can declare a template here.
7137 if (CheckTemplateDeclScope(S, TemplateParams))
7138 NewFD->setInvalidDecl();
7139
7140 // A destructor cannot be a template.
7141 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7142 Diag(NewFD->getLocation(), diag::err_destructor_template);
7143 NewFD->setInvalidDecl();
7144 }
7145
7146 // If we're adding a template to a dependent context, we may need to
7147 // rebuilding some of the types used within the template parameter list,
7148 // now that we know what the current instantiation is.
7149 if (DC->isDependentContext()) {
7150 ContextRAII SavedContext(*this, DC);
7151 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
7152 Invalid = true;
7153 }
7154
7155
7156 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
7157 NewFD->getLocation(),
7158 Name, TemplateParams,
7159 NewFD);
7160 FunctionTemplate->setLexicalDeclContext(CurContext);
7161 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
7162
7163 // For source fidelity, store the other template param lists.
7164 if (TemplateParamLists.size() > 1) {
7165 NewFD->setTemplateParameterListsInfo(Context,
7166 TemplateParamLists.size() - 1,
7167 TemplateParamLists.data());
7168 }
7169 } else {
7170 // This is a function template specialization.
7171 isFunctionTemplateSpecialization = true;
7172 // For source fidelity, store all the template param lists.
7173 if (TemplateParamLists.size() > 0)
7174 NewFD->setTemplateParameterListsInfo(Context,
7175 TemplateParamLists.size(),
7176 TemplateParamLists.data());
7177
7178 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
7179 if (isFriend) {
7180 // We want to remove the "template<>", found here.
7181 SourceRange RemoveRange = TemplateParams->getSourceRange();
7182
7183 // If we remove the template<> and the name is not a
7184 // template-id, we're actually silently creating a problem:
7185 // the friend declaration will refer to an untemplated decl,
7186 // and clearly the user wants a template specialization. So
7187 // we need to insert '<>' after the name.
7188 SourceLocation InsertLoc;
7189 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7190 InsertLoc = D.getName().getSourceRange().getEnd();
7191 InsertLoc = getLocForEndOfToken(InsertLoc);
7192 }
7193
7194 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
7195 << Name << RemoveRange
7196 << FixItHint::CreateRemoval(RemoveRange)
7197 << FixItHint::CreateInsertion(InsertLoc, "<>");
7198 }
7199 }
7200 }
7201 else {
7202 // All template param lists were matched against the scope specifier:
7203 // this is NOT (an explicit specialization of) a template.
7204 if (TemplateParamLists.size() > 0)
7205 // For source fidelity, store all the template param lists.
7206 NewFD->setTemplateParameterListsInfo(Context,
7207 TemplateParamLists.size(),
7208 TemplateParamLists.data());
7209 }
7210
7211 if (Invalid) {
7212 NewFD->setInvalidDecl();
7213 if (FunctionTemplate)
7214 FunctionTemplate->setInvalidDecl();
7215 }
7216
7217 // C++ [dcl.fct.spec]p5:
7218 // The virtual specifier shall only be used in declarations of
7219 // nonstatic class member functions that appear within a
7220 // member-specification of a class declaration; see 10.3.
7221 //
7222 if (isVirtual && !NewFD->isInvalidDecl()) {
7223 if (!isVirtualOkay) {
7224 Diag(D.getDeclSpec().getVirtualSpecLoc(),
7225 diag::err_virtual_non_function);
7226 } else if (!CurContext->isRecord()) {
7227 // 'virtual' was specified outside of the class.
7228 Diag(D.getDeclSpec().getVirtualSpecLoc(),
7229 diag::err_virtual_out_of_class)
7230 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7231 } else if (NewFD->getDescribedFunctionTemplate()) {
7232 // C++ [temp.mem]p3:
7233 // A member function template shall not be virtual.
7234 Diag(D.getDeclSpec().getVirtualSpecLoc(),
7235 diag::err_virtual_member_function_template)
7236 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7237 } else {
7238 // Okay: Add virtual to the method.
7239 NewFD->setVirtualAsWritten(true);
7240 }
7241
7242 if (getLangOpts().CPlusPlus14 &&
7243 NewFD->getReturnType()->isUndeducedType())
7244 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
7245 }
7246
7247 if (getLangOpts().CPlusPlus14 &&
7248 (NewFD->isDependentContext() ||
7249 (isFriend && CurContext->isDependentContext())) &&
7250 NewFD->getReturnType()->isUndeducedType()) {
7251 // If the function template is referenced directly (for instance, as a
7252 // member of the current instantiation), pretend it has a dependent type.
7253 // This is not really justified by the standard, but is the only sane
7254 // thing to do.
7255 // FIXME: For a friend function, we have not marked the function as being
7256 // a friend yet, so 'isDependentContext' on the FD doesn't work.
7257 const FunctionProtoType *FPT =
7258 NewFD->getType()->castAs<FunctionProtoType>();
7259 QualType Result =
7260 SubstAutoType(FPT->getReturnType(), Context.DependentTy);
7261 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
7262 FPT->getExtProtoInfo()));
7263 }
7264
7265 // C++ [dcl.fct.spec]p3:
7266 // The inline specifier shall not appear on a block scope function
7267 // declaration.
7268 if (isInline && !NewFD->isInvalidDecl()) {
7269 if (CurContext->isFunctionOrMethod()) {
7270 // 'inline' is not allowed on block scope function declaration.
7271 Diag(D.getDeclSpec().getInlineSpecLoc(),
7272 diag::err_inline_declaration_block_scope) << Name
7273 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7274 }
7275 }
7276
7277 // C++ [dcl.fct.spec]p6:
7278 // The explicit specifier shall be used only in the declaration of a
7279 // constructor or conversion function within its class definition;
7280 // see 12.3.1 and 12.3.2.
7281 if (isExplicit && !NewFD->isInvalidDecl()) {
7282 if (!CurContext->isRecord()) {
7283 // 'explicit' was specified outside of the class.
7284 Diag(D.getDeclSpec().getExplicitSpecLoc(),
7285 diag::err_explicit_out_of_class)
7286 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7287 } else if (!isa<CXXConstructorDecl>(NewFD) &&
7288 !isa<CXXConversionDecl>(NewFD)) {
7289 // 'explicit' was specified on a function that wasn't a constructor
7290 // or conversion function.
7291 Diag(D.getDeclSpec().getExplicitSpecLoc(),
7292 diag::err_explicit_non_ctor_or_conv_function)
7293 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7294 }
7295 }
7296
7297 if (isConstexpr) {
7298 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
7299 // are implicitly inline.
7300 NewFD->setImplicitlyInline();
7301
7302 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
7303 // be either constructors or to return a literal type. Therefore,
7304 // destructors cannot be declared constexpr.
7305 if (isa<CXXDestructorDecl>(NewFD))
7306 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
7307 }
7308
7309 // If __module_private__ was specified, mark the function accordingly.
7310 if (D.getDeclSpec().isModulePrivateSpecified()) {
7311 if (isFunctionTemplateSpecialization) {
7312 SourceLocation ModulePrivateLoc
7313 = D.getDeclSpec().getModulePrivateSpecLoc();
7314 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
7315 << 0
7316 << FixItHint::CreateRemoval(ModulePrivateLoc);
7317 } else {
7318 NewFD->setModulePrivate();
7319 if (FunctionTemplate)
7320 FunctionTemplate->setModulePrivate();
7321 }
7322 }
7323
7324 if (isFriend) {
7325 if (FunctionTemplate) {
7326 FunctionTemplate->setObjectOfFriendDecl();
7327 FunctionTemplate->setAccess(AS_public);
7328 }
7329 NewFD->setObjectOfFriendDecl();
7330 NewFD->setAccess(AS_public);
7331 }
7332
7333 // If a function is defined as defaulted or deleted, mark it as such now.
7334 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
7335 // definition kind to FDK_Definition.
7336 switch (D.getFunctionDefinitionKind()) {
7337 case FDK_Declaration:
7338 case FDK_Definition:
7339 break;
7340
7341 case FDK_Defaulted:
7342 NewFD->setDefaulted();
7343 break;
7344
7345 case FDK_Deleted:
7346 NewFD->setDeletedAsWritten();
7347 break;
7348 }
7349
7350 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
7351 D.isFunctionDefinition()) {
7352 // C++ [class.mfct]p2:
7353 // A member function may be defined (8.4) in its class definition, in
7354 // which case it is an inline member function (7.1.2)
7355 NewFD->setImplicitlyInline();
7356 }
7357
7358 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
7359 !CurContext->isRecord()) {
7360 // C++ [class.static]p1:
7361 // A data or function member of a class may be declared static
7362 // in a class definition, in which case it is a static member of
7363 // the class.
7364
7365 // Complain about the 'static' specifier if it's on an out-of-line
7366 // member function definition.
7367 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7368 diag::err_static_out_of_line)
7369 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7370 }
7371
7372 // C++11 [except.spec]p15:
7373 // A deallocation function with no exception-specification is treated
7374 // as if it were specified with noexcept(true).
7375 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
7376 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
7377 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
7378 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
7379 NewFD->setType(Context.getFunctionType(
7380 FPT->getReturnType(), FPT->getParamTypes(),
7381 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
7382 }
7383
7384 // Filter out previous declarations that don't match the scope.
7385 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
7386 D.getCXXScopeSpec().isNotEmpty() ||
7387 isExplicitSpecialization ||
7388 isFunctionTemplateSpecialization);
7389
7390 // Handle GNU asm-label extension (encoded as an attribute).
7391 if (Expr *E = (Expr*) D.getAsmLabel()) {
7392 // The parser guarantees this is a string.
7393 StringLiteral *SE = cast<StringLiteral>(E);
7394 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
7395 SE->getString(), 0));
7396 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7397 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7398 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
7399 if (I != ExtnameUndeclaredIdentifiers.end()) {
7400 NewFD->addAttr(I->second);
7401 ExtnameUndeclaredIdentifiers.erase(I);
7402 }
7403 }
7404
7405 // Copy the parameter declarations from the declarator D to the function
7406 // declaration NewFD, if they are available. First scavenge them into Params.
7407 SmallVector<ParmVarDecl*, 16> Params;
7408 if (D.isFunctionDeclarator()) {
7409 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7410
7411 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
7412 // function that takes no arguments, not a function that takes a
7413 // single void argument.
7414 // We let through "const void" here because Sema::GetTypeForDeclarator
7415 // already checks for that case.
7416 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
7417 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
7418 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
7419 assert(Param->getDeclContext() != NewFD && "Was set before ?");
7420 Param->setDeclContext(NewFD);
7421 Params.push_back(Param);
7422
7423 if (Param->isInvalidDecl())
7424 NewFD->setInvalidDecl();
7425 }
7426 }
7427
7428 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
7429 // When we're declaring a function with a typedef, typeof, etc as in the
7430 // following example, we'll need to synthesize (unnamed)
7431 // parameters for use in the declaration.
7432 //
7433 // @code
7434 // typedef void fn(int);
7435 // fn f;
7436 // @endcode
7437
7438 // Synthesize a parameter for each argument type.
7439 for (const auto &AI : FT->param_types()) {
7440 ParmVarDecl *Param =
7441 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
7442 Param->setScopeInfo(0, Params.size());
7443 Params.push_back(Param);
7444 }
7445 } else {
7446 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
7447 "Should not need args for typedef of non-prototype fn");
7448 }
7449
7450 // Finally, we know we have the right number of parameters, install them.
7451 NewFD->setParams(Params);
7452
7453 // Find all anonymous symbols defined during the declaration of this function
7454 // and add to NewFD. This lets us track decls such 'enum Y' in:
7455 //
7456 // void f(enum Y {AA} x) {}
7457 //
7458 // which would otherwise incorrectly end up in the translation unit scope.
7459 NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
7460 DeclsInPrototypeScope.clear();
7461
7462 if (D.getDeclSpec().isNoreturnSpecified())
7463 NewFD->addAttr(
7464 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
7465 Context, 0));
7466
7467 // Functions returning a variably modified type violate C99 6.7.5.2p2
7468 // because all functions have linkage.
7469 if (!NewFD->isInvalidDecl() &&
7470 NewFD->getReturnType()->isVariablyModifiedType()) {
7471 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
7472 NewFD->setInvalidDecl();
7473 }
7474
7475 // Apply an implicit SectionAttr if #pragma code_seg is active.
7476 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
7477 !NewFD->hasAttr<SectionAttr>()) {
7478 NewFD->addAttr(
7479 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
7480 CodeSegStack.CurrentValue->getString(),
7481 CodeSegStack.CurrentPragmaLocation));
7482 if (UnifySection(CodeSegStack.CurrentValue->getString(),
7483 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
7484 ASTContext::PSF_Read,
7485 NewFD))
7486 NewFD->dropAttr<SectionAttr>();
7487 }
7488
7489 // Handle attributes.
7490 ProcessDeclAttributes(S, NewFD, D);
7491
7492 if (getLangOpts().OpenCL) {
7493 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
7494 // type declaration will generate a compilation error.
7495 unsigned AddressSpace = NewFD->getReturnType().getAddressSpace();
7496 if (AddressSpace == LangAS::opencl_local ||
7497 AddressSpace == LangAS::opencl_global ||
7498 AddressSpace == LangAS::opencl_constant) {
7499 Diag(NewFD->getLocation(),
7500 diag::err_opencl_return_value_with_address_space);
7501 NewFD->setInvalidDecl();
7502 }
7503 }
7504
7505 if (!getLangOpts().CPlusPlus) {
7506 // Perform semantic checking on the function declaration.
7507 bool isExplicitSpecialization=false;
7508 if (!NewFD->isInvalidDecl() && NewFD->isMain())
7509 CheckMain(NewFD, D.getDeclSpec());
7510
7511 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7512 CheckMSVCRTEntryPoint(NewFD);
7513
7514 if (!NewFD->isInvalidDecl())
7515 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7516 isExplicitSpecialization));
7517 else if (!Previous.empty())
7518 // Recover gracefully from an invalid redeclaration.
7519 D.setRedeclaration(true);
7520 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7521 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7522 "previous declaration set still overloaded");
7523
7524 // Diagnose no-prototype function declarations with calling conventions that
7525 // don't support variadic calls. Only do this in C and do it after merging
7526 // possibly prototyped redeclarations.
7527 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
7528 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
7529 CallingConv CC = FT->getExtInfo().getCC();
7530 if (!supportsVariadicCall(CC)) {
7531 // Windows system headers sometimes accidentally use stdcall without
7532 // (void) parameters, so we relax this to a warning.
7533 int DiagID =
7534 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
7535 Diag(NewFD->getLocation(), DiagID)
7536 << FunctionType::getNameForCallConv(CC);
7537 }
7538 }
7539 } else {
7540 // C++11 [replacement.functions]p3:
7541 // The program's definitions shall not be specified as inline.
7542 //
7543 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7544 //
7545 // Suppress the diagnostic if the function is __attribute__((used)), since
7546 // that forces an external definition to be emitted.
7547 if (D.getDeclSpec().isInlineSpecified() &&
7548 NewFD->isReplaceableGlobalAllocationFunction() &&
7549 !NewFD->hasAttr<UsedAttr>())
7550 Diag(D.getDeclSpec().getInlineSpecLoc(),
7551 diag::ext_operator_new_delete_declared_inline)
7552 << NewFD->getDeclName();
7553
7554 // If the declarator is a template-id, translate the parser's template
7555 // argument list into our AST format.
7556 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7557 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7558 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7559 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7560 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7561 TemplateId->NumArgs);
7562 translateTemplateArguments(TemplateArgsPtr,
7563 TemplateArgs);
7564
7565 HasExplicitTemplateArgs = true;
7566
7567 if (NewFD->isInvalidDecl()) {
7568 HasExplicitTemplateArgs = false;
7569 } else if (FunctionTemplate) {
7570 // Function template with explicit template arguments.
7571 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7572 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7573
7574 HasExplicitTemplateArgs = false;
7575 } else {
7576 assert((isFunctionTemplateSpecialization ||
7577 D.getDeclSpec().isFriendSpecified()) &&
7578 "should have a 'template<>' for this decl");
7579 // "friend void foo<>(int);" is an implicit specialization decl.
7580 isFunctionTemplateSpecialization = true;
7581 }
7582 } else if (isFriend && isFunctionTemplateSpecialization) {
7583 // This combination is only possible in a recovery case; the user
7584 // wrote something like:
7585 // template <> friend void foo(int);
7586 // which we're recovering from as if the user had written:
7587 // friend void foo<>(int);
7588 // Go ahead and fake up a template id.
7589 HasExplicitTemplateArgs = true;
7590 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7591 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7592 }
7593
7594 // If it's a friend (and only if it's a friend), it's possible
7595 // that either the specialized function type or the specialized
7596 // template is dependent, and therefore matching will fail. In
7597 // this case, don't check the specialization yet.
7598 bool InstantiationDependent = false;
7599 if (isFunctionTemplateSpecialization && isFriend &&
7600 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7601 TemplateSpecializationType::anyDependentTemplateArguments(
7602 TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7603 InstantiationDependent))) {
7604 assert(HasExplicitTemplateArgs &&
7605 "friend function specialization without template args");
7606 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7607 Previous))
7608 NewFD->setInvalidDecl();
7609 } else if (isFunctionTemplateSpecialization) {
7610 if (CurContext->isDependentContext() && CurContext->isRecord()
7611 && !isFriend) {
7612 isDependentClassScopeExplicitSpecialization = true;
7613 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7614 diag::ext_function_specialization_in_class :
7615 diag::err_function_specialization_in_class)
7616 << NewFD->getDeclName();
7617 } else if (CheckFunctionTemplateSpecialization(NewFD,
7618 (HasExplicitTemplateArgs ? &TemplateArgs
7619 : nullptr),
7620 Previous))
7621 NewFD->setInvalidDecl();
7622
7623 // C++ [dcl.stc]p1:
7624 // A storage-class-specifier shall not be specified in an explicit
7625 // specialization (14.7.3)
7626 FunctionTemplateSpecializationInfo *Info =
7627 NewFD->getTemplateSpecializationInfo();
7628 if (Info && SC != SC_None) {
7629 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7630 Diag(NewFD->getLocation(),
7631 diag::err_explicit_specialization_inconsistent_storage_class)
7632 << SC
7633 << FixItHint::CreateRemoval(
7634 D.getDeclSpec().getStorageClassSpecLoc());
7635
7636 else
7637 Diag(NewFD->getLocation(),
7638 diag::ext_explicit_specialization_storage_class)
7639 << FixItHint::CreateRemoval(
7640 D.getDeclSpec().getStorageClassSpecLoc());
7641 }
7642
7643 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7644 if (CheckMemberSpecialization(NewFD, Previous))
7645 NewFD->setInvalidDecl();
7646 }
7647
7648 // Perform semantic checking on the function declaration.
7649 if (!isDependentClassScopeExplicitSpecialization) {
7650 if (!NewFD->isInvalidDecl() && NewFD->isMain())
7651 CheckMain(NewFD, D.getDeclSpec());
7652
7653 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7654 CheckMSVCRTEntryPoint(NewFD);
7655
7656 if (!NewFD->isInvalidDecl())
7657 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7658 isExplicitSpecialization));
7659 else if (!Previous.empty())
7660 // Recover gracefully from an invalid redeclaration.
7661 D.setRedeclaration(true);
7662 }
7663
7664 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7665 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7666 "previous declaration set still overloaded");
7667
7668 NamedDecl *PrincipalDecl = (FunctionTemplate
7669 ? cast<NamedDecl>(FunctionTemplate)
7670 : NewFD);
7671
7672 if (isFriend && D.isRedeclaration()) {
7673 AccessSpecifier Access = AS_public;
7674 if (!NewFD->isInvalidDecl())
7675 Access = NewFD->getPreviousDecl()->getAccess();
7676
7677 NewFD->setAccess(Access);
7678 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7679 }
7680
7681 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7682 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7683 PrincipalDecl->setNonMemberOperator();
7684
7685 // If we have a function template, check the template parameter
7686 // list. This will check and merge default template arguments.
7687 if (FunctionTemplate) {
7688 FunctionTemplateDecl *PrevTemplate =
7689 FunctionTemplate->getPreviousDecl();
7690 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7691 PrevTemplate ? PrevTemplate->getTemplateParameters()
7692 : nullptr,
7693 D.getDeclSpec().isFriendSpecified()
7694 ? (D.isFunctionDefinition()
7695 ? TPC_FriendFunctionTemplateDefinition
7696 : TPC_FriendFunctionTemplate)
7697 : (D.getCXXScopeSpec().isSet() &&
7698 DC && DC->isRecord() &&
7699 DC->isDependentContext())
7700 ? TPC_ClassTemplateMember
7701 : TPC_FunctionTemplate);
7702 }
7703
7704 if (NewFD->isInvalidDecl()) {
7705 // Ignore all the rest of this.
7706 } else if (!D.isRedeclaration()) {
7707 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7708 AddToScope };
7709 // Fake up an access specifier if it's supposed to be a class member.
7710 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7711 NewFD->setAccess(AS_public);
7712
7713 // Qualified decls generally require a previous declaration.
7714 if (D.getCXXScopeSpec().isSet()) {
7715 // ...with the major exception of templated-scope or
7716 // dependent-scope friend declarations.
7717
7718 // TODO: we currently also suppress this check in dependent
7719 // contexts because (1) the parameter depth will be off when
7720 // matching friend templates and (2) we might actually be
7721 // selecting a friend based on a dependent factor. But there
7722 // are situations where these conditions don't apply and we
7723 // can actually do this check immediately.
7724 if (isFriend &&
7725 (TemplateParamLists.size() ||
7726 D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7727 CurContext->isDependentContext())) {
7728 // ignore these
7729 } else {
7730 // The user tried to provide an out-of-line definition for a
7731 // function that is a member of a class or namespace, but there
7732 // was no such member function declared (C++ [class.mfct]p2,
7733 // C++ [namespace.memdef]p2). For example:
7734 //
7735 // class X {
7736 // void f() const;
7737 // };
7738 //
7739 // void X::f() { } // ill-formed
7740 //
7741 // Complain about this problem, and attempt to suggest close
7742 // matches (e.g., those that differ only in cv-qualifiers and
7743 // whether the parameter types are references).
7744
7745 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7746 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
7747 AddToScope = ExtraArgs.AddToScope;
7748 return Result;
7749 }
7750 }
7751
7752 // Unqualified local friend declarations are required to resolve
7753 // to something.
7754 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7755 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7756 *this, Previous, NewFD, ExtraArgs, true, S)) {
7757 AddToScope = ExtraArgs.AddToScope;
7758 return Result;
7759 }
7760 }
7761
7762 } else if (!D.isFunctionDefinition() &&
7763 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
7764 !isFriend && !isFunctionTemplateSpecialization &&
7765 !isExplicitSpecialization) {
7766 // An out-of-line member function declaration must also be a
7767 // definition (C++ [class.mfct]p2).
7768 // Note that this is not the case for explicit specializations of
7769 // function templates or member functions of class templates, per
7770 // C++ [temp.expl.spec]p2. We also allow these declarations as an
7771 // extension for compatibility with old SWIG code which likes to
7772 // generate them.
7773 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7774 << D.getCXXScopeSpec().getRange();
7775 }
7776 }
7777
7778 ProcessPragmaWeak(S, NewFD);
7779 checkAttributesAfterMerging(*this, *NewFD);
7780
7781 AddKnownFunctionAttributes(NewFD);
7782
7783 if (NewFD->hasAttr<OverloadableAttr>() &&
7784 !NewFD->getType()->getAs<FunctionProtoType>()) {
7785 Diag(NewFD->getLocation(),
7786 diag::err_attribute_overloadable_no_prototype)
7787 << NewFD;
7788
7789 // Turn this into a variadic function with no parameters.
7790 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7791 FunctionProtoType::ExtProtoInfo EPI(
7792 Context.getDefaultCallingConvention(true, false));
7793 EPI.Variadic = true;
7794 EPI.ExtInfo = FT->getExtInfo();
7795
7796 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
7797 NewFD->setType(R);
7798 }
7799
7800 // If there's a #pragma GCC visibility in scope, and this isn't a class
7801 // member, set the visibility of this function.
7802 if (!DC->isRecord() && NewFD->isExternallyVisible())
7803 AddPushedVisibilityAttribute(NewFD);
7804
7805 // If there's a #pragma clang arc_cf_code_audited in scope, consider
7806 // marking the function.
7807 AddCFAuditedAttribute(NewFD);
7808
7809 // If this is a function definition, check if we have to apply optnone due to
7810 // a pragma.
7811 if(D.isFunctionDefinition())
7812 AddRangeBasedOptnone(NewFD);
7813
7814 // If this is the first declaration of an extern C variable, update
7815 // the map of such variables.
7816 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
7817 isIncompleteDeclExternC(*this, NewFD))
7818 RegisterLocallyScopedExternCDecl(NewFD, S);
7819
7820 // Set this FunctionDecl's range up to the right paren.
7821 NewFD->setRangeEnd(D.getSourceRange().getEnd());
7822
7823 if (D.isRedeclaration() && !Previous.empty()) {
7824 checkDLLAttributeRedeclaration(
7825 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
7826 isExplicitSpecialization || isFunctionTemplateSpecialization);
7827 }
7828
7829 if (getLangOpts().CPlusPlus) {
7830 if (FunctionTemplate) {
7831 if (NewFD->isInvalidDecl())
7832 FunctionTemplate->setInvalidDecl();
7833 return FunctionTemplate;
7834 }
7835 }
7836
7837 if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7838 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7839 if ((getLangOpts().OpenCLVersion >= 120)
7840 && (SC == SC_Static)) {
7841 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7842 D.setInvalidType();
7843 }
7844
7845 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7846 if (!NewFD->getReturnType()->isVoidType()) {
7847 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
7848 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
7849 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
7850 : FixItHint());
7851 D.setInvalidType();
7852 }
7853
7854 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7855 for (auto Param : NewFD->params())
7856 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7857 }
7858
7859 MarkUnusedFileScopedDecl(NewFD);
7860
7861 if (getLangOpts().CUDA)
7862 if (IdentifierInfo *II = NewFD->getIdentifier())
7863 if (!NewFD->isInvalidDecl() &&
7864 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7865 if (II->isStr("cudaConfigureCall")) {
7866 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
7867 Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7868
7869 Context.setcudaConfigureCallDecl(NewFD);
7870 }
7871 }
7872
7873 // Here we have an function template explicit specialization at class scope.
7874 // The actually specialization will be postponed to template instatiation
7875 // time via the ClassScopeFunctionSpecializationDecl node.
7876 if (isDependentClassScopeExplicitSpecialization) {
7877 ClassScopeFunctionSpecializationDecl *NewSpec =
7878 ClassScopeFunctionSpecializationDecl::Create(
7879 Context, CurContext, SourceLocation(),
7880 cast<CXXMethodDecl>(NewFD),
7881 HasExplicitTemplateArgs, TemplateArgs);
7882 CurContext->addDecl(NewSpec);
7883 AddToScope = false;
7884 }
7885
7886 return NewFD;
7887 }
7888
7889 /// \brief Perform semantic checking of a new function declaration.
7890 ///
7891 /// Performs semantic analysis of the new function declaration
7892 /// NewFD. This routine performs all semantic checking that does not
7893 /// require the actual declarator involved in the declaration, and is
7894 /// used both for the declaration of functions as they are parsed
7895 /// (called via ActOnDeclarator) and for the declaration of functions
7896 /// that have been instantiated via C++ template instantiation (called
7897 /// via InstantiateDecl).
7898 ///
7899 /// \param IsExplicitSpecialization whether this new function declaration is
7900 /// an explicit specialization of the previous declaration.
7901 ///
7902 /// This sets NewFD->isInvalidDecl() to true if there was an error.
7903 ///
7904 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)7905 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7906 LookupResult &Previous,
7907 bool IsExplicitSpecialization) {
7908 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
7909 "Variably modified return types are not handled here");
7910
7911 // Determine whether the type of this function should be merged with
7912 // a previous visible declaration. This never happens for functions in C++,
7913 // and always happens in C if the previous declaration was visible.
7914 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7915 !Previous.isShadowed();
7916
7917 // Filter out any non-conflicting previous declarations.
7918 filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7919
7920 bool Redeclaration = false;
7921 NamedDecl *OldDecl = nullptr;
7922
7923 // Merge or overload the declaration with an existing declaration of
7924 // the same name, if appropriate.
7925 if (!Previous.empty()) {
7926 // Determine whether NewFD is an overload of PrevDecl or
7927 // a declaration that requires merging. If it's an overload,
7928 // there's no more work to do here; we'll just add the new
7929 // function to the scope.
7930 if (!AllowOverloadingOfFunction(Previous, Context)) {
7931 NamedDecl *Candidate = Previous.getFoundDecl();
7932 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7933 Redeclaration = true;
7934 OldDecl = Candidate;
7935 }
7936 } else {
7937 switch (CheckOverload(S, NewFD, Previous, OldDecl,
7938 /*NewIsUsingDecl*/ false)) {
7939 case Ovl_Match:
7940 Redeclaration = true;
7941 break;
7942
7943 case Ovl_NonFunction:
7944 Redeclaration = true;
7945 break;
7946
7947 case Ovl_Overload:
7948 Redeclaration = false;
7949 break;
7950 }
7951
7952 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7953 // If a function name is overloadable in C, then every function
7954 // with that name must be marked "overloadable".
7955 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7956 << Redeclaration << NewFD;
7957 NamedDecl *OverloadedDecl = nullptr;
7958 if (Redeclaration)
7959 OverloadedDecl = OldDecl;
7960 else if (!Previous.empty())
7961 OverloadedDecl = Previous.getRepresentativeDecl();
7962 if (OverloadedDecl)
7963 Diag(OverloadedDecl->getLocation(),
7964 diag::note_attribute_overloadable_prev_overload);
7965 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7966 }
7967 }
7968 }
7969
7970 // Check for a previous extern "C" declaration with this name.
7971 if (!Redeclaration &&
7972 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7973 filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7974 if (!Previous.empty()) {
7975 // This is an extern "C" declaration with the same name as a previous
7976 // declaration, and thus redeclares that entity...
7977 Redeclaration = true;
7978 OldDecl = Previous.getFoundDecl();
7979 MergeTypeWithPrevious = false;
7980
7981 // ... except in the presence of __attribute__((overloadable)).
7982 if (OldDecl->hasAttr<OverloadableAttr>()) {
7983 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7984 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7985 << Redeclaration << NewFD;
7986 Diag(Previous.getFoundDecl()->getLocation(),
7987 diag::note_attribute_overloadable_prev_overload);
7988 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7989 }
7990 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7991 Redeclaration = false;
7992 OldDecl = nullptr;
7993 }
7994 }
7995 }
7996 }
7997
7998 // C++11 [dcl.constexpr]p8:
7999 // A constexpr specifier for a non-static member function that is not
8000 // a constructor declares that member function to be const.
