1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <ctype.h>
60 #include <stdio.h>
61 #include <string.h>
62 
63 #include <openssl/bio.h>
64 #include <openssl/err.h>
65 #include <openssl/mem.h>
66 
67 #include "internal.h"
68 
BN_bin2bn(const uint8_t * in,size_t len,BIGNUM * ret)69 BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret) {
70   unsigned num_words, m;
71   BN_ULONG word = 0;
72   BIGNUM *bn = NULL;
73 
74   if (ret == NULL) {
75     ret = bn = BN_new();
76   }
77 
78   if (ret == NULL) {
79     return NULL;
80   }
81 
82   if (len == 0) {
83     ret->top = 0;
84     return ret;
85   }
86 
87   num_words = ((len - 1) / BN_BYTES) + 1;
88   m = (len - 1) % BN_BYTES;
89   if (bn_wexpand(ret, num_words) == NULL) {
90     if (bn) {
91       BN_free(bn);
92     }
93     return NULL;
94   }
95 
96   ret->top = num_words;
97   ret->neg = 0;
98 
99   while (len--) {
100     word = (word << 8) | *(in++);
101     if (m-- == 0) {
102       ret->d[--num_words] = word;
103       word = 0;
104       m = BN_BYTES - 1;
105     }
106   }
107 
108   /* need to call this due to clear byte at top if avoiding having the top bit
109    * set (-ve number) */
110   bn_correct_top(ret);
111   return ret;
112 }
113 
BN_bn2bin(const BIGNUM * in,uint8_t * out)114 size_t BN_bn2bin(const BIGNUM *in, uint8_t *out) {
115   size_t n, i;
116   BN_ULONG l;
117 
118   n = i = BN_num_bytes(in);
119   while (i--) {
120     l = in->d[i / BN_BYTES];
121     *(out++) = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
122   }
123   return n;
124 }
125 
126 /* constant_time_select_ulong returns |x| if |v| is 1 and |y| if |v| is 0. Its
127  * behavior is undefined if |v| takes any other value. */
constant_time_select_ulong(int v,BN_ULONG x,BN_ULONG y)128 static BN_ULONG constant_time_select_ulong(int v, BN_ULONG x, BN_ULONG y) {
129   BN_ULONG mask = v;
130   mask--;
131 
132   return (~mask & x) | (mask & y);
133 }
134 
135 /* constant_time_le_size_t returns 1 if |x| <= |y| and 0 otherwise. |x| and |y|
136  * must not have their MSBs set. */
constant_time_le_size_t(size_t x,size_t y)137 static int constant_time_le_size_t(size_t x, size_t y) {
138   return ((x - y - 1) >> (sizeof(size_t) * 8 - 1)) & 1;
139 }
140 
141 /* read_word_padded returns the |i|'th word of |in|, if it is not out of
142  * bounds. Otherwise, it returns 0. It does so without branches on the size of
143  * |in|, however it necessarily does not have the same memory access pattern. If
144  * the access would be out of bounds, it reads the last word of |in|. |in| must
145  * not be zero. */
read_word_padded(const BIGNUM * in,size_t i)146 static BN_ULONG read_word_padded(const BIGNUM *in, size_t i) {
147   /* Read |in->d[i]| if valid. Otherwise, read the last word. */
148   BN_ULONG l = in->d[constant_time_select_ulong(
149       constant_time_le_size_t(in->dmax, i), in->dmax - 1, i)];
150 
151   /* Clamp to zero if above |d->top|. */
152   return constant_time_select_ulong(constant_time_le_size_t(in->top, i), 0, l);
153 }
154 
BN_bn2bin_padded(uint8_t * out,size_t len,const BIGNUM * in)155 int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in) {
156   size_t i;
157   BN_ULONG l;
158 
159   /* Special case for |in| = 0. Just branch as the probability is negligible. */
160   if (BN_is_zero(in)) {
161     memset(out, 0, len);
162     return 1;
163   }
164 
165   /* Check if the integer is too big. This case can exit early in non-constant
166    * time. */
167   if ((size_t)in->top > (len + (BN_BYTES - 1)) / BN_BYTES) {
168     return 0;
169   }
170   if ((len % BN_BYTES) != 0) {
171     l = read_word_padded(in, len / BN_BYTES);
172     if (l >> (8 * (len % BN_BYTES)) != 0) {
173       return 0;
174     }
175   }
176 
177   /* Write the bytes out one by one. Serialization is done without branching on
178    * the bits of |in| or on |in->top|, but if the routine would otherwise read
179    * out of bounds, the memory access pattern can't be fixed. However, for an
180    * RSA key of size a multiple of the word size, the probability of BN_BYTES
181    * leading zero octets is low.
