1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <limits.h>
60 #include <openssl/err.h>
61 
62 #include "internal.h"
63 
64 
65 #define asm __asm__
66 
67 #if !defined(OPENSSL_NO_ASM)
68 # if defined(__GNUC__) && __GNUC__>=2
69 #  if defined(OPENSSL_X86)
70    /*
71     * There were two reasons for implementing this template:
72     * - GNU C generates a call to a function (__udivdi3 to be exact)
73     *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
74     *   understand why...);
75     * - divl doesn't only calculate quotient, but also leaves
76     *   remainder in %edx which we can definitely use here:-)
77     *
78     *					<appro@fy.chalmers.se>
79     */
80 #undef div_asm
81 #  define div_asm(n0,n1,d0)		\
82 	({  asm volatile (			\
83 		"divl	%4"			\
84 		: "=a"(q), "=d"(rem)		\
85 		: "a"(n1), "d"(n0), "g"(d0)	\
86 		: "cc");			\
87 	    q;					\
88 	})
89 #  define REMAINDER_IS_ALREADY_CALCULATED
90 #  elif defined(OPENSSL_X86_64)
91    /*
92     * Same story here, but it's 128-bit by 64-bit division. Wow!
93     *					<appro@fy.chalmers.se>
94     */
95 #  undef div_asm
96 #  define div_asm(n0,n1,d0)		\
97 	({  asm volatile (			\
98 		"divq	%4"			\
99 		: "=a"(q), "=d"(rem)		\
100 		: "a"(n1), "d"(n0), "g"(d0)	\
101 		: "cc");			\
102 	    q;					\
103 	})
104 #  define REMAINDER_IS_ALREADY_CALCULATED
105 #  endif /* __<cpu> */
106 # endif /* __GNUC__ */
107 #endif /* OPENSSL_NO_ASM */
108 
109 /* BN_div computes  dv := num / divisor,  rounding towards
110  * zero, and sets up rm  such that  dv*divisor + rm = num  holds.
111  * Thus:
112  *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero)
113  *     rm->neg == num->neg                 (unless the remainder is zero)
114  * If 'dv' or 'rm' is NULL, the respective value is not returned. */
BN_div(BIGNUM * dv,BIGNUM * rm,const BIGNUM * num,const BIGNUM * divisor,BN_CTX * ctx)115 int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
116            BN_CTX *ctx) {
117   int norm_shift, i, loop;
118   BIGNUM *tmp, wnum, *snum, *sdiv, *res;
119   BN_ULONG *resp, *wnump;
120   BN_ULONG d0, d1;
121   int num_n, div_n;
122   int no_branch = 0;
123 
124   /* Invalid zero-padding would have particularly bad consequences
125    * so don't just rely on bn_check_top() here */
126   if ((num->top > 0 && num->d[num->top - 1] == 0) ||
127       (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
128     OPENSSL_PUT_ERROR(BN, BN_div, BN_R_NOT_INITIALIZED);
129     return 0;
130   }
131 
132   if ((num->flags & BN_FLG_CONSTTIME) != 0 ||
133       (divisor->flags & BN_FLG_CONSTTIME) != 0) {
134     no_branch = 1;
135   }
136 
137   if (BN_is_zero(divisor)) {
138     OPENSSL_PUT_ERROR(BN, BN_div, BN_R_DIV_BY_ZERO);
139     return 0;
140   }
141 
142   if (!no_branch && BN_ucmp(num, divisor) < 0) {
143     if (rm != NULL) {
144       if (BN_copy(rm, num) == NULL) {
145         return 0;
146       }
147     }
148     if (dv != NULL) {
149       BN_zero(dv);
150     }
151     return 1;
152   }
153 
154   BN_CTX_start(ctx);
155   tmp = BN_CTX_get(ctx);
156   snum = BN_CTX_get(ctx);
157   sdiv = BN_CTX_get(ctx);
158   if (dv == NULL) {
159     res = BN_CTX_get(ctx);
160   } else {
161     res = dv;
162   }
163   if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
164     goto err;
165   }
166 
167   /* First we normalise the numbers */
168   norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
169   if (!(BN_lshift(sdiv, divisor, norm_shift))) {
170     goto err;
171   }
172   sdiv->neg = 0;
173   norm_shift += BN_BITS2;
174   if (!(BN_lshift(snum, num, norm_shift))) {
175     goto err;
176   }
177   snum->neg = 0;
178 
179   if (no_branch) {
180     /* Since we don't know whether snum is larger than sdiv,
181      * we pad snum with enough zeroes without changing its
182      * value.