8001 //
8002 // This needs to be delayed until we know whether this is an out-of-line
8003 // definition of a static member function.
8004 //
8005 // This rule is not present in C++1y, so we produce a backwards
8006 // compatibility warning whenever it happens in C++11.
8007 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8008 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
8009 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
8010 (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
8011 CXXMethodDecl *OldMD = nullptr;
8012 if (OldDecl)
8013 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
8014 if (!OldMD || !OldMD->isStatic()) {
8015 const FunctionProtoType *FPT =
8016 MD->getType()->castAs<FunctionProtoType>();
8017 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8018 EPI.TypeQuals |= Qualifiers::Const;
8019 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8020 FPT->getParamTypes(), EPI));
8021
8022 // Warn that we did this, if we're not performing template instantiation.
8023 // In that case, we'll have warned already when the template was defined.
8024 if (ActiveTemplateInstantiations.empty()) {
8025 SourceLocation AddConstLoc;
8026 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
8027 .IgnoreParens().getAs<FunctionTypeLoc>())
8028 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
8029
8030 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
8031 << FixItHint::CreateInsertion(AddConstLoc, " const");
8032 }
8033 }
8034 }
8035
8036 if (Redeclaration) {
8037 // NewFD and OldDecl represent declarations that need to be
8038 // merged.
8039 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
8040 NewFD->setInvalidDecl();
8041 return Redeclaration;
8042 }
8043
8044 Previous.clear();
8045 Previous.addDecl(OldDecl);
8046
8047 if (FunctionTemplateDecl *OldTemplateDecl
8048 = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
8049 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
8050 FunctionTemplateDecl *NewTemplateDecl
8051 = NewFD->getDescribedFunctionTemplate();
8052 assert(NewTemplateDecl && "Template/non-template mismatch");
8053 if (CXXMethodDecl *Method
8054 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
8055 Method->setAccess(OldTemplateDecl->getAccess());
8056 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
8057 }
8058
8059 // If this is an explicit specialization of a member that is a function
8060 // template, mark it as a member specialization.
8061 if (IsExplicitSpecialization &&
8062 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
8063 NewTemplateDecl->setMemberSpecialization();
8064 assert(OldTemplateDecl->isMemberSpecialization());
8065 }
8066
8067 } else {
8068 // This needs to happen first so that 'inline' propagates.
8069 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
8070
8071 if (isa<CXXMethodDecl>(NewFD))
8072 NewFD->setAccess(OldDecl->getAccess());
8073 }
8074 }
8075
8076 // Semantic checking for this function declaration (in isolation).
8077
8078 if (getLangOpts().CPlusPlus) {
8079 // C++-specific checks.
8080 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
8081 CheckConstructor(Constructor);
8082 } else if (CXXDestructorDecl *Destructor =
8083 dyn_cast<CXXDestructorDecl>(NewFD)) {
8084 CXXRecordDecl *Record = Destructor->getParent();
8085 QualType ClassType = Context.getTypeDeclType(Record);
8086
8087 // FIXME: Shouldn't we be able to perform this check even when the class
8088 // type is dependent? Both gcc and edg can handle that.
8089 if (!ClassType->isDependentType()) {
8090 DeclarationName Name
8091 = Context.DeclarationNames.getCXXDestructorName(
8092 Context.getCanonicalType(ClassType));
8093 if (NewFD->getDeclName() != Name) {
8094 Diag(NewFD->getLocation(), diag::err_destructor_name);
8095 NewFD->setInvalidDecl();
8096 return Redeclaration;
8097 }
8098 }
8099 } else if (CXXConversionDecl *Conversion
8100 = dyn_cast<CXXConversionDecl>(NewFD)) {
8101 ActOnConversionDeclarator(Conversion);
8102 }
8103
8104 // Find any virtual functions that this function overrides.
8105 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
8106 if (!Method->isFunctionTemplateSpecialization() &&
8107 !Method->getDescribedFunctionTemplate() &&
8108 Method->isCanonicalDecl()) {
8109 if (AddOverriddenMethods(Method->getParent(), Method)) {
8110 // If the function was marked as "static", we have a problem.
8111 if (NewFD->getStorageClass() == SC_Static) {
8112 ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
8113 }
8114 }
8115 }
8116
8117 if (Method->isStatic())
8118 checkThisInStaticMemberFunctionType(Method);
8119 }
8120
8121 // Extra checking for C++ overloaded operators (C++ [over.oper]).
8122 if (NewFD->isOverloadedOperator() &&
8123 CheckOverloadedOperatorDeclaration(NewFD)) {
8124 NewFD->setInvalidDecl();
8125 return Redeclaration;
8126 }
8127
8128 // Extra checking for C++0x literal operators (C++0x [over.literal]).
8129 if (NewFD->getLiteralIdentifier() &&
8130 CheckLiteralOperatorDeclaration(NewFD)) {
8131 NewFD->setInvalidDecl();
8132 return Redeclaration;
8133 }
8134
8135 // In C++, check default arguments now that we have merged decls. Unless
8136 // the lexical context is the class, because in this case this is done
8137 // during delayed parsing anyway.
8138 if (!CurContext->isRecord())
8139 CheckCXXDefaultArguments(NewFD);
8140
8141 // If this function declares a builtin function, check the type of this
8142 // declaration against the expected type for the builtin.
8143 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
8144 ASTContext::GetBuiltinTypeError Error;
8145 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
8146 QualType T = Context.GetBuiltinType(BuiltinID, Error);
8147 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
8148 // The type of this function differs from the type of the builtin,
8149 // so forget about the builtin entirely.
8150 Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
8151 }
8152 }
8153
8154 // If this function is declared as being extern "C", then check to see if
8155 // the function returns a UDT (class, struct, or union type) that is not C
8156 // compatible, and if it does, warn the user.
8157 // But, issue any diagnostic on the first declaration only.
8158 if (Previous.empty() && NewFD->isExternC()) {
8159 QualType R = NewFD->getReturnType();
8160 if (R->isIncompleteType() && !R->isVoidType())
8161 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
8162 << NewFD << R;
8163 else if (!R.isPODType(Context) && !R->isVoidType() &&
8164 !R->isObjCObjectPointerType())
8165 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
8166 }
8167 }
8168 return Redeclaration;
8169 }
8170
CheckMain(FunctionDecl * FD,const DeclSpec & DS)8171 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
8172 // C++11 [basic.start.main]p3:
8173 // A program that [...] declares main to be inline, static or
8174 // constexpr is ill-formed.
8175 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
8176 // appear in a declaration of main.
8177 // static main is not an error under C99, but we should warn about it.
8178 // We accept _Noreturn main as an extension.
8179 if (FD->getStorageClass() == SC_Static)
8180 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
8181 ? diag::err_static_main : diag::warn_static_main)
8182 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
8183 if (FD->isInlineSpecified())
8184 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
8185 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
8186 if (DS.isNoreturnSpecified()) {
8187 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
8188 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
8189 Diag(NoreturnLoc, diag::ext_noreturn_main);
8190 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
8191 << FixItHint::CreateRemoval(NoreturnRange);
8192 }
8193 if (FD->isConstexpr()) {
8194 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
8195 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
8196 FD->setConstexpr(false);
8197 }
8198
8199 if (getLangOpts().OpenCL) {
8200 Diag(FD->getLocation(), diag::err_opencl_no_main)
8201 << FD->hasAttr<OpenCLKernelAttr>();
8202 FD->setInvalidDecl();
8203 return;
8204 }
8205
8206 QualType T = FD->getType();
8207 assert(T->isFunctionType() && "function decl is not of function type");
8208 const FunctionType* FT = T->castAs<FunctionType>();
8209
8210 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
8211 // In C with GNU extensions we allow main() to have non-integer return
8212 // type, but we should warn about the extension, and we disable the
8213 // implicit-return-zero rule.
8214
8215 // GCC in C mode accepts qualified 'int'.
8216 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
8217 FD->setHasImplicitReturnZero(true);
8218 else {
8219 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
8220 SourceRange RTRange = FD->getReturnTypeSourceRange();
8221 if (RTRange.isValid())
8222 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
8223 << FixItHint::CreateReplacement(RTRange, "int");
8224 }
8225 } else {
8226 // In C and C++, main magically returns 0 if you fall off the end;
8227 // set the flag which tells us that.
8228 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
8229
8230 // All the standards say that main() should return 'int'.
8231 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
8232 FD->setHasImplicitReturnZero(true);
8233 else {
8234 // Otherwise, this is just a flat-out error.
8235 SourceRange RTRange = FD->getReturnTypeSourceRange();
8236 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
8237 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
8238 : FixItHint());
8239 FD->setInvalidDecl(true);
8240 }
8241 }
8242
8243 // Treat protoless main() as nullary.
8244 if (isa<FunctionNoProtoType>(FT)) return;
8245
8246 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
8247 unsigned nparams = FTP->getNumParams();
8248 assert(FD->getNumParams() == nparams);
8249
8250 bool HasExtraParameters = (nparams > 3);
8251
8252 // Darwin passes an undocumented fourth argument of type char**. If
8253 // other platforms start sprouting these, the logic below will start
8254 // getting shifty.
8255 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
8256 HasExtraParameters = false;
8257
8258 if (HasExtraParameters) {
8259 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
8260 FD->setInvalidDecl(true);
8261 nparams = 3;
8262 }
8263
8264 // FIXME: a lot of the following diagnostics would be improved
8265 // if we had some location information about types.
8266
8267 QualType CharPP =
8268 Context.getPointerType(Context.getPointerType(Context.CharTy));
8269 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
8270
8271 for (unsigned i = 0; i < nparams; ++i) {
8272 QualType AT = FTP->getParamType(i);
8273
8274 bool mismatch = true;
8275
8276 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
8277 mismatch = false;
8278 else if (Expected[i] == CharPP) {
8279 // As an extension, the following forms are okay:
8280 // char const **
8281 // char const * const *
8282 // char * const *
8283
8284 QualifierCollector qs;
8285 const PointerType* PT;
8286 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
8287 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
8288 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
8289 Context.CharTy)) {
8290 qs.removeConst();
8291 mismatch = !qs.empty();
8292 }
8293 }
8294
8295 if (mismatch) {
8296 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
8297 // TODO: suggest replacing given type with expected type
8298 FD->setInvalidDecl(true);
8299 }
8300 }
8301
8302 if (nparams == 1 && !FD->isInvalidDecl()) {
8303 Diag(FD->getLocation(), diag::warn_main_one_arg);
8304 }
8305
8306 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8307 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8308 FD->setInvalidDecl();
8309 }
8310 }
8311
CheckMSVCRTEntryPoint(FunctionDecl * FD)8312 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
8313 QualType T = FD->getType();
8314 assert(T->isFunctionType() && "function decl is not of function type");
8315 const FunctionType *FT = T->castAs<FunctionType>();
8316
8317 // Set an implicit return of 'zero' if the function can return some integral,
8318 // enumeration, pointer or nullptr type.
8319 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
8320 FT->getReturnType()->isAnyPointerType() ||
8321 FT->getReturnType()->isNullPtrType())
8322 // DllMain is exempt because a return value of zero means it failed.
8323 if (FD->getName() != "DllMain")
8324 FD->setHasImplicitReturnZero(true);
8325
8326 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8327 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8328 FD->setInvalidDecl();
8329 }
8330 }
8331
CheckForConstantInitializer(Expr * Init,QualType DclT)8332 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
8333 // FIXME: Need strict checking. In C89, we need to check for
8334 // any assignment, increment, decrement, function-calls, or
8335 // commas outside of a sizeof. In C99, it's the same list,
8336 // except that the aforementioned are allowed in unevaluated
8337 // expressions. Everything else falls under the
8338 // "may accept other forms of constant expressions" exception.
8339 // (We never end up here for C++, so the constant expression
8340 // rules there don't matter.)
8341 const Expr *Culprit;
8342 if (Init->isConstantInitializer(Context, false, &Culprit))
8343 return false;
8344 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
8345 << Culprit->getSourceRange();
8346 return true;
8347 }
8348
8349 namespace {
8350 // Visits an initialization expression to see if OrigDecl is evaluated in
8351 // its own initialization and throws a warning if it does.
8352 class SelfReferenceChecker
8353 : public EvaluatedExprVisitor<SelfReferenceChecker> {
8354 Sema &S;
8355 Decl *OrigDecl;
8356 bool isRecordType;
8357 bool isPODType;
8358 bool isReferenceType;
8359
8360 bool isInitList;
8361 llvm::SmallVector<unsigned, 4> InitFieldIndex;
8362 public:
8363 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
8364
SelfReferenceChecker(Sema & S,Decl * OrigDecl)8365 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
8366 S(S), OrigDecl(OrigDecl) {
8367 isPODType = false;
8368 isRecordType = false;
8369 isReferenceType = false;
8370 isInitList = false;
8371 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
8372 isPODType = VD->getType().isPODType(S.Context);
8373 isRecordType = VD->getType()->isRecordType();
8374 isReferenceType = VD->getType()->isReferenceType();
8375 }
8376 }
8377
8378 // For most expressions, just call the visitor. For initializer lists,
8379 // track the index of the field being initialized since fields are
8380 // initialized in order allowing use of previously initialized fields.
CheckExpr(Expr * E)8381 void CheckExpr(Expr *E) {
8382 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
8383 if (!InitList) {
8384 Visit(E);
8385 return;
8386 }
8387
8388 // Track and increment the index here.
8389 isInitList = true;
8390 InitFieldIndex.push_back(0);
8391 for (auto Child : InitList->children()) {
8392 CheckExpr(cast<Expr>(Child));
8393 ++InitFieldIndex.back();
8394 }
8395 InitFieldIndex.pop_back();
8396 }
8397
8398 // Returns true if MemberExpr is checked and no futher checking is needed.
8399 // Returns false if additional checking is required.
CheckInitListMemberExpr(MemberExpr * E,bool CheckReference)8400 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
8401 llvm::SmallVector<FieldDecl*, 4> Fields;
8402 Expr *Base = E;
8403 bool ReferenceField = false;
8404
8405 // Get the field memebers used.
8406 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8407 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
8408 if (!FD)
8409 return false;
8410 Fields.push_back(FD);
8411 if (FD->getType()->isReferenceType())
8412 ReferenceField = true;
8413 Base = ME->getBase()->IgnoreParenImpCasts();
8414 }
8415
8416 // Keep checking only if the base Decl is the same.
8417 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
8418 if (!DRE || DRE->getDecl() != OrigDecl)
8419 return false;
8420
8421 // A reference field can be bound to an unininitialized field.
8422 if (CheckReference && !ReferenceField)
8423 return true;
8424
8425 // Convert FieldDecls to their index number.
8426 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
8427 for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) {
8428 UsedFieldIndex.push_back((*I)->getFieldIndex());
8429 }
8430
8431 // See if a warning is needed by checking the first difference in index
8432 // numbers. If field being used has index less than the field being
8433 // initialized, then the use is safe.
8434 for (auto UsedIter = UsedFieldIndex.begin(),
8435 UsedEnd = UsedFieldIndex.end(),
8436 OrigIter = InitFieldIndex.begin(),
8437 OrigEnd = InitFieldIndex.end();
8438 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
8439 if (*UsedIter < *OrigIter)
8440 return true;
8441 if (*UsedIter > *OrigIter)
8442 break;
8443 }
8444
8445 // TODO: Add a different warning which will print the field names.
8446 HandleDeclRefExpr(DRE);
8447 return true;
8448 }
8449
8450 // For most expressions, the cast is directly above the DeclRefExpr.
8451 // For conditional operators, the cast can be outside the conditional
8452 // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)8453 void HandleValue(Expr *E) {
8454 E = E->IgnoreParens();
8455 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
8456 HandleDeclRefExpr(DRE);
8457 return;
8458 }
8459
8460 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8461 Visit(CO->getCond());
8462 HandleValue(CO->getTrueExpr());
8463 HandleValue(CO->getFalseExpr());
8464 return;
8465 }
8466
8467 if (BinaryConditionalOperator *BCO =
8468 dyn_cast<BinaryConditionalOperator>(E)) {
8469 Visit(BCO->getCond());
8470 HandleValue(BCO->getFalseExpr());
8471 return;
8472 }
8473
8474 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
8475 HandleValue(OVE->getSourceExpr());
8476 return;
8477 }
8478
8479 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8480 if (BO->getOpcode() == BO_Comma) {
8481 Visit(BO->getLHS());
8482 HandleValue(BO->getRHS());
8483 return;
8484 }
8485 }
8486
8487 if (isa<MemberExpr>(E)) {
8488 if (isInitList) {
8489 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
8490 false /*CheckReference*/))
8491 return;
8492 }
8493
8494 Expr *Base = E->IgnoreParenImpCasts();
8495 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8496 // Check for static member variables and don't warn on them.
8497 if (!isa<FieldDecl>(ME->getMemberDecl()))
8498 return;
8499 Base = ME->getBase()->IgnoreParenImpCasts();
8500 }
8501 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
8502 HandleDeclRefExpr(DRE);
8503 return;
8504 }
8505
8506 Visit(E);
8507 }
8508
8509 // Reference types not handled in HandleValue are handled here since all
8510 // uses of references are bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)8511 void VisitDeclRefExpr(DeclRefExpr *E) {
8512 if (isReferenceType)
8513 HandleDeclRefExpr(E);
8514 }
8515
VisitImplicitCastExpr(ImplicitCastExpr * E)8516 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
8517 if (E->getCastKind() == CK_LValueToRValue) {
8518 HandleValue(E->getSubExpr());
8519 return;
8520 }
8521
8522 Inherited::VisitImplicitCastExpr(E);
8523 }
8524
VisitMemberExpr(MemberExpr * E)8525 void VisitMemberExpr(MemberExpr *E) {
8526 if (isInitList) {
8527 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
8528 return;
8529 }
8530
8531 // Don't warn on arrays since they can be treated as pointers.
8532 if (E->getType()->canDecayToPointerType()) return;
8533
8534 // Warn when a non-static method call is followed by non-static member
8535 // field accesses, which is followed by a DeclRefExpr.
8536 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
8537 bool Warn = (MD && !MD->isStatic());
8538 Expr *Base = E->getBase()->IgnoreParenImpCasts();
8539 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8540 if (!isa<FieldDecl>(ME->getMemberDecl()))
8541 Warn = false;
8542 Base = ME->getBase()->IgnoreParenImpCasts();
8543 }
8544
8545 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
8546 if (Warn)
8547 HandleDeclRefExpr(DRE);
8548 return;
8549 }
8550
8551 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
8552 // Visit that expression.
8553 Visit(Base);
8554 }
8555
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)8556 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8557 Expr *Callee = E->getCallee();
8558
8559 if (isa<UnresolvedLookupExpr>(Callee))
8560 return Inherited::VisitCXXOperatorCallExpr(E);
8561
8562 Visit(Callee);
8563 for (auto Arg: E->arguments())
8564 HandleValue(Arg->IgnoreParenImpCasts());
8565 }
8566
VisitUnaryOperator(UnaryOperator * E)8567 void VisitUnaryOperator(UnaryOperator *E) {
8568 // For POD record types, addresses of its own members are well-defined.
8569 if (E->getOpcode() == UO_AddrOf && isRecordType &&
8570 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
8571 if (!isPODType)
8572 HandleValue(E->getSubExpr());
8573 return;
8574 }
8575
8576 if (E->isIncrementDecrementOp()) {
8577 HandleValue(E->getSubExpr());
8578 return;
8579 }
8580
8581 Inherited::VisitUnaryOperator(E);
8582 }
8583
VisitObjCMessageExpr(ObjCMessageExpr * E)8584 void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
8585
VisitCXXConstructExpr(CXXConstructExpr * E)8586 void VisitCXXConstructExpr(CXXConstructExpr *E) {
8587 if (E->getConstructor()->isCopyConstructor()) {
8588 Expr *ArgExpr = E->getArg(0);
8589 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
8590 if (ILE->getNumInits() == 1)
8591 ArgExpr = ILE->getInit(0);
8592 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8593 if (ICE->getCastKind() == CK_NoOp)
8594 ArgExpr = ICE->getSubExpr();
8595 HandleValue(ArgExpr);
8596 return;
8597 }
8598 Inherited::VisitCXXConstructExpr(E);
8599 }
8600
VisitCallExpr(CallExpr * E)8601 void VisitCallExpr(CallExpr *E) {
8602 // Treat std::move as a use.
8603 if (E->getNumArgs() == 1) {
8604 if (FunctionDecl *FD = E->getDirectCallee()) {
8605 if (FD->isInStdNamespace() && FD->getIdentifier() &&
8606 FD->getIdentifier()->isStr("move")) {
8607 HandleValue(E->getArg(0));
8608 return;
8609 }
8610 }
8611 }
8612
8613 Inherited::VisitCallExpr(E);
8614 }
8615
VisitBinaryOperator(BinaryOperator * E)8616 void VisitBinaryOperator(BinaryOperator *E) {
8617 if (E->isCompoundAssignmentOp()) {
8618 HandleValue(E->getLHS());
8619 Visit(E->getRHS());
8620 return;
8621 }
8622
8623 Inherited::VisitBinaryOperator(E);
8624 }
8625
8626 // A custom visitor for BinaryConditionalOperator is needed because the
8627 // regular visitor would check the condition and true expression separately
8628 // but both point to the same place giving duplicate diagnostics.
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)8629 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
8630 Visit(E->getCond());
8631 Visit(E->getFalseExpr());
8632 }
8633
HandleDeclRefExpr(DeclRefExpr * DRE)8634 void HandleDeclRefExpr(DeclRefExpr *DRE) {
8635 Decl* ReferenceDecl = DRE->getDecl();
8636 if (OrigDecl != ReferenceDecl) return;
8637 unsigned diag;
8638 if (isReferenceType) {
8639 diag = diag::warn_uninit_self_reference_in_reference_init;
8640 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
8641 diag = diag::warn_static_self_reference_in_init;
8642 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
8643 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
8644 DRE->getDecl()->getType()->isRecordType()) {
8645 diag = diag::warn_uninit_self_reference_in_init;
8646 } else {
8647 // Local variables will be handled by the CFG analysis.
8648 return;
8649 }
8650
8651 S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
8652 S.PDiag(diag)
8653 << DRE->getNameInfo().getName()
8654 << OrigDecl->getLocation()
8655 << DRE->getSourceRange());
8656 }
8657 };
8658
8659 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)8660 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
8661 bool DirectInit) {
8662 // Parameters arguments are occassionially constructed with itself,
8663 // for instance, in recursive functions. Skip them.
8664 if (isa<ParmVarDecl>(OrigDecl))
8665 return;
8666
8667 E = E->IgnoreParens();
8668
8669 // Skip checking T a = a where T is not a record or reference type.
8670 // Doing so is a way to silence uninitialized warnings.
8671 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
8672 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
8673 if (ICE->getCastKind() == CK_LValueToRValue)
8674 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
8675 if (DRE->getDecl() == OrigDecl)
8676 return;
8677
8678 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
8679 }
8680 }
8681
8682 /// AddInitializerToDecl - Adds the initializer Init to the
8683 /// declaration dcl. If DirectInit is true, this is C++ direct
8684 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)8685 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
8686 bool DirectInit, bool TypeMayContainAuto) {
8687 // If there is no declaration, there was an error parsing it. Just ignore
8688 // the initializer.
8689 if (!RealDecl || RealDecl->isInvalidDecl()) {
8690 CorrectDelayedTyposInExpr(Init);
8691 return;
8692 }
8693
8694 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
8695 // With declarators parsed the way they are, the parser cannot
8696 // distinguish between a normal initializer and a pure-specifier.
8697 // Thus this grotesque test.
8698 IntegerLiteral *IL;
8699 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
8700 Context.getCanonicalType(IL->getType()) == Context.IntTy)
8701 CheckPureMethod(Method, Init->getSourceRange());
8702 else {
8703 Diag(Method->getLocation(), diag::err_member_function_initialization)
8704 << Method->getDeclName() << Init->getSourceRange();
8705 Method->setInvalidDecl();
8706 }
8707 return;
8708 }
8709
8710 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8711 if (!VDecl) {
8712 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
8713 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8714 RealDecl->setInvalidDecl();
8715 return;
8716 }
8717 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
8718
8719 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8720 if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
8721 // Attempt typo correction early so that the type of the init expression can
8722 // be deduced based on the chosen correction:if the original init contains a
8723 // TypoExpr.
8724 ExprResult Res = CorrectDelayedTyposInExpr(Init);
8725 if (!Res.isUsable()) {
8726 RealDecl->setInvalidDecl();
8727 return;
8728 }
8729 if (Res.get() != Init) {
8730 Init = Res.get();
8731 if (CXXDirectInit)
8732 CXXDirectInit = dyn_cast<ParenListExpr>(Init);
8733 }
8734
8735 Expr *DeduceInit = Init;
8736 // Initializer could be a C++ direct-initializer. Deduction only works if it
8737 // contains exactly one expression.
8738 if (CXXDirectInit) {
8739 if (CXXDirectInit->getNumExprs() == 0) {
8740 // It isn't possible to write this directly, but it is possible to
8741 // end up in this situation with "auto x(some_pack...);"
8742 Diag(CXXDirectInit->getLocStart(),
8743 VDecl->isInitCapture() ? diag::err_init_capture_no_expression
8744 : diag::err_auto_var_init_no_expression)
8745 << VDecl->getDeclName() << VDecl->getType()
8746 << VDecl->getSourceRange();
8747 RealDecl->setInvalidDecl();
8748 return;
8749 } else if (CXXDirectInit->getNumExprs() > 1) {
8750 Diag(CXXDirectInit->getExpr(1)->getLocStart(),
8751 VDecl->isInitCapture()
8752 ? diag::err_init_capture_multiple_expressions
8753 : diag::err_auto_var_init_multiple_expressions)
8754 << VDecl->getDeclName() << VDecl->getType()
8755 << VDecl->getSourceRange();
8756 RealDecl->setInvalidDecl();
8757 return;
8758 } else {
8759 DeduceInit = CXXDirectInit->getExpr(0);
8760 if (isa<InitListExpr>(DeduceInit))
8761 Diag(CXXDirectInit->getLocStart(),
8762 diag::err_auto_var_init_paren_braces)
8763 << VDecl->getDeclName() << VDecl->getType()
8764 << VDecl->getSourceRange();
8765 }
8766 }
8767
8768 // Expressions default to 'id' when we're in a debugger.
8769 bool DefaultedToAuto = false;
8770 if (getLangOpts().DebuggerCastResultToId &&
8771 Init->getType() == Context.UnknownAnyTy) {
8772 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8773 if (Result.isInvalid()) {
8774 VDecl->setInvalidDecl();
8775 return;
8776 }
8777 Init = Result.get();
8778 DefaultedToAuto = true;
8779 }
8780
8781 QualType DeducedType;
8782 if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8783 DAR_Failed)
8784 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8785 if (DeducedType.isNull()) {
8786 RealDecl->setInvalidDecl();
8787 return;
8788 }
8789 VDecl->setType(DeducedType);
8790 assert(VDecl->isLinkageValid());
8791
8792 // In ARC, infer lifetime.
8793 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8794 VDecl->setInvalidDecl();
8795
8796 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8797 // 'id' instead of a specific object type prevents most of our usual checks.
8798 // We only want to warn outside of template instantiations, though:
8799 // inside a template, the 'id' could have come from a parameter.
8800 if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8801 DeducedType->isObjCIdType()) {
8802 SourceLocation Loc =
8803 VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8804 Diag(Loc, diag::warn_auto_var_is_id)
8805 << VDecl->getDeclName() << DeduceInit->getSourceRange();
8806 }
8807
8808 // If this is a redeclaration, check that the type we just deduced matches
8809 // the previously declared type.
8810 if (VarDecl *Old = VDecl->getPreviousDecl()) {
8811 // We never need to merge the type, because we cannot form an incomplete
8812 // array of auto, nor deduce such a type.
8813 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8814 }
8815
8816 // Check the deduced type is valid for a variable declaration.
8817 CheckVariableDeclarationType(VDecl);
8818 if (VDecl->isInvalidDecl())
8819 return;
8820
8821 // If all looks well, warn if this is a case that will change meaning when
8822 // we implement N3922.
8823 if (DirectInit && !CXXDirectInit && isa<InitListExpr>(Init)) {
8824 Diag(Init->getLocStart(),
8825 diag::warn_auto_var_direct_list_init)
8826 << FixItHint::CreateInsertion(Init->getLocStart(), "=");
8827 }
8828 }
8829
8830 // dllimport cannot be used on variable definitions.
8831 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
8832 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
8833 VDecl->setInvalidDecl();
8834 return;
8835 }
8836
8837 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8838 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8839 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8840 VDecl->setInvalidDecl();
8841 return;
8842 }
8843
8844 if (!VDecl->getType()->isDependentType()) {
8845 // A definition must end up with a complete type, which means it must be
8846 // complete with the restriction that an array type might be completed by
8847 // the initializer; note that later code assumes this restriction.
8848 QualType BaseDeclType = VDecl->getType();
8849 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8850 BaseDeclType = Array->getElementType();
8851 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8852 diag::err_typecheck_decl_incomplete_type)) {
8853 RealDecl->setInvalidDecl();
8854 return;
8855 }
8856
8857 // The variable can not have an abstract class type.
8858 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8859 diag::err_abstract_type_in_decl,
8860 AbstractVariableType))
8861 VDecl->setInvalidDecl();
8862 }
8863
8864 const VarDecl *Def;
8865 if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8866 Diag(VDecl->getLocation(), diag::err_redefinition)
8867 << VDecl->getDeclName();
8868 Diag(Def->getLocation(), diag::note_previous_definition);
8869 VDecl->setInvalidDecl();
8870 return;
8871 }
8872
8873 const VarDecl *PrevInit = nullptr;
8874 if (getLangOpts().CPlusPlus) {
8875 // C++ [class.static.data]p4
8876 // If a static data member is of const integral or const
8877 // enumeration type, its declaration in the class definition can
8878 // specify a constant-initializer which shall be an integral
8879 // constant expression (5.19). In that case, the member can appear
8880 // in integral constant expressions. The member shall still be
8881 // defined in a namespace scope if it is used in the program and the
8882 // namespace scope definition shall not contain an initializer.
8883 //
8884 // We already performed a redefinition check above, but for static
8885 // data members we also need to check whether there was an in-class
8886 // declaration with an initializer.
8887 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8888 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
8889 << VDecl->getDeclName();
8890 Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0;
8891 return;
8892 }
8893
8894 if (VDecl->hasLocalStorage())
8895 getCurFunction()->setHasBranchProtectedScope();
8896
8897 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8898 VDecl->setInvalidDecl();
8899 return;
8900 }
8901 }
8902
8903 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8904 // a kernel function cannot be initialized."
