1 //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a hash set that can be used to remove duplication of
11 // nodes in a graph.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Support/Allocator.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/Host.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 #include <cstring>
23 using namespace llvm;
24
25 //===----------------------------------------------------------------------===//
26 // FoldingSetNodeIDRef Implementation
27
28 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
29 /// used to lookup the node in the FoldingSetImpl.
ComputeHash() const30 unsigned FoldingSetNodeIDRef::ComputeHash() const {
31 return static_cast<unsigned>(hash_combine_range(Data, Data+Size));
32 }
33
operator ==(FoldingSetNodeIDRef RHS) const34 bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
35 if (Size != RHS.Size) return false;
36 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
37 }
38
39 /// Used to compare the "ordering" of two nodes as defined by the
40 /// profiled bits and their ordering defined by memcmp().
operator <(FoldingSetNodeIDRef RHS) const41 bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
42 if (Size != RHS.Size)
43 return Size < RHS.Size;
44 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
45 }
46
47 //===----------------------------------------------------------------------===//
48 // FoldingSetNodeID Implementation
49
50 /// Add* - Add various data types to Bit data.
51 ///
AddPointer(const void * Ptr)52 void FoldingSetNodeID::AddPointer(const void *Ptr) {
53 // Note: this adds pointers to the hash using sizes and endianness that
54 // depend on the host. It doesn't matter, however, because hashing on
55 // pointer values is inherently unstable. Nothing should depend on the
56 // ordering of nodes in the folding set.
57 Bits.append(reinterpret_cast<unsigned *>(&Ptr),
58 reinterpret_cast<unsigned *>(&Ptr+1));
59 }
AddInteger(signed I)60 void FoldingSetNodeID::AddInteger(signed I) {
61 Bits.push_back(I);
62 }
AddInteger(unsigned I)63 void FoldingSetNodeID::AddInteger(unsigned I) {
64 Bits.push_back(I);
65 }
AddInteger(long I)66 void FoldingSetNodeID::AddInteger(long I) {
67 AddInteger((unsigned long)I);
68 }
AddInteger(unsigned long I)69 void FoldingSetNodeID::AddInteger(unsigned long I) {
70 if (sizeof(long) == sizeof(int))
71 AddInteger(unsigned(I));
72 else if (sizeof(long) == sizeof(long long)) {
73 AddInteger((unsigned long long)I);
74 } else {
75 llvm_unreachable("unexpected sizeof(long)");
76 }
77 }
AddInteger(long long I)78 void FoldingSetNodeID::AddInteger(long long I) {
79 AddInteger((unsigned long long)I);
80 }
AddInteger(unsigned long long I)81 void FoldingSetNodeID::AddInteger(unsigned long long I) {
82 AddInteger(unsigned(I));
83 if ((uint64_t)(unsigned)I != I)
84 Bits.push_back(unsigned(I >> 32));
85 }
86
AddString(StringRef String)87 void FoldingSetNodeID::AddString(StringRef String) {
88 unsigned Size = String.size();
89 Bits.push_back(Size);
90 if (!Size) return;
91
92 unsigned Units = Size / 4;
93 unsigned Pos = 0;
94 const unsigned *Base = (const unsigned*) String.data();
95
96 // If the string is aligned do a bulk transfer.
97 if (!((intptr_t)Base & 3)) {
98 Bits.append(Base, Base + Units);
99 Pos = (Units + 1) * 4;
100 } else {
101 // Otherwise do it the hard way.
102 // To be compatible with above bulk transfer, we need to take endianness
103 // into account.