183      */
184     if (snum->top <= sdiv->top + 1) {
185       if (bn_wexpand(snum, sdiv->top + 2) == NULL) {
186         goto err;
187       }
188       for (i = snum->top; i < sdiv->top + 2; i++) {
189         snum->d[i] = 0;
190       }
191       snum->top = sdiv->top + 2;
192     } else {
193       if (bn_wexpand(snum, snum->top + 1) == NULL) {
194         goto err;
195       }
196       snum->d[snum->top] = 0;
197       snum->top++;
198     }
199   }
200 
201   div_n = sdiv->top;
202   num_n = snum->top;
203   loop = num_n - div_n;
204   /* Lets setup a 'window' into snum
205    * This is the part that corresponds to the current
206    * 'area' being divided */
207   wnum.neg = 0;
208   wnum.d = &(snum->d[loop]);
209   wnum.top = div_n;
210   /* only needed when BN_ucmp messes up the values between top and max */
211   wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
212 
213   /* Get the top 2 words of sdiv */
214   /* div_n=sdiv->top; */
215   d0 = sdiv->d[div_n - 1];
216   d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
217 
218   /* pointer to the 'top' of snum */
219   wnump = &(snum->d[num_n - 1]);
220 
221   /* Setup to 'res' */
222   res->neg = (num->neg ^ divisor->neg);
223   if (!bn_wexpand(res, (loop + 1))) {
224     goto err;
225   }
226   res->top = loop - no_branch;
227   resp = &(res->d[loop - 1]);
228 
229   /* space for temp */
230   if (!bn_wexpand(tmp, (div_n + 1))) {
231     goto err;
232   }
233 
234   if (!no_branch) {
235     if (BN_ucmp(&wnum, sdiv) >= 0) {
236       bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
237       *resp = 1;
238     } else {
239       res->top--;
240     }
241   }
242 
243   /* if res->top == 0 then clear the neg value otherwise decrease
244    * the resp pointer */
245   if (res->top == 0) {
246     res->neg = 0;
247   } else {
248     resp--;
249   }
250 
251   for (i = 0; i < loop - 1; i++, wnump--, resp--) {
252     BN_ULONG q, l0;
253     /* the first part of the loop uses the top two words of snum and sdiv to
254      * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */
255     BN_ULONG n0, n1, rem = 0;
256 
257     n0 = wnump[0];
258     n1 = wnump[-1];
259     if (n0 == d0) {
260       q = BN_MASK2;
261     } else {
262       /* n0 < d0 */
263 #ifdef BN_LLONG
264       BN_ULLONG t2;
265 
266 #if defined(BN_LLONG) && !defined(div_asm)
267       q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0);
268 #else
269       q = div_asm(n0, n1, d0);
270 #endif
271 
272 #ifndef REMAINDER_IS_ALREADY_CALCULATED
273       /* rem doesn't have to be BN_ULLONG. The least we know it's less that d0,
274        * isn't it? */
275       rem = (n1 - q * d0) & BN_MASK2;
276 #endif
277 
278       t2 = (BN_ULLONG)d1 * q;
279 
280       for (;;) {
281         if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) {
282           break;
283         }
284         q--;
285         rem += d0;
286         if (rem < d0) {
287           break; /* don't let rem overflow */
288         }
289         t2 -= d1;
290       }
291 #else /* !BN_LLONG */
292       BN_ULONG t2l, t2h;
293 
294 #if defined(div_asm)
295       q = div_asm(n0, n1, d0);
296 #else
297       q = bn_div_words(n0, n1, d0);
298 #endif
299 
300 #ifndef REMAINDER_IS_ALREADY_CALCULATED
301       rem = (n1 - q * d0) & BN_MASK2;
302 #endif
303 
304 #if defined(BN_UMULT_LOHI)
305       BN_UMULT_LOHI(t2l, t2h, d1, q);
306 #elif defined(BN_UMULT_HIGH)
307       t2l = d1 * q;
308       t2h = BN_UMULT_HIGH(d1, q);
309 #else
310       {
311         BN_ULONG ql, qh;
312         t2l = LBITS(d1);
313         t2h = HBITS(d1);
314         ql = LBITS(q);
315         qh = HBITS(q);
316         mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
317       }
318 #endif
319 
320       for (;;) {
321         if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) {
322           break;
323         }
324         q--;