8905 if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8906 Diag(VDecl->getLocation(), diag::err_local_cant_init);
8907 VDecl->setInvalidDecl();
8908 return;
8909 }
8910
8911 // Get the decls type and save a reference for later, since
8912 // CheckInitializerTypes may change it.
8913 QualType DclT = VDecl->getType(), SavT = DclT;
8914
8915 // Expressions default to 'id' when we're in a debugger
8916 // and we are assigning it to a variable of Objective-C pointer type.
8917 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8918 Init->getType() == Context.UnknownAnyTy) {
8919 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8920 if (Result.isInvalid()) {
8921 VDecl->setInvalidDecl();
8922 return;
8923 }
8924 Init = Result.get();
8925 }
8926
8927 // Perform the initialization.
8928 if (!VDecl->isInvalidDecl()) {
8929 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8930 InitializationKind Kind
8931 = DirectInit ?
8932 CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8933 Init->getLocStart(),
8934 Init->getLocEnd())
8935 : InitializationKind::CreateDirectList(
8936 VDecl->getLocation())
8937 : InitializationKind::CreateCopy(VDecl->getLocation(),
8938 Init->getLocStart());
8939
8940 MultiExprArg Args = Init;
8941 if (CXXDirectInit)
8942 Args = MultiExprArg(CXXDirectInit->getExprs(),
8943 CXXDirectInit->getNumExprs());
8944
8945 // Try to correct any TypoExprs in the initialization arguments.
8946 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
8947 ExprResult Res =
8948 CorrectDelayedTyposInExpr(Args[Idx], [this, Entity, Kind](Expr *E) {
8949 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
8950 return Init.Failed() ? ExprError() : E;
8951 });
8952 if (Res.isInvalid()) {
8953 VDecl->setInvalidDecl();
8954 } else if (Res.get() != Args[Idx]) {
8955 Args[Idx] = Res.get();
8956 }
8957 }
8958 if (VDecl->isInvalidDecl())
8959 return;
8960
8961 InitializationSequence InitSeq(*this, Entity, Kind, Args);
8962 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8963 if (Result.isInvalid()) {
8964 VDecl->setInvalidDecl();
8965 return;
8966 }
8967
8968 Init = Result.getAs<Expr>();
8969 }
8970
8971 // Check for self-references within variable initializers.
8972 // Variables declared within a function/method body (except for references)
8973 // are handled by a dataflow analysis.
8974 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8975 VDecl->getType()->isReferenceType()) {
8976 CheckSelfReference(*this, RealDecl, Init, DirectInit);
8977 }
8978
8979 // If the type changed, it means we had an incomplete type that was
8980 // completed by the initializer. For example:
8981 // int ary[] = { 1, 3, 5 };
8982 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8983 if (!VDecl->isInvalidDecl() && (DclT != SavT))
8984 VDecl->setType(DclT);
8985
8986 if (!VDecl->isInvalidDecl()) {
8987 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8988
8989 if (VDecl->hasAttr<BlocksAttr>())
8990 checkRetainCycles(VDecl, Init);
8991
8992 // It is safe to assign a weak reference into a strong variable.
8993 // Although this code can still have problems:
8994 // id x = self.weakProp;
8995 // id y = self.weakProp;
8996 // we do not warn to warn spuriously when 'x' and 'y' are on separate
8997 // paths through the function. This should be revisited if
8998 // -Wrepeated-use-of-weak is made flow-sensitive.
8999 if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
9000 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
9001 Init->getLocStart()))
9002 getCurFunction()->markSafeWeakUse(Init);
9003 }
9004
9005 // The initialization is usually a full-expression.
9006 //
9007 // FIXME: If this is a braced initialization of an aggregate, it is not
9008 // an expression, and each individual field initializer is a separate
9009 // full-expression. For instance, in:
9010 //
9011 // struct Temp { ~Temp(); };
9012 // struct S { S(Temp); };
9013 // struct T { S a, b; } t = { Temp(), Temp() }
9014 //
9015 // we should destroy the first Temp before constructing the second.
9016 ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
9017 false,
9018 VDecl->isConstexpr());
9019 if (Result.isInvalid()) {
9020 VDecl->setInvalidDecl();
9021 return;
9022 }
9023 Init = Result.get();
9024
9025 // Attach the initializer to the decl.
9026 VDecl->setInit(Init);
9027
9028 if (VDecl->isLocalVarDecl()) {
9029 // C99 6.7.8p4: All the expressions in an initializer for an object that has
9030 // static storage duration shall be constant expressions or string literals.
9031 // C++ does not have this restriction.
9032 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
9033 const Expr *Culprit;
9034 if (VDecl->getStorageClass() == SC_Static)
9035 CheckForConstantInitializer(Init, DclT);
9036 // C89 is stricter than C99 for non-static aggregate types.
9037 // C89 6.5.7p3: All the expressions [...] in an initializer list
9038 // for an object that has aggregate or union type shall be
9039 // constant expressions.
9040 else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
9041 isa<InitListExpr>(Init) &&
9042 !Init->isConstantInitializer(Context, false, &Culprit))
9043 Diag(Culprit->getExprLoc(),
9044 diag::ext_aggregate_init_not_constant)
9045 << Culprit->getSourceRange();
9046 }
9047 } else if (VDecl->isStaticDataMember() &&
9048 VDecl->getLexicalDeclContext()->isRecord()) {
9049 // This is an in-class initialization for a static data member, e.g.,
9050 //
9051 // struct S {
9052 // static const int value = 17;
9053 // };
9054
9055 // C++ [class.mem]p4:
9056 // A member-declarator can contain a constant-initializer only
9057 // if it declares a static member (9.4) of const integral or
9058 // const enumeration type, see 9.4.2.
9059 //
9060 // C++11 [class.static.data]p3:
9061 // If a non-volatile const static data member is of integral or
9062 // enumeration type, its declaration in the class definition can
9063 // specify a brace-or-equal-initializer in which every initalizer-clause
9064 // that is an assignment-expression is a constant expression. A static
9065 // data member of literal type can be declared in the class definition
9066 // with the constexpr specifier; if so, its declaration shall specify a
9067 // brace-or-equal-initializer in which every initializer-clause that is
9068 // an assignment-expression is a constant expression.
9069
9070 // Do nothing on dependent types.
9071 if (DclT->isDependentType()) {
9072
9073 // Allow any 'static constexpr' members, whether or not they are of literal
9074 // type. We separately check that every constexpr variable is of literal
9075 // type.
9076 } else if (VDecl->isConstexpr()) {
9077
9078 // Require constness.
9079 } else if (!DclT.isConstQualified()) {
9080 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
9081 << Init->getSourceRange();
9082 VDecl->setInvalidDecl();
9083
9084 // We allow integer constant expressions in all cases.
9085 } else if (DclT->isIntegralOrEnumerationType()) {
9086 // Check whether the expression is a constant expression.
9087 SourceLocation Loc;
9088 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
9089 // In C++11, a non-constexpr const static data member with an
9090 // in-class initializer cannot be volatile.
9091 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
9092 else if (Init->isValueDependent())
9093 ; // Nothing to check.
9094 else if (Init->isIntegerConstantExpr(Context, &Loc))
9095 ; // Ok, it's an ICE!
9096 else if (Init->isEvaluatable(Context)) {
9097 // If we can constant fold the initializer through heroics, accept it,
9098 // but report this as a use of an extension for -pedantic.
9099 Diag(Loc, diag::ext_in_class_initializer_non_constant)
9100 << Init->getSourceRange();
9101 } else {
9102 // Otherwise, this is some crazy unknown case. Report the issue at the
9103 // location provided by the isIntegerConstantExpr failed check.
9104 Diag(Loc, diag::err_in_class_initializer_non_constant)
9105 << Init->getSourceRange();
9106 VDecl->setInvalidDecl();
9107 }
9108
9109 // We allow foldable floating-point constants as an extension.
9110 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
9111 // In C++98, this is a GNU extension. In C++11, it is not, but we support
9112 // it anyway and provide a fixit to add the 'constexpr'.
9113 if (getLangOpts().CPlusPlus11) {
9114 Diag(VDecl->getLocation(),
9115 diag::ext_in_class_initializer_float_type_cxx11)
9116 << DclT << Init->getSourceRange();
9117 Diag(VDecl->getLocStart(),
9118 diag::note_in_class_initializer_float_type_cxx11)
9119 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9120 } else {
9121 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
9122 << DclT << Init->getSourceRange();
9123
9124 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
9125 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
9126 << Init->getSourceRange();
9127 VDecl->setInvalidDecl();
9128 }
9129 }
9130
9131 // Suggest adding 'constexpr' in C++11 for literal types.
9132 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
9133 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
9134 << DclT << Init->getSourceRange()
9135 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9136 VDecl->setConstexpr(true);
9137
9138 } else {
9139 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
9140 << DclT << Init->getSourceRange();
9141 VDecl->setInvalidDecl();
9142 }
9143 } else if (VDecl->isFileVarDecl()) {
9144 if (VDecl->getStorageClass() == SC_Extern &&
9145 (!getLangOpts().CPlusPlus ||
9146 !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
9147 VDecl->isExternC())) &&
9148 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
9149 Diag(VDecl->getLocation(), diag::warn_extern_init);
9150
9151 // C99 6.7.8p4. All file scoped initializers need to be constant.
9152 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
9153 CheckForConstantInitializer(Init, DclT);
9154 }
9155
9156 // We will represent direct-initialization similarly to copy-initialization:
9157 // int x(1); -as-> int x = 1;
9158 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9159 //
9160 // Clients that want to distinguish between the two forms, can check for
9161 // direct initializer using VarDecl::getInitStyle().
9162 // A major benefit is that clients that don't particularly care about which
9163 // exactly form was it (like the CodeGen) can handle both cases without
9164 // special case code.
9165
9166 // C++ 8.5p11:
9167 // The form of initialization (using parentheses or '=') is generally
9168 // insignificant, but does matter when the entity being initialized has a
9169 // class type.
9170 if (CXXDirectInit) {
9171 assert(DirectInit && "Call-style initializer must be direct init.");
9172 VDecl->setInitStyle(VarDecl::CallInit);
9173 } else if (DirectInit) {
9174 // This must be list-initialization. No other way is direct-initialization.
9175 VDecl->setInitStyle(VarDecl::ListInit);
9176 }
9177
9178 CheckCompleteVariableDeclaration(VDecl);
9179 }
9180
9181 /// ActOnInitializerError - Given that there was an error parsing an
9182 /// initializer for the given declaration, try to return to some form
9183 /// of sanity.
ActOnInitializerError(Decl * D)9184 void Sema::ActOnInitializerError(Decl *D) {
9185 // Our main concern here is re-establishing invariants like "a
9186 // variable's type is either dependent or complete".
9187 if (!D || D->isInvalidDecl()) return;
9188
9189 VarDecl *VD = dyn_cast<VarDecl>(D);
9190 if (!VD) return;
9191
9192 // Auto types are meaningless if we can't make sense of the initializer.
9193 if (ParsingInitForAutoVars.count(D)) {
9194 D->setInvalidDecl();
9195 return;
9196 }
9197
9198 QualType Ty = VD->getType();
9199 if (Ty->isDependentType()) return;
9200
9201 // Require a complete type.
9202 if (RequireCompleteType(VD->getLocation(),
9203 Context.getBaseElementType(Ty),
9204 diag::err_typecheck_decl_incomplete_type)) {
9205 VD->setInvalidDecl();
9206 return;
9207 }
9208
9209 // Require a non-abstract type.
9210 if (RequireNonAbstractType(VD->getLocation(), Ty,
9211 diag::err_abstract_type_in_decl,
9212 AbstractVariableType)) {
9213 VD->setInvalidDecl();
9214 return;
9215 }
9216
9217 // Don't bother complaining about constructors or destructors,
9218 // though.
9219 }
9220
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)9221 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
9222 bool TypeMayContainAuto) {
9223 // If there is no declaration, there was an error parsing it. Just ignore it.
9224 if (!RealDecl)
9225 return;
9226
9227 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
9228 QualType Type = Var->getType();
9229
9230 // C++11 [dcl.spec.auto]p3
9231 if (TypeMayContainAuto && Type->getContainedAutoType()) {
9232 Diag(Var->getLocation(), diag::err_auto_var_requires_init)
9233 << Var->getDeclName() << Type;
9234 Var->setInvalidDecl();
9235 return;
9236 }
9237
9238 // C++11 [class.static.data]p3: A static data member can be declared with
9239 // the constexpr specifier; if so, its declaration shall specify
9240 // a brace-or-equal-initializer.
9241 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
9242 // the definition of a variable [...] or the declaration of a static data
9243 // member.
9244 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
9245 if (Var->isStaticDataMember())
9246 Diag(Var->getLocation(),
9247 diag::err_constexpr_static_mem_var_requires_init)
9248 << Var->getDeclName();
9249 else
9250 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
9251 Var->setInvalidDecl();
9252 return;
9253 }
9254
9255 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
9256 // be initialized.
9257 if (!Var->isInvalidDecl() &&
9258 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
9259 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
9260 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
9261 Var->setInvalidDecl();
9262 return;
9263 }
9264
9265 switch (Var->isThisDeclarationADefinition()) {
9266 case VarDecl::Definition:
9267 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
9268 break;
9269
9270 // We have an out-of-line definition of a static data member
9271 // that has an in-class initializer, so we type-check this like
9272 // a declaration.
9273 //
9274 // Fall through
9275
9276 case VarDecl::DeclarationOnly:
9277 // It's only a declaration.
9278
9279 // Block scope. C99 6.7p7: If an identifier for an object is
9280 // declared with no linkage (C99 6.2.2p6), the type for the
9281 // object shall be complete.
9282 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
9283 !Var->hasLinkage() && !Var->isInvalidDecl() &&
9284 RequireCompleteType(Var->getLocation(), Type,
9285 diag::err_typecheck_decl_incomplete_type))
9286 Var->setInvalidDecl();
9287
9288 // Make sure that the type is not abstract.
9289 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9290 RequireNonAbstractType(Var->getLocation(), Type,
9291 diag::err_abstract_type_in_decl,
9292 AbstractVariableType))
9293 Var->setInvalidDecl();
9294 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9295 Var->getStorageClass() == SC_PrivateExtern) {
9296 Diag(Var->getLocation(), diag::warn_private_extern);
9297 Diag(Var->getLocation(), diag::note_private_extern);
9298 }
9299
9300 return;
9301
9302 case VarDecl::TentativeDefinition:
9303 // File scope. C99 6.9.2p2: A declaration of an identifier for an
9304 // object that has file scope without an initializer, and without a
9305 // storage-class specifier or with the storage-class specifier "static",
9306 // constitutes a tentative definition. Note: A tentative definition with
9307 // external linkage is valid (C99 6.2.2p5).
9308 if (!Var->isInvalidDecl()) {
9309 if (const IncompleteArrayType *ArrayT
9310 = Context.getAsIncompleteArrayType(Type)) {
9311 if (RequireCompleteType(Var->getLocation(),
9312 ArrayT->getElementType(),
9313 diag::err_illegal_decl_array_incomplete_type))
9314 Var->setInvalidDecl();
9315 } else if (Var->getStorageClass() == SC_Static) {
9316 // C99 6.9.2p3: If the declaration of an identifier for an object is
9317 // a tentative definition and has internal linkage (C99 6.2.2p3), the
9318 // declared type shall not be an incomplete type.
9319 // NOTE: code such as the following
9320 // static struct s;
9321 // struct s { int a; };
9322 // is accepted by gcc. Hence here we issue a warning instead of
9323 // an error and we do not invalidate the static declaration.
9324 // NOTE: to avoid multiple warnings, only check the first declaration.
9325 if (Var->isFirstDecl())
9326 RequireCompleteType(Var->getLocation(), Type,
9327 diag::ext_typecheck_decl_incomplete_type);
9328 }
9329 }
9330
9331 // Record the tentative definition; we're done.
9332 if (!Var->isInvalidDecl())
9333 TentativeDefinitions.push_back(Var);
9334 return;
9335 }
9336
9337 // Provide a specific diagnostic for uninitialized variable
9338 // definitions with incomplete array type.
9339 if (Type->isIncompleteArrayType()) {
9340 Diag(Var->getLocation(),
9341 diag::err_typecheck_incomplete_array_needs_initializer);
9342 Var->setInvalidDecl();
9343 return;
9344 }
9345
9346 // Provide a specific diagnostic for uninitialized variable
9347 // definitions with reference type.
9348 if (Type->isReferenceType()) {
9349 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
9350 << Var->getDeclName()
9351 << SourceRange(Var->getLocation(), Var->getLocation());
9352 Var->setInvalidDecl();
9353 return;
9354 }
9355
9356 // Do not attempt to type-check the default initializer for a
9357 // variable with dependent type.
9358 if (Type->isDependentType())
9359 return;
9360
9361 if (Var->isInvalidDecl())
9362 return;
9363
9364 if (!Var->hasAttr<AliasAttr>()) {
9365 if (RequireCompleteType(Var->getLocation(),
9366 Context.getBaseElementType(Type),
9367 diag::err_typecheck_decl_incomplete_type)) {
9368 Var->setInvalidDecl();
9369 return;
9370 }
9371 } else {
9372 return;
9373 }
9374
9375 // The variable can not have an abstract class type.
9376 if (RequireNonAbstractType(Var->getLocation(), Type,
9377 diag::err_abstract_type_in_decl,
9378 AbstractVariableType)) {
9379 Var->setInvalidDecl();
9380 return;
9381 }
9382
9383 // Check for jumps past the implicit initializer. C++0x
9384 // clarifies that this applies to a "variable with automatic
9385 // storage duration", not a "local variable".
9386 // C++11 [stmt.dcl]p3
9387 // A program that jumps from a point where a variable with automatic
9388 // storage duration is not in scope to a point where it is in scope is
9389 // ill-formed unless the variable has scalar type, class type with a
9390 // trivial default constructor and a trivial destructor, a cv-qualified
9391 // version of one of these types, or an array of one of the preceding
9392 // types and is declared without an initializer.
9393 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
9394 if (const RecordType *Record
9395 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
9396 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
9397 // Mark the function for further checking even if the looser rules of
9398 // C++11 do not require such checks, so that we can diagnose
9399 // incompatibilities with C++98.
9400 if (!CXXRecord->isPOD())
9401 getCurFunction()->setHasBranchProtectedScope();
9402 }
9403 }
9404
9405 // C++03 [dcl.init]p9:
9406 // If no initializer is specified for an object, and the
9407 // object is of (possibly cv-qualified) non-POD class type (or
9408 // array thereof), the object shall be default-initialized; if
9409 // the object is of const-qualified type, the underlying class
9410 // type shall have a user-declared default
9411 // constructor. Otherwise, if no initializer is specified for
9412 // a non- static object, the object and its subobjects, if
9413 // any, have an indeterminate initial value); if the object
9414 // or any of its subobjects are of const-qualified type, the
9415 // program is ill-formed.
9416 // C++0x [dcl.init]p11:
9417 // If no initializer is specified for an object, the object is
9418 // default-initialized; [...].
9419 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
9420 InitializationKind Kind
9421 = InitializationKind::CreateDefault(Var->getLocation());
9422
9423 InitializationSequence InitSeq(*this, Entity, Kind, None);
9424 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
9425 if (Init.isInvalid())
9426 Var->setInvalidDecl();
9427 else if (Init.get()) {
9428 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
9429 // This is important for template substitution.
9430 Var->setInitStyle(VarDecl::CallInit);
9431 }
9432
9433 CheckCompleteVariableDeclaration(Var);
9434 }
9435 }
9436
ActOnCXXForRangeDecl(Decl * D)9437 void Sema::ActOnCXXForRangeDecl(Decl *D) {
9438 VarDecl *VD = dyn_cast<VarDecl>(D);
9439 if (!VD) {
9440 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
9441 D->setInvalidDecl();
9442 return;
9443 }
9444
9445 VD->setCXXForRangeDecl(true);
9446
9447 // for-range-declaration cannot be given a storage class specifier.
9448 int Error = -1;
9449 switch (VD->getStorageClass()) {
9450 case SC_None:
9451 break;
9452 case SC_Extern:
9453 Error = 0;
9454 break;
9455 case SC_Static:
9456 Error = 1;
9457 break;
9458 case SC_PrivateExtern:
9459 Error = 2;
9460 break;
9461 case SC_Auto:
9462 Error = 3;
9463 break;
9464 case SC_Register:
9465 Error = 4;
9466 break;
9467 case SC_OpenCLWorkGroupLocal:
9468 llvm_unreachable("Unexpected storage class");
9469 }
9470 if (Error != -1) {
9471 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
9472 << VD->getDeclName() << Error;
9473 D->setInvalidDecl();
9474 }
9475 }
9476
9477 StmtResult
ActOnCXXForRangeIdentifier(Scope * S,SourceLocation IdentLoc,IdentifierInfo * Ident,ParsedAttributes & Attrs,SourceLocation AttrEnd)9478 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
9479 IdentifierInfo *Ident,
9480 ParsedAttributes &Attrs,
9481 SourceLocation AttrEnd) {
9482 // C++1y [stmt.iter]p1:
9483 // A range-based for statement of the form
9484 // for ( for-range-identifier : for-range-initializer ) statement
9485 // is equivalent to
9486 // for ( auto&& for-range-identifier : for-range-initializer ) statement
9487 DeclSpec DS(Attrs.getPool().getFactory());
9488
9489 const char *PrevSpec;
9490 unsigned DiagID;
9491 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
9492 getPrintingPolicy());
9493
9494 Declarator D(DS, Declarator::ForContext);
9495 D.SetIdentifier(Ident, IdentLoc);
9496 D.takeAttributes(Attrs, AttrEnd);
9497
9498 ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
9499 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
9500 EmptyAttrs, IdentLoc);
9501 Decl *Var = ActOnDeclarator(S, D);
9502 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
9503 FinalizeDeclaration(Var);
9504 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
9505 AttrEnd.isValid() ? AttrEnd : IdentLoc);
9506 }
9507
CheckCompleteVariableDeclaration(VarDecl * var)9508 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
9509 if (var->isInvalidDecl()) return;
9510
9511 // In ARC, don't allow jumps past the implicit initialization of a
9512 // local retaining variable.
9513 if (getLangOpts().ObjCAutoRefCount &&
9514 var->hasLocalStorage()) {
9515 switch (var->getType().getObjCLifetime()) {
9516 case Qualifiers::OCL_None:
9517 case Qualifiers::OCL_ExplicitNone:
9518 case Qualifiers::OCL_Autoreleasing:
9519 break;
9520
9521 case Qualifiers::OCL_Weak:
9522 case Qualifiers::OCL_Strong:
9523 getCurFunction()->setHasBranchProtectedScope();
9524 break;
9525 }
9526 }
9527
9528 // Warn about externally-visible variables being defined without a
9529 // prior declaration. We only want to do this for global
9530 // declarations, but we also specifically need to avoid doing it for
9531 // class members because the linkage of an anonymous class can
9532 // change if it's later given a typedef name.
9533 if (var->isThisDeclarationADefinition() &&
9534 var->getDeclContext()->getRedeclContext()->isFileContext() &&
9535 var->isExternallyVisible() && var->hasLinkage() &&
9536 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
9537 var->getLocation())) {
9538 // Find a previous declaration that's not a definition.
9539 VarDecl *prev = var->getPreviousDecl();
9540 while (prev && prev->isThisDeclarationADefinition())
9541 prev = prev->getPreviousDecl();
9542
9543 if (!prev)
9544 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
9545 }
9546
9547 if (var->getTLSKind() == VarDecl::TLS_Static) {
9548 const Expr *Culprit;
9549 if (var->getType().isDestructedType()) {
9550 // GNU C++98 edits for __thread, [basic.start.term]p3:
9551 // The type of an object with thread storage duration shall not
9552 // have a non-trivial destructor.
9553 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
9554 if (getLangOpts().CPlusPlus11)
9555 Diag(var->getLocation(), diag::note_use_thread_local);
9556 } else if (getLangOpts().CPlusPlus && var->hasInit() &&
9557 !var->getInit()->isConstantInitializer(
9558 Context, var->getType()->isReferenceType(), &Culprit)) {
9559 // GNU C++98 edits for __thread, [basic.start.init]p4:
9560 // An object of thread storage duration shall not require dynamic
9561 // initialization.
9562 // FIXME: Need strict checking here.
9563 Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
9564 << Culprit->getSourceRange();
9565 if (getLangOpts().CPlusPlus11)
9566 Diag(var->getLocation(), diag::note_use_thread_local);
9567 }
9568
9569 }
9570
9571 // Apply section attributes and pragmas to global variables.
9572 bool GlobalStorage = var->hasGlobalStorage();
9573 if (GlobalStorage && var->isThisDeclarationADefinition() &&
9574 ActiveTemplateInstantiations.empty()) {
9575 PragmaStack<StringLiteral *> *Stack = nullptr;
9576 int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
9577 if (var->getType().isConstQualified())
9578 Stack = &ConstSegStack;
9579 else if (!var->getInit()) {
9580 Stack = &BSSSegStack;
9581 SectionFlags |= ASTContext::PSF_Write;
9582 } else {
9583 Stack = &DataSegStack;
9584 SectionFlags |= ASTContext::PSF_Write;
9585 }
9586 if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
9587 var->addAttr(SectionAttr::CreateImplicit(
9588 Context, SectionAttr::Declspec_allocate,
9589 Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
9590 }
9591 if (const SectionAttr *SA = var->getAttr<SectionAttr>())
9592 if (UnifySection(SA->getName(), SectionFlags, var))
9593 var->dropAttr<SectionAttr>();
9594
9595 // Apply the init_seg attribute if this has an initializer. If the
9596 // initializer turns out to not be dynamic, we'll end up ignoring this
9597 // attribute.
9598 if (CurInitSeg && var->getInit())
9599 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
9600 CurInitSegLoc));
9601 }
9602
9603 // All the following checks are C++ only.
9604 if (!getLangOpts().CPlusPlus) return;
9605
9606 QualType type = var->getType();
9607 if (type->isDependentType()) return;
9608
9609 // __block variables might require us to capture a copy-initializer.
9610 if (var->hasAttr<BlocksAttr>()) {
9611 // It's currently invalid to ever have a __block variable with an
9612 // array type; should we diagnose that here?
9613
9614 // Regardless, we don't want to ignore array nesting when
9615 // constructing this copy.
9616 if (type->isStructureOrClassType()) {
9617 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
9618 SourceLocation poi = var->getLocation();
9619 Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
9620 ExprResult result
9621 = PerformMoveOrCopyInitialization(
9622 InitializedEntity::InitializeBlock(poi, type, false),
9623 var, var->getType(), varRef, /*AllowNRVO=*/true);
9624 if (!result.isInvalid()) {
9625 result = MaybeCreateExprWithCleanups(result);
9626 Expr *init = result.getAs<Expr>();
9627 Context.setBlockVarCopyInits(var, init);
9628 }
9629 }
9630 }
9631
9632 Expr *Init = var->getInit();
9633 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
9634 QualType baseType = Context.getBaseElementType(type);
9635
9636 if (!var->getDeclContext()->isDependentContext() &&
9637 Init && !Init->isValueDependent()) {
9638 if (IsGlobal && !var->isConstexpr() &&
9639 !getDiagnostics().isIgnored(diag::warn_global_constructor,
9640 var->getLocation())) {
9641 // Warn about globals which don't have a constant initializer. Don't
9642 // warn about globals with a non-trivial destructor because we already
9643 // warned about them.
9644 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
9645 if (!(RD && !RD->hasTrivialDestructor()) &&
9646 !Init->isConstantInitializer(Context, baseType->isReferenceType()))
9647 Diag(var->getLocation(), diag::warn_global_constructor)
9648 << Init->getSourceRange();
9649 }
9650
9651 if (var->isConstexpr()) {
9652 SmallVector<PartialDiagnosticAt, 8> Notes;
9653 if (!var->evaluateValue(Notes) || !var->isInitICE()) {
9654 SourceLocation DiagLoc = var->getLocation();
9655 // If the note doesn't add any useful information other than a source
9656 // location, fold it into the primary diagnostic.
9657 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9658 diag::note_invalid_subexpr_in_const_expr) {
9659 DiagLoc = Notes[0].first;
9660 Notes.clear();
9661 }
9662 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
9663 << var << Init->getSourceRange();
9664 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9665 Diag(Notes[I].first, Notes[I].second);
9666 }
9667 } else if (var->isUsableInConstantExpressions(Context)) {
9668 // Check whether the initializer of a const variable of integral or
9669 // enumeration type is an ICE now, since we can't tell whether it was
9670 // initialized by a constant expression if we check later.
9671 var->checkInitIsICE();
9672 }
9673 }
9674
9675 // Require the destructor.
9676 if (const RecordType *recordType = baseType->getAs<RecordType>())
9677 FinalizeVarWithDestructor(var, recordType);
9678 }
9679
9680 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
9681 /// any semantic actions necessary after any initializer has been attached.
9682 void
FinalizeDeclaration(Decl * ThisDecl)9683 Sema::FinalizeDeclaration(Decl *ThisDecl) {
9684 // Note that we are no longer parsing the initializer for this declaration.
9685 ParsingInitForAutoVars.erase(ThisDecl);
9686
9687 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
9688 if (!VD)
9689 return;
9690
9691 checkAttributesAfterMerging(*this, *VD);
9692
9693 // Static locals inherit dll attributes from their function.
9694 if (VD->isStaticLocal()) {
9695 if (FunctionDecl *FD =
9696 dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
9697 if (Attr *A = getDLLAttr(FD)) {
9698 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
9699 NewAttr->setInherited(true);
9700 VD->addAttr(NewAttr);
9701 }
9702 }
9703 }
9704
9705 // Grab the dllimport or dllexport attribute off of the VarDecl.
9706 const InheritableAttr *DLLAttr = getDLLAttr(VD);
9707
9708 // Imported static data members cannot be defined out-of-line.
9709 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
9710 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
9711 VD->isThisDeclarationADefinition()) {
9712 // We allow definitions of dllimport class template static data members
9713 // with a warning.
9714 CXXRecordDecl *Context =
9715 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
9716 bool IsClassTemplateMember =
9717 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
9718 Context->getDescribedClassTemplate();
9719
9720 Diag(VD->getLocation(),
9721 IsClassTemplateMember
9722 ? diag::warn_attribute_dllimport_static_field_definition
9723 : diag::err_attribute_dllimport_static_field_definition);
9724 Diag(IA->getLocation(), diag::note_attribute);
9725 if (!IsClassTemplateMember)
9726 VD->setInvalidDecl();
9727 }
9728 }
9729
9730 // dllimport/dllexport variables cannot be thread local, their TLS index
9731 // isn't exported with the variable.
9732 if (DLLAttr && VD->getTLSKind()) {
9733 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
9734 << DLLAttr;
9735 VD->setInvalidDecl();
9736 }
9737
9738 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
9739 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
9740 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
9741 VD->dropAttr<UsedAttr>();
9742 }
9743 }
9744
9745 const DeclContext *DC = VD->getDeclContext();
9746 // If there's a #pragma GCC visibility in scope, and this isn't a class
9747 // member, set the visibility of this variable.