104 static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost,
105 "Unexpected host endianness");
106 if (sys::IsBigEndianHost) {
107 for (Pos += 4; Pos <= Size; Pos += 4) {
108 unsigned V = ((unsigned char)String[Pos - 4] << 24) |
109 ((unsigned char)String[Pos - 3] << 16) |
110 ((unsigned char)String[Pos - 2] << 8) |
111 (unsigned char)String[Pos - 1];
112 Bits.push_back(V);
113 }
114 } else { // Little-endian host
115 for (Pos += 4; Pos <= Size; Pos += 4) {
116 unsigned V = ((unsigned char)String[Pos - 1] << 24) |
117 ((unsigned char)String[Pos - 2] << 16) |
118 ((unsigned char)String[Pos - 3] << 8) |
119 (unsigned char)String[Pos - 4];
120 Bits.push_back(V);
121 }
122 }
123 }
124
125 // With the leftover bits.
126 unsigned V = 0;
127 // Pos will have overshot size by 4 - #bytes left over.
128 // No need to take endianness into account here - this is always executed.
129 switch (Pos - Size) {
130 case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
131 case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
132 case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
133 default: return; // Nothing left.
134 }
135
136 Bits.push_back(V);
137 }
138
139 // AddNodeID - Adds the Bit data of another ID to *this.
AddNodeID(const FoldingSetNodeID & ID)140 void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
141 Bits.append(ID.Bits.begin(), ID.Bits.end());
142 }
143
144 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
145 /// lookup the node in the FoldingSetImpl.
ComputeHash() const146 unsigned FoldingSetNodeID::ComputeHash() const {
147 return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
148 }
149
150 /// operator== - Used to compare two nodes to each other.
151 ///
operator ==(const FoldingSetNodeID & RHS) const152 bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const {
153 return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
154 }
155
156 /// operator== - Used to compare two nodes to each other.
157 ///
operator ==(FoldingSetNodeIDRef RHS) const158 bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
159 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
160 }
161
162 /// Used to compare the "ordering" of two nodes as defined by the
163 /// profiled bits and their ordering defined by memcmp().
operator <(const FoldingSetNodeID & RHS) const164 bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const {
165 return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
166 }
167
operator <(FoldingSetNodeIDRef RHS) const168 bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
169 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
170 }
171
172 /// Intern - Copy this node's data to a memory region allocated from the
173 /// given allocator and return a FoldingSetNodeIDRef describing the
174 /// interned data.
175 FoldingSetNodeIDRef
Intern(BumpPtrAllocator & Allocator) const176 FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
177 unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
178 std::uninitialized_copy(Bits.begin(), Bits.end(), New);
179 return FoldingSetNodeIDRef(New, Bits.size());
180 }
181
182 //===----------------------------------------------------------------------===//
183 /// Helper functions for FoldingSetImpl.
184
185 /// GetNextPtr - In order to save space, each bucket is a
186 /// singly-linked-list. In order to make deletion more efficient, we make
187 /// the list circular, so we can delete a node without computing its hash.
188 /// The problem with this is that the start of the hash buckets are not
189 /// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null:
190 /// use GetBucketPtr when this happens.
GetNextPtr(void * NextInBucketPtr)191 static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr) {
192 // The low bit is set if this is the pointer back to the bucket.
193 if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
194 return nullptr;
195
196 return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr);
197 }
198
199
200 /// testing.
GetBucketPtr(void * NextInBucketPtr)201 static void **GetBucketPtr(void *NextInBucketPtr) {
202 intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
203 assert((Ptr & 1) && "Not a bucket pointer");
204 return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
205 }
206
207 /// GetBucketFor - Hash the specified node ID and return the hash bucket for
208 /// the specified ID.
GetBucketFor(unsigned Hash,void ** Buckets,unsigned NumBuckets)209 static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
210 // NumBuckets is always a power of 2.
211 unsigned BucketNum = Hash & (NumBuckets-1);
212 return Buckets + BucketNum;
213 }
214
215 /// AllocateBuckets - Allocated initialized bucket memory.
AllocateBuckets(unsigned NumBuckets)216 static void **AllocateBuckets(unsigned NumBuckets) {
217 void **Buckets = static_cast<void**>(calloc(NumBuckets+1, sizeof(void*)));
218 // Set the very last bucket to be a non-null "pointer".