325         rem += d0;
326         if (rem < d0) {
327           break; /* don't let rem overflow */
328         }
329         if (t2l < d1) {
330           t2h--;
331         }
332         t2l -= d1;
333       }
334 #endif /* !BN_LLONG */
335     }
336 
337     l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
338     tmp->d[div_n] = l0;
339     wnum.d--;
340     /* ingore top values of the bignums just sub the two
341      * BN_ULONG arrays with bn_sub_words */
342     if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
343       /* Note: As we have considered only the leading
344        * two BN_ULONGs in the calculation of q, sdiv * q
345        * might be greater than wnum (but then (q-1) * sdiv
346        * is less or equal than wnum)
347        */
348       q--;
349       if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
350         /* we can't have an overflow here (assuming
351          * that q != 0, but if q == 0 then tmp is
352          * zero anyway) */
353         (*wnump)++;
354       }
355     }
356     /* store part of the result */
357     *resp = q;
358   }
359   bn_correct_top(snum);
360   if (rm != NULL) {
361     /* Keep a copy of the neg flag in num because if rm==num
362      * BN_rshift() will overwrite it.
363      */
364     int neg = num->neg;
365     if (!BN_rshift(rm, snum, norm_shift)) {
366       goto err;
367     }
368     if (!BN_is_zero(rm)) {
369       rm->neg = neg;
370     }
371   }
372   if (no_branch) {
373     bn_correct_top(res);
374   }
375   BN_CTX_end(ctx);
376   return 1;
377 
378 err:
379   BN_CTX_end(ctx);
380   return 0;
381 }
382 
BN_nnmod(BIGNUM * r,const BIGNUM * m,const BIGNUM * d,BN_CTX * ctx)383 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
384   if (!(BN_mod(r, m, d, ctx))) {
385     return 0;
386   }
387   if (!r->neg) {
388     return 1;
389   }
390 
391   /* now -|d| < r < 0, so we have to set r := r + |d|. */
392   return (d->neg ? BN_sub : BN_add)(r, r, d);
393 }
394 
BN_mod_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)395 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
396                BN_CTX *ctx) {
397   if (!BN_add(r, a, b)) {
398     return 0;
399   }
400   return BN_nnmod(r, r, m, ctx);
401 }
402 
BN_mod_add_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m)403 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
404                      const BIGNUM *m) {
405   if (!BN_uadd(r, a, b)) {
406     return 0;
407   }
408   if (BN_ucmp(r, m) >= 0) {
409     return BN_usub(r, r, m);
410   }
411   return 1;
412 }
413 
BN_mod_sub(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)414 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
415                BN_CTX *ctx) {
416   if (!BN_sub(r, a, b)) {
417     return 0;
418   }
419   return BN_nnmod(r, r, m, ctx);
420 }
421 
422 /* BN_mod_sub variant that may be used if both  a  and  b  are non-negative
423  * and less than  m */
BN_mod_sub_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m)424 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
425                      const BIGNUM *m) {
426   if (!BN_sub(r, a, b)) {
427     return 0;
428   }
429   if (r->neg) {
430     return BN_add(r, r, m);
431   }
432   return 1;
433 }
434 
BN_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)435 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
436                BN_CTX *ctx) {
437   BIGNUM *t;
438   int ret = 0;
439 
440   BN_CTX_start(ctx);
441   t = BN_CTX_get(ctx);
442   if (t == NULL) {
443     goto err;
444   }
445 
446   if (a == b) {
447     if (!BN_sqr(t, a, ctx)) {
448       goto err;
449     }
450   } else {
451     if (!BN_mul(t, a, b, ctx)) {
452       goto err;
453     }
454   }
455 
456   if (!BN_nnmod(r, t, m, ctx)) {
457     goto err;
458   }
459 
460   ret = 1;
461 
462 err:
463   BN_CTX_end(ctx);
464   return ret;
465 }
466 