182    *
183    * See Falko Stenzke, "Manger's Attack revisited", ICICS 2010. */
184   i = len;
185   while (i--) {
186     l = read_word_padded(in, i / BN_BYTES);
187     *(out++) = (uint8_t)(l >> (8 * (i % BN_BYTES))) & 0xff;
188   }
189   return 1;
190 }
191 
192 static const char hextable[] = "0123456789abcdef";
193 
BN_bn2hex(const BIGNUM * bn)194 char *BN_bn2hex(const BIGNUM *bn) {
195   int i, j, v, z = 0;
196   char *buf;
197   char *p;
198 
199   buf = (char *)OPENSSL_malloc(bn->top * BN_BYTES * 2 + 2);
200   if (buf == NULL) {
201     OPENSSL_PUT_ERROR(BN, BN_bn2hex, ERR_R_MALLOC_FAILURE);
202     return NULL;
203   }
204 
205   p = buf;
206   if (bn->neg) {
207     *(p++) = '-';
208   }
209 
210   if (BN_is_zero(bn)) {
211     *(p++) = '0';
212   }
213 
214   for (i = bn->top - 1; i >= 0; i--) {
215     for (j = BN_BITS2 - 8; j >= 0; j -= 8) {
216       /* strip leading zeros */
217       v = ((int)(bn->d[i] >> (long)j)) & 0xff;
218       if (z || v != 0) {
219         *(p++) = hextable[v >> 4];
220         *(p++) = hextable[v & 0x0f];
221         z = 1;
222       }
223     }
224   }
225   *p = '\0';
226 
227   return buf;
228 }
229 
230 /* decode_hex decodes |i| bytes of hex data from |in| and updates |bn|. */
decode_hex(BIGNUM * bn,const char * in,int i)231 static void decode_hex(BIGNUM *bn, const char *in, int i) {
232   int h, m, j, k, c;
233   BN_ULONG l=0;
234 
235   j = i; /* least significant 'hex' */
236   h = 0;
237   while (j > 0) {
238     m = ((BN_BYTES * 2) <= j) ? (BN_BYTES * 2) : j;
239     l = 0;
240     for (;;) {
241       c = in[j - m];
242       if ((c >= '0') && (c <= '9')) {
243         k = c - '0';
244       } else if ((c >= 'a') && (c <= 'f')) {
245         k = c - 'a' + 10;
246       } else if ((c >= 'A') && (c <= 'F')) {
247         k = c - 'A' + 10;
248       } else {
249         k = 0; /* paranoia */
250       }
251 
252       l = (l << 4) | k;
253 
254       if (--m <= 0) {
255         bn->d[h++] = l;
256         break;
257       }
258     }
259 
260     j -= (BN_BYTES * 2);
261   }
262 
263   bn->top = h;
264 }
265 
266 /* decode_dec decodes |in_len| bytes of decimal data from |in| and updates |bn|. */
decode_dec(BIGNUM * bn,const char * in,int in_len)267 static void decode_dec(BIGNUM *bn, const char *in, int in_len) {
268   int i, j;
269   BN_ULONG l = 0;
270 
271   j = BN_DEC_NUM - (in_len % BN_DEC_NUM);
272   if (j == BN_DEC_NUM) {
273     j = 0;
274   }
275   l = 0;
276   for (i = 0; i < in_len; i++) {
277     l *= 10;
278     l += in[i] - '0';
279     if (++j == BN_DEC_NUM) {
280       BN_mul_word(bn, BN_DEC_CONV);
281       BN_add_word(bn, l);
282       l = 0;
283       j = 0;
284     }
285   }
286 }
287 
288 typedef void (*decode_func) (BIGNUM *bn, const char *in, int i);
289 typedef int (*char_test_func) (int c);
290 
bn_x2bn(BIGNUM ** outp,const char * in,decode_func decode,char_test_func want_char)291 static int bn_x2bn(BIGNUM **outp, const char *in, decode_func decode, char_test_func want_char) {
292   BIGNUM *ret = NULL;
293   int neg = 0, i;
294   int num;
295 
296   if (in == NULL || *in == 0) {
297     return 0;
298   }
299 
300   if (*in == '-') {
301     neg = 1;
302     in++;
303   }
304 
305   for (i = 0; want_char((unsigned char)in[i]); i++) {}
306 
307   num = i + neg;
308   if (outp == NULL) {
309     return num;
310   }
311 
312   /* in is the start of the hex digits, and it is 'i' long */
313   if (*outp == NULL) {
314     ret = BN_new();
315     if (ret == NULL) {
316       return 0;
317     }
318   } else {
319     ret = *outp;
320     BN_zero(ret);
321   }
322 
323   /* i is the number of hex digests; */
324   if (bn_expand(ret, i * 4) == NULL) {
325     goto err;
326   }
327 
328   decode(ret, in, i);
329 
330   bn_correct_top(ret);
331   if (!BN_is_zero(ret)) {
332     ret->neg = neg;
333   }
334 
335   *outp = ret;
336   return num;
337 
338 err:
339   if (*outp == NULL) {
340     BN_free(ret);
341   }
342 
343   return 0;
344 }
345 
