1 //===- PHITransAddr.h - PHI Translation for Addresses -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the PHITransAddr class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_PHITRANSADDR_H
15 #define LLVM_ANALYSIS_PHITRANSADDR_H
16 
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/IR/Instruction.h"
19 
20 namespace llvm {
21   class AssumptionCache;
22   class DominatorTree;
23   class DataLayout;
24   class TargetLibraryInfo;
25 
26 /// PHITransAddr - An address value which tracks and handles phi translation.
27 /// As we walk "up" the CFG through predecessors, we need to ensure that the
28 /// address we're tracking is kept up to date.  For example, if we're analyzing
29 /// an address of "&A[i]" and walk through the definition of 'i' which is a PHI
30 /// node, we *must* phi translate i to get "&A[j]" or else we will analyze an
31 /// incorrect pointer in the predecessor block.
32 ///
33 /// This is designed to be a relatively small object that lives on the stack and
34 /// is copyable.
35 ///
36 class PHITransAddr {
37   /// Addr - The actual address we're analyzing.
38   Value *Addr;
39 
40   /// The DataLayout we are playing with.
41   const DataLayout &DL;
42 
43   /// TLI - The target library info if known, otherwise null.
44   const TargetLibraryInfo *TLI;
45 
46   /// A cache of @llvm.assume calls used by SimplifyInstruction.
47   AssumptionCache *AC;
48 
49   /// InstInputs - The inputs for our symbolic address.
50   SmallVector<Instruction*, 4> InstInputs;
51 public:
PHITransAddr(Value * addr,const DataLayout & DL,AssumptionCache * AC)52   PHITransAddr(Value *addr, const DataLayout &DL, AssumptionCache *AC)
53       : Addr(addr), DL(DL), TLI(nullptr), AC(AC) {
54     // If the address is an instruction, the whole thing is considered an input.
55     if (Instruction *I = dyn_cast<Instruction>(Addr))
56       InstInputs.push_back(I);
57   }
58 
getAddr()59   Value *getAddr() const { return Addr; }
60 
61   /// NeedsPHITranslationFromBlock - Return true if moving from the specified
62   /// BasicBlock to its predecessors requires PHI translation.
NeedsPHITranslationFromBlock(BasicBlock * BB)63   bool NeedsPHITranslationFromBlock(BasicBlock *BB) const {
64     // We do need translation if one of our input instructions is defined in
65     // this block.
66     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
67       if (InstInputs[i]->getParent() == BB)
68         return true;
69     return false;
70   }
71 
72   /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
73   /// if we have some hope of doing it.  This should be used as a filter to
74   /// avoid calling PHITranslateValue in hopeless situations.
75   bool IsPotentiallyPHITranslatable() const;
76 
77   /// PHITranslateValue - PHI translate the current address up the CFG from
78   /// CurBB to Pred, updating our state to reflect any needed changes.  If the
79   /// dominator tree DT is non-null, the translated value must dominate
80   /// PredBB.  This returns true on failure and sets Addr to null.
81   bool PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
82                          const DominatorTree *DT);
83 
84   /// PHITranslateWithInsertion - PHI translate this value into the specified
85   /// predecessor block, inserting a computation of the value if it is
86   /// unavailable.
87   ///
88   /// All newly created instructions are added to the NewInsts list.  This
89   /// returns null on failure.
90   ///
91   Value *PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
92                                    const DominatorTree &DT,
93                                    SmallVectorImpl<Instruction*> &NewInsts);
94 
95   void dump() const;
96 
97   /// Verify - Check internal consistency of this data structure.  If the
98   /// structure is valid, it returns true.  If invalid, it prints errors and
99   /// returns false.
100   bool Verify() const;
101 private:
102   Value *PHITranslateSubExpr(Value *V, BasicBlock *CurBB, BasicBlock *PredBB,
103                              const DominatorTree *DT);
104 
105   /// InsertPHITranslatedSubExpr - Insert a computation of the PHI translated
106   /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
107   /// block.  All newly created instructions are added to the NewInsts list.
108   /// This returns null on failure.
109   ///
110   Value *InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
111                                     BasicBlock *PredBB, const DominatorTree &DT,
112                                     SmallVectorImpl<Instruction*> &NewInsts);
113 
114   /// AddAsInput - If the specified value is an instruction, add it as an input.
AddAsInput(Value * V)115   Value *AddAsInput(Value *V) {
116     // If V is an instruction, it is now an input.
117     if (Instruction *VI = dyn_cast<Instruction>(V))
118       InstInputs.push_back(VI);
119     return V;
120   }
121 
122 };
123 
124 } // end namespace llvm
125 
126 #endif
127