BN_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)467 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
468   if (!BN_sqr(r, a, ctx)) {
469     return 0;
470   }
471 
472   /* r->neg == 0,  thus we don't need BN_nnmod */
473   return BN_mod(r, r, m, ctx);
474 }
475 
BN_mod_lshift(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m,BN_CTX * ctx)476 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
477                   BN_CTX *ctx) {
478   BIGNUM *abs_m = NULL;
479   int ret;
480 
481   if (!BN_nnmod(r, a, m, ctx)) {
482     return 0;
483   }
484 
485   if (m->neg) {
486     abs_m = BN_dup(m);
487     if (abs_m == NULL) {
488       return 0;
489     }
490     abs_m->neg = 0;
491   }
492 
493   ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
494 
495   BN_free(abs_m);
496   return ret;
497 }
498 
BN_mod_lshift_quick(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m)499 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
500   if (r != a) {
501     if (BN_copy(r, a) == NULL) {
502       return 0;
503     }
504   }
505 
506   while (n > 0) {
507     int max_shift;
508 
509     /* 0 < r < m */
510     max_shift = BN_num_bits(m) - BN_num_bits(r);
511     /* max_shift >= 0 */
512 
513     if (max_shift < 0) {
514       OPENSSL_PUT_ERROR(BN, BN_mod_lshift_quick, BN_R_INPUT_NOT_REDUCED);
515       return 0;
516     }
517 
518     if (max_shift > n) {
519       max_shift = n;
520     }
521 
522     if (max_shift) {
523       if (!BN_lshift(r, r, max_shift)) {
524         return 0;
525       }
526       n -= max_shift;
527     } else {
528       if (!BN_lshift1(r, r)) {
529         return 0;
530       }
531       --n;
532     }
533 
534     /* BN_num_bits(r) <= BN_num_bits(m) */
535     if (BN_cmp(r, m) >= 0) {
536       if (!BN_sub(r, r, m)) {
537         return 0;
538       }
539     }
540   }
541 
542   return 1;
543 }
544 
BN_mod_lshift1(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)545 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
546   if (!BN_lshift1(r, a)) {
547     return 0;
548   }
549 
550   return BN_nnmod(r, r, m, ctx);
551 }
552 
BN_mod_lshift1_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * m)553 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
554   if (!BN_lshift1(r, a)) {
555     return 0;
556   }
557   if (BN_cmp(r, m) >= 0) {
558     return BN_sub(r, r, m);
559   }
560 
561   return 1;
562 }
563 
BN_div_word(BIGNUM * a,BN_ULONG w)564 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
565   BN_ULONG ret = 0;
566   int i, j;
567 
568   w &= BN_MASK2;
569 
570   if (!w) {
571     /* actually this an error (division by zero) */
572     return (BN_ULONG) - 1;
573   }
574 
575   if (a->top == 0) {
576     return 0;
577   }
578 
579   /* normalize input (so bn_div_words doesn't complain) */
580   j = BN_BITS2 - BN_num_bits_word(w);
581   w <<= j;
582   if (!BN_lshift(a, a, j)) {
583     return (BN_ULONG) - 1;
584   }
585 
586   for (i = a->top - 1; i >= 0; i--) {
587     BN_ULONG l, d;
588 
589     l = a->d[i];
590     d = bn_div_words(ret, l, w);
591     ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
592     a->d[i] = d;
593   }
594 
595   if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
596     a->top--;
597   }
598 
599   ret >>= j;
600   return ret;
601 }
602 
BN_mod_word(const BIGNUM * a,BN_ULONG w)603 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
604 #ifndef BN_LLONG
605   BN_ULONG ret = 0;
606 #else
607   BN_ULLONG ret = 0;
608 #endif
609   int i;
610 
611   if (w == 0) {
612     return (BN_ULONG) -1;
613   }
614 
615   w &= BN_MASK2;
616   for (i = a->top - 1; i >= 0; i--) {
617 #ifndef BN_LLONG
618     ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
619     ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
620 #else
621     ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
622 #endif
623   }
624   return (BN_ULONG)ret;
625 }
626