9748 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
9749 AddPushedVisibilityAttribute(VD);
9750
9751 // FIXME: Warn on unused templates.
9752 if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
9753 !isa<VarTemplatePartialSpecializationDecl>(VD))
9754 MarkUnusedFileScopedDecl(VD);
9755
9756 // Now we have parsed the initializer and can update the table of magic
9757 // tag values.
9758 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
9759 !VD->getType()->isIntegralOrEnumerationType())
9760 return;
9761
9762 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
9763 const Expr *MagicValueExpr = VD->getInit();
9764 if (!MagicValueExpr) {
9765 continue;
9766 }
9767 llvm::APSInt MagicValueInt;
9768 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
9769 Diag(I->getRange().getBegin(),
9770 diag::err_type_tag_for_datatype_not_ice)
9771 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9772 continue;
9773 }
9774 if (MagicValueInt.getActiveBits() > 64) {
9775 Diag(I->getRange().getBegin(),
9776 diag::err_type_tag_for_datatype_too_large)
9777 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9778 continue;
9779 }
9780 uint64_t MagicValue = MagicValueInt.getZExtValue();
9781 RegisterTypeTagForDatatype(I->getArgumentKind(),
9782 MagicValue,
9783 I->getMatchingCType(),
9784 I->getLayoutCompatible(),
9785 I->getMustBeNull());
9786 }
9787 }
9788
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)9789 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
9790 ArrayRef<Decl *> Group) {
9791 SmallVector<Decl*, 8> Decls;
9792
9793 if (DS.isTypeSpecOwned())
9794 Decls.push_back(DS.getRepAsDecl());
9795
9796 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
9797 for (unsigned i = 0, e = Group.size(); i != e; ++i)
9798 if (Decl *D = Group[i]) {
9799 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
9800 if (!FirstDeclaratorInGroup)
9801 FirstDeclaratorInGroup = DD;
9802 Decls.push_back(D);
9803 }
9804
9805 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
9806 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
9807 handleTagNumbering(Tag, S);
9808 if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
9809 Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
9810 }
9811 }
9812
9813 return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
9814 }
9815
9816 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
9817 /// group, performing any necessary semantic checking.
9818 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(MutableArrayRef<Decl * > Group,bool TypeMayContainAuto)9819 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
9820 bool TypeMayContainAuto) {
9821 // C++0x [dcl.spec.auto]p7:
9822 // If the type deduced for the template parameter U is not the same in each
9823 // deduction, the program is ill-formed.
9824 // FIXME: When initializer-list support is added, a distinction is needed
9825 // between the deduced type U and the deduced type which 'auto' stands for.
9826 // auto a = 0, b = { 1, 2, 3 };
9827 // is legal because the deduced type U is 'int' in both cases.
9828 if (TypeMayContainAuto && Group.size() > 1) {
9829 QualType Deduced;
9830 CanQualType DeducedCanon;
9831 VarDecl *DeducedDecl = nullptr;
9832 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
9833 if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
9834 AutoType *AT = D->getType()->getContainedAutoType();
9835 // Don't reissue diagnostics when instantiating a template.
9836 if (AT && D->isInvalidDecl())
9837 break;
9838 QualType U = AT ? AT->getDeducedType() : QualType();
9839 if (!U.isNull()) {
9840 CanQualType UCanon = Context.getCanonicalType(U);
9841 if (Deduced.isNull()) {
9842 Deduced = U;
9843 DeducedCanon = UCanon;
9844 DeducedDecl = D;
9845 } else if (DeducedCanon != UCanon) {
9846 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
9847 diag::err_auto_different_deductions)
9848 << (AT->isDecltypeAuto() ? 1 : 0)
9849 << Deduced << DeducedDecl->getDeclName()
9850 << U << D->getDeclName()
9851 << DeducedDecl->getInit()->getSourceRange()
9852 << D->getInit()->getSourceRange();
9853 D->setInvalidDecl();
9854 break;
9855 }
9856 }
9857 }
9858 }
9859 }
9860
9861 ActOnDocumentableDecls(Group);
9862
9863 return DeclGroupPtrTy::make(
9864 DeclGroupRef::Create(Context, Group.data(), Group.size()));
9865 }
9866
ActOnDocumentableDecl(Decl * D)9867 void Sema::ActOnDocumentableDecl(Decl *D) {
9868 ActOnDocumentableDecls(D);
9869 }
9870
ActOnDocumentableDecls(ArrayRef<Decl * > Group)9871 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
9872 // Don't parse the comment if Doxygen diagnostics are ignored.
9873 if (Group.empty() || !Group[0])
9874 return;
9875
9876 if (Diags.isIgnored(diag::warn_doc_param_not_found,
9877 Group[0]->getLocation()) &&
9878 Diags.isIgnored(diag::warn_unknown_comment_command_name,
9879 Group[0]->getLocation()))
9880 return;
9881
9882 if (Group.size() >= 2) {
9883 // This is a decl group. Normally it will contain only declarations
9884 // produced from declarator list. But in case we have any definitions or
9885 // additional declaration references:
9886 // 'typedef struct S {} S;'
9887 // 'typedef struct S *S;'
9888 // 'struct S *pS;'
9889 // FinalizeDeclaratorGroup adds these as separate declarations.
9890 Decl *MaybeTagDecl = Group[0];
9891 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
9892 Group = Group.slice(1);
9893 }
9894 }
9895
9896 // See if there are any new comments that are not attached to a decl.
9897 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
9898 if (!Comments.empty() &&
9899 !Comments.back()->isAttached()) {
9900 // There is at least one comment that not attached to a decl.
9901 // Maybe it should be attached to one of these decls?
9902 //
9903 // Note that this way we pick up not only comments that precede the
9904 // declaration, but also comments that *follow* the declaration -- thanks to
9905 // the lookahead in the lexer: we've consumed the semicolon and looked
9906 // ahead through comments.
9907 for (unsigned i = 0, e = Group.size(); i != e; ++i)
9908 Context.getCommentForDecl(Group[i], &PP);
9909 }
9910 }
9911
9912 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
9913 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)9914 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
9915 const DeclSpec &DS = D.getDeclSpec();
9916
9917 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
9918
9919 // C++03 [dcl.stc]p2 also permits 'auto'.
9920 StorageClass SC = SC_None;
9921 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
9922 SC = SC_Register;
9923 } else if (getLangOpts().CPlusPlus &&
9924 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
9925 SC = SC_Auto;
9926 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
9927 Diag(DS.getStorageClassSpecLoc(),
9928 diag::err_invalid_storage_class_in_func_decl);
9929 D.getMutableDeclSpec().ClearStorageClassSpecs();
9930 }
9931
9932 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
9933 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
9934 << DeclSpec::getSpecifierName(TSCS);
9935 if (DS.isConstexprSpecified())
9936 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
9937 << 0;
9938
9939 DiagnoseFunctionSpecifiers(DS);
9940
9941 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9942 QualType parmDeclType = TInfo->getType();
9943
9944 if (getLangOpts().CPlusPlus) {
9945 // Check that there are no default arguments inside the type of this
9946 // parameter.
9947 CheckExtraCXXDefaultArguments(D);
9948
9949 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
9950 if (D.getCXXScopeSpec().isSet()) {
9951 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
9952 << D.getCXXScopeSpec().getRange();
9953 D.getCXXScopeSpec().clear();
9954 }
9955 }
9956
9957 // Ensure we have a valid name
9958 IdentifierInfo *II = nullptr;
9959 if (D.hasName()) {
9960 II = D.getIdentifier();
9961 if (!II) {
9962 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9963 << GetNameForDeclarator(D).getName();
9964 D.setInvalidType(true);
9965 }
9966 }
9967
9968 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9969 if (II) {
9970 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9971 ForRedeclaration);
9972 LookupName(R, S);
9973 if (R.isSingleResult()) {
9974 NamedDecl *PrevDecl = R.getFoundDecl();
9975 if (PrevDecl->isTemplateParameter()) {
9976 // Maybe we will complain about the shadowed template parameter.
9977 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9978 // Just pretend that we didn't see the previous declaration.
9979 PrevDecl = nullptr;
9980 } else if (S->isDeclScope(PrevDecl)) {
9981 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9982 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9983
9984 // Recover by removing the name
9985 II = nullptr;
9986 D.SetIdentifier(nullptr, D.getIdentifierLoc());
9987 D.setInvalidType(true);
9988 }
9989 }
9990 }
9991
9992 // Temporarily put parameter variables in the translation unit, not
9993 // the enclosing context. This prevents them from accidentally
9994 // looking like class members in C++.
9995 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9996 D.getLocStart(),
9997 D.getIdentifierLoc(), II,
9998 parmDeclType, TInfo,
9999 SC);
10000
10001 if (D.isInvalidType())
10002 New->setInvalidDecl();
10003
10004 assert(S->isFunctionPrototypeScope());
10005 assert(S->getFunctionPrototypeDepth() >= 1);
10006 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
10007 S->getNextFunctionPrototypeIndex());
10008
10009 // Add the parameter declaration into this scope.
10010 S->AddDecl(New);
10011 if (II)
10012 IdResolver.AddDecl(New);
10013
10014 ProcessDeclAttributes(S, New, D);
10015
10016 if (D.getDeclSpec().isModulePrivateSpecified())
10017 Diag(New->getLocation(), diag::err_module_private_local)
10018 << 1 << New->getDeclName()
10019 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10020 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10021
10022 if (New->hasAttr<BlocksAttr>()) {
10023 Diag(New->getLocation(), diag::err_block_on_nonlocal);
10024 }
10025 return New;
10026 }
10027
10028 /// \brief Synthesizes a variable for a parameter arising from a
10029 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)10030 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
10031 SourceLocation Loc,
10032 QualType T) {
10033 /* FIXME: setting StartLoc == Loc.
10034 Would it be worth to modify callers so as to provide proper source
10035 location for the unnamed parameters, embedding the parameter's type? */
10036 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
10037 T, Context.getTrivialTypeSourceInfo(T, Loc),
10038 SC_None, nullptr);
10039 Param->setImplicit();
10040 return Param;
10041 }
10042
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)10043 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
10044 ParmVarDecl * const *ParamEnd) {
10045 // Don't diagnose unused-parameter errors in template instantiations; we
10046 // will already have done so in the template itself.
10047 if (!ActiveTemplateInstantiations.empty())
10048 return;
10049
10050 for (; Param != ParamEnd; ++Param) {
10051 if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
10052 !(*Param)->hasAttr<UnusedAttr>()) {
10053 Diag((*Param)->getLocation(), diag::warn_unused_parameter)
10054 << (*Param)->getDeclName();
10055 }
10056 }
10057 }
10058
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)10059 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
10060 ParmVarDecl * const *ParamEnd,
10061 QualType ReturnTy,
10062 NamedDecl *D) {
10063 if (LangOpts.NumLargeByValueCopy == 0) // No check.
10064 return;
10065
10066 // Warn if the return value is pass-by-value and larger than the specified
10067 // threshold.
10068 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
10069 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
10070 if (Size > LangOpts.NumLargeByValueCopy)
10071 Diag(D->getLocation(), diag::warn_return_value_size)
10072 << D->getDeclName() << Size;
10073 }
10074
10075 // Warn if any parameter is pass-by-value and larger than the specified
10076 // threshold.
10077 for (; Param != ParamEnd; ++Param) {
10078 QualType T = (*Param)->getType();
10079 if (T->isDependentType() || !T.isPODType(Context))
10080 continue;
10081 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
10082 if (Size > LangOpts.NumLargeByValueCopy)
10083 Diag((*Param)->getLocation(), diag::warn_parameter_size)
10084 << (*Param)->getDeclName() << Size;
10085 }
10086 }
10087
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,StorageClass SC)10088 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
10089 SourceLocation NameLoc, IdentifierInfo *Name,
10090 QualType T, TypeSourceInfo *TSInfo,
10091 StorageClass SC) {
10092 // In ARC, infer a lifetime qualifier for appropriate parameter types.
10093 if (getLangOpts().ObjCAutoRefCount &&
10094 T.getObjCLifetime() == Qualifiers::OCL_None &&
10095 T->isObjCLifetimeType()) {
10096
10097 Qualifiers::ObjCLifetime lifetime;
10098
10099 // Special cases for arrays:
10100 // - if it's const, use __unsafe_unretained
10101 // - otherwise, it's an error
10102 if (T->isArrayType()) {
10103 if (!T.isConstQualified()) {
10104 DelayedDiagnostics.add(
10105 sema::DelayedDiagnostic::makeForbiddenType(
10106 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
10107 }
10108 lifetime = Qualifiers::OCL_ExplicitNone;
10109 } else {
10110 lifetime = T->getObjCARCImplicitLifetime();
10111 }
10112 T = Context.getLifetimeQualifiedType(T, lifetime);
10113 }
10114
10115 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
10116 Context.getAdjustedParameterType(T),
10117 TSInfo, SC, nullptr);
10118
10119 // Parameters can not be abstract class types.
10120 // For record types, this is done by the AbstractClassUsageDiagnoser once
10121 // the class has been completely parsed.
10122 if (!CurContext->isRecord() &&
10123 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
10124 AbstractParamType))
10125 New->setInvalidDecl();
10126
10127 // Parameter declarators cannot be interface types. All ObjC objects are
10128 // passed by reference.
10129 if (T->isObjCObjectType()) {
10130 SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
10131 Diag(NameLoc,
10132 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
10133 << FixItHint::CreateInsertion(TypeEndLoc, "*");
10134 T = Context.getObjCObjectPointerType(T);
10135 New->setType(T);
10136 }
10137
10138 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
10139 // duration shall not be qualified by an address-space qualifier."
10140 // Since all parameters have automatic store duration, they can not have
10141 // an address space.
10142 if (T.getAddressSpace() != 0) {
10143 // OpenCL allows function arguments declared to be an array of a type
10144 // to be qualified with an address space.
10145 if (!(getLangOpts().OpenCL && T->isArrayType())) {
10146 Diag(NameLoc, diag::err_arg_with_address_space);
10147 New->setInvalidDecl();
10148 }
10149 }
10150
10151 return New;
10152 }
10153
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)10154 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
10155 SourceLocation LocAfterDecls) {
10156 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10157
10158 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
10159 // for a K&R function.
10160 if (!FTI.hasPrototype) {
10161 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
10162 --i;
10163 if (FTI.Params[i].Param == nullptr) {
10164 SmallString<256> Code;
10165 llvm::raw_svector_ostream(Code)
10166 << " int " << FTI.Params[i].Ident->getName() << ";\n";
10167 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
10168 << FTI.Params[i].Ident
10169 << FixItHint::CreateInsertion(LocAfterDecls, Code);
10170
10171 // Implicitly declare the argument as type 'int' for lack of a better
10172 // type.
10173 AttributeFactory attrs;
10174 DeclSpec DS(attrs);
10175 const char* PrevSpec; // unused
10176 unsigned DiagID; // unused
10177 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
10178 DiagID, Context.getPrintingPolicy());
10179 // Use the identifier location for the type source range.
10180 DS.SetRangeStart(FTI.Params[i].IdentLoc);
10181 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
10182 Declarator ParamD(DS, Declarator::KNRTypeListContext);
10183 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
10184 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
10185 }
10186 }
10187 }
10188 }
10189
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)10190 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
10191 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
10192 assert(D.isFunctionDeclarator() && "Not a function declarator!");
10193 Scope *ParentScope = FnBodyScope->getParent();
10194
10195 D.setFunctionDefinitionKind(FDK_Definition);
10196 Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
10197 return ActOnStartOfFunctionDef(FnBodyScope, DP);
10198 }
10199
ActOnFinishInlineMethodDef(CXXMethodDecl * D)10200 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
10201 Consumer.HandleInlineMethodDefinition(D);
10202 }
10203
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)10204 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
10205 const FunctionDecl*& PossibleZeroParamPrototype) {
10206 // Don't warn about invalid declarations.
10207 if (FD->isInvalidDecl())
10208 return false;
10209
10210 // Or declarations that aren't global.
10211 if (!FD->isGlobal())
10212 return false;
10213
10214 // Don't warn about C++ member functions.
10215 if (isa<CXXMethodDecl>(FD))
10216 return false;
10217
10218 // Don't warn about 'main'.
10219 if (FD->isMain())
10220 return false;
10221
10222 // Don't warn about inline functions.
10223 if (FD->isInlined())
10224 return false;
10225
10226 // Don't warn about function templates.
10227 if (FD->getDescribedFunctionTemplate())
10228 return false;
10229
10230 // Don't warn about function template specializations.
10231 if (FD->isFunctionTemplateSpecialization())
10232 return false;
10233
10234 // Don't warn for OpenCL kernels.
10235 if (FD->hasAttr<OpenCLKernelAttr>())
10236 return false;
10237
10238 // Don't warn on explicitly deleted functions.
10239 if (FD->isDeleted())
10240 return false;
10241
10242 bool MissingPrototype = true;
10243 for (const FunctionDecl *Prev = FD->getPreviousDecl();
10244 Prev; Prev = Prev->getPreviousDecl()) {
10245 // Ignore any declarations that occur in function or method
10246 // scope, because they aren't visible from the header.
10247 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
10248 continue;
10249
10250 MissingPrototype = !Prev->getType()->isFunctionProtoType();
10251 if (FD->getNumParams() == 0)
10252 PossibleZeroParamPrototype = Prev;
10253 break;
10254 }
10255
10256 return MissingPrototype;
10257 }
10258
10259 void
CheckForFunctionRedefinition(FunctionDecl * FD,const FunctionDecl * EffectiveDefinition)10260 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
10261 const FunctionDecl *EffectiveDefinition) {
10262 // Don't complain if we're in GNU89 mode and the previous definition
10263 // was an extern inline function.
10264 const FunctionDecl *Definition = EffectiveDefinition;
10265 if (!Definition)
10266 if (!FD->isDefined(Definition))
10267 return;
10268
10269 if (canRedefineFunction(Definition, getLangOpts()))
10270 return;
10271
10272 // If we don't have a visible definition of the function, and it's inline or
10273 // a template, it's OK to form another definition of it.
10274 //
10275 // FIXME: Should we skip the body of the function and use the old definition
10276 // in this case? That may be necessary for functions that return local types
10277 // through a deduced return type, or instantiate templates with local types.
10278 if (!hasVisibleDefinition(Definition) &&
10279 (Definition->isInlineSpecified() ||
10280 Definition->getDescribedFunctionTemplate() ||
10281 Definition->getNumTemplateParameterLists()))
10282 return;
10283
10284 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
10285 Definition->getStorageClass() == SC_Extern)
10286 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
10287 << FD->getDeclName() << getLangOpts().CPlusPlus;
10288 else
10289 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
10290
10291 Diag(Definition->getLocation(), diag::note_previous_definition);
10292 FD->setInvalidDecl();
10293 }
10294
10295
RebuildLambdaScopeInfo(CXXMethodDecl * CallOperator,Sema & S)10296 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
10297 Sema &S) {
10298 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
10299
10300 LambdaScopeInfo *LSI = S.PushLambdaScope();
10301 LSI->CallOperator = CallOperator;
10302 LSI->Lambda = LambdaClass;
10303 LSI->ReturnType = CallOperator->getReturnType();
10304 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
10305
10306 if (LCD == LCD_None)
10307 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
10308 else if (LCD == LCD_ByCopy)
10309 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
10310 else if (LCD == LCD_ByRef)
10311 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
10312 DeclarationNameInfo DNI = CallOperator->getNameInfo();
10313
10314 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
10315 LSI->Mutable = !CallOperator->isConst();
10316
10317 // Add the captures to the LSI so they can be noted as already
10318 // captured within tryCaptureVar.
10319 auto I = LambdaClass->field_begin();
10320 for (const auto &C : LambdaClass->captures()) {
10321 if (C.capturesVariable()) {
10322 VarDecl *VD = C.getCapturedVar();
10323 if (VD->isInitCapture())
10324 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
10325 QualType CaptureType = VD->getType();
10326 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
10327 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
10328 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
10329 /*EllipsisLoc*/C.isPackExpansion()
10330 ? C.getEllipsisLoc() : SourceLocation(),
10331 CaptureType, /*Expr*/ nullptr);
10332
10333 } else if (C.capturesThis()) {
10334 LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
10335 S.getCurrentThisType(), /*Expr*/ nullptr);
10336 } else {
10337 LSI->addVLATypeCapture(C.getLocation(), I->getType());
10338 }
10339 ++I;
10340 }
10341 }
10342
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)10343 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
10344 // Clear the last template instantiation error context.
10345 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
10346
10347 if (!D)
10348 return D;
10349 FunctionDecl *FD = nullptr;
10350
10351 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
10352 FD = FunTmpl->getTemplatedDecl();
10353 else
10354 FD = cast<FunctionDecl>(D);
10355 // If we are instantiating a generic lambda call operator, push
10356 // a LambdaScopeInfo onto the function stack. But use the information
10357 // that's already been calculated (ActOnLambdaExpr) to prime the current
10358 // LambdaScopeInfo.
10359 // When the template operator is being specialized, the LambdaScopeInfo,
10360 // has to be properly restored so that tryCaptureVariable doesn't try
10361 // and capture any new variables. In addition when calculating potential
10362 // captures during transformation of nested lambdas, it is necessary to
10363 // have the LSI properly restored.
10364 if (isGenericLambdaCallOperatorSpecialization(FD)) {
10365 assert(ActiveTemplateInstantiations.size() &&
10366 "There should be an active template instantiation on the stack "
10367 "when instantiating a generic lambda!");
10368 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
10369 }
10370 else
10371 // Enter a new function scope
10372 PushFunctionScope();
10373
10374 // See if this is a redefinition.
10375 if (!FD->isLateTemplateParsed())
10376 CheckForFunctionRedefinition(FD);
10377
10378 // Builtin functions cannot be defined.
10379 if (unsigned BuiltinID = FD->getBuiltinID()) {
10380 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
10381 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
10382 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
10383 FD->setInvalidDecl();
10384 }
10385 }
10386
10387 // The return type of a function definition must be complete
10388 // (C99 6.9.1p3, C++ [dcl.fct]p6).
10389 QualType ResultType = FD->getReturnType();
10390 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
10391 !FD->isInvalidDecl() &&
10392 RequireCompleteType(FD->getLocation(), ResultType,
10393 diag::err_func_def_incomplete_result))
10394 FD->setInvalidDecl();
10395
10396 if (FnBodyScope)
10397 PushDeclContext(FnBodyScope, FD);
10398
10399 // Check the validity of our function parameters
10400 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
10401 /*CheckParameterNames=*/true);
10402
10403 // Introduce our parameters into the function scope
10404 for (auto Param : FD->params()) {
10405 Param->setOwningFunction(FD);
10406
10407 // If this has an identifier, add it to the scope stack.
10408 if (Param->getIdentifier() && FnBodyScope) {
10409 CheckShadow(FnBodyScope, Param);
10410
10411 PushOnScopeChains(Param, FnBodyScope);
10412 }
10413 }
10414
10415 // If we had any tags defined in the function prototype,
10416 // introduce them into the function scope.
10417 if (FnBodyScope) {
10418 for (ArrayRef<NamedDecl *>::iterator
10419 I = FD->getDeclsInPrototypeScope().begin(),
10420 E = FD->getDeclsInPrototypeScope().end();
10421 I != E; ++I) {
10422 NamedDecl *D = *I;
10423
10424 // Some of these decls (like enums) may have been pinned to the
10425 // translation unit for lack of a real context earlier. If so, remove
10426 // from the translation unit and reattach to the current context.
10427 if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
10428 // Is the decl actually in the context?
10429 for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
10430 if (DI == D) {
10431 Context.getTranslationUnitDecl()->removeDecl(D);
10432 break;
10433 }
10434 }
10435 // Either way, reassign the lexical decl context to our FunctionDecl.
10436 D->setLexicalDeclContext(CurContext);
10437 }
10438
10439 // If the decl has a non-null name, make accessible in the current scope.
10440 if (!D->getName().empty())
10441 PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
10442
10443 // Similarly, dive into enums and fish their constants out, making them
10444 // accessible in this scope.
10445 if (auto *ED = dyn_cast<EnumDecl>(D)) {
10446 for (auto *EI : ED->enumerators())
10447 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
10448 }
10449 }
10450 }
10451
10452 // Ensure that the function's exception specification is instantiated.
10453 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
10454 ResolveExceptionSpec(D->getLocation(), FPT);
10455
10456 // dllimport cannot be applied to non-inline function definitions.
10457 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
10458 !FD->isTemplateInstantiation()) {
10459 assert(!FD->hasAttr<DLLExportAttr>());
10460 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
10461 FD->setInvalidDecl();
10462 return D;
10463 }
10464 // We want to attach documentation to original Decl (which might be
10465 // a function template).
10466 ActOnDocumentableDecl(D);
10467 if (getCurLexicalContext()->isObjCContainer() &&
10468 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
10469 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
10470 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
10471
10472 return D;
10473 }
10474
10475 /// \brief Given the set of return statements within a function body,
10476 /// compute the variables that are subject to the named return value
10477 /// optimization.
10478 ///
10479 /// Each of the variables that is subject to the named return value
10480 /// optimization will be marked as NRVO variables in the AST, and any
10481 /// return statement that has a marked NRVO variable as its NRVO candidate can
10482 /// use the named return value optimization.
10483 ///
10484 /// This function applies a very simplistic algorithm for NRVO: if every return
10485 /// statement in the scope of a variable has the same NRVO candidate, that
10486 /// candidate is an NRVO variable.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)10487 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
10488 ReturnStmt **Returns = Scope->Returns.data();
10489
10490 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
10491 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
10492 if (!NRVOCandidate->isNRVOVariable())
10493 Returns[I]->setNRVOCandidate(nullptr);
10494 }
10495 }
10496 }
10497
canDelayFunctionBody(const Declarator & D)10498 bool Sema::canDelayFunctionBody(const Declarator &D) {
10499 // We can't delay parsing the body of a constexpr function template (yet).
10500 if (D.getDeclSpec().isConstexprSpecified())
10501 return false;
10502
10503 // We can't delay parsing the body of a function template with a deduced
10504 // return type (yet).
10505 if (D.getDeclSpec().containsPlaceholderType()) {
10506 // If the placeholder introduces a non-deduced trailing return type,
10507 // we can still delay parsing it.
10508 if (D.getNumTypeObjects()) {
10509 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
10510 if (Outer.Kind == DeclaratorChunk::Function &&
10511 Outer.Fun.hasTrailingReturnType()) {
10512 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
10513 return Ty.isNull() || !Ty->isUndeducedType();
10514 }
10515 }
10516 return false;
10517 }
10518
10519 return true;
10520 }
10521
canSkipFunctionBody(Decl * D)10522 bool Sema::canSkipFunctionBody(Decl *D) {
10523 // We cannot skip the body of a function (or function template) which is
10524 // constexpr, since we may need to evaluate its body in order to parse the
10525 // rest of the file.
10526 // We cannot skip the body of a function with an undeduced return type,
10527 // because any callers of that function need to know the type.
10528 if (const FunctionDecl *FD = D->getAsFunction())
10529 if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
10530 return false;
10531 return Consumer.shouldSkipFunctionBody(D);
10532 }
10533
ActOnSkippedFunctionBody(Decl * Decl)10534 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
10535 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
10536 FD->setHasSkippedBody();
10537 else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
10538 MD->setHasSkippedBody();
10539 return ActOnFinishFunctionBody(Decl, nullptr);
10540 }
10541
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)10542 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
10543 return ActOnFinishFunctionBody(D, BodyArg, false);
10544 }
10545
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)10546 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
10547 bool IsInstantiation) {
10548 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
10549
10550 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10551 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
10552
10553 if (FD) {
10554 FD->setBody(Body);
10555
10556 if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body &&
10557 !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
10558 // If the function has a deduced result type but contains no 'return'
10559 // statements, the result type as written must be exactly 'auto', and
10560 // the deduced result type is 'void'.
10561 if (!FD->getReturnType()->getAs<AutoType>()) {
10562 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
10563 << FD->getReturnType();
10564 FD->setInvalidDecl();
10565 } else {
10566 // Substitute 'void' for the 'auto' in the type.
10567 TypeLoc ResultType = getReturnTypeLoc(FD);
10568 Context.adjustDeducedFunctionResultType(
10569 FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
10570 }
10571 }
10572
10573 // The only way to be included in UndefinedButUsed is if there is an
10574 // ODR use before the definition. Avoid the expensive map lookup if this
10575 // is the first declaration.
10576 if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
10577 if (!FD->isExternallyVisible())
10578 UndefinedButUsed.erase(FD);
10579 else if (FD->isInlined() &&
10580 (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
10581 (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
10582 UndefinedButUsed.erase(FD);
10583 }
10584
10585 // If the function implicitly returns zero (like 'main') or is naked,
10586 // don't complain about missing return statements.
10587 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
10588 WP.disableCheckFallThrough();
10589
10590 // MSVC permits the use of pure specifier (=0) on function definition,
10591 // defined at class scope, warn about this non-standard construct.
10592 if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
10593 Diag(FD->getLocation(), diag::ext_pure_function_definition);
10594
10595 if (!FD->isInvalidDecl()) {
10596 // Don't diagnose unused parameters of defaulted or deleted functions.
10597 if (!FD->isDeleted() && !FD->isDefaulted())
10598 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
10599 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
10600 FD->getReturnType(), FD);
10601
10602 // If this is a structor, we need a vtable.
10603 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
10604 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
10605 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
10606 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
10607
10608 // Try to apply the named return value optimization. We have to check
10609 // if we can do this here because lambdas keep return statements around
10610 // to deduce an implicit return type.
10611 if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
10612 !FD->isDependentContext())
10613 computeNRVO(Body, getCurFunction());
10614 }
10615
10616 // GNU warning -Wmissing-prototypes:
10617 // Warn if a global function is defined without a previous
10618 // prototype declaration. This warning is issued even if the
10619 // definition itself provides a prototype. The aim is to detect
10620 // global functions that fail to be declared in header files.
10621 const FunctionDecl *PossibleZeroParamPrototype = nullptr;
10622 if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
10623 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
10624
10625 if (PossibleZeroParamPrototype) {
10626 // We found a declaration that is not a prototype,
10627 // but that could be a zero-parameter prototype
10628 if (TypeSourceInfo *TI =
10629 PossibleZeroParamPrototype->getTypeSourceInfo()) {
10630 TypeLoc TL = TI->getTypeLoc();
10631 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
10632 Diag(PossibleZeroParamPrototype->getLocation(),
10633 diag::note_declaration_not_a_prototype)
10634 << PossibleZeroParamPrototype
10635 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
10636 }
10637 }
10638 }
10639
10640 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
10641 const CXXMethodDecl *KeyFunction;
10642 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
10643 MD->isVirtual() &&
10644 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
10645 MD == KeyFunction->getCanonicalDecl()) {
10646 // Update the key-function state if necessary for this ABI.