219 Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
220 return Buckets;
221 }
222
223 //===----------------------------------------------------------------------===//
224 // FoldingSetImpl Implementation
225
anchor()226 void FoldingSetImpl::anchor() {}
227
FoldingSetImpl(unsigned Log2InitSize)228 FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) {
229 assert(5 < Log2InitSize && Log2InitSize < 32 &&
230 "Initial hash table size out of range");
231 NumBuckets = 1 << Log2InitSize;
232 Buckets = AllocateBuckets(NumBuckets);
233 NumNodes = 0;
234 }
~FoldingSetImpl()235 FoldingSetImpl::~FoldingSetImpl() {
236 free(Buckets);
237 }
clear()238 void FoldingSetImpl::clear() {
239 // Set all but the last bucket to null pointers.
240 memset(Buckets, 0, NumBuckets*sizeof(void*));
241
242 // Set the very last bucket to be a non-null "pointer".
243 Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
244
245 // Reset the node count to zero.
246 NumNodes = 0;
247 }
248
249 /// GrowHashTable - Double the size of the hash table and rehash everything.
250 ///
GrowHashTable()251 void FoldingSetImpl::GrowHashTable() {
252 void **OldBuckets = Buckets;
253 unsigned OldNumBuckets = NumBuckets;
254 NumBuckets <<= 1;
255
256 // Clear out new buckets.
257 Buckets = AllocateBuckets(NumBuckets);
258 NumNodes = 0;
259
260 // Walk the old buckets, rehashing nodes into their new place.
261 FoldingSetNodeID TempID;
262 for (unsigned i = 0; i != OldNumBuckets; ++i) {
263 void *Probe = OldBuckets[i];
264 if (!Probe) continue;
265 while (Node *NodeInBucket = GetNextPtr(Probe)) {
266 // Figure out the next link, remove NodeInBucket from the old link.
267 Probe = NodeInBucket->getNextInBucket();
268 NodeInBucket->SetNextInBucket(nullptr);
269
270 // Insert the node into the new bucket, after recomputing the hash.
271 InsertNode(NodeInBucket,
272 GetBucketFor(ComputeNodeHash(NodeInBucket, TempID),
273 Buckets, NumBuckets));
274 TempID.clear();
275 }
276 }
277
278 free(OldBuckets);
279 }
280
281 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
282 /// return it. If not, return the insertion token that will make insertion
283 /// faster.
284 FoldingSetImpl::Node
FindNodeOrInsertPos(const FoldingSetNodeID & ID,void * & InsertPos)285 *FoldingSetImpl::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
286 void *&InsertPos) {
287 unsigned IDHash = ID.ComputeHash();
288 void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
289 void *Probe = *Bucket;
290
291 InsertPos = nullptr;
292
293 FoldingSetNodeID TempID;
294 while (Node *NodeInBucket = GetNextPtr(Probe)) {
295 if (NodeEquals(NodeInBucket, ID, IDHash, TempID))
296 return NodeInBucket;
297 TempID.clear();
298
299 Probe = NodeInBucket->getNextInBucket();
300 }
301
302 // Didn't find the node, return null with the bucket as the InsertPos.
303 InsertPos = Bucket;
304 return nullptr;
305 }
306
307 /// InsertNode - Insert the specified node into the folding set, knowing that it
308 /// is not already in the map. InsertPos must be obtained from
309 /// FindNodeOrInsertPos.
InsertNode(Node * N,void * InsertPos)310 void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) {
311 assert(!N->getNextInBucket());
312 // Do we need to grow the hashtable?
313 if (NumNodes+1 > NumBuckets*2) {
314 GrowHashTable();
315 FoldingSetNodeID TempID;
316 InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets);
317 }
318
319 ++NumNodes;
320
321 /// The insert position is actually a bucket pointer.