BN_hex2bn(BIGNUM ** outp,const char * in)346 int BN_hex2bn(BIGNUM **outp, const char *in) {
347   return bn_x2bn(outp, in, decode_hex, isxdigit);
348 }
349 
BN_bn2dec(const BIGNUM * a)350 char *BN_bn2dec(const BIGNUM *a) {
351   int i = 0, num, ok = 0;
352   char *buf = NULL;
353   char *p;
354   BIGNUM *t = NULL;
355   BN_ULONG *bn_data = NULL, *lp;
356 
357   /* get an upper bound for the length of the decimal integer
358    * num <= (BN_num_bits(a) + 1) * log(2)
359    *     <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1     (rounding error)
360    *     <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1
361    */
362   i = BN_num_bits(a) * 3;
363   num = i / 10 + i / 1000 + 1 + 1;
364   bn_data =
365       (BN_ULONG *)OPENSSL_malloc((num / BN_DEC_NUM + 1) * sizeof(BN_ULONG));
366   buf = (char *)OPENSSL_malloc(num + 3);
367   if ((buf == NULL) || (bn_data == NULL)) {
368     OPENSSL_PUT_ERROR(BN, BN_bn2dec, ERR_R_MALLOC_FAILURE);
369     goto err;
370   }
371   t = BN_dup(a);
372   if (t == NULL) {
373     goto err;
374   }
375 
376 #define BUF_REMAIN (num + 3 - (size_t)(p - buf))
377   p = buf;
378   lp = bn_data;
379   if (BN_is_zero(t)) {
380     *(p++) = '0';
381     *(p++) = '\0';
382   } else {
383     if (BN_is_negative(t)) {
384       *p++ = '-';
385     }
386 
387     while (!BN_is_zero(t)) {
388       *lp = BN_div_word(t, BN_DEC_CONV);
389       lp++;
390     }
391     lp--;
392     /* We now have a series of blocks, BN_DEC_NUM chars
393      * in length, where the last one needs truncation.
394      * The blocks need to be reversed in order. */
395     BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT1, *lp);
396     while (*p) {
397       p++;
398     }
399     while (lp != bn_data) {
400       lp--;
401       BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT2, *lp);
402       while (*p) {
403         p++;
404       }
405     }
406   }
407   ok = 1;
408 
409 err:
410   OPENSSL_free(bn_data);
411   BN_free(t);
412   if (!ok) {
413     OPENSSL_free(buf);
414     buf = NULL;
415   }
416 
417   return buf;
418 }
419 
BN_dec2bn(BIGNUM ** outp,const char * in)420 int BN_dec2bn(BIGNUM **outp, const char *in) {
421   return bn_x2bn(outp, in, decode_dec, isdigit);
422 }
423 
BN_asc2bn(BIGNUM ** outp,const char * in)424 int BN_asc2bn(BIGNUM **outp, const char *in) {
425   const char *const orig_in = in;
426   if (*in == '-') {
427     in++;
428   }
429 
430   if (in[0] == '0' && (in[1] == 'X' || in[1] == 'x')) {
431     if (!BN_hex2bn(outp, in+2)) {
432       return 0;
433     }
434   } else {
435     if (!BN_dec2bn(outp, in)) {
436       return 0;
437     }
438   }
439 
440   if (*orig_in == '-' && !BN_is_zero(*outp)) {
441     (*outp)->neg = 1;
442   }
443 
444   return 1;
445 }
446 
BN_print(BIO * bp,const BIGNUM * a)447 int BN_print(BIO *bp, const BIGNUM *a) {
448   int i, j, v, z = 0;
449   int ret = 0;
450 
451   if (a->neg && BIO_write(bp, "-", 1) != 1) {
452     goto end;
453   }
454 
455   if (BN_is_zero(a) && BIO_write(bp, "0", 1) != 1) {
456     goto end;
457   }
458 
459   for (i = a->top - 1; i >= 0; i--) {
460     for (j = BN_BITS2 - 4; j >= 0; j -= 4) {
461       /* strip leading zeros */
462       v = ((int)(a->d[i] >> (long)j)) & 0x0f;
463       if (z || v != 0) {
464         if (BIO_write(bp, &hextable[v], 1) != 1) {
465           goto end;
466         }
467         z = 1;
468       }
469     }
470   }
471   ret = 1;
472 
473 end:
474   return ret;
475 }
476 
BN_print_fp(FILE * fp,const BIGNUM * a)477 int BN_print_fp(FILE *fp, const BIGNUM *a) {
478   BIO *b;
479   int ret;
480 
481   b = BIO_new(BIO_s_file());
482   if (b == NULL) {
483     return 0;
484   }
485   BIO_set_fp(b, fp, BIO_NOCLOSE);
486   ret = BN_print(b, a);
487   BIO_free(b);
488 
489   return ret;
490 }
491 
BN_get_word(const BIGNUM * bn)492 BN_ULONG BN_get_word(const BIGNUM *bn) {
493   switch (bn->top) {
494     case 0:
495       return 0;
496     case 1:
497       return bn->d[0];
498     default:
499       return BN_MASK2;
500   }
501 }
502