10647 if (FD->isInlined() &&
10648 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
10649 Context.setNonKeyFunction(MD);
10650
10651 // If the newly-chosen key function is already defined, then we
10652 // need to mark the vtable as used retroactively.
10653 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
10654 const FunctionDecl *Definition;
10655 if (KeyFunction && KeyFunction->isDefined(Definition))
10656 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
10657 } else {
10658 // We just defined they key function; mark the vtable as used.
10659 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
10660 }
10661 }
10662 }
10663
10664 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
10665 "Function parsing confused");
10666 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
10667 assert(MD == getCurMethodDecl() && "Method parsing confused");
10668 MD->setBody(Body);
10669 if (!MD->isInvalidDecl()) {
10670 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
10671 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
10672 MD->getReturnType(), MD);
10673
10674 if (Body)
10675 computeNRVO(Body, getCurFunction());
10676 }
10677 if (getCurFunction()->ObjCShouldCallSuper) {
10678 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
10679 << MD->getSelector().getAsString();
10680 getCurFunction()->ObjCShouldCallSuper = false;
10681 }
10682 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
10683 const ObjCMethodDecl *InitMethod = nullptr;
10684 bool isDesignated =
10685 MD->isDesignatedInitializerForTheInterface(&InitMethod);
10686 assert(isDesignated && InitMethod);
10687 (void)isDesignated;
10688
10689 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
10690 auto IFace = MD->getClassInterface();
10691 if (!IFace)
10692 return false;
10693 auto SuperD = IFace->getSuperClass();
10694 if (!SuperD)
10695 return false;
10696 return SuperD->getIdentifier() ==
10697 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
10698 };
10699 // Don't issue this warning for unavailable inits or direct subclasses
10700 // of NSObject.
10701 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
10702 Diag(MD->getLocation(),
10703 diag::warn_objc_designated_init_missing_super_call);
10704 Diag(InitMethod->getLocation(),
10705 diag::note_objc_designated_init_marked_here);
10706 }
10707 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
10708 }
10709 if (getCurFunction()->ObjCWarnForNoInitDelegation) {
10710 // Don't issue this warning for unavaialable inits.
10711 if (!MD->isUnavailable())
10712 Diag(MD->getLocation(),
10713 diag::warn_objc_secondary_init_missing_init_call);
10714 getCurFunction()->ObjCWarnForNoInitDelegation = false;
10715 }
10716 } else {
10717 return nullptr;
10718 }
10719
10720 assert(!getCurFunction()->ObjCShouldCallSuper &&
10721 "This should only be set for ObjC methods, which should have been "
10722 "handled in the block above.");
10723
10724 // Verify and clean out per-function state.
10725 if (Body && (!FD || !FD->isDefaulted())) {
10726 // C++ constructors that have function-try-blocks can't have return
10727 // statements in the handlers of that block. (C++ [except.handle]p14)
10728 // Verify this.
10729 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
10730 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
10731
10732 // Verify that gotos and switch cases don't jump into scopes illegally.
10733 if (getCurFunction()->NeedsScopeChecking() &&
10734 !PP.isCodeCompletionEnabled())
10735 DiagnoseInvalidJumps(Body);
10736
10737 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
10738 if (!Destructor->getParent()->isDependentType())
10739 CheckDestructor(Destructor);
10740
10741 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
10742 Destructor->getParent());
10743 }
10744
10745 // If any errors have occurred, clear out any temporaries that may have
10746 // been leftover. This ensures that these temporaries won't be picked up for
10747 // deletion in some later function.
10748 if (getDiagnostics().hasErrorOccurred() ||
10749 getDiagnostics().getSuppressAllDiagnostics()) {
10750 DiscardCleanupsInEvaluationContext();
10751 }
10752 if (!getDiagnostics().hasUncompilableErrorOccurred() &&
10753 !isa<FunctionTemplateDecl>(dcl)) {
10754 // Since the body is valid, issue any analysis-based warnings that are
10755 // enabled.
10756 ActivePolicy = &WP;
10757 }
10758
10759 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
10760 (!CheckConstexprFunctionDecl(FD) ||
10761 !CheckConstexprFunctionBody(FD, Body)))
10762 FD->setInvalidDecl();
10763
10764 if (FD && FD->hasAttr<NakedAttr>()) {
10765 for (const Stmt *S : Body->children()) {
10766 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
10767 Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
10768 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
10769 FD->setInvalidDecl();
10770 break;
10771 }
10772 }
10773 }
10774
10775 assert(ExprCleanupObjects.size() ==
10776 ExprEvalContexts.back().NumCleanupObjects &&
10777 "Leftover temporaries in function");
10778 assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
10779 assert(MaybeODRUseExprs.empty() &&
10780 "Leftover expressions for odr-use checking");
10781 }
10782
10783 if (!IsInstantiation)
10784 PopDeclContext();
10785
10786 PopFunctionScopeInfo(ActivePolicy, dcl);
10787 // If any errors have occurred, clear out any temporaries that may have
10788 // been leftover. This ensures that these temporaries won't be picked up for
10789 // deletion in some later function.
10790 if (getDiagnostics().hasErrorOccurred()) {
10791 DiscardCleanupsInEvaluationContext();
10792 }
10793
10794 return dcl;
10795 }
10796
10797
10798 /// When we finish delayed parsing of an attribute, we must attach it to the
10799 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)10800 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
10801 ParsedAttributes &Attrs) {
10802 // Always attach attributes to the underlying decl.
10803 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
10804 D = TD->getTemplatedDecl();
10805 ProcessDeclAttributeList(S, D, Attrs.getList());
10806
10807 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
10808 if (Method->isStatic())
10809 checkThisInStaticMemberFunctionAttributes(Method);
10810 }
10811
10812
10813 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
10814 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)10815 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
10816 IdentifierInfo &II, Scope *S) {
10817 // Before we produce a declaration for an implicitly defined
10818 // function, see whether there was a locally-scoped declaration of
10819 // this name as a function or variable. If so, use that
10820 // (non-visible) declaration, and complain about it.
10821 if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
10822 Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
10823 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
10824 return ExternCPrev;
10825 }
10826
10827 // Extension in C99. Legal in C90, but warn about it.
10828 unsigned diag_id;
10829 if (II.getName().startswith("__builtin_"))
10830 diag_id = diag::warn_builtin_unknown;
10831 else if (getLangOpts().C99)
10832 diag_id = diag::ext_implicit_function_decl;
10833 else
10834 diag_id = diag::warn_implicit_function_decl;
10835 Diag(Loc, diag_id) << &II;
10836
10837 // Because typo correction is expensive, only do it if the implicit
10838 // function declaration is going to be treated as an error.
10839 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
10840 TypoCorrection Corrected;
10841 if (S &&
10842 (Corrected = CorrectTypo(
10843 DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
10844 llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
10845 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
10846 /*ErrorRecovery*/false);
10847 }
10848
10849 // Set a Declarator for the implicit definition: int foo();
10850 const char *Dummy;
10851 AttributeFactory attrFactory;
10852 DeclSpec DS(attrFactory);
10853 unsigned DiagID;
10854 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
10855 Context.getPrintingPolicy());
10856 (void)Error; // Silence warning.
10857 assert(!Error && "Error setting up implicit decl!");
10858 SourceLocation NoLoc;
10859 Declarator D(DS, Declarator::BlockContext);
10860 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
10861 /*IsAmbiguous=*/false,
10862 /*LParenLoc=*/NoLoc,
10863 /*Params=*/nullptr,
10864 /*NumParams=*/0,
10865 /*EllipsisLoc=*/NoLoc,
10866 /*RParenLoc=*/NoLoc,
10867 /*TypeQuals=*/0,
10868 /*RefQualifierIsLvalueRef=*/true,
10869 /*RefQualifierLoc=*/NoLoc,
10870 /*ConstQualifierLoc=*/NoLoc,
10871 /*VolatileQualifierLoc=*/NoLoc,
10872 /*RestrictQualifierLoc=*/NoLoc,
10873 /*MutableLoc=*/NoLoc,
10874 EST_None,
10875 /*ESpecLoc=*/NoLoc,
10876 /*Exceptions=*/nullptr,
10877 /*ExceptionRanges=*/nullptr,
10878 /*NumExceptions=*/0,
10879 /*NoexceptExpr=*/nullptr,
10880 /*ExceptionSpecTokens=*/nullptr,
10881 Loc, Loc, D),
10882 DS.getAttributes(),
10883 SourceLocation());
10884 D.SetIdentifier(&II, Loc);
10885
10886 // Insert this function into translation-unit scope.
10887
10888 DeclContext *PrevDC = CurContext;
10889 CurContext = Context.getTranslationUnitDecl();
10890
10891 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
10892 FD->setImplicit();
10893
10894 CurContext = PrevDC;
10895
10896 AddKnownFunctionAttributes(FD);
10897
10898 return FD;
10899 }
10900
10901 /// \brief Adds any function attributes that we know a priori based on
10902 /// the declaration of this function.
10903 ///
10904 /// These attributes can apply both to implicitly-declared builtins
10905 /// (like __builtin___printf_chk) or to library-declared functions
10906 /// like NSLog or printf.
10907 ///
10908 /// We need to check for duplicate attributes both here and where user-written
10909 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)10910 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
10911 if (FD->isInvalidDecl())
10912 return;
10913
10914 // If this is a built-in function, map its builtin attributes to
10915 // actual attributes.
10916 if (unsigned BuiltinID = FD->getBuiltinID()) {
10917 // Handle printf-formatting attributes.
10918 unsigned FormatIdx;
10919 bool HasVAListArg;
10920 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
10921 if (!FD->hasAttr<FormatAttr>()) {
10922 const char *fmt = "printf";
10923 unsigned int NumParams = FD->getNumParams();
10924 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
10925 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
10926 fmt = "NSString";
10927 FD->addAttr(FormatAttr::CreateImplicit(Context,
10928 &Context.Idents.get(fmt),
10929 FormatIdx+1,
10930 HasVAListArg ? 0 : FormatIdx+2,
10931 FD->getLocation()));
10932 }
10933 }
10934 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
10935 HasVAListArg)) {
10936 if (!FD->hasAttr<FormatAttr>())
10937 FD->addAttr(FormatAttr::CreateImplicit(Context,
10938 &Context.Idents.get("scanf"),
10939 FormatIdx+1,
10940 HasVAListArg ? 0 : FormatIdx+2,
10941 FD->getLocation()));
10942 }
10943
10944 // Mark const if we don't care about errno and that is the only
10945 // thing preventing the function from being const. This allows
10946 // IRgen to use LLVM intrinsics for such functions.
10947 if (!getLangOpts().MathErrno &&
10948 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
10949 if (!FD->hasAttr<ConstAttr>())
10950 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10951 }
10952
10953 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
10954 !FD->hasAttr<ReturnsTwiceAttr>())
10955 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
10956 FD->getLocation()));
10957 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
10958 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
10959 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
10960 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10961 }
10962
10963 IdentifierInfo *Name = FD->getIdentifier();
10964 if (!Name)
10965 return;
10966 if ((!getLangOpts().CPlusPlus &&
10967 FD->getDeclContext()->isTranslationUnit()) ||
10968 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
10969 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
10970 LinkageSpecDecl::lang_c)) {
10971 // Okay: this could be a libc/libm/Objective-C function we know
10972 // about.
10973 } else
10974 return;
10975
10976 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
10977 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
10978 // target-specific builtins, perhaps?
10979 if (!FD->hasAttr<FormatAttr>())
10980 FD->addAttr(FormatAttr::CreateImplicit(Context,
10981 &Context.Idents.get("printf"), 2,
10982 Name->isStr("vasprintf") ? 0 : 3,
10983 FD->getLocation()));
10984 }
10985
10986 if (Name->isStr("__CFStringMakeConstantString")) {
10987 // We already have a __builtin___CFStringMakeConstantString,
10988 // but builds that use -fno-constant-cfstrings don't go through that.
10989 if (!FD->hasAttr<FormatArgAttr>())
10990 FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
10991 FD->getLocation()));
10992 }
10993 }
10994
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)10995 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
10996 TypeSourceInfo *TInfo) {
10997 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
10998 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
10999
11000 if (!TInfo) {
11001 assert(D.isInvalidType() && "no declarator info for valid type");
11002 TInfo = Context.getTrivialTypeSourceInfo(T);
11003 }
11004
11005 // Scope manipulation handled by caller.
11006 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
11007 D.getLocStart(),
11008 D.getIdentifierLoc(),
11009 D.getIdentifier(),
11010 TInfo);
11011
11012 // Bail out immediately if we have an invalid declaration.
11013 if (D.isInvalidType()) {
11014 NewTD->setInvalidDecl();
11015 return NewTD;
11016 }
11017
11018 if (D.getDeclSpec().isModulePrivateSpecified()) {
11019 if (CurContext->isFunctionOrMethod())
11020 Diag(NewTD->getLocation(), diag::err_module_private_local)
11021 << 2 << NewTD->getDeclName()
11022 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
11023 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
11024 else
11025 NewTD->setModulePrivate();
11026 }
11027
11028 // C++ [dcl.typedef]p8:
11029 // If the typedef declaration defines an unnamed class (or
11030 // enum), the first typedef-name declared by the declaration
11031 // to be that class type (or enum type) is used to denote the
11032 // class type (or enum type) for linkage purposes only.
11033 // We need to check whether the type was declared in the declaration.
11034 switch (D.getDeclSpec().getTypeSpecType()) {
11035 case TST_enum:
11036 case TST_struct:
11037 case TST_interface:
11038 case TST_union:
11039 case TST_class: {
11040 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
11041 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
11042 break;
11043 }
11044
11045 default:
11046 break;
11047 }
11048
11049 return NewTD;
11050 }
11051
11052
11053 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)11054 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
11055 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
11056 QualType T = TI->getType();
11057
11058 if (T->isDependentType())
11059 return false;
11060
11061 if (const BuiltinType *BT = T->getAs<BuiltinType>())
11062 if (BT->isInteger())
11063 return false;
11064
11065 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
11066 return true;
11067 }
11068
11069 /// Check whether this is a valid redeclaration of a previous enumeration.
11070 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)11071 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
11072 QualType EnumUnderlyingTy,
11073 const EnumDecl *Prev) {
11074 bool IsFixed = !EnumUnderlyingTy.isNull();
11075
11076 if (IsScoped != Prev->isScoped()) {
11077 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
11078 << Prev->isScoped();
11079 Diag(Prev->getLocation(), diag::note_previous_declaration);
11080 return true;
11081 }
11082
11083 if (IsFixed && Prev->isFixed()) {
11084 if (!EnumUnderlyingTy->isDependentType() &&
11085 !Prev->getIntegerType()->isDependentType() &&
11086 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
11087 Prev->getIntegerType())) {
11088 // TODO: Highlight the underlying type of the redeclaration.
11089 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
11090 << EnumUnderlyingTy << Prev->getIntegerType();
11091 Diag(Prev->getLocation(), diag::note_previous_declaration)
11092 << Prev->getIntegerTypeRange();
11093 return true;
11094 }
11095 } else if (IsFixed != Prev->isFixed()) {
11096 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
11097 << Prev->isFixed();
11098 Diag(Prev->getLocation(), diag::note_previous_declaration);
11099 return true;
11100 }
11101
11102 return false;
11103 }
11104
11105 /// \brief Get diagnostic %select index for tag kind for
11106 /// redeclaration diagnostic message.
11107 /// WARNING: Indexes apply to particular diagnostics only!
11108 ///
11109 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)11110 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
11111 switch (Tag) {
11112 case TTK_Struct: return 0;
11113 case TTK_Interface: return 1;
11114 case TTK_Class: return 2;
11115 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
11116 }
11117 }
11118
11119 /// \brief Determine if tag kind is a class-key compatible with
11120 /// class for redeclaration (class, struct, or __interface).
11121 ///
11122 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)11123 static bool isClassCompatTagKind(TagTypeKind Tag)
11124 {
11125 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
11126 }
11127
11128 /// \brief Determine whether a tag with a given kind is acceptable
11129 /// as a redeclaration of the given tag declaration.
11130 ///
11131 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)11132 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
11133 TagTypeKind NewTag, bool isDefinition,
11134 SourceLocation NewTagLoc,
11135 const IdentifierInfo &Name) {
11136 // C++ [dcl.type.elab]p3:
11137 // The class-key or enum keyword present in the
11138 // elaborated-type-specifier shall agree in kind with the
11139 // declaration to which the name in the elaborated-type-specifier
11140 // refers. This rule also applies to the form of
11141 // elaborated-type-specifier that declares a class-name or
11142 // friend class since it can be construed as referring to the
11143 // definition of the class. Thus, in any
11144 // elaborated-type-specifier, the enum keyword shall be used to
11145 // refer to an enumeration (7.2), the union class-key shall be
11146 // used to refer to a union (clause 9), and either the class or
11147 // struct class-key shall be used to refer to a class (clause 9)
11148 // declared using the class or struct class-key.
11149 TagTypeKind OldTag = Previous->getTagKind();
11150 if (!isDefinition || !isClassCompatTagKind(NewTag))
11151 if (OldTag == NewTag)
11152 return true;
11153
11154 if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
11155 // Warn about the struct/class tag mismatch.
11156 bool isTemplate = false;
11157 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
11158 isTemplate = Record->getDescribedClassTemplate();
11159
11160 if (!ActiveTemplateInstantiations.empty()) {
11161 // In a template instantiation, do not offer fix-its for tag mismatches
11162 // since they usually mess up the template instead of fixing the problem.
11163 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11164 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
11165 << getRedeclDiagFromTagKind(OldTag);
11166 return true;
11167 }
11168
11169 if (isDefinition) {
11170 // On definitions, check previous tags and issue a fix-it for each
11171 // one that doesn't match the current tag.
11172 if (Previous->getDefinition()) {
11173 // Don't suggest fix-its for redefinitions.
11174 return true;
11175 }
11176
11177 bool previousMismatch = false;
11178 for (auto I : Previous->redecls()) {
11179 if (I->getTagKind() != NewTag) {
11180 if (!previousMismatch) {
11181 previousMismatch = true;
11182 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
11183 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
11184 << getRedeclDiagFromTagKind(I->getTagKind());
11185 }
11186 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
11187 << getRedeclDiagFromTagKind(NewTag)
11188 << FixItHint::CreateReplacement(I->getInnerLocStart(),
11189 TypeWithKeyword::getTagTypeKindName(NewTag));
11190 }
11191 }
11192 return true;
11193 }
11194
11195 // Check for a previous definition. If current tag and definition
11196 // are same type, do nothing. If no definition, but disagree with
11197 // with previous tag type, give a warning, but no fix-it.
11198 const TagDecl *Redecl = Previous->getDefinition() ?
11199 Previous->getDefinition() : Previous;
11200 if (Redecl->getTagKind() == NewTag) {
11201 return true;
11202 }
11203
11204 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11205 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
11206 << getRedeclDiagFromTagKind(OldTag);
11207 Diag(Redecl->getLocation(), diag::note_previous_use);
11208
11209 // If there is a previous definition, suggest a fix-it.
11210 if (Previous->getDefinition()) {
11211 Diag(NewTagLoc, diag::note_struct_class_suggestion)
11212 << getRedeclDiagFromTagKind(Redecl->getTagKind())
11213 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
11214 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
11215 }
11216
11217 return true;
11218 }
11219 return false;
11220 }
11221
11222 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
11223 /// from an outer enclosing namespace or file scope inside a friend declaration.
11224 /// This should provide the commented out code in the following snippet:
11225 /// namespace N {
11226 /// struct X;
11227 /// namespace M {
11228 /// struct Y { friend struct /*N::*/ X; };
11229 /// }
11230 /// }
createFriendTagNNSFixIt(Sema & SemaRef,NamedDecl * ND,Scope * S,SourceLocation NameLoc)11231 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
11232 SourceLocation NameLoc) {
11233 // While the decl is in a namespace, do repeated lookup of that name and see
11234 // if we get the same namespace back. If we do not, continue until
11235 // translation unit scope, at which point we have a fully qualified NNS.
11236 SmallVector<IdentifierInfo *, 4> Namespaces;
11237 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11238 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
11239 // This tag should be declared in a namespace, which can only be enclosed by
11240 // other namespaces. Bail if there's an anonymous namespace in the chain.
11241 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
11242 if (!Namespace || Namespace->isAnonymousNamespace())
11243 return FixItHint();
11244 IdentifierInfo *II = Namespace->getIdentifier();
11245 Namespaces.push_back(II);
11246 NamedDecl *Lookup = SemaRef.LookupSingleName(
11247 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
11248 if (Lookup == Namespace)
11249 break;
11250 }
11251
11252 // Once we have all the namespaces, reverse them to go outermost first, and
11253 // build an NNS.
11254 SmallString<64> Insertion;
11255 llvm::raw_svector_ostream OS(Insertion);
11256 if (DC->isTranslationUnit())
11257 OS << "::";
11258 std::reverse(Namespaces.begin(), Namespaces.end());
11259 for (auto *II : Namespaces)
11260 OS << II->getName() << "::";
11261 OS.flush();
11262 return FixItHint::CreateInsertion(NameLoc, Insertion);
11263 }
11264
11265 /// \brief This is invoked when we see 'struct foo' or 'struct {'. In the
11266 /// former case, Name will be non-null. In the later case, Name will be null.
11267 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
11268 /// reference/declaration/definition of a tag.
11269 ///
11270 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
11271 /// trailing-type-specifier) other than one in an alias-declaration.
11272 ///
11273 /// \param SkipBody If non-null, will be set to true if the caller should skip
11274 /// the definition of this tag, and treat it as if it were a declaration.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType,bool IsTypeSpecifier,bool * SkipBody)11275 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
11276 SourceLocation KWLoc, CXXScopeSpec &SS,
11277 IdentifierInfo *Name, SourceLocation NameLoc,
11278 AttributeList *Attr, AccessSpecifier AS,
11279 SourceLocation ModulePrivateLoc,
11280 MultiTemplateParamsArg TemplateParameterLists,
11281 bool &OwnedDecl, bool &IsDependent,
11282 SourceLocation ScopedEnumKWLoc,
11283 bool ScopedEnumUsesClassTag,
11284 TypeResult UnderlyingType,
11285 bool IsTypeSpecifier, bool *SkipBody) {
11286 // If this is not a definition, it must have a name.
11287 IdentifierInfo *OrigName = Name;
11288 assert((Name != nullptr || TUK == TUK_Definition) &&
11289 "Nameless record must be a definition!");
11290 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
11291
11292 OwnedDecl = false;
11293 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11294 bool ScopedEnum = ScopedEnumKWLoc.isValid();
11295
11296 // FIXME: Check explicit specializations more carefully.
11297 bool isExplicitSpecialization = false;
11298 bool Invalid = false;
11299
11300 // We only need to do this matching if we have template parameters
11301 // or a scope specifier, which also conveniently avoids this work
11302 // for non-C++ cases.
11303 if (TemplateParameterLists.size() > 0 ||
11304 (SS.isNotEmpty() && TUK != TUK_Reference)) {
11305 if (TemplateParameterList *TemplateParams =
11306 MatchTemplateParametersToScopeSpecifier(
11307 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
11308 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
11309 if (Kind == TTK_Enum) {
11310 Diag(KWLoc, diag::err_enum_template);
11311 return nullptr;
11312 }
11313
11314 if (TemplateParams->size() > 0) {
11315 // This is a declaration or definition of a class template (which may
11316 // be a member of another template).
11317
11318 if (Invalid)
11319 return nullptr;
11320
11321 OwnedDecl = false;
11322 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
11323 SS, Name, NameLoc, Attr,
11324 TemplateParams, AS,
11325 ModulePrivateLoc,
11326 /*FriendLoc*/SourceLocation(),
11327 TemplateParameterLists.size()-1,
11328 TemplateParameterLists.data(),
11329 SkipBody);
11330 return Result.get();
11331 } else {
11332 // The "template<>" header is extraneous.
11333 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11334 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11335 isExplicitSpecialization = true;
11336 }
11337 }
11338 }
11339
11340 // Figure out the underlying type if this a enum declaration. We need to do
11341 // this early, because it's needed to detect if this is an incompatible
11342 // redeclaration.
11343 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
11344
11345 if (Kind == TTK_Enum) {
11346 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
11347 // No underlying type explicitly specified, or we failed to parse the
11348 // type, default to int.
11349 EnumUnderlying = Context.IntTy.getTypePtr();
11350 else if (UnderlyingType.get()) {
11351 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
11352 // integral type; any cv-qualification is ignored.
11353 TypeSourceInfo *TI = nullptr;
11354 GetTypeFromParser(UnderlyingType.get(), &TI);
11355 EnumUnderlying = TI;
11356
11357 if (CheckEnumUnderlyingType(TI))
11358 // Recover by falling back to int.
11359 EnumUnderlying = Context.IntTy.getTypePtr();
11360
11361 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
11362 UPPC_FixedUnderlyingType))
11363 EnumUnderlying = Context.IntTy.getTypePtr();
11364
11365 } else if (getLangOpts().MSVCCompat)
11366 // Microsoft enums are always of int type.
11367 EnumUnderlying = Context.IntTy.getTypePtr();
11368 }
11369
11370 DeclContext *SearchDC = CurContext;
11371 DeclContext *DC = CurContext;
11372 bool isStdBadAlloc = false;
11373
11374 RedeclarationKind Redecl = ForRedeclaration;
11375 if (TUK == TUK_Friend || TUK == TUK_Reference)
11376 Redecl = NotForRedeclaration;
11377
11378 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
11379 if (Name && SS.isNotEmpty()) {
11380 // We have a nested-name tag ('struct foo::bar').
11381
11382 // Check for invalid 'foo::'.
11383 if (SS.isInvalid()) {
11384 Name = nullptr;
11385 goto CreateNewDecl;
11386 }
11387
11388 // If this is a friend or a reference to a class in a dependent
11389 // context, don't try to make a decl for it.
11390 if (TUK == TUK_Friend || TUK == TUK_Reference) {
11391 DC = computeDeclContext(SS, false);
11392 if (!DC) {
11393 IsDependent = true;
11394 return nullptr;
11395 }
11396 } else {
11397 DC = computeDeclContext(SS, true);
11398 if (!DC) {
11399 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
11400 << SS.getRange();
11401 return nullptr;
11402 }
11403 }
11404
11405 if (RequireCompleteDeclContext(SS, DC))
11406 return nullptr;
11407
11408 SearchDC = DC;
11409 // Look-up name inside 'foo::'.
11410 LookupQualifiedName(Previous, DC);
11411
11412 if (Previous.isAmbiguous())
11413 return nullptr;
11414
11415 if (Previous.empty()) {
11416 // Name lookup did not find anything. However, if the
11417 // nested-name-specifier refers to the current instantiation,
11418 // and that current instantiation has any dependent base
11419 // classes, we might find something at instantiation time: treat
11420 // this as a dependent elaborated-type-specifier.
11421 // But this only makes any sense for reference-like lookups.
11422 if (Previous.wasNotFoundInCurrentInstantiation() &&
11423 (TUK == TUK_Reference || TUK == TUK_Friend)) {
11424 IsDependent = true;
11425 return nullptr;
11426 }
11427
11428 // A tag 'foo::bar' must already exist.
11429 Diag(NameLoc, diag::err_not_tag_in_scope)
11430 << Kind << Name << DC << SS.getRange();
11431 Name = nullptr;
11432 Invalid = true;
11433 goto CreateNewDecl;
11434 }
11435 } else if (Name) {
11436 // If this is a named struct, check to see if there was a previous forward
11437 // declaration or definition.
11438 // FIXME: We're looking into outer scopes here, even when we
11439 // shouldn't be. Doing so can result in ambiguities that we
11440 // shouldn't be diagnosing.
11441 LookupName(Previous, S);
11442
11443 // When declaring or defining a tag, ignore ambiguities introduced
11444 // by types using'ed into this scope.
11445 if (Previous.isAmbiguous() &&
11446 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
11447 LookupResult::Filter F = Previous.makeFilter();
11448 while (F.hasNext()) {
11449 NamedDecl *ND = F.next();
11450 if (ND->getDeclContext()->getRedeclContext() != SearchDC)
11451 F.erase();
11452 }
11453 F.done();
11454 }
11455
11456 // C++11 [namespace.memdef]p3:
11457 // If the name in a friend declaration is neither qualified nor
11458 // a template-id and the declaration is a function or an
11459 // elaborated-type-specifier, the lookup to determine whether
11460 // the entity has been previously declared shall not consider
11461 // any scopes outside the innermost enclosing namespace.
11462 //
11463 // MSVC doesn't implement the above rule for types, so a friend tag
11464 // declaration may be a redeclaration of a type declared in an enclosing
11465 // scope. They do implement this rule for friend functions.
11466 //
11467 // Does it matter that this should be by scope instead of by
11468 // semantic context?
11469 if (!Previous.empty() && TUK == TUK_Friend) {
11470 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
11471 LookupResult::Filter F = Previous.makeFilter();
11472 bool FriendSawTagOutsideEnclosingNamespace = false;
11473 while (F.hasNext()) {
11474 NamedDecl *ND = F.next();
11475 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11476 if (DC->isFileContext() &&
11477 !EnclosingNS->Encloses(ND->getDeclContext())) {
11478 if (getLangOpts().MSVCCompat)
11479 FriendSawTagOutsideEnclosingNamespace = true;
11480 else
11481 F.erase();
11482 }
11483 }
11484 F.done();
11485
11486 // Diagnose this MSVC extension in the easy case where lookup would have
11487 // unambiguously found something outside the enclosing namespace.
11488 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
11489 NamedDecl *ND = Previous.getFoundDecl();
11490 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
11491 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
11492 }
11493 }
11494
11495 // Note: there used to be some attempt at recovery here.
11496 if (Previous.isAmbiguous())
11497 return nullptr;
11498
11499 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
11500 // FIXME: This makes sure that we ignore the contexts associated
11501 // with C structs, unions, and enums when looking for a matching
11502 // tag declaration or definition. See the similar lookup tweak
11503 // in Sema::LookupName; is there a better way to deal with this?
11504 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
11505 SearchDC = SearchDC->getParent();
11506 }
11507 }
11508
11509 if (Previous.isSingleResult() &&
11510 Previous.getFoundDecl()->isTemplateParameter()) {
11511 // Maybe we will complain about the shadowed template parameter.
11512 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
11513 // Just pretend that we didn't see the previous declaration.
11514 Previous.clear();
11515 }
11516
11517 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
11518 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
11519 // This is a declaration of or a reference to "std::bad_alloc".
