1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "fault_handler.h"
18
19 #include <setjmp.h>
20 #include <sys/mman.h>
21 #include <sys/ucontext.h>
22
23 #include "art_method-inl.h"
24 #include "base/stl_util.h"
25 #include "mirror/class.h"
26 #include "sigchain.h"
27 #include "thread-inl.h"
28 #include "verify_object-inl.h"
29
30 // Note on nested signal support
31 // -----------------------------
32 //
33 // Typically a signal handler should not need to deal with signals that occur within it.
34 // However, when a SIGSEGV occurs that is in generated code and is not one of the
35 // handled signals (implicit checks), we call a function to try to dump the stack
36 // to the log. This enhances the debugging experience but may have the side effect
37 // that it may not work. If the cause of the original SIGSEGV is a corrupted stack or other
38 // memory region, the stack backtrace code may run into trouble and may either crash
39 // or fail with an abort (SIGABRT). In either case we don't want that (new) signal to
40 // mask the original signal and thus prevent useful debug output from being presented.
41 //
42 // In order to handle this situation, before we call the stack tracer we do the following:
43 //
44 // 1. shutdown the fault manager so that we are talking to the real signal management
45 // functions rather than those in sigchain.
46 // 2. use pthread_sigmask to allow SIGSEGV and SIGABRT signals to be delivered to the
47 // thread running the signal handler.
48 // 3. set the handler for SIGSEGV and SIGABRT to a secondary signal handler.
49 // 4. save the thread's state to the TLS of the current thread using 'setjmp'
50 //
51 // We then call the stack tracer and one of two things may happen:
52 // a. it completes successfully
53 // b. it crashes and a signal is raised.
54 //
55 // In the former case, we fall through and everything is fine. In the latter case
56 // our secondary signal handler gets called in a signal context. This results in
57 // a call to FaultManager::HandledNestedSignal(), an archirecture specific function
58 // whose purpose is to call 'longjmp' on the jmp_buf saved in the TLS of the current
59 // thread. This results in a return with a non-zero value from 'setjmp'. We detect this
60 // and write something to the log to tell the user that it happened.
61 //
62 // Regardless of how we got there, we reach the code after the stack tracer and we
63 // restore the signal states to their original values, reinstate the fault manager (thus
64 // reestablishing the signal chain) and continue.
65
66 // This is difficult to test with a runtime test. To invoke the nested signal code
67 // on any signal, uncomment the following line and run something that throws a
68 // NullPointerException.
69 // #define TEST_NESTED_SIGNAL
70
71 namespace art {
72 // Static fault manger object accessed by signal handler.
73 FaultManager fault_manager;
74
art_sigsegv_fault()75 extern "C" __attribute__((visibility("default"))) void art_sigsegv_fault() {
76 // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
77 VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
78 }
79
80 // Signal handler called on SIGSEGV.
art_fault_handler(int sig,siginfo_t * info,void * context)81 static void art_fault_handler(int sig, siginfo_t* info, void* context) {
82 fault_manager.HandleFault(sig, info, context);
83 }
84
85 // Signal handler for dealing with a nested signal.
art_nested_signal_handler(int sig,siginfo_t * info,void * context)86 static void art_nested_signal_handler(int sig, siginfo_t* info, void* context) {
87 fault_manager.HandleNestedSignal(sig, info, context);
88 }
89
FaultManager()90 FaultManager::FaultManager() : initialized_(false) {
91 sigaction(SIGSEGV, nullptr, &oldaction_);
92 }
93
~FaultManager()94 FaultManager::~FaultManager() {
95 }
96
SetUpArtAction(struct sigaction * action)97 static void SetUpArtAction(struct sigaction* action) {
98 action->sa_sigaction = art_fault_handler;
99 sigemptyset(&action->sa_mask);
100 action->sa_flags = SA_SIGINFO | SA_ONSTACK;
101 #if !defined(__APPLE__) && !defined(__mips__)
102 action->sa_restorer = nullptr;
103 #endif
104 }
105
EnsureArtActionInFrontOfSignalChain()106 void FaultManager::EnsureArtActionInFrontOfSignalChain() {
107 if (initialized_) {
108 struct sigaction action;
109 SetUpArtAction(&action);
110 EnsureFrontOfChain(SIGSEGV, &action);
111 } else {
112 LOG(WARNING) << "Can't call " << __FUNCTION__ << " due to unitialized fault manager";
113 }
114 }
115
Init()116 void FaultManager::Init() {
117 CHECK(!initialized_);
118 struct sigaction action;
119 SetUpArtAction(&action);
120
121 // Set our signal handler now.