322 void **Bucket = static_cast<void**>(InsertPos);
323
324 void *Next = *Bucket;
325
326 // If this is the first insertion into this bucket, its next pointer will be
327 // null. Pretend as if it pointed to itself, setting the low bit to indicate
328 // that it is a pointer to the bucket.
329 if (!Next)
330 Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
331
332 // Set the node's next pointer, and make the bucket point to the node.
333 N->SetNextInBucket(Next);
334 *Bucket = N;
335 }
336
337 /// RemoveNode - Remove a node from the folding set, returning true if one was
338 /// removed or false if the node was not in the folding set.
RemoveNode(Node * N)339 bool FoldingSetImpl::RemoveNode(Node *N) {
340 // Because each bucket is a circular list, we don't need to compute N's hash
341 // to remove it.
342 void *Ptr = N->getNextInBucket();
343 if (!Ptr) return false; // Not in folding set.
344
345 --NumNodes;
346 N->SetNextInBucket(nullptr);
347
348 // Remember what N originally pointed to, either a bucket or another node.
349 void *NodeNextPtr = Ptr;
350
351 // Chase around the list until we find the node (or bucket) which points to N.
352 while (true) {
353 if (Node *NodeInBucket = GetNextPtr(Ptr)) {
354 // Advance pointer.
355 Ptr = NodeInBucket->getNextInBucket();
356
357 // We found a node that points to N, change it to point to N's next node,
358 // removing N from the list.
359 if (Ptr == N) {
360 NodeInBucket->SetNextInBucket(NodeNextPtr);
361 return true;
362 }
363 } else {
364 void **Bucket = GetBucketPtr(Ptr);
365 Ptr = *Bucket;
366
367 // If we found that the bucket points to N, update the bucket to point to
368 // whatever is next.
369 if (Ptr == N) {
370 *Bucket = NodeNextPtr;
371 return true;
372 }
373 }
374 }
375 }
376
377 /// GetOrInsertNode - If there is an existing simple Node exactly
378 /// equal to the specified node, return it. Otherwise, insert 'N' and it
379 /// instead.
GetOrInsertNode(FoldingSetImpl::Node * N)380 FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) {
381 FoldingSetNodeID ID;
382 GetNodeProfile(N, ID);
383 void *IP;
384 if (Node *E = FindNodeOrInsertPos(ID, IP))
385 return E;
386 InsertNode(N, IP);
387 return N;
388 }
389
390 //===----------------------------------------------------------------------===//
391 // FoldingSetIteratorImpl Implementation
392
FoldingSetIteratorImpl(void ** Bucket)393 FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
394 // Skip to the first non-null non-self-cycle bucket.
395 while (*Bucket != reinterpret_cast<void*>(-1) &&
396 (!*Bucket || !GetNextPtr(*Bucket)))
397 ++Bucket;
398
399 NodePtr = static_cast<FoldingSetNode*>(*Bucket);
400 }
401
advance()402 void FoldingSetIteratorImpl::advance() {
403 // If there is another link within this bucket, go to it.
404 void *Probe = NodePtr->getNextInBucket();
405
406 if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
407 NodePtr = NextNodeInBucket;
408 else {
409 // Otherwise, this is the last link in this bucket.
410 void **Bucket = GetBucketPtr(Probe);
411
412 // Skip to the next non-null non-self-cycle bucket.
413 do {
414 ++Bucket;
415 } while (*Bucket != reinterpret_cast<void*>(-1) &&
416 (!*Bucket || !GetNextPtr(*Bucket)));
417
418 NodePtr = static_cast<FoldingSetNode*>(*Bucket);
419 }
420 }
421
422 //===----------------------------------------------------------------------===//
423 // FoldingSetBucketIteratorImpl Implementation
424
FoldingSetBucketIteratorImpl(void ** Bucket)425 FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
426 Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket;
427 }
428