11520 isStdBadAlloc = true;
11521
11522 if (Previous.empty() && StdBadAlloc) {
11523 // std::bad_alloc has been implicitly declared (but made invisible to
11524 // name lookup). Fill in this implicit declaration as the previous
11525 // declaration, so that the declarations get chained appropriately.
11526 Previous.addDecl(getStdBadAlloc());
11527 }
11528 }
11529
11530 // If we didn't find a previous declaration, and this is a reference
11531 // (or friend reference), move to the correct scope. In C++, we
11532 // also need to do a redeclaration lookup there, just in case
11533 // there's a shadow friend decl.
11534 if (Name && Previous.empty() &&
11535 (TUK == TUK_Reference || TUK == TUK_Friend)) {
11536 if (Invalid) goto CreateNewDecl;
11537 assert(SS.isEmpty());
11538
11539 if (TUK == TUK_Reference) {
11540 // C++ [basic.scope.pdecl]p5:
11541 // -- for an elaborated-type-specifier of the form
11542 //
11543 // class-key identifier
11544 //
11545 // if the elaborated-type-specifier is used in the
11546 // decl-specifier-seq or parameter-declaration-clause of a
11547 // function defined in namespace scope, the identifier is
11548 // declared as a class-name in the namespace that contains
11549 // the declaration; otherwise, except as a friend
11550 // declaration, the identifier is declared in the smallest
11551 // non-class, non-function-prototype scope that contains the
11552 // declaration.
11553 //
11554 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
11555 // C structs and unions.
11556 //
11557 // It is an error in C++ to declare (rather than define) an enum
11558 // type, including via an elaborated type specifier. We'll
11559 // diagnose that later; for now, declare the enum in the same
11560 // scope as we would have picked for any other tag type.
11561 //
11562 // GNU C also supports this behavior as part of its incomplete
11563 // enum types extension, while GNU C++ does not.
11564 //
11565 // Find the context where we'll be declaring the tag.
11566 // FIXME: We would like to maintain the current DeclContext as the
11567 // lexical context,
11568 while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
11569 SearchDC = SearchDC->getParent();
11570
11571 // Find the scope where we'll be declaring the tag.
11572 while (S->isClassScope() ||
11573 (getLangOpts().CPlusPlus &&
11574 S->isFunctionPrototypeScope()) ||
11575 ((S->getFlags() & Scope::DeclScope) == 0) ||
11576 (S->getEntity() && S->getEntity()->isTransparentContext()))
11577 S = S->getParent();
11578 } else {
11579 assert(TUK == TUK_Friend);
11580 // C++ [namespace.memdef]p3:
11581 // If a friend declaration in a non-local class first declares a
11582 // class or function, the friend class or function is a member of
11583 // the innermost enclosing namespace.
11584 SearchDC = SearchDC->getEnclosingNamespaceContext();
11585 }
11586
11587 // In C++, we need to do a redeclaration lookup to properly
11588 // diagnose some problems.
11589 if (getLangOpts().CPlusPlus) {
11590 Previous.setRedeclarationKind(ForRedeclaration);
11591 LookupQualifiedName(Previous, SearchDC);
11592 }
11593 }
11594
11595 if (!Previous.empty()) {
11596 NamedDecl *PrevDecl = Previous.getFoundDecl();
11597 NamedDecl *DirectPrevDecl =
11598 getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl;
11599
11600 // It's okay to have a tag decl in the same scope as a typedef
11601 // which hides a tag decl in the same scope. Finding this
11602 // insanity with a redeclaration lookup can only actually happen
11603 // in C++.
11604 //
11605 // This is also okay for elaborated-type-specifiers, which is
11606 // technically forbidden by the current standard but which is
11607 // okay according to the likely resolution of an open issue;
11608 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
11609 if (getLangOpts().CPlusPlus) {
11610 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11611 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
11612 TagDecl *Tag = TT->getDecl();
11613 if (Tag->getDeclName() == Name &&
11614 Tag->getDeclContext()->getRedeclContext()
11615 ->Equals(TD->getDeclContext()->getRedeclContext())) {
11616 PrevDecl = Tag;
11617 Previous.clear();
11618 Previous.addDecl(Tag);
11619 Previous.resolveKind();
11620 }
11621 }
11622 }
11623 }
11624
11625 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
11626 // If this is a use of a previous tag, or if the tag is already declared
11627 // in the same scope (so that the definition/declaration completes or
11628 // rementions the tag), reuse the decl.
11629 if (TUK == TUK_Reference || TUK == TUK_Friend ||
11630 isDeclInScope(DirectPrevDecl, SearchDC, S,
11631 SS.isNotEmpty() || isExplicitSpecialization)) {
11632 // Make sure that this wasn't declared as an enum and now used as a
11633 // struct or something similar.
11634 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
11635 TUK == TUK_Definition, KWLoc,
11636 *Name)) {
11637 bool SafeToContinue
11638 = (PrevTagDecl->getTagKind() != TTK_Enum &&
11639 Kind != TTK_Enum);
11640 if (SafeToContinue)
11641 Diag(KWLoc, diag::err_use_with_wrong_tag)
11642 << Name
11643 << FixItHint::CreateReplacement(SourceRange(KWLoc),
11644 PrevTagDecl->getKindName());
11645 else
11646 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
11647 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
11648
11649 if (SafeToContinue)
11650 Kind = PrevTagDecl->getTagKind();
11651 else {
11652 // Recover by making this an anonymous redefinition.
11653 Name = nullptr;
11654 Previous.clear();
11655 Invalid = true;
11656 }
11657 }
11658
11659 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
11660 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
11661
11662 // If this is an elaborated-type-specifier for a scoped enumeration,
11663 // the 'class' keyword is not necessary and not permitted.
11664 if (TUK == TUK_Reference || TUK == TUK_Friend) {
11665 if (ScopedEnum)
11666 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
11667 << PrevEnum->isScoped()
11668 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
11669 return PrevTagDecl;
11670 }
11671
11672 QualType EnumUnderlyingTy;
11673 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11674 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
11675 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
11676 EnumUnderlyingTy = QualType(T, 0);
11677
11678 // All conflicts with previous declarations are recovered by
11679 // returning the previous declaration, unless this is a definition,
11680 // in which case we want the caller to bail out.
11681 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
11682 ScopedEnum, EnumUnderlyingTy, PrevEnum))
11683 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
11684 }
11685
11686 // C++11 [class.mem]p1:
11687 // A member shall not be declared twice in the member-specification,
11688 // except that a nested class or member class template can be declared
11689 // and then later defined.
11690 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
11691 S->isDeclScope(PrevDecl)) {
11692 Diag(NameLoc, diag::ext_member_redeclared);
11693 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
11694 }
11695
11696 if (!Invalid) {
11697 // If this is a use, just return the declaration we found, unless
11698 // we have attributes.
11699
11700 // FIXME: In the future, return a variant or some other clue
11701 // for the consumer of this Decl to know it doesn't own it.
11702 // For our current ASTs this shouldn't be a problem, but will
11703 // need to be changed with DeclGroups.
11704 if (!Attr &&
11705 ((TUK == TUK_Reference &&
11706 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
11707 || TUK == TUK_Friend))
11708 return PrevTagDecl;
11709
11710 // Diagnose attempts to redefine a tag.
11711 if (TUK == TUK_Definition) {
11712 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
11713 // If we're defining a specialization and the previous definition
11714 // is from an implicit instantiation, don't emit an error
11715 // here; we'll catch this in the general case below.
11716 bool IsExplicitSpecializationAfterInstantiation = false;
11717 if (isExplicitSpecialization) {
11718 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
11719 IsExplicitSpecializationAfterInstantiation =
11720 RD->getTemplateSpecializationKind() !=
11721 TSK_ExplicitSpecialization;
11722 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
11723 IsExplicitSpecializationAfterInstantiation =
11724 ED->getTemplateSpecializationKind() !=
11725 TSK_ExplicitSpecialization;
11726 }
11727
11728 NamedDecl *Hidden = nullptr;
11729 if (SkipBody && getLangOpts().CPlusPlus &&
11730 !hasVisibleDefinition(Def, &Hidden)) {
11731 // There is a definition of this tag, but it is not visible. We
11732 // explicitly make use of C++'s one definition rule here, and
11733 // assume that this definition is identical to the hidden one
11734 // we already have. Make the existing definition visible and
11735 // use it in place of this one.
11736 *SkipBody = true;
11737 if (auto *Listener = getASTMutationListener())
11738 Listener->RedefinedHiddenDefinition(Hidden, KWLoc);
11739 Hidden->setHidden(false);
11740 return Def;
11741 } else if (!IsExplicitSpecializationAfterInstantiation) {
11742 // A redeclaration in function prototype scope in C isn't
11743 // visible elsewhere, so merely issue a warning.
11744 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
11745 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
11746 else
11747 Diag(NameLoc, diag::err_redefinition) << Name;
11748 Diag(Def->getLocation(), diag::note_previous_definition);
11749 // If this is a redefinition, recover by making this
11750 // struct be anonymous, which will make any later
11751 // references get the previous definition.
11752 Name = nullptr;
11753 Previous.clear();
11754 Invalid = true;
11755 }
11756 } else {
11757 // If the type is currently being defined, complain
11758 // about a nested redefinition.
11759 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
11760 if (TD->isBeingDefined()) {
11761 Diag(NameLoc, diag::err_nested_redefinition) << Name;
11762 Diag(PrevTagDecl->getLocation(),
11763 diag::note_previous_definition);
11764 Name = nullptr;
11765 Previous.clear();
11766 Invalid = true;
11767 }
11768 }
11769
11770 // Okay, this is definition of a previously declared or referenced
11771 // tag. We're going to create a new Decl for it.
11772 }
11773
11774 // Okay, we're going to make a redeclaration. If this is some kind
11775 // of reference, make sure we build the redeclaration in the same DC
11776 // as the original, and ignore the current access specifier.
11777 if (TUK == TUK_Friend || TUK == TUK_Reference) {
11778 SearchDC = PrevTagDecl->getDeclContext();
11779 AS = AS_none;
11780 }
11781 }
11782 // If we get here we have (another) forward declaration or we
11783 // have a definition. Just create a new decl.
11784
11785 } else {
11786 // If we get here, this is a definition of a new tag type in a nested
11787 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
11788 // new decl/type. We set PrevDecl to NULL so that the entities
11789 // have distinct types.
11790 Previous.clear();
11791 }
11792 // If we get here, we're going to create a new Decl. If PrevDecl
11793 // is non-NULL, it's a definition of the tag declared by
11794 // PrevDecl. If it's NULL, we have a new definition.
11795
11796
11797 // Otherwise, PrevDecl is not a tag, but was found with tag
11798 // lookup. This is only actually possible in C++, where a few
11799 // things like templates still live in the tag namespace.
11800 } else {
11801 // Use a better diagnostic if an elaborated-type-specifier
11802 // found the wrong kind of type on the first
11803 // (non-redeclaration) lookup.
11804 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
11805 !Previous.isForRedeclaration()) {
11806 unsigned Kind = 0;
11807 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11808 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11809 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11810 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
11811 Diag(PrevDecl->getLocation(), diag::note_declared_at);
11812 Invalid = true;
11813
11814 // Otherwise, only diagnose if the declaration is in scope.
11815 } else if (!isDeclInScope(PrevDecl, SearchDC, S,
11816 SS.isNotEmpty() || isExplicitSpecialization)) {
11817 // do nothing
11818
11819 // Diagnose implicit declarations introduced by elaborated types.
11820 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
11821 unsigned Kind = 0;
11822 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11823 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11824 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11825 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
11826 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11827 Invalid = true;
11828
11829 // Otherwise it's a declaration. Call out a particularly common
11830 // case here.
11831 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11832 unsigned Kind = 0;
11833 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
11834 Diag(NameLoc, diag::err_tag_definition_of_typedef)
11835 << Name << Kind << TND->getUnderlyingType();
11836 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11837 Invalid = true;
11838
11839 // Otherwise, diagnose.
11840 } else {
11841 // The tag name clashes with something else in the target scope,
11842 // issue an error and recover by making this tag be anonymous.
11843 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
11844 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11845 Name = nullptr;
11846 Invalid = true;
11847 }
11848
11849 // The existing declaration isn't relevant to us; we're in a
11850 // new scope, so clear out the previous declaration.
11851 Previous.clear();
11852 }
11853 }
11854
11855 CreateNewDecl:
11856
11857 TagDecl *PrevDecl = nullptr;
11858 if (Previous.isSingleResult())
11859 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
11860
11861 // If there is an identifier, use the location of the identifier as the
11862 // location of the decl, otherwise use the location of the struct/union
11863 // keyword.
11864 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
11865
11866 // Otherwise, create a new declaration. If there is a previous
11867 // declaration of the same entity, the two will be linked via
11868 // PrevDecl.
11869 TagDecl *New;
11870
11871 bool IsForwardReference = false;
11872 if (Kind == TTK_Enum) {
11873 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11874 // enum X { A, B, C } D; D should chain to X.
11875 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
11876 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
11877 ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
11878 // If this is an undefined enum, warn.
11879 if (TUK != TUK_Definition && !Invalid) {
11880 TagDecl *Def;
11881 if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
11882 cast<EnumDecl>(New)->isFixed()) {
11883 // C++0x: 7.2p2: opaque-enum-declaration.
11884 // Conflicts are diagnosed above. Do nothing.
11885 }
11886 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
11887 Diag(Loc, diag::ext_forward_ref_enum_def)
11888 << New;
11889 Diag(Def->getLocation(), diag::note_previous_definition);
11890 } else {
11891 unsigned DiagID = diag::ext_forward_ref_enum;
11892 if (getLangOpts().MSVCCompat)
11893 DiagID = diag::ext_ms_forward_ref_enum;
11894 else if (getLangOpts().CPlusPlus)
11895 DiagID = diag::err_forward_ref_enum;
11896 Diag(Loc, DiagID);
11897
11898 // If this is a forward-declared reference to an enumeration, make a
11899 // note of it; we won't actually be introducing the declaration into
11900 // the declaration context.
11901 if (TUK == TUK_Reference)
11902 IsForwardReference = true;
11903 }
11904 }
11905
11906 if (EnumUnderlying) {
11907 EnumDecl *ED = cast<EnumDecl>(New);
11908 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11909 ED->setIntegerTypeSourceInfo(TI);
11910 else
11911 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
11912 ED->setPromotionType(ED->getIntegerType());
11913 }
11914
11915 } else {
11916 // struct/union/class
11917
11918 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11919 // struct X { int A; } D; D should chain to X.
11920 if (getLangOpts().CPlusPlus) {
11921 // FIXME: Look for a way to use RecordDecl for simple structs.
11922 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11923 cast_or_null<CXXRecordDecl>(PrevDecl));
11924
11925 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
11926 StdBadAlloc = cast<CXXRecordDecl>(New);
11927 } else
11928 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11929 cast_or_null<RecordDecl>(PrevDecl));
11930 }
11931
11932 // C++11 [dcl.type]p3:
11933 // A type-specifier-seq shall not define a class or enumeration [...].
11934 if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
11935 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
11936 << Context.getTagDeclType(New);
11937 Invalid = true;
11938 }
11939
11940 // Maybe add qualifier info.
11941 if (SS.isNotEmpty()) {
11942 if (SS.isSet()) {
11943 // If this is either a declaration or a definition, check the
11944 // nested-name-specifier against the current context. We don't do this
11945 // for explicit specializations, because they have similar checking
11946 // (with more specific diagnostics) in the call to
11947 // CheckMemberSpecialization, below.
11948 if (!isExplicitSpecialization &&
11949 (TUK == TUK_Definition || TUK == TUK_Declaration) &&
11950 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc))
11951 Invalid = true;
11952
11953 New->setQualifierInfo(SS.getWithLocInContext(Context));
11954 if (TemplateParameterLists.size() > 0) {
11955 New->setTemplateParameterListsInfo(Context,
11956 TemplateParameterLists.size(),
11957 TemplateParameterLists.data());
11958 }
11959 }
11960 else
11961 Invalid = true;
11962 }
11963
11964 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
11965 // Add alignment attributes if necessary; these attributes are checked when
11966 // the ASTContext lays out the structure.
11967 //
11968 // It is important for implementing the correct semantics that this
11969 // happen here (in act on tag decl). The #pragma pack stack is
11970 // maintained as a result of parser callbacks which can occur at
11971 // many points during the parsing of a struct declaration (because
11972 // the #pragma tokens are effectively skipped over during the
11973 // parsing of the struct).
11974 if (TUK == TUK_Definition) {
11975 AddAlignmentAttributesForRecord(RD);
11976 AddMsStructLayoutForRecord(RD);
11977 }
11978 }
11979
11980 if (ModulePrivateLoc.isValid()) {
11981 if (isExplicitSpecialization)
11982 Diag(New->getLocation(), diag::err_module_private_specialization)
11983 << 2
11984 << FixItHint::CreateRemoval(ModulePrivateLoc);
11985 // __module_private__ does not apply to local classes. However, we only
11986 // diagnose this as an error when the declaration specifiers are
11987 // freestanding. Here, we just ignore the __module_private__.
11988 else if (!SearchDC->isFunctionOrMethod())
11989 New->setModulePrivate();
11990 }
11991
11992 // If this is a specialization of a member class (of a class template),
11993 // check the specialization.
11994 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
11995 Invalid = true;
11996
11997 // If we're declaring or defining a tag in function prototype scope in C,
11998 // note that this type can only be used within the function and add it to
11999 // the list of decls to inject into the function definition scope.
12000 if ((Name || Kind == TTK_Enum) &&
12001 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
12002 if (getLangOpts().CPlusPlus) {
12003 // C++ [dcl.fct]p6:
12004 // Types shall not be defined in return or parameter types.
12005 if (TUK == TUK_Definition && !IsTypeSpecifier) {
12006 Diag(Loc, diag::err_type_defined_in_param_type)
12007 << Name;
12008 Invalid = true;
12009 }
12010 } else {
12011 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
12012 }
12013 DeclsInPrototypeScope.push_back(New);
12014 }
12015
12016 if (Invalid)
12017 New->setInvalidDecl();
12018
12019 if (Attr)
12020 ProcessDeclAttributeList(S, New, Attr);
12021
12022 // Set the lexical context. If the tag has a C++ scope specifier, the
12023 // lexical context will be different from the semantic context.
12024 New->setLexicalDeclContext(CurContext);
12025
12026 // Mark this as a friend decl if applicable.
12027 // In Microsoft mode, a friend declaration also acts as a forward
12028 // declaration so we always pass true to setObjectOfFriendDecl to make
12029 // the tag name visible.
12030 if (TUK == TUK_Friend)
12031 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
12032
12033 // Set the access specifier.
12034 if (!Invalid && SearchDC->isRecord())
12035 SetMemberAccessSpecifier(New, PrevDecl, AS);
12036
12037 if (TUK == TUK_Definition)
12038 New->startDefinition();
12039
12040 // If this has an identifier, add it to the scope stack.
12041 if (TUK == TUK_Friend) {
12042 // We might be replacing an existing declaration in the lookup tables;
12043 // if so, borrow its access specifier.
12044 if (PrevDecl)
12045 New->setAccess(PrevDecl->getAccess());
12046
12047 DeclContext *DC = New->getDeclContext()->getRedeclContext();
12048 DC->makeDeclVisibleInContext(New);
12049 if (Name) // can be null along some error paths
12050 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12051 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
12052 } else if (Name) {
12053 S = getNonFieldDeclScope(S);
12054 PushOnScopeChains(New, S, !IsForwardReference);
12055 if (IsForwardReference)
12056 SearchDC->makeDeclVisibleInContext(New);
12057
12058 } else {
12059 CurContext->addDecl(New);
12060 }
12061
12062 // If this is the C FILE type, notify the AST context.
12063 if (IdentifierInfo *II = New->getIdentifier())
12064 if (!New->isInvalidDecl() &&
12065 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
12066 II->isStr("FILE"))
12067 Context.setFILEDecl(New);
12068
12069 if (PrevDecl)
12070 mergeDeclAttributes(New, PrevDecl);
12071
12072 // If there's a #pragma GCC visibility in scope, set the visibility of this
12073 // record.
12074 AddPushedVisibilityAttribute(New);
12075
12076 OwnedDecl = true;
12077 // In C++, don't return an invalid declaration. We can't recover well from
12078 // the cases where we make the type anonymous.
12079 return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
12080 }
12081
ActOnTagStartDefinition(Scope * S,Decl * TagD)12082 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
12083 AdjustDeclIfTemplate(TagD);
12084 TagDecl *Tag = cast<TagDecl>(TagD);
12085
12086 // Enter the tag context.
12087 PushDeclContext(S, Tag);
12088
12089 ActOnDocumentableDecl(TagD);
12090
12091 // If there's a #pragma GCC visibility in scope, set the visibility of this
12092 // record.
12093 AddPushedVisibilityAttribute(Tag);
12094 }
12095
ActOnObjCContainerStartDefinition(Decl * IDecl)12096 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
12097 assert(isa<ObjCContainerDecl>(IDecl) &&
12098 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
12099 DeclContext *OCD = cast<DeclContext>(IDecl);
12100 assert(getContainingDC(OCD) == CurContext &&
12101 "The next DeclContext should be lexically contained in the current one.");
12102 CurContext = OCD;
12103 return IDecl;
12104 }
12105
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,bool IsFinalSpelledSealed,SourceLocation LBraceLoc)12106 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
12107 SourceLocation FinalLoc,
12108 bool IsFinalSpelledSealed,
12109 SourceLocation LBraceLoc) {
12110 AdjustDeclIfTemplate(TagD);
12111 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
12112
12113 FieldCollector->StartClass();
12114
12115 if (!Record->getIdentifier())
12116 return;
12117
12118 if (FinalLoc.isValid())
12119 Record->addAttr(new (Context)
12120 FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
12121
12122 // C++ [class]p2:
12123 // [...] The class-name is also inserted into the scope of the
12124 // class itself; this is known as the injected-class-name. For
12125 // purposes of access checking, the injected-class-name is treated
12126 // as if it were a public member name.
12127 CXXRecordDecl *InjectedClassName
12128 = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
12129 Record->getLocStart(), Record->getLocation(),
12130 Record->getIdentifier(),
12131 /*PrevDecl=*/nullptr,
12132 /*DelayTypeCreation=*/true);
12133 Context.getTypeDeclType(InjectedClassName, Record);
12134 InjectedClassName->setImplicit();
12135 InjectedClassName->setAccess(AS_public);
12136 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
12137 InjectedClassName->setDescribedClassTemplate(Template);
12138 PushOnScopeChains(InjectedClassName, S);
12139 assert(InjectedClassName->isInjectedClassName() &&
12140 "Broken injected-class-name");
12141 }
12142
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)12143 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
12144 SourceLocation RBraceLoc) {
12145 AdjustDeclIfTemplate(TagD);
12146 TagDecl *Tag = cast<TagDecl>(TagD);
12147 Tag->setRBraceLoc(RBraceLoc);
12148
12149 // Make sure we "complete" the definition even it is invalid.
12150 if (Tag->isBeingDefined()) {
12151 assert(Tag->isInvalidDecl() && "We should already have completed it");
12152 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12153 RD->completeDefinition();
12154 }
12155
12156 if (isa<CXXRecordDecl>(Tag))
12157 FieldCollector->FinishClass();
12158
12159 // Exit this scope of this tag's definition.
12160 PopDeclContext();
12161
12162 if (getCurLexicalContext()->isObjCContainer() &&
12163 Tag->getDeclContext()->isFileContext())
12164 Tag->setTopLevelDeclInObjCContainer();
12165
12166 // Notify the consumer that we've defined a tag.
12167 if (!Tag->isInvalidDecl())
12168 Consumer.HandleTagDeclDefinition(Tag);
12169 }
12170
ActOnObjCContainerFinishDefinition()12171 void Sema::ActOnObjCContainerFinishDefinition() {
12172 // Exit this scope of this interface definition.
12173 PopDeclContext();
12174 }
12175
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)12176 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
12177 assert(DC == CurContext && "Mismatch of container contexts");
12178 OriginalLexicalContext = DC;
12179 ActOnObjCContainerFinishDefinition();
12180 }
12181
ActOnObjCReenterContainerContext(DeclContext * DC)12182 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
12183 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
12184 OriginalLexicalContext = nullptr;
12185 }
12186
ActOnTagDefinitionError(Scope * S,Decl * TagD)12187 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
12188 AdjustDeclIfTemplate(TagD);
12189 TagDecl *Tag = cast<TagDecl>(TagD);
12190 Tag->setInvalidDecl();
12191
12192 // Make sure we "complete" the definition even it is invalid.
12193 if (Tag->isBeingDefined()) {
12194 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12195 RD->completeDefinition();
12196 }
12197
12198 // We're undoing ActOnTagStartDefinition here, not
12199 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
12200 // the FieldCollector.
12201
12202 PopDeclContext();
12203 }
12204
12205 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)12206 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
12207 IdentifierInfo *FieldName,
12208 QualType FieldTy, bool IsMsStruct,
12209 Expr *BitWidth, bool *ZeroWidth) {
12210 // Default to true; that shouldn't confuse checks for emptiness
12211 if (ZeroWidth)
12212 *ZeroWidth = true;
12213
12214 // C99 6.7.2.1p4 - verify the field type.
12215 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
12216 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
12217 // Handle incomplete types with specific error.
12218 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
12219 return ExprError();
12220 if (FieldName)
12221 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
12222 << FieldName << FieldTy << BitWidth->getSourceRange();
12223 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
12224 << FieldTy << BitWidth->getSourceRange();
12225 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
12226 UPPC_BitFieldWidth))
12227 return ExprError();
12228
12229 // If the bit-width is type- or value-dependent, don't try to check
12230 // it now.
12231 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
12232 return BitWidth;
12233
12234 llvm::APSInt Value;
12235 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
12236 if (ICE.isInvalid())
12237 return ICE;
12238 BitWidth = ICE.get();
12239
12240 if (Value != 0 && ZeroWidth)
12241 *ZeroWidth = false;
12242
12243 // Zero-width bitfield is ok for anonymous field.
12244 if (Value == 0 && FieldName)
12245 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
12246
12247 if (Value.isSigned() && Value.isNegative()) {
12248 if (FieldName)
12249 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
12250 << FieldName << Value.toString(10);
12251 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
12252 << Value.toString(10);
12253 }
12254
12255 if (!FieldTy->isDependentType()) {
12256 uint64_t TypeSize = Context.getTypeSize(FieldTy);
12257 if (Value.getZExtValue() > TypeSize) {
12258 if (!getLangOpts().CPlusPlus || IsMsStruct ||
12259 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12260 if (FieldName)
12261 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
12262 << FieldName << (unsigned)Value.getZExtValue()
12263 << (unsigned)TypeSize;
12264
12265 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
12266 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
12267 }
12268
12269 if (FieldName)
12270 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
12271 << FieldName << (unsigned)Value.getZExtValue()
12272 << (unsigned)TypeSize;
12273 else
12274 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
12275 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
12276 }
12277 }
12278
12279 return BitWidth;
12280 }
12281
12282 /// ActOnField - Each field of a C struct/union is passed into this in order
12283 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)12284 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
12285 Declarator &D, Expr *BitfieldWidth) {
12286 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
12287 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
12288 /*InitStyle=*/ICIS_NoInit, AS_public);
12289 return Res;
12290 }
12291
12292 /// HandleField - Analyze a field of a C struct or a C++ data member.
12293 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)12294 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
12295 SourceLocation DeclStart,
12296 Declarator &D, Expr *BitWidth,
12297 InClassInitStyle InitStyle,
12298 AccessSpecifier AS) {
12299 IdentifierInfo *II = D.getIdentifier();
12300 SourceLocation Loc = DeclStart;
12301 if (II) Loc = D.getIdentifierLoc();
12302
12303 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12304 QualType T = TInfo->getType();
12305 if (getLangOpts().CPlusPlus) {
12306 CheckExtraCXXDefaultArguments(D);
12307
12308 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12309 UPPC_DataMemberType)) {
12310 D.setInvalidType();
12311 T = Context.IntTy;
12312 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12313 }
12314 }
12315
12316 // TR 18037 does not allow fields to be declared with address spaces.
12317 if (T.getQualifiers().hasAddressSpace()) {
12318 Diag(Loc, diag::err_field_with_address_space);
12319 D.setInvalidType();
12320 }
12321
12322 // OpenCL 1.2 spec, s6.9 r:
12323 // The event type cannot be used to declare a structure or union field.
12324 if (LangOpts.OpenCL && T->isEventT()) {
12325 Diag(Loc, diag::err_event_t_struct_field);
12326 D.setInvalidType();
12327 }
12328
12329 DiagnoseFunctionSpecifiers(D.getDeclSpec());
12330
12331 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12332 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12333 diag::err_invalid_thread)
12334 << DeclSpec::getSpecifierName(TSCS);
12335
12336 // Check to see if this name was declared as a member previously
12337 NamedDecl *PrevDecl = nullptr;
12338 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12339 LookupName(Previous, S);
12340 switch (Previous.getResultKind()) {
12341 case LookupResult::Found:
12342 case LookupResult::FoundUnresolvedValue:
12343 PrevDecl = Previous.getAsSingle<NamedDecl>();
12344 break;
12345
12346 case LookupResult::FoundOverloaded:
12347 PrevDecl = Previous.getRepresentativeDecl();
12348 break;
12349
12350 case LookupResult::NotFound:
12351 case LookupResult::NotFoundInCurrentInstantiation:
12352 case LookupResult::Ambiguous:
12353 break;
12354 }
12355 Previous.suppressDiagnostics();
12356
12357 if (PrevDecl && PrevDecl->isTemplateParameter()) {
12358 // Maybe we will complain about the shadowed template parameter.
12359 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12360 // Just pretend that we didn't see the previous declaration.
12361 PrevDecl = nullptr;
12362 }
12363
12364 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12365 PrevDecl = nullptr;
12366
12367 bool Mutable
12368 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
12369 SourceLocation TSSL = D.getLocStart();
12370 FieldDecl *NewFD
12371 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
12372 TSSL, AS, PrevDecl, &D);
12373
12374 if (NewFD->isInvalidDecl())
12375 Record->setInvalidDecl();
12376
12377 if (D.getDeclSpec().isModulePrivateSpecified())
12378 NewFD->setModulePrivate();
12379
12380 if (NewFD->isInvalidDecl() && PrevDecl) {
12381 // Don't introduce NewFD into scope; there's already something
12382 // with the same name in the same scope.
12383 } else if (II) {
12384 PushOnScopeChains(NewFD, S);
12385 } else
12386 Record->addDecl(NewFD);
12387
12388 return NewFD;
12389 }
12390
12391 /// \brief Build a new FieldDecl and check its well-formedness.
12392 ///
12393 /// This routine builds a new FieldDecl given the fields name, type,
12394 /// record, etc. \p PrevDecl should refer to any previous declaration
12395 /// with the same name and in the same scope as the field to be
12396 /// created.