122 int e = sigaction(SIGSEGV, &action, &oldaction_);
123 if (e != 0) {
124 VLOG(signals) << "Failed to claim SEGV: " << strerror(errno);
125 }
126 // Make sure our signal handler is called before any user handlers.
127 ClaimSignalChain(SIGSEGV, &oldaction_);
128 initialized_ = true;
129 }
130
Release()131 void FaultManager::Release() {
132 if (initialized_) {
133 UnclaimSignalChain(SIGSEGV);
134 initialized_ = false;
135 }
136 }
137
Shutdown()138 void FaultManager::Shutdown() {
139 if (initialized_) {
140 Release();
141
142 // Free all handlers.
143 STLDeleteElements(&generated_code_handlers_);
144 STLDeleteElements(&other_handlers_);
145 }
146 }
147
HandleFault(int sig,siginfo_t * info,void * context)148 void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
149 // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...)
150 //
151 // If malloc calls abort, it will be holding its lock.
152 // If the handler tries to call malloc, it will deadlock.
153 VLOG(signals) << "Handling fault";
154 if (IsInGeneratedCode(info, context, true)) {
155 VLOG(signals) << "in generated code, looking for handler";
156 for (const auto& handler : generated_code_handlers_) {
157 VLOG(signals) << "invoking Action on handler " << handler;
158 if (handler->Action(sig, info, context)) {
159 #ifdef TEST_NESTED_SIGNAL
160 // In test mode we want to fall through to stack trace handler
161 // on every signal (in reality this will cause a crash on the first
162 // signal).
163 break;
164 #else
165 // We have handled a signal so it's time to return from the
166 // signal handler to the appropriate place.
167 return;
168 #endif
169 }
170 }
171 }
172
173 // We hit a signal we didn't handle. This might be something for which
174 // we can give more information about so call all registered handlers to see
175 // if it is.
176
177 Thread* self = Thread::Current();
178
179 // If ART is not running, or the thread is not attached to ART pass the
180 // signal on to the next handler in the chain.
181 if (self == nullptr || Runtime::Current() == nullptr || !Runtime::Current()->IsStarted()) {
182 InvokeUserSignalHandler(sig, info, context);
183 return;
184 }
185 // Now set up the nested signal handler.
186
187 // TODO: add SIGSEGV back to the nested signals when we can handle running out stack gracefully.
188 static const int handled_nested_signals[] = {SIGABRT};
189 constexpr size_t num_handled_nested_signals = arraysize(handled_nested_signals);
190
191 // Release the fault manager so that it will remove the signal chain for
192 // SIGSEGV and we call the real sigaction.
193 fault_manager.Release();
194
195 // The action for SIGSEGV should be the default handler now.
196
197 // Unblock the signals we allow so that they can be delivered in the signal handler.
198 sigset_t sigset;
199 sigemptyset(&sigset);
200 for (int signal : handled_nested_signals) {
201 sigaddset(&sigset, signal);
202 }
203 pthread_sigmask(SIG_UNBLOCK, &sigset, nullptr);
204
205 // If we get a signal in this code we want to invoke our nested signal
206 // handler.