12397 ///
12398 /// \returns a new FieldDecl.
12399 ///
12400 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)12401 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
12402 TypeSourceInfo *TInfo,
12403 RecordDecl *Record, SourceLocation Loc,
12404 bool Mutable, Expr *BitWidth,
12405 InClassInitStyle InitStyle,
12406 SourceLocation TSSL,
12407 AccessSpecifier AS, NamedDecl *PrevDecl,
12408 Declarator *D) {
12409 IdentifierInfo *II = Name.getAsIdentifierInfo();
12410 bool InvalidDecl = false;
12411 if (D) InvalidDecl = D->isInvalidType();
12412
12413 // If we receive a broken type, recover by assuming 'int' and
12414 // marking this declaration as invalid.
12415 if (T.isNull()) {
12416 InvalidDecl = true;
12417 T = Context.IntTy;
12418 }
12419
12420 QualType EltTy = Context.getBaseElementType(T);
12421 if (!EltTy->isDependentType()) {
12422 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
12423 // Fields of incomplete type force their record to be invalid.
12424 Record->setInvalidDecl();
12425 InvalidDecl = true;
12426 } else {
12427 NamedDecl *Def;
12428 EltTy->isIncompleteType(&Def);
12429 if (Def && Def->isInvalidDecl()) {
12430 Record->setInvalidDecl();
12431 InvalidDecl = true;
12432 }
12433 }
12434 }
12435
12436 // OpenCL v1.2 s6.9.c: bitfields are not supported.
12437 if (BitWidth && getLangOpts().OpenCL) {
12438 Diag(Loc, diag::err_opencl_bitfields);
12439 InvalidDecl = true;
12440 }
12441
12442 // C99 6.7.2.1p8: A member of a structure or union may have any type other
12443 // than a variably modified type.
12444 if (!InvalidDecl && T->isVariablyModifiedType()) {
12445 bool SizeIsNegative;
12446 llvm::APSInt Oversized;
12447
12448 TypeSourceInfo *FixedTInfo =
12449 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
12450 SizeIsNegative,
12451 Oversized);
12452 if (FixedTInfo) {
12453 Diag(Loc, diag::warn_illegal_constant_array_size);
12454 TInfo = FixedTInfo;
12455 T = FixedTInfo->getType();
12456 } else {
12457 if (SizeIsNegative)
12458 Diag(Loc, diag::err_typecheck_negative_array_size);
12459 else if (Oversized.getBoolValue())
12460 Diag(Loc, diag::err_array_too_large)
12461 << Oversized.toString(10);
12462 else
12463 Diag(Loc, diag::err_typecheck_field_variable_size);
12464 InvalidDecl = true;
12465 }
12466 }
12467
12468 // Fields can not have abstract class types
12469 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
12470 diag::err_abstract_type_in_decl,
12471 AbstractFieldType))
12472 InvalidDecl = true;
12473
12474 bool ZeroWidth = false;
12475 // If this is declared as a bit-field, check the bit-field.
12476 if (!InvalidDecl && BitWidth) {
12477 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
12478 &ZeroWidth).get();
12479 if (!BitWidth) {
12480 InvalidDecl = true;
12481 BitWidth = nullptr;
12482 ZeroWidth = false;
12483 }
12484 }
12485
12486 // Check that 'mutable' is consistent with the type of the declaration.
12487 if (!InvalidDecl && Mutable) {
12488 unsigned DiagID = 0;
12489 if (T->isReferenceType())
12490 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
12491 : diag::err_mutable_reference;
12492 else if (T.isConstQualified())
12493 DiagID = diag::err_mutable_const;
12494
12495 if (DiagID) {
12496 SourceLocation ErrLoc = Loc;
12497 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
12498 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
12499 Diag(ErrLoc, DiagID);
12500 if (DiagID != diag::ext_mutable_reference) {
12501 Mutable = false;
12502 InvalidDecl = true;
12503 }
12504 }
12505 }
12506
12507 // C++11 [class.union]p8 (DR1460):
12508 // At most one variant member of a union may have a
12509 // brace-or-equal-initializer.
12510 if (InitStyle != ICIS_NoInit)
12511 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
12512
12513 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
12514 BitWidth, Mutable, InitStyle);
12515 if (InvalidDecl)
12516 NewFD->setInvalidDecl();
12517
12518 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
12519 Diag(Loc, diag::err_duplicate_member) << II;
12520 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12521 NewFD->setInvalidDecl();
12522 }
12523
12524 if (!InvalidDecl && getLangOpts().CPlusPlus) {
12525 if (Record->isUnion()) {
12526 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
12527 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
12528 if (RDecl->getDefinition()) {
12529 // C++ [class.union]p1: An object of a class with a non-trivial
12530 // constructor, a non-trivial copy constructor, a non-trivial
12531 // destructor, or a non-trivial copy assignment operator
12532 // cannot be a member of a union, nor can an array of such
12533 // objects.
12534 if (CheckNontrivialField(NewFD))
12535 NewFD->setInvalidDecl();
12536 }
12537 }
12538
12539 // C++ [class.union]p1: If a union contains a member of reference type,
12540 // the program is ill-formed, except when compiling with MSVC extensions
12541 // enabled.
12542 if (EltTy->isReferenceType()) {
12543 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
12544 diag::ext_union_member_of_reference_type :
12545 diag::err_union_member_of_reference_type)
12546 << NewFD->getDeclName() << EltTy;
12547 if (!getLangOpts().MicrosoftExt)
12548 NewFD->setInvalidDecl();
12549 }
12550 }
12551 }
12552
12553 // FIXME: We need to pass in the attributes given an AST
12554 // representation, not a parser representation.
12555 if (D) {
12556 // FIXME: The current scope is almost... but not entirely... correct here.
12557 ProcessDeclAttributes(getCurScope(), NewFD, *D);
12558
12559 if (NewFD->hasAttrs())
12560 CheckAlignasUnderalignment(NewFD);
12561 }
12562
12563 // In auto-retain/release, infer strong retension for fields of
12564 // retainable type.
12565 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
12566 NewFD->setInvalidDecl();
12567
12568 if (T.isObjCGCWeak())
12569 Diag(Loc, diag::warn_attribute_weak_on_field);
12570
12571 NewFD->setAccess(AS);
12572 return NewFD;
12573 }
12574
CheckNontrivialField(FieldDecl * FD)12575 bool Sema::CheckNontrivialField(FieldDecl *FD) {
12576 assert(FD);
12577 assert(getLangOpts().CPlusPlus && "valid check only for C++");
12578
12579 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
12580 return false;
12581
12582 QualType EltTy = Context.getBaseElementType(FD->getType());
12583 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
12584 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
12585 if (RDecl->getDefinition()) {
12586 // We check for copy constructors before constructors
12587 // because otherwise we'll never get complaints about
12588 // copy constructors.
12589
12590 CXXSpecialMember member = CXXInvalid;
12591 // We're required to check for any non-trivial constructors. Since the
12592 // implicit default constructor is suppressed if there are any
12593 // user-declared constructors, we just need to check that there is a
12594 // trivial default constructor and a trivial copy constructor. (We don't
12595 // worry about move constructors here, since this is a C++98 check.)
12596 if (RDecl->hasNonTrivialCopyConstructor())
12597 member = CXXCopyConstructor;
12598 else if (!RDecl->hasTrivialDefaultConstructor())
12599 member = CXXDefaultConstructor;
12600 else if (RDecl->hasNonTrivialCopyAssignment())
12601 member = CXXCopyAssignment;
12602 else if (RDecl->hasNonTrivialDestructor())
12603 member = CXXDestructor;
12604
12605 if (member != CXXInvalid) {
12606 if (!getLangOpts().CPlusPlus11 &&
12607 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
12608 // Objective-C++ ARC: it is an error to have a non-trivial field of
12609 // a union. However, system headers in Objective-C programs
12610 // occasionally have Objective-C lifetime objects within unions,
12611 // and rather than cause the program to fail, we make those
12612 // members unavailable.
12613 SourceLocation Loc = FD->getLocation();
12614 if (getSourceManager().isInSystemHeader(Loc)) {
12615 if (!FD->hasAttr<UnavailableAttr>())
12616 FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12617 "this system field has retaining ownership",
12618 Loc));
12619 return false;
12620 }
12621 }
12622
12623 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
12624 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
12625 diag::err_illegal_union_or_anon_struct_member)
12626 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
12627 DiagnoseNontrivial(RDecl, member);
12628 return !getLangOpts().CPlusPlus11;
12629 }
12630 }
12631 }
12632
12633 return false;
12634 }
12635
12636 /// TranslateIvarVisibility - Translate visibility from a token ID to an
12637 /// AST enum value.
12638 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)12639 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
12640 switch (ivarVisibility) {
12641 default: llvm_unreachable("Unknown visitibility kind");
12642 case tok::objc_private: return ObjCIvarDecl::Private;
12643 case tok::objc_public: return ObjCIvarDecl::Public;
12644 case tok::objc_protected: return ObjCIvarDecl::Protected;
12645 case tok::objc_package: return ObjCIvarDecl::Package;
12646 }
12647 }
12648
12649 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
12650 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)12651 Decl *Sema::ActOnIvar(Scope *S,
12652 SourceLocation DeclStart,
12653 Declarator &D, Expr *BitfieldWidth,
12654 tok::ObjCKeywordKind Visibility) {
12655
12656 IdentifierInfo *II = D.getIdentifier();
12657 Expr *BitWidth = (Expr*)BitfieldWidth;
12658 SourceLocation Loc = DeclStart;
12659 if (II) Loc = D.getIdentifierLoc();
12660
12661 // FIXME: Unnamed fields can be handled in various different ways, for
12662 // example, unnamed unions inject all members into the struct namespace!
12663
12664 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12665 QualType T = TInfo->getType();
12666
12667 if (BitWidth) {
12668 // 6.7.2.1p3, 6.7.2.1p4
12669 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
12670 if (!BitWidth)
12671 D.setInvalidType();
12672 } else {
12673 // Not a bitfield.
12674
12675 // validate II.
12676
12677 }
12678 if (T->isReferenceType()) {
12679 Diag(Loc, diag::err_ivar_reference_type);
12680 D.setInvalidType();
12681 }
12682 // C99 6.7.2.1p8: A member of a structure or union may have any type other
12683 // than a variably modified type.
12684 else if (T->isVariablyModifiedType()) {
12685 Diag(Loc, diag::err_typecheck_ivar_variable_size);
12686 D.setInvalidType();
12687 }
12688
12689 // Get the visibility (access control) for this ivar.
12690 ObjCIvarDecl::AccessControl ac =
12691 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
12692 : ObjCIvarDecl::None;
12693 // Must set ivar's DeclContext to its enclosing interface.
12694 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
12695 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
12696 return nullptr;
12697 ObjCContainerDecl *EnclosingContext;
12698 if (ObjCImplementationDecl *IMPDecl =
12699 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12700 if (LangOpts.ObjCRuntime.isFragile()) {
12701 // Case of ivar declared in an implementation. Context is that of its class.
12702 EnclosingContext = IMPDecl->getClassInterface();
12703 assert(EnclosingContext && "Implementation has no class interface!");
12704 }
12705 else
12706 EnclosingContext = EnclosingDecl;
12707 } else {
12708 if (ObjCCategoryDecl *CDecl =
12709 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12710 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
12711 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
12712 return nullptr;
12713 }
12714 }
12715 EnclosingContext = EnclosingDecl;
12716 }
12717
12718 // Construct the decl.
12719 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
12720 DeclStart, Loc, II, T,
12721 TInfo, ac, (Expr *)BitfieldWidth);
12722
12723 if (II) {
12724 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
12725 ForRedeclaration);
12726 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
12727 && !isa<TagDecl>(PrevDecl)) {
12728 Diag(Loc, diag::err_duplicate_member) << II;
12729 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12730 NewID->setInvalidDecl();
12731 }
12732 }
12733
12734 // Process attributes attached to the ivar.
12735 ProcessDeclAttributes(S, NewID, D);
12736
12737 if (D.isInvalidType())
12738 NewID->setInvalidDecl();
12739
12740 // In ARC, infer 'retaining' for ivars of retainable type.
12741 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
12742 NewID->setInvalidDecl();
12743
12744 if (D.getDeclSpec().isModulePrivateSpecified())
12745 NewID->setModulePrivate();
12746
12747 if (II) {
12748 // FIXME: When interfaces are DeclContexts, we'll need to add
12749 // these to the interface.
12750 S->AddDecl(NewID);
12751 IdResolver.AddDecl(NewID);
12752 }
12753
12754 if (LangOpts.ObjCRuntime.isNonFragile() &&
12755 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
12756 Diag(Loc, diag::warn_ivars_in_interface);
12757
12758 return NewID;
12759 }
12760
12761 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
12762 /// class and class extensions. For every class \@interface and class
12763 /// extension \@interface, if the last ivar is a bitfield of any type,
12764 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)12765 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
12766 SmallVectorImpl<Decl *> &AllIvarDecls) {
12767 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
12768 return;
12769
12770 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
12771 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
12772
12773 if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
12774 return;
12775 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
12776 if (!ID) {
12777 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
12778 if (!CD->IsClassExtension())
12779 return;
12780 }
12781 // No need to add this to end of @implementation.
12782 else
12783 return;
12784 }
12785 // All conditions are met. Add a new bitfield to the tail end of ivars.
12786 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
12787 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
12788
12789 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
12790 DeclLoc, DeclLoc, nullptr,
12791 Context.CharTy,
12792 Context.getTrivialTypeSourceInfo(Context.CharTy,
12793 DeclLoc),
12794 ObjCIvarDecl::Private, BW,
12795 true);
12796 AllIvarDecls.push_back(Ivar);
12797 }
12798
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)12799 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
12800 ArrayRef<Decl *> Fields, SourceLocation LBrac,
12801 SourceLocation RBrac, AttributeList *Attr) {
12802 assert(EnclosingDecl && "missing record or interface decl");
12803
12804 // If this is an Objective-C @implementation or category and we have
12805 // new fields here we should reset the layout of the interface since
12806 // it will now change.
12807 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
12808 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
12809 switch (DC->getKind()) {
12810 default: break;
12811 case Decl::ObjCCategory:
12812 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
12813 break;
12814 case Decl::ObjCImplementation:
12815 Context.
12816 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
12817 break;
12818 }
12819 }
12820
12821 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
12822
12823 // Start counting up the number of named members; make sure to include
12824 // members of anonymous structs and unions in the total.
12825 unsigned NumNamedMembers = 0;
12826 if (Record) {
12827 for (const auto *I : Record->decls()) {
12828 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
12829 if (IFD->getDeclName())
12830 ++NumNamedMembers;
12831 }
12832 }
12833
12834 // Verify that all the fields are okay.
12835 SmallVector<FieldDecl*, 32> RecFields;
12836
12837 bool ARCErrReported = false;
12838 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
12839 i != end; ++i) {
12840 FieldDecl *FD = cast<FieldDecl>(*i);
12841
12842 // Get the type for the field.
12843 const Type *FDTy = FD->getType().getTypePtr();
12844
12845 if (!FD->isAnonymousStructOrUnion()) {
12846 // Remember all fields written by the user.
12847 RecFields.push_back(FD);
12848 }
12849
12850 // If the field is already invalid for some reason, don't emit more
12851 // diagnostics about it.
12852 if (FD->isInvalidDecl()) {
12853 EnclosingDecl->setInvalidDecl();
12854 continue;
12855 }
12856
12857 // C99 6.7.2.1p2:
12858 // A structure or union shall not contain a member with
12859 // incomplete or function type (hence, a structure shall not
12860 // contain an instance of itself, but may contain a pointer to
12861 // an instance of itself), except that the last member of a
12862 // structure with more than one named member may have incomplete
12863 // array type; such a structure (and any union containing,
12864 // possibly recursively, a member that is such a structure)
12865 // shall not be a member of a structure or an element of an
12866 // array.
12867 if (FDTy->isFunctionType()) {
12868 // Field declared as a function.
12869 Diag(FD->getLocation(), diag::err_field_declared_as_function)
12870 << FD->getDeclName();
12871 FD->setInvalidDecl();
12872 EnclosingDecl->setInvalidDecl();
12873 continue;
12874 } else if (FDTy->isIncompleteArrayType() && Record &&
12875 ((i + 1 == Fields.end() && !Record->isUnion()) ||
12876 ((getLangOpts().MicrosoftExt ||
12877 getLangOpts().CPlusPlus) &&
12878 (i + 1 == Fields.end() || Record->isUnion())))) {
12879 // Flexible array member.
12880 // Microsoft and g++ is more permissive regarding flexible array.
12881 // It will accept flexible array in union and also
12882 // as the sole element of a struct/class.
12883 unsigned DiagID = 0;
12884 if (Record->isUnion())
12885 DiagID = getLangOpts().MicrosoftExt
12886 ? diag::ext_flexible_array_union_ms
12887 : getLangOpts().CPlusPlus
12888 ? diag::ext_flexible_array_union_gnu
12889 : diag::err_flexible_array_union;
12890 else if (Fields.size() == 1)
12891 DiagID = getLangOpts().MicrosoftExt
12892 ? diag::ext_flexible_array_empty_aggregate_ms
12893 : getLangOpts().CPlusPlus
12894 ? diag::ext_flexible_array_empty_aggregate_gnu
12895 : NumNamedMembers < 1
12896 ? diag::err_flexible_array_empty_aggregate
12897 : 0;
12898
12899 if (DiagID)
12900 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
12901 << Record->getTagKind();
12902 // While the layout of types that contain virtual bases is not specified
12903 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
12904 // virtual bases after the derived members. This would make a flexible
12905 // array member declared at the end of an object not adjacent to the end
12906 // of the type.
12907 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
12908 if (RD->getNumVBases() != 0)
12909 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
12910 << FD->getDeclName() << Record->getTagKind();
12911 if (!getLangOpts().C99)
12912 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
12913 << FD->getDeclName() << Record->getTagKind();
12914
12915 // If the element type has a non-trivial destructor, we would not
12916 // implicitly destroy the elements, so disallow it for now.
12917 //
12918 // FIXME: GCC allows this. We should probably either implicitly delete
12919 // the destructor of the containing class, or just allow this.
12920 QualType BaseElem = Context.getBaseElementType(FD->getType());
12921 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
12922 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
12923 << FD->getDeclName() << FD->getType();
12924 FD->setInvalidDecl();
12925 EnclosingDecl->setInvalidDecl();
12926 continue;
12927 }
12928 // Okay, we have a legal flexible array member at the end of the struct.
12929 Record->setHasFlexibleArrayMember(true);
12930 } else if (!FDTy->isDependentType() &&
12931 RequireCompleteType(FD->getLocation(), FD->getType(),
12932 diag::err_field_incomplete)) {
12933 // Incomplete type
12934 FD->setInvalidDecl();
12935 EnclosingDecl->setInvalidDecl();
12936 continue;
12937 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
12938 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
12939 // A type which contains a flexible array member is considered to be a
12940 // flexible array member.
12941 Record->setHasFlexibleArrayMember(true);
12942 if (!Record->isUnion()) {
12943 // If this is a struct/class and this is not the last element, reject
12944 // it. Note that GCC supports variable sized arrays in the middle of
12945 // structures.
12946 if (i + 1 != Fields.end())
12947 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
12948 << FD->getDeclName() << FD->getType();
12949 else {
12950 // We support flexible arrays at the end of structs in
12951 // other structs as an extension.
12952 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
12953 << FD->getDeclName();
12954 }
12955 }
12956 }
12957 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
12958 RequireNonAbstractType(FD->getLocation(), FD->getType(),
12959 diag::err_abstract_type_in_decl,
12960 AbstractIvarType)) {
12961 // Ivars can not have abstract class types
12962 FD->setInvalidDecl();
12963 }
12964 if (Record && FDTTy->getDecl()->hasObjectMember())
12965 Record->setHasObjectMember(true);
12966 if (Record && FDTTy->getDecl()->hasVolatileMember())
12967 Record->setHasVolatileMember(true);
12968 } else if (FDTy->isObjCObjectType()) {
12969 /// A field cannot be an Objective-c object
12970 Diag(FD->getLocation(), diag::err_statically_allocated_object)
12971 << FixItHint::CreateInsertion(FD->getLocation(), "*");
12972 QualType T = Context.getObjCObjectPointerType(FD->getType());
12973 FD->setType(T);
12974 } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
12975 (!getLangOpts().CPlusPlus || Record->isUnion())) {
12976 // It's an error in ARC if a field has lifetime.
12977 // We don't want to report this in a system header, though,
12978 // so we just make the field unavailable.
12979 // FIXME: that's really not sufficient; we need to make the type
12980 // itself invalid to, say, initialize or copy.
12981 QualType T = FD->getType();
12982 Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
12983 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
12984 SourceLocation loc = FD->getLocation();
12985 if (getSourceManager().isInSystemHeader(loc)) {
12986 if (!FD->hasAttr<UnavailableAttr>()) {
12987 FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12988 "this system field has retaining ownership",
12989 loc));
12990 }
12991 } else {
12992 Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
12993 << T->isBlockPointerType() << Record->getTagKind();
12994 }
12995 ARCErrReported = true;
12996 }
12997 } else if (getLangOpts().ObjC1 &&
12998 getLangOpts().getGC() != LangOptions::NonGC &&
12999 Record && !Record->hasObjectMember()) {
13000 if (FD->getType()->isObjCObjectPointerType() ||
13001 FD->getType().isObjCGCStrong())
13002 Record->setHasObjectMember(true);
13003 else if (Context.getAsArrayType(FD->getType())) {
13004 QualType BaseType = Context.getBaseElementType(FD->getType());
13005 if (BaseType->isRecordType() &&
13006 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
13007 Record->setHasObjectMember(true);
13008 else if (BaseType->isObjCObjectPointerType() ||
13009 BaseType.isObjCGCStrong())
13010 Record->setHasObjectMember(true);
13011 }
13012 }
13013 if (Record && FD->getType().isVolatileQualified())
13014 Record->setHasVolatileMember(true);
13015 // Keep track of the number of named members.
13016 if (FD->getIdentifier())
13017 ++NumNamedMembers;
13018 }
13019
13020 // Okay, we successfully defined 'Record'.
13021 if (Record) {
13022 bool Completed = false;
13023 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
13024 if (!CXXRecord->isInvalidDecl()) {
13025 // Set access bits correctly on the directly-declared conversions.
13026 for (CXXRecordDecl::conversion_iterator
13027 I = CXXRecord->conversion_begin(),
13028 E = CXXRecord->conversion_end(); I != E; ++I)
13029 I.setAccess((*I)->getAccess());
13030
13031 if (!CXXRecord->isDependentType()) {
13032 if (CXXRecord->hasUserDeclaredDestructor()) {
13033 // Adjust user-defined destructor exception spec.
13034 if (getLangOpts().CPlusPlus11)
13035 AdjustDestructorExceptionSpec(CXXRecord,
13036 CXXRecord->getDestructor());
13037 }
13038
13039 // Add any implicitly-declared members to this class.
13040 AddImplicitlyDeclaredMembersToClass(CXXRecord);
13041
13042 // If we have virtual base classes, we may end up finding multiple
13043 // final overriders for a given virtual function. Check for this
13044 // problem now.
13045 if (CXXRecord->getNumVBases()) {
13046 CXXFinalOverriderMap FinalOverriders;
13047 CXXRecord->getFinalOverriders(FinalOverriders);
13048
13049 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
13050 MEnd = FinalOverriders.end();
13051 M != MEnd; ++M) {
13052 for (OverridingMethods::iterator SO = M->second.begin(),
13053 SOEnd = M->second.end();
13054 SO != SOEnd; ++SO) {
13055 assert(SO->second.size() > 0 &&
13056 "Virtual function without overridding functions?");
13057 if (SO->second.size() == 1)
13058 continue;
13059
13060 // C++ [class.virtual]p2:
13061 // In a derived class, if a virtual member function of a base
13062 // class subobject has more than one final overrider the
13063 // program is ill-formed.
13064 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
13065 << (const NamedDecl *)M->first << Record;
13066 Diag(M->first->getLocation(),
13067 diag::note_overridden_virtual_function);
13068 for (OverridingMethods::overriding_iterator
13069 OM = SO->second.begin(),
13070 OMEnd = SO->second.end();
13071 OM != OMEnd; ++OM)
13072 Diag(OM->Method->getLocation(), diag::note_final_overrider)
13073 << (const NamedDecl *)M->first << OM->Method->getParent();
13074
13075 Record->setInvalidDecl();
13076 }
13077 }
13078 CXXRecord->completeDefinition(&FinalOverriders);
13079 Completed = true;
13080 }
13081 }
13082 }
13083 }
13084
13085 if (!Completed)
13086 Record->completeDefinition();
13087
13088 if (Record->hasAttrs()) {
13089 CheckAlignasUnderalignment(Record);
13090
13091 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
13092 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
13093 IA->getRange(), IA->getBestCase(),
13094 IA->getSemanticSpelling());
13095 }
13096
13097 // Check if the structure/union declaration is a type that can have zero
13098 // size in C. For C this is a language extension, for C++ it may cause
13099 // compatibility problems.
13100 bool CheckForZeroSize;
13101 if (!getLangOpts().CPlusPlus) {
13102 CheckForZeroSize = true;
13103 } else {
13104 // For C++ filter out types that cannot be referenced in C code.
13105 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
13106 CheckForZeroSize =
13107 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
13108 !CXXRecord->isDependentType() &&
13109 CXXRecord->isCLike();
13110 }
13111 if (CheckForZeroSize) {
13112 bool ZeroSize = true;
13113 bool IsEmpty = true;
13114 unsigned NonBitFields = 0;
13115 for (RecordDecl::field_iterator I = Record->field_begin(),
13116 E = Record->field_end();
13117 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
13118 IsEmpty = false;
13119 if (I->isUnnamedBitfield()) {
13120 if (I->getBitWidthValue(Context) > 0)
13121 ZeroSize = false;
13122 } else {
13123 ++NonBitFields;
13124 QualType FieldType = I->getType();
13125 if (FieldType->isIncompleteType() ||
13126 !Context.getTypeSizeInChars(FieldType).isZero())
13127 ZeroSize = false;
13128 }
13129 }
13130
13131 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
13132 // allowed in C++, but warn if its declaration is inside
13133 // extern "C" block.
13134 if (ZeroSize) {
13135 Diag(RecLoc, getLangOpts().CPlusPlus ?
13136 diag::warn_zero_size_struct_union_in_extern_c :
13137 diag::warn_zero_size_struct_union_compat)
13138 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
13139 }
13140
13141 // Structs without named members are extension in C (C99 6.7.2.1p7),
13142 // but are accepted by GCC.
13143 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
13144 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
13145 diag::ext_no_named_members_in_struct_union)
13146 << Record->isUnion();
13147 }
13148 }
13149 } else {
13150 ObjCIvarDecl **ClsFields =
13151 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
13152 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
13153 ID->setEndOfDefinitionLoc(RBrac);
13154 // Add ivar's to class's DeclContext.
13155 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13156 ClsFields[i]->setLexicalDeclContext(ID);
13157 ID->addDecl(ClsFields[i]);
13158 }
13159 // Must enforce the rule that ivars in the base classes may not be
13160 // duplicates.
13161 if (ID->getSuperClass())
13162 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
13163 } else if (ObjCImplementationDecl *IMPDecl =
13164 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13165 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
13166 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
13167 // Ivar declared in @implementation never belongs to the implementation.
13168 // Only it is in implementation's lexical context.
13169 ClsFields[I]->setLexicalDeclContext(IMPDecl);
13170 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
13171 IMPDecl->setIvarLBraceLoc(LBrac);
13172 IMPDecl->setIvarRBraceLoc(RBrac);
13173 } else if (ObjCCategoryDecl *CDecl =
13174 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13175 // case of ivars in class extension; all other cases have been
13176 // reported as errors elsewhere.
13177 // FIXME. Class extension does not have a LocEnd field.
13178 // CDecl->setLocEnd(RBrac);
13179 // Add ivar's to class extension's DeclContext.
13180 // Diagnose redeclaration of private ivars.
13181 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
13182 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13183 if (IDecl) {
13184 if (const ObjCIvarDecl *ClsIvar =
13185 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
13186 Diag(ClsFields[i]->getLocation(),
13187 diag::err_duplicate_ivar_declaration);
13188 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
13189 continue;
13190 }
13191 for (const auto *Ext : IDecl->known_extensions()) {
13192 if (const ObjCIvarDecl *ClsExtIvar
13193 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
13194 Diag(ClsFields[i]->getLocation(),
13195 diag::err_duplicate_ivar_declaration);
13196 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
13197 continue;
13198 }
13199 }
13200 }
13201 ClsFields[i]->setLexicalDeclContext(CDecl);
13202 CDecl->addDecl(ClsFields[i]);
13203 }
13204 CDecl->setIvarLBraceLoc(LBrac);
13205 CDecl->setIvarRBraceLoc(RBrac);
13206 }
13207 }
13208
13209 if (Attr)
13210 ProcessDeclAttributeList(S, Record, Attr);
13211 }
13212
13213 /// \brief Determine whether the given integral value is representable within
13214 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)13215 static bool isRepresentableIntegerValue(ASTContext &Context,
13216 llvm::APSInt &Value,
13217 QualType T) {
13218 assert(T->isIntegralType(Context) && "Integral type required!");
13219 unsigned BitWidth = Context.getIntWidth(T);
13220
13221 if (Value.isUnsigned() || Value.isNonNegative()) {
13222 if (T->isSignedIntegerOrEnumerationType())
13223 --BitWidth;
13224 return Value.getActiveBits() <= BitWidth;
13225 }
13226 return Value.getMinSignedBits() <= BitWidth;
13227 }
13228
13229 // \brief Given an integral type, return the next larger integral type
13230 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)13231 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
13232 // FIXME: Int128/UInt128 support, which also needs to be introduced into
13233 // enum checking below.
13234 assert(T->isIntegralType(Context) && "Integral type required!");
13235 const unsigned NumTypes = 4;
13236 QualType SignedIntegralTypes[NumTypes] = {
13237 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
13238 };
13239 QualType UnsignedIntegralTypes[NumTypes] = {
13240 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
13241 Context.UnsignedLongLongTy
13242 };
13243
13244 unsigned BitWidth = Context.getTypeSize(T);
13245 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
13246 : UnsignedIntegralTypes;
13247 for (unsigned I = 0; I != NumTypes; ++I)
13248 if (Context.getTypeSize(Types[I]) > BitWidth)
13249 return Types[I];
13250
13251 return QualType();
13252 }
13253
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)13254 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
13255 EnumConstantDecl *LastEnumConst,
13256 SourceLocation IdLoc,
13257 IdentifierInfo *Id,
13258 Expr *Val) {
13259 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13260 llvm::APSInt EnumVal(IntWidth);
13261 QualType EltTy;
13262
13263 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
13264 Val = nullptr;
13265
13266 if (Val)
13267 Val = DefaultLvalueConversion(Val).get();
13268
13269 if (Val) {
13270 if (Enum->isDependentType() || Val->isTypeDependent())
13271 EltTy = Context.DependentTy;
13272 else {
13273 SourceLocation ExpLoc;
13274 if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
13275 !getLangOpts().MSVCCompat) {
13276 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
13277 // constant-expression in the enumerator-definition shall be a converted
13278 // constant expression of the underlying type.
13279 EltTy = Enum->getIntegerType();
13280 ExprResult Converted =
13281 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
13282 CCEK_Enumerator);
13283 if (Converted.isInvalid())
13284 Val = nullptr;
13285 else
13286 Val = Converted.get();
13287 } else if (!Val->isValueDependent() &&
13288 !(Val = VerifyIntegerConstantExpression(Val,
13289 &EnumVal).get())) {
13290 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
13291 } else {
13292 if (Enum->isFixed()) {
13293 EltTy = Enum->getIntegerType();
13294
13295 // In Obj-C and Microsoft mode, require the enumeration value to be
13296 // representable in the underlying type of the enumeration. In C++11,
13297 // we perform a non-narrowing conversion as part of converted constant
13298 // expression checking.
13299 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13300 if (getLangOpts().MSVCCompat) {
13301 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
13302 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13303 } else
13304 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
13305 } else
13306 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13307 } else if (getLangOpts().CPlusPlus) {
13308 // C++11 [dcl.enum]p5:
13309 // If the underlying type is not fixed, the type of each enumerator
13310 // is the type of its initializing value:
13311 // - If an initializer is specified for an enumerator, the
13312 // initializing value has the same type as the expression.
13313 EltTy = Val->getType();
13314 } else {
13315 // C99 6.7.2.2p2:
13316 // The expression that defines the value of an enumeration constant
13317 // shall be an integer constant expression that has a value
13318 // representable as an int.
13319
13320 // Complain if the value is not representable in an int.
13321 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
13322 Diag(IdLoc, diag::ext_enum_value_not_int)
13323 << EnumVal.toString(10) << Val->getSourceRange()
13324 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
13325 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
13326 // Force the type of the expression to 'int'.
13327 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
13328 }
13329 EltTy = Val->getType();
13330 }
13331 }
13332 }
13333 }
13334
13335 if (!Val) {
13336 if (Enum->isDependentType())
13337 EltTy = Context.DependentTy;
13338 else if (!LastEnumConst) {
13339 // C++0x [dcl.enum]p5:
13340 // If the underlying type is not fixed, the type of each enumerator
13341 // is the type of its initializing value:
13342 // - If no initializer is specified for the first enumerator, the
13343 // initializing value has an unspecified integral type.
13344 //
13345 // GCC uses 'int' for its unspecified integral type, as does
13346 // C99 6.7.2.2p3.
13347 if (Enum->isFixed()) {
13348 EltTy = Enum->getIntegerType();
13349 }
13350 else {
13351 EltTy = Context.IntTy;
13352 }
13353 } else {
13354 // Assign the last value + 1.
13355 EnumVal = LastEnumConst->getInitVal();
13356 ++EnumVal;
13357 EltTy = LastEnumConst->getType();
13358
13359 // Check for overflow on increment.
13360 if (EnumVal < LastEnumConst->getInitVal()) {
13361 // C++0x [dcl.enum]p5:
13362 // If the underlying type is not fixed, the type of each enumerator
13363 // is the type of its initializing value:
13364 //
13365 // - Otherwise the type of the initializing value is the same as
13366 // the type of the initializing value of the preceding enumerator
13367 // unless the incremented value is not representable in that type,
13368 // in which case the type is an unspecified integral type
13369 // sufficient to contain the incremented value. If no such type
13370 // exists, the program is ill-formed.
13371 QualType T = getNextLargerIntegralType(Context, EltTy);
13372 if (T.isNull() || Enum->isFixed()) {
13373 // There is no integral type larger enough to represent this
13374 // value. Complain, then allow the value to wrap around.
13375 EnumVal = LastEnumConst->getInitVal();
13376 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
13377 ++EnumVal;
13378 if (Enum->isFixed())
13379 // When the underlying type is fixed, this is ill-formed.
13380 Diag(IdLoc, diag::err_enumerator_wrapped)
13381 << EnumVal.toString(10)
13382 << EltTy;
13383 else
13384 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
13385 << EnumVal.toString(10);
13386 } else {
13387 EltTy = T;
13388 }
13389
13390 // Retrieve the last enumerator's value, extent that type to the
13391 // type that is supposed to be large enough to represent the incremented
13392 // value, then increment.
13393 EnumVal = LastEnumConst->getInitVal();
13394 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13395 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
13396 ++EnumVal;
13397
13398 // If we're not in C++, diagnose the overflow of enumerator values,
13399 // which in C99 means that the enumerator value is not representable in
13400 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
13401 // permits enumerator values that are representable in some larger
13402 // integral type.
13403 if (!getLangOpts().CPlusPlus && !T.isNull())
13404 Diag(IdLoc, diag::warn_enum_value_overflow);
13405 } else if (!getLangOpts().CPlusPlus &&
13406 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13407 // Enforce C99 6.7.2.2p2 even when we compute the next value.
13408 Diag(IdLoc, diag::ext_enum_value_not_int)
13409 << EnumVal.toString(10) << 1;
13410 }
13411 }
13412 }
13413
13414 if (!EltTy->isDependentType()) {
13415 // Make the enumerator value match the signedness and size of the
13416 // enumerator's type.
13417 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
13418 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13419 }
13420
13421 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
13422 Val, EnumVal);
13423 }
13424
13425
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)13426 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
13427 SourceLocation IdLoc, IdentifierInfo *Id,
13428 AttributeList *Attr,
13429 SourceLocation EqualLoc, Expr *Val) {
13430 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
13431 EnumConstantDecl *LastEnumConst =
13432 cast_or_null<EnumConstantDecl>(lastEnumConst);
13433
13434 // The scope passed in may not be a decl scope. Zip up the scope tree until
13435 // we find one that is.
13436 S = getNonFieldDeclScope(S);
13437
13438 // Verify that there isn't already something declared with this name in this
13439 // scope.
13440 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
13441 ForRedeclaration);
13442 if (PrevDecl && PrevDecl->isTemplateParameter()) {
13443 // Maybe we will complain about the shadowed template parameter.
13444 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
13445 // Just pretend that we didn't see the previous declaration.
13446 PrevDecl = nullptr;
13447 }
13448
13449 if (PrevDecl) {
13450 // When in C++, we may get a TagDecl with the same name; in this case the
13451 // enum constant will 'hide' the tag.
13452 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
13453 "Received TagDecl when not in C++!");
13454 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
13455 if (isa<EnumConstantDecl>(PrevDecl))
13456 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
13457 else
13458 Diag(IdLoc, diag::err_redefinition) << Id;
13459 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
13460 return nullptr;
13461 }
13462 }
13463
13464 // C++ [class.mem]p15:
13465 // If T is the name of a class, then each of the following shall have a name
13466 // different from T:
13467 // - every enumerator of every member of class T that is an unscoped
13468 // enumerated type
13469 if (CXXRecordDecl *Record
13470 = dyn_cast<CXXRecordDecl>(
13471 TheEnumDecl->getDeclContext()->getRedeclContext()))
13472 if (!TheEnumDecl->isScoped() &&
13473 Record->getIdentifier() && Record->getIdentifier() == Id)
13474 Diag(IdLoc, diag::err_member_name_of_class) << Id;
13475
13476 EnumConstantDecl *New =
13477 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
13478
13479 if (New) {
13480 // Process attributes.
13481 if (Attr) ProcessDeclAttributeList(S, New, Attr);
13482
13483 // Register this decl in the current scope stack.
13484 New->setAccess(TheEnumDecl->getAccess());
13485 PushOnScopeChains(New, S);
13486 }
13487
13488 ActOnDocumentableDecl(New);
13489
13490 return New;
13491 }
13492
13493 // Returns true when the enum initial expression does not trigger the
13494 // duplicate enum warning. A few common cases are exempted as follows:
13495 // Element2 = Element1
13496 // Element2 = Element1 + 1
13497 // Element2 = Element1 - 1
13498 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)13499 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
13500 Expr *InitExpr = ECD->getInitExpr();
13501 if (!InitExpr)
13502 return true;
13503 InitExpr = InitExpr->IgnoreImpCasts();
13504
13505 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
13506 if (!BO->isAdditiveOp())
13507 return true;
13508 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
13509 if (!IL)
13510 return true;
13511 if (IL->getValue() != 1)
13512 return true;
13513
13514 InitExpr = BO->getLHS();
13515 }
13516
13517 // This checks if the elements are from the same enum.
13518 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
13519 if (!DRE)
13520 return true;
13521
13522 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
13523 if (!EnumConstant)
13524 return true;
13525
13526 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
13527 Enum)
13528 return true;
13529
13530 return false;
13531 }
13532
13533 struct DupKey {
13534 int64_t val;
13535 bool isTombstoneOrEmptyKey;
DupKeyDupKey13536 DupKey(int64_t val, bool isTombstoneOrEmptyKey)
13537 : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
13538 };
13539
GetDupKey(const llvm::APSInt & Val)13540 static DupKey GetDupKey(const llvm::APSInt& Val) {
13541 return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
13542 false);
13543 }
13544
13545 struct DenseMapInfoDupKey {
getEmptyKeyDenseMapInfoDupKey13546 static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKeyDenseMapInfoDupKey13547 static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValueDenseMapInfoDupKey13548 static unsigned getHashValue(const DupKey Key) {
13549 return (unsigned)(Key.val * 37);
13550 }
isEqualDenseMapInfoDupKey13551 static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
13552 return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
13553 LHS.val == RHS.val;
13554 }
13555 };
13556
13557 // Emits a warning when an element is implicitly set a value that
13558 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)13559 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
13560 EnumDecl *Enum,
13561 QualType EnumType) {
13562 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
13563 return;
13564 // Avoid anonymous enums
13565 if (!Enum->getIdentifier())
13566 return;
13567
13568 // Only check for small enums.
13569 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
13570 return;
13571
13572 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
13573 typedef SmallVector<ECDVector *, 3> DuplicatesVector;
13574
13575 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
13576 typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
13577 ValueToVectorMap;
13578
13579 DuplicatesVector DupVector;
13580 ValueToVectorMap EnumMap;
13581
13582 // Populate the EnumMap with all values represented by enum constants without
13583 // an initialier.
13584 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13585 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
13586
13587 // Null EnumConstantDecl means a previous diagnostic has been emitted for
13588 // this constant. Skip this enum since it may be ill-formed.
13589 if (!ECD) {
13590 return;
13591 }
13592
13593 if (ECD->getInitExpr())
13594 continue;
13595
13596 DupKey Key = GetDupKey(ECD->getInitVal());
13597 DeclOrVector &Entry = EnumMap[Key];
13598
13599 // First time encountering this value.
13600 if (Entry.isNull())
13601 Entry = ECD;
13602 }
13603
13604 // Create vectors for any values that has duplicates.
13605 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13606 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
13607 if (!ValidDuplicateEnum(ECD, Enum))
13608 continue;
13609
13610 DupKey Key = GetDupKey(ECD->getInitVal());
13611
13612 DeclOrVector& Entry = EnumMap[Key];
13613 if (Entry.isNull())
13614 continue;
13615
13616 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
13617 // Ensure constants are different.
13618 if (D == ECD)
13619 continue;
13620
13621 // Create new vector and push values onto it.
13622 ECDVector *Vec = new ECDVector();
13623 Vec->push_back(D);
13624 Vec->push_back(ECD);
13625
13626 // Update entry to point to the duplicates vector.
13627 Entry = Vec;
13628
13629 // Store the vector somewhere we can consult later for quick emission of
13630 // diagnostics.
13631 DupVector.push_back(Vec);
13632 continue;
13633 }
13634
13635 ECDVector *Vec = Entry.get<ECDVector*>();
13636 // Make sure constants are not added more than once.
13637 if (*Vec->begin() == ECD)
13638 continue;
13639
13640 Vec->push_back(ECD);
13641 }
13642
13643 // Emit diagnostics.
13644 for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
13645 DupVectorEnd = DupVector.end();
13646 DupVectorIter != DupVectorEnd; ++DupVectorIter) {
13647 ECDVector *Vec = *DupVectorIter;
13648 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
13649
13650 // Emit warning for one enum constant.
13651 ECDVector::iterator I = Vec->begin();
13652 S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
13653 << (*I)->getName() << (*I)->getInitVal().toString(10)
13654 << (*I)->getSourceRange();
13655 ++I;
13656
13657 // Emit one note for each of the remaining enum constants with
13658 // the same value.
13659 for (ECDVector::iterator E = Vec->end(); I != E; ++I)
13660 S.Diag((*I)->getLocation(), diag::note_duplicate_element)
13661 << (*I)->getName() << (*I)->getInitVal().toString(10)
13662 << (*I)->getSourceRange();
13663 delete Vec;
13664 }
13665 }
13666
13667 bool
IsValueInFlagEnum(const EnumDecl * ED,const llvm::APInt & Val,bool AllowMask) const13668 Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
13669 bool AllowMask) const {
13670 FlagEnumAttr *FEAttr = ED->getAttr<FlagEnumAttr>();
13671 assert(FEAttr && "looking for value in non-flag enum");
13672
13673 llvm::APInt FlagMask = ~FEAttr->getFlagBits();
13674 unsigned Width = FlagMask.getBitWidth();
13675
13676 // We will try a zero-extended value for the regular check first.
13677 llvm::APInt ExtVal = Val.zextOrSelf(Width);
13678
13679 // A value is in a flag enum if either its bits are a subset of the enum's
13680 // flag bits (the first condition) or we are allowing masks and the same is
13681 // true of its complement (the second condition). When masks are allowed, we
13682 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
13683 //
13684 // While it's true that any value could be used as a mask, the assumption is
13685 // that a mask will have all of the insignificant bits set. Anything else is
13686 // likely a logic error.
13687 if (!(FlagMask & ExtVal))
13688 return true;
13689
13690 if (AllowMask) {
13691 // Try a one-extended value instead. This can happen if the enum is wider
13692 // than the constant used, in C with extensions to allow for wider enums.
13693 // The mask will still have the correct behaviour, so we give the user the
13694 // benefit of the doubt.
13695 //
13696 // FIXME: This heuristic can cause weird results if the enum was extended
13697 // to a larger type and is signed, because then bit-masks of smaller types
13698 // that get extended will fall out of range (e.g. ~0x1u). We currently don't
13699 // detect that case and will get a false positive for it. In most cases,
13700 // though, it can be fixed by making it a signed type (e.g. ~0x1), so it may
13701 // be fine just to accept this as a warning.
13702 ExtVal |= llvm::APInt::getHighBitsSet(Width, Width - Val.getBitWidth());
13703 if (!(FlagMask & ~ExtVal))
13704 return true;
13705 }
13706
13707 return false;
13708 }
13709
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,AttributeList * Attr)13710 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
13711 SourceLocation RBraceLoc, Decl *EnumDeclX,
13712 ArrayRef<Decl *> Elements,
13713 Scope *S, AttributeList *Attr) {
13714 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
13715 QualType EnumType = Context.getTypeDeclType(Enum);
13716
13717 if (Attr)
13718 ProcessDeclAttributeList(S, Enum, Attr);
13719
13720 if (Enum->isDependentType()) {
13721 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13722 EnumConstantDecl *ECD =
13723 cast_or_null<EnumConstantDecl>(Elements[i]);
13724 if (!ECD) continue;
13725
13726 ECD->setType(EnumType);
13727 }
13728
13729 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
13730 return;
13731 }
13732
13733 // TODO: If the result value doesn't fit in an int, it must be a long or long
13734 // long value. ISO C does not support this, but GCC does as an extension,
13735 // emit a warning.
13736 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13737 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
13738 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
13739
13740 // Verify that all the values are okay, compute the size of the values, and
13741 // reverse the list.
13742 unsigned NumNegativeBits = 0;
13743 unsigned NumPositiveBits = 0;
13744
13745 // Keep track of whether all elements have type int.
13746 bool AllElementsInt = true;
13747
13748 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13749 EnumConstantDecl *ECD =
13750 cast_or_null<EnumConstantDecl>(Elements[i]);
13751 if (!ECD) continue; // Already issued a diagnostic.
13752
13753 const llvm::APSInt &InitVal = ECD->getInitVal();
13754
13755 // Keep track of the size of positive and negative values.
13756 if (InitVal.isUnsigned() || InitVal.isNonNegative())
13757 NumPositiveBits = std::max(NumPositiveBits,
13758 (unsigned)InitVal.getActiveBits());
13759 else
13760 NumNegativeBits = std::max(NumNegativeBits,
13761 (unsigned)InitVal.getMinSignedBits());
13762
13763 // Keep track of whether every enum element has type int (very commmon).
13764 if (AllElementsInt)
13765 AllElementsInt = ECD->getType() == Context.IntTy;
13766 }
13767
13768 // Figure out the type that should be used for this enum.
13769 QualType BestType;
13770 unsigned BestWidth;
13771
13772 // C++0x N3000 [conv.prom]p3:
13773 // An rvalue of an unscoped enumeration type whose underlying
13774 // type is not fixed can be converted to an rvalue of the first
13775 // of the following types that can represent all the values of
13776 // the enumeration: int, unsigned int, long int, unsigned long
13777 // int, long long int, or unsigned long long int.
13778 // C99 6.4.4.3p2:
13779 // An identifier declared as an enumeration constant has type int.
13780 // The C99 rule is modified by a gcc extension
13781 QualType BestPromotionType;
13782
13783 bool Packed = Enum->hasAttr<PackedAttr>();
13784 // -fshort-enums is the equivalent to specifying the packed attribute on all
13785 // enum definitions.
13786 if (LangOpts.ShortEnums)
13787 Packed = true;
13788
13789 if (Enum->isFixed()) {
13790 BestType = Enum->getIntegerType();
13791 if (BestType->isPromotableIntegerType())
13792 BestPromotionType = Context.getPromotedIntegerType(BestType);
13793 else
13794 BestPromotionType = BestType;
13795
13796 BestWidth = Context.getIntWidth(BestType);
13797 }
13798 else if (NumNegativeBits) {
13799 // If there is a negative value, figure out the smallest integer type (of
13800 // int/long/longlong) that fits.
13801 // If it's packed, check also if it fits a char or a short.
13802 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
13803 BestType = Context.SignedCharTy;
13804 BestWidth = CharWidth;
13805 } else if (Packed && NumNegativeBits <= ShortWidth &&
13806 NumPositiveBits < ShortWidth) {
13807 BestType = Context.ShortTy;
13808 BestWidth = ShortWidth;
13809 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
13810 BestType = Context.IntTy;
13811 BestWidth = IntWidth;
13812 } else {
13813 BestWidth = Context.getTargetInfo().getLongWidth();
13814
13815 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
13816 BestType = Context.LongTy;
13817 } else {
13818 BestWidth = Context.getTargetInfo().getLongLongWidth();
13819
13820 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
13821 Diag(Enum->getLocation(), diag::ext_enum_too_large);
13822 BestType = Context.LongLongTy;
13823 }
13824 }
13825 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
13826 } else {
13827 // If there is no negative value, figure out the smallest type that fits
13828 // all of the enumerator values.
13829 // If it's packed, check also if it fits a char or a short.
13830 if (Packed && NumPositiveBits <= CharWidth) {
13831 BestType = Context.UnsignedCharTy;
13832 BestPromotionType = Context.IntTy;
13833 BestWidth = CharWidth;
13834 } else if (Packed && NumPositiveBits <= ShortWidth) {
13835 BestType = Context.UnsignedShortTy;
13836 BestPromotionType = Context.IntTy;
13837 BestWidth = ShortWidth;
13838 } else if (NumPositiveBits <= IntWidth) {
13839 BestType = Context.UnsignedIntTy;
13840 BestWidth = IntWidth;
13841 BestPromotionType
13842 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13843 ? Context.UnsignedIntTy : Context.IntTy;
13844 } else if (NumPositiveBits <=
13845 (BestWidth = Context.getTargetInfo().getLongWidth())) {
13846 BestType = Context.UnsignedLongTy;
13847 BestPromotionType
13848 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13849 ? Context.UnsignedLongTy : Context.LongTy;
13850 } else {
13851 BestWidth = Context.getTargetInfo().getLongLongWidth();
13852 assert(NumPositiveBits <= BestWidth &&
13853 "How could an initializer get larger than ULL?");
13854 BestType = Context.UnsignedLongLongTy;
13855 BestPromotionType
13856 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13857 ? Context.UnsignedLongLongTy : Context.LongLongTy;
13858 }
13859 }
13860
13861 FlagEnumAttr *FEAttr = Enum->getAttr<FlagEnumAttr>();
13862 if (FEAttr)
13863 FEAttr->getFlagBits() = llvm::APInt(BestWidth, 0);
13864
13865 // Loop over all of the enumerator constants, changing their types to match
13866 // the type of the enum if needed. If we have a flag type, we also prepare the
13867 // FlagBits cache.
13868 for (auto *D : Elements) {
13869 auto *ECD = cast_or_null<EnumConstantDecl>(D);
13870 if (!ECD) continue; // Already issued a diagnostic.
13871
13872 // Standard C says the enumerators have int type, but we allow, as an
13873 // extension, the enumerators to be larger than int size. If each
13874 // enumerator value fits in an int, type it as an int, otherwise type it the
13875 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
13876 // that X has type 'int', not 'unsigned'.
13877
13878 // Determine whether the value fits into an int.
13879 llvm::APSInt InitVal = ECD->getInitVal();
13880
13881 // If it fits into an integer type, force it. Otherwise force it to match
13882 // the enum decl type.
13883 QualType NewTy;
13884 unsigned NewWidth;
13885 bool NewSign;
13886 if (!getLangOpts().CPlusPlus &&
13887 !Enum->isFixed() &&
13888 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
13889 NewTy = Context.IntTy;
13890 NewWidth = IntWidth;
13891 NewSign = true;
13892 } else if (ECD->getType() == BestType) {
13893 // Already the right type!
13894 if (getLangOpts().CPlusPlus)
13895 // C++ [dcl.enum]p4: Following the closing brace of an
13896 // enum-specifier, each enumerator has the type of its
13897 // enumeration.
13898 ECD->setType(EnumType);
13899 goto flagbits;
13900 } else {
13901 NewTy = BestType;
13902 NewWidth = BestWidth;
13903 NewSign = BestType->isSignedIntegerOrEnumerationType();
13904 }
13905
13906 // Adjust the APSInt value.
13907 InitVal = InitVal.extOrTrunc(NewWidth);
13908 InitVal.setIsSigned(NewSign);
13909 ECD->setInitVal(InitVal);
13910
13911 // Adjust the Expr initializer and type.
13912 if (ECD->getInitExpr() &&
13913 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
13914 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
13915 CK_IntegralCast,
13916 ECD->getInitExpr(),
13917 /*base paths*/ nullptr,
13918 VK_RValue));
13919 if (getLangOpts().CPlusPlus)
13920 // C++ [dcl.enum]p4: Following the closing brace of an
13921 // enum-specifier, each enumerator has the type of its
13922 // enumeration.
13923 ECD->setType(EnumType);
13924 else
13925 ECD->setType(NewTy);
13926
13927 flagbits:
13928 // Check to see if we have a constant with exactly one bit set. Note that x
13929 // & (x - 1) will be nonzero if and only if x has more than one bit set.
13930 if (FEAttr) {
13931 llvm::APInt ExtVal = InitVal.zextOrSelf(BestWidth);
13932 if (ExtVal != 0 && !(ExtVal & (ExtVal - 1))) {
13933 FEAttr->getFlagBits() |= ExtVal;
13934 }
13935 }
13936 }
13937
13938 if (FEAttr) {
13939 for (Decl *D : Elements) {
13940 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
13941 if (!ECD) continue; // Already issued a diagnostic.
13942
13943 llvm::APSInt InitVal = ECD->getInitVal();
13944 if (InitVal != 0 && !IsValueInFlagEnum(Enum, InitVal, true))
13945 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
13946 << ECD << Enum;
13947 }
13948 }
13949
13950
13951
13952 Enum->completeDefinition(BestType, BestPromotionType,
13953 NumPositiveBits, NumNegativeBits);
13954
13955 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
13956
13957 // Now that the enum type is defined, ensure it's not been underaligned.
13958 if (Enum->hasAttrs())
13959 CheckAlignasUnderalignment(Enum);
13960 }
13961
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)13962 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
13963 SourceLocation StartLoc,
13964 SourceLocation EndLoc) {
13965 StringLiteral *AsmString = cast<StringLiteral>(expr);
13966
13967 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
13968 AsmString, StartLoc,
13969 EndLoc);
13970 CurContext->addDecl(New);
13971 return New;
13972 }
13973
checkModuleImportContext(Sema & S,Module * M,SourceLocation ImportLoc,DeclContext * DC)13974 static void checkModuleImportContext(Sema &S, Module *M,
13975 SourceLocation ImportLoc,
13976 DeclContext *DC) {
13977 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
13978 switch (LSD->getLanguage()) {
13979 case LinkageSpecDecl::lang_c:
13980 if (!M->IsExternC) {
13981 S.Diag(ImportLoc, diag::err_module_import_in_extern_c)
13982 << M->getFullModuleName();
13983 S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c);
13984 return;
13985 }
13986 break;
13987 case LinkageSpecDecl::lang_cxx:
13988 break;
13989 }
13990 DC = LSD->getParent();
13991 }
13992
13993 while (isa<LinkageSpecDecl>(DC))
13994 DC = DC->getParent();
13995 if (!isa<TranslationUnitDecl>(DC)) {
13996 S.Diag(ImportLoc, diag::err_module_import_not_at_top_level)
13997 << M->getFullModuleName() << DC;
13998 S.Diag(cast<Decl>(DC)->getLocStart(),
13999 diag::note_module_import_not_at_top_level)
14000 << DC;
14001 }
14002 }
14003
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)14004 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
14005 SourceLocation ImportLoc,
14006 ModuleIdPath Path) {
14007 Module *Mod =
14008 getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
14009 /*IsIncludeDirective=*/false);
14010 if (!Mod)
14011 return true;
14012
14013 checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
14014
14015 // FIXME: we should support importing a submodule within a different submodule
14016 // of the same top-level module. Until we do, make it an error rather than
14017 // silently ignoring the import.
14018 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
14019 Diag(ImportLoc, diag::err_module_self_import)
14020 << Mod->getFullModuleName() << getLangOpts().CurrentModule;
14021 else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule)
14022 Diag(ImportLoc, diag::err_module_import_in_implementation)
14023 << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule;
14024
14025 SmallVector<SourceLocation, 2> IdentifierLocs;
14026 Module *ModCheck = Mod;
14027 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
14028 // If we've run out of module parents, just drop the remaining identifiers.
14029 // We need the length to be consistent.
14030 if (!ModCheck)
14031 break;
14032 ModCheck = ModCheck->Parent;
14033
14034 IdentifierLocs.push_back(Path[I].second);
14035 }
14036
14037 ImportDecl *Import = ImportDecl::Create(Context,
14038 Context.getTranslationUnitDecl(),
14039 AtLoc.isValid()? AtLoc : ImportLoc,
14040 Mod, IdentifierLocs);
14041 Context.getTranslationUnitDecl()->addDecl(Import);
14042 return Import;
14043 }
14044
ActOnModuleInclude(SourceLocation DirectiveLoc,Module * Mod)14045 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
14046 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14047
14048 // FIXME: Should we synthesize an ImportDecl here?
14049 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
14050 /*Complain=*/true);
14051 }
14052
createImplicitModuleImportForErrorRecovery(SourceLocation Loc,Module * Mod)14053 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
14054 Module *Mod) {
14055 // Bail if we're not allowed to implicitly import a module here.
14056 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
14057 return;
14058
14059 // Create the implicit import declaration.
14060 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
14061 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
14062 Loc, Mod, Loc);
14063 TU->addDecl(ImportD);
14064 Consumer.HandleImplicitImportDecl(ImportD);
14065
14066 // Make the module visible.
14067 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
14068 /*Complain=*/false);
14069 }
14070
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)14071 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
14072 IdentifierInfo* AliasName,
14073 SourceLocation PragmaLoc,
14074 SourceLocation NameLoc,
14075 SourceLocation AliasNameLoc) {
14076 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
14077 LookupOrdinaryName);
14078 AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context,
14079 AliasName->getName(), 0);
14080
14081 if (PrevDecl)
14082 PrevDecl->addAttr(Attr);
14083 else
14084 (void)ExtnameUndeclaredIdentifiers.insert(
14085 std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
14086 }
14087
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)14088 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
14089 SourceLocation PragmaLoc,
14090 SourceLocation NameLoc) {
14091 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
14092
14093 if (PrevDecl) {
14094 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
14095 } else {
14096 (void)WeakUndeclaredIdentifiers.insert(
14097 std::pair<IdentifierInfo*,WeakInfo>
14098 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
14099 }
14100 }
14101
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)14102 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
14103 IdentifierInfo* AliasName,
14104 SourceLocation PragmaLoc,
14105 SourceLocation NameLoc,
14106 SourceLocation AliasNameLoc) {
14107 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
14108 LookupOrdinaryName);
14109 WeakInfo W = WeakInfo(Name, NameLoc);
14110
14111 if (PrevDecl) {
14112 if (!PrevDecl->hasAttr<AliasAttr>())
14113 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
14114 DeclApplyPragmaWeak(TUScope, ND, W);
14115 } else {
14116 (void)WeakUndeclaredIdentifiers.insert(
14117 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
14118 }
14119 }
14120
getObjCDeclContext() const14121 Decl *Sema::getObjCDeclContext() const {
14122 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
14123 }
14124
getCurContextAvailability() const14125 AvailabilityResult Sema::getCurContextAvailability() const {
14126 const Decl *D = cast_or_null<Decl>(getCurObjCLexicalContext());
14127 if (!D)
14128 return AR_Available;
14129
14130 // If we are within an Objective-C method, we should consult
14131 // both the availability of the method as well as the
14132 // enclosing class. If the class is (say) deprecated,
14133 // the entire method is considered deprecated from the
14134 // purpose of checking if the current context is deprecated.
14135 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
14136 AvailabilityResult R = MD->getAvailability();
14137 if (R != AR_Available)
14138 return R;
14139 D = MD->getClassInterface();
14140 }
14141 // If we are within an Objective-c @implementation, it
14142 // gets the same availability context as the @interface.
14143 else if (const ObjCImplementationDecl *ID =
14144 dyn_cast<ObjCImplementationDecl>(D)) {
14145 D = ID->getClassInterface();
14146 }
14147 // Recover from user error.
14148 return D ? D->getAvailability() : AR_Available;
14149 }
14150