207 struct sigaction action;
208 struct sigaction oldactions[num_handled_nested_signals];
209 action.sa_sigaction = art_nested_signal_handler;
210
211 // Explicitly mask out SIGSEGV and SIGABRT from the nested signal handler. This
212 // should be the default but we definitely don't want these happening in our
213 // nested signal handler.
214 sigemptyset(&action.sa_mask);
215 for (int signal : handled_nested_signals) {
216 sigaddset(&action.sa_mask, signal);
217 }
218
219 action.sa_flags = SA_SIGINFO | SA_ONSTACK;
220 #if !defined(__APPLE__) && !defined(__mips__)
221 action.sa_restorer = nullptr;
222 #endif
223
224 // Catch handled signals to invoke our nested handler.
225 bool success = true;
226 for (size_t i = 0; i < num_handled_nested_signals; ++i) {
227 success = sigaction(handled_nested_signals[i], &action, &oldactions[i]) == 0;
228 if (!success) {
229 PLOG(ERROR) << "Unable to set up nested signal handler";
230 break;
231 }
232 }
233 if (success) {
234 // Save the current state and call the handlers. If anything causes a signal
235 // our nested signal handler will be invoked and this will longjmp to the saved
236 // state.
237 if (setjmp(*self->GetNestedSignalState()) == 0) {
238 for (const auto& handler : other_handlers_) {
239 if (handler->Action(sig, info, context)) {
240 // Restore the signal handlers, reinit the fault manager and return. Signal was
241 // handled.
242 for (size_t i = 0; i < num_handled_nested_signals; ++i) {
243 success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0;
244 if (!success) {
245 PLOG(ERROR) << "Unable to restore signal handler";
246 }
247 }
248 fault_manager.Init();
249 return;
250 }
251 }
252 } else {
253 LOG(ERROR) << "Nested signal detected - original signal being reported";
254 }
255
256 // Restore the signal handlers.
257 for (size_t i = 0; i < num_handled_nested_signals; ++i) {
258 success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0;
259 if (!success) {
260 PLOG(ERROR) << "Unable to restore signal handler";
261 }
262 }
263 }
264
265 // Now put the fault manager back in place.
266 fault_manager.Init();
267
268 // Set a breakpoint in this function to catch unhandled signals.
269 art_sigsegv_fault();
270
271 // Pass this on to the next handler in the chain, or the default if none.
272 InvokeUserSignalHandler(sig, info, context);
273 }
274
AddHandler(FaultHandler * handler,bool generated_code)275 void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
276 DCHECK(initialized_);
277 if (generated_code) {
278 generated_code_handlers_.push_back(handler);
279 } else {
280 other_handlers_.push_back(handler);
281 }
282 }
283
RemoveHandler(FaultHandler * handler)284 void FaultManager::RemoveHandler(FaultHandler* handler) {
285 auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
286 if (it != generated_code_handlers_.end()) {
287 generated_code_handlers_.erase(it);
288 return;
289 }
290 auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
291 if (it2 != other_handlers_.end()) {
292 other_handlers_.erase(it);
293 return;
294 }
295 LOG(FATAL) << "Attempted to remove non existent handler " << handler;
296 }
297
298 // This function is called within the signal handler. It checks that
299 // the mutator_lock is held (shared). No annotalysis is done.
IsInGeneratedCode(siginfo_t * siginfo,void * context,bool check_dex_pc)300 bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) {
301 // We can only be running Java code in the current thread if it
302 // is in Runnable state.
303 VLOG(signals) << "Checking for generated code";
304 Thread* thread = Thread::Current();
305 if (thread == nullptr) {
306 VLOG(signals) << "no current thread";
307 return false;
308 }
309
310 ThreadState state = thread->GetState();
311 if (state != kRunnable) {
312 VLOG(signals) << "not runnable";
313 return false;
314 }
315
316 // Current thread is runnable.
317 // Make sure it has the mutator lock.
318 if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
319 VLOG(signals) << "no lock";
320 return false;
321 }
322
323 ArtMethod* method_obj = 0;
324 uintptr_t return_pc = 0;
325 uintptr_t sp = 0;
326
327 // Get the architecture specific method address and return address. These
328 // are in architecture specific files in arch/<arch>/fault_handler_<arch>.
329 GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp);
330
331 // If we don't have a potential method, we're outta here.
332 VLOG(signals) << "potential method: " << method_obj;
333 // TODO: Check linear alloc and image.
334 if (method_obj == 0 || !IsAligned<kObjectAlignment>(method_obj)) {
335 VLOG(signals) << "no method";
336 return false;
337 }
338
339 // Verify that the potential method is indeed a method.
340 // TODO: check the GC maps to make sure it's an object.
341 // Check that the class pointer inside the object is not null and is aligned.
342 // TODO: Method might be not a heap address, and GetClass could fault.
343 // No read barrier because method_obj may not be a real object.
344 mirror::Class* cls = method_obj->GetDeclaringClassNoBarrier();
345 if (cls == nullptr) {
346 VLOG(signals) << "not a class";
347 return false;
348 }
349 if (!IsAligned<kObjectAlignment>(cls)) {
350 VLOG(signals) << "not aligned";
351 return false;
352 }
353
354
355 if (!VerifyClassClass(cls)) {
356 VLOG(signals) << "not a class class";
357 return false;
358 }
359
360 // We can be certain that this is a method now. Check if we have a GC map
361 // at the return PC address.
362 if (true || kIsDebugBuild) {
363 VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc;
364 const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj,
365 sizeof(void*));
366 uint32_t sought_offset = return_pc - reinterpret_cast<uintptr_t>(code);
367 VLOG(signals) << "pc offset: " << std::hex << sought_offset;
368 }
369 uint32_t dexpc = method_obj->ToDexPc(return_pc, false);
370 VLOG(signals) << "dexpc: " << dexpc;
371 return !check_dex_pc || dexpc != DexFile::kDexNoIndex;
372 }
373
FaultHandler(FaultManager * manager)374 FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
375 }
376
377 //
378 // Null pointer fault handler
379 //
NullPointerHandler(FaultManager * manager)380 NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
381 manager_->AddHandler(this, true);
382 }
383
384 //
385 // Suspension fault handler
386 //
SuspensionHandler(FaultManager * manager)387 SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
388 manager_->AddHandler(this, true);
389 }
390
391 //
392 // Stack overflow fault handler
393 //
StackOverflowHandler(FaultManager * manager)394 StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
395 manager_->AddHandler(this, true);
396 }
397
398 //
399 // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
400 //
JavaStackTraceHandler(FaultManager * manager)401 JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
402 manager_->AddHandler(this, false);
403 }
404
Action(int sig,siginfo_t * siginfo,void * context)405 bool JavaStackTraceHandler::Action(int sig, siginfo_t* siginfo, void* context) {
406 // Make sure that we are in the generated code, but we may not have a dex pc.
407 UNUSED(sig);
408 #ifdef TEST_NESTED_SIGNAL
409 bool in_generated_code = true;
410 #else
411 bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false);
412 #endif
413 if (in_generated_code) {
414 LOG(ERROR) << "Dumping java stack trace for crash in generated code";
415 ArtMethod* method = nullptr;
416 uintptr_t return_pc = 0;
417 uintptr_t sp = 0;
418 Thread* self = Thread::Current();
419
420 manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp);
421 // Inside of generated code, sp[0] is the method, so sp is the frame.
422 self->SetTopOfStack(reinterpret_cast<ArtMethod**>(sp));
423 #ifdef TEST_NESTED_SIGNAL
424 // To test the nested signal handler we raise a signal here. This will cause the
425 // nested signal handler to be called and perform a longjmp back to the setjmp
426 // above.
427 abort();
428 #endif
429 self->DumpJavaStack(LOG(ERROR));
430 }
431
432 return false; // Return false since we want to propagate the fault to the main signal handler.
433 }
434
435 } // namespace art
436