1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/bn.h>
58
59 #include <limits.h>
60 #include <openssl/err.h>
61
62 #include "internal.h"
63
64
65 #define asm __asm__
66
67 #if !defined(OPENSSL_NO_ASM)
68 # if defined(__GNUC__) && __GNUC__>=2
69 # if defined(OPENSSL_X86)
70 /*
71 * There were two reasons for implementing this template:
72 * - GNU C generates a call to a function (__udivdi3 to be exact)
73 * in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
74 * understand why...);
75 * - divl doesn't only calculate quotient, but also leaves
76 * remainder in %edx which we can definitely use here:-)
77 *
78 * <appro@fy.chalmers.se>
79 */
80 #undef div_asm
81 # define div_asm(n0,n1,d0) \
82 ({ asm volatile ( \
83 "divl %4" \
84 : "=a"(q), "=d"(rem) \
85 : "a"(n1), "d"(n0), "g"(d0) \
86 : "cc"); \
87 q; \
88 })
89 # define REMAINDER_IS_ALREADY_CALCULATED
90 # elif defined(OPENSSL_X86_64)
91 /*
92 * Same story here, but it's 128-bit by 64-bit division. Wow!
93 * <appro@fy.chalmers.se>
94 */
95 # undef div_asm
96 # define div_asm(n0,n1,d0) \
97 ({ asm volatile ( \
98 "divq %4" \
99 : "=a"(q), "=d"(rem) \
100 : "a"(n1), "d"(n0), "g"(d0) \
101 : "cc"); \
102 q; \
103 })
104 # define REMAINDER_IS_ALREADY_CALCULATED
105 # endif /* __<cpu> */
106 # endif /* __GNUC__ */
107 #endif /* OPENSSL_NO_ASM */
108
109 /* BN_div computes dv := num / divisor, rounding towards
110 * zero, and sets up rm such that dv*divisor + rm = num holds.
111 * Thus:
112 * dv->neg == num->neg ^ divisor->neg (unless the result is zero)
113 * rm->neg == num->neg (unless the remainder is zero)
114 * If 'dv' or 'rm' is NULL, the respective value is not returned. */
BN_div(BIGNUM * dv,BIGNUM * rm,const BIGNUM * num,const BIGNUM * divisor,BN_CTX * ctx)115 int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
116 BN_CTX *ctx) {
117 int norm_shift, i, loop;
118 BIGNUM *tmp, wnum, *snum, *sdiv, *res;
119 BN_ULONG *resp, *wnump;
120 BN_ULONG d0, d1;
121 int num_n, div_n;
122 int no_branch = 0;
123
124 /* Invalid zero-padding would have particularly bad consequences
125 * so don't just rely on bn_check_top() here */
126 if ((num->top > 0 && num->d[num->top - 1] == 0) ||
127 (divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
128 OPENSSL_PUT_ERROR(BN, BN_div, BN_R_NOT_INITIALIZED);
129 return 0;
130 }
131
132 if ((num->flags & BN_FLG_CONSTTIME) != 0 ||
133 (divisor->flags & BN_FLG_CONSTTIME) != 0) {
134 no_branch = 1;
135 }
136
137 if (BN_is_zero(divisor)) {
138 OPENSSL_PUT_ERROR(BN, BN_div, BN_R_DIV_BY_ZERO);
139 return 0;
140 }
141
142 if (!no_branch && BN_ucmp(num, divisor) < 0) {
143 if (rm != NULL) {
144 if (BN_copy(rm, num) == NULL) {
145 return 0;
146 }
147 }
148 if (dv != NULL) {
149 BN_zero(dv);
150 }
151 return 1;
152 }
153
154 BN_CTX_start(ctx);
155 tmp = BN_CTX_get(ctx);
156 snum = BN_CTX_get(ctx);
157 sdiv = BN_CTX_get(ctx);
158 if (dv == NULL) {
159 res = BN_CTX_get(ctx);
160 } else {
161 res = dv;
162 }
163 if (sdiv == NULL || res == NULL || tmp == NULL || snum == NULL) {
164 goto err;
165 }
166
167 /* First we normalise the numbers */
168 norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
169 if (!(BN_lshift(sdiv, divisor, norm_shift))) {
170 goto err;
171 }
172 sdiv->neg = 0;
173 norm_shift += BN_BITS2;
174 if (!(BN_lshift(snum, num, norm_shift))) {
175 goto err;
176 }
177 snum->neg = 0;
178
179 if (no_branch) {
180 /* Since we don't know whether snum is larger than sdiv,
181 * we pad snum with enough zeroes without changing its
182 * value.
183 */
184 if (snum->top <= sdiv->top + 1) {
185 if (bn_wexpand(snum, sdiv->top + 2) == NULL) {
186 goto err;
187 }
188 for (i = snum->top; i < sdiv->top + 2; i++) {
189 snum->d[i] = 0;
190 }
191 snum->top = sdiv->top + 2;
192 } else {
193 if (bn_wexpand(snum, snum->top + 1) == NULL) {
194 goto err;
195 }
196 snum->d[snum->top] = 0;
197 snum->top++;
198 }
199 }
200
201 div_n = sdiv->top;
202 num_n = snum->top;
203 loop = num_n - div_n;
204 /* Lets setup a 'window' into snum
205 * This is the part that corresponds to the current
206 * 'area' being divided */
207 wnum.neg = 0;
208 wnum.d = &(snum->d[loop]);
209 wnum.top = div_n;
210 /* only needed when BN_ucmp messes up the values between top and max */
211 wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
212
213 /* Get the top 2 words of sdiv */
214 /* div_n=sdiv->top; */
215 d0 = sdiv->d[div_n - 1];
216 d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
217
218 /* pointer to the 'top' of snum */
219 wnump = &(snum->d[num_n - 1]);
220
221 /* Setup to 'res' */
222 res->neg = (num->neg ^ divisor->neg);
223 if (!bn_wexpand(res, (loop + 1))) {
224 goto err;
225 }
226 res->top = loop - no_branch;
227 resp = &(res->d[loop - 1]);
228
229 /* space for temp */
230 if (!bn_wexpand(tmp, (div_n + 1))) {
231 goto err;
232 }
233
234 if (!no_branch) {
235 if (BN_ucmp(&wnum, sdiv) >= 0) {
236 bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
237 *resp = 1;
238 } else {
239 res->top--;
240 }
241 }
242
243 /* if res->top == 0 then clear the neg value otherwise decrease
244 * the resp pointer */
245 if (res->top == 0) {
246 res->neg = 0;
247 } else {
248 resp--;
249 }
250
251 for (i = 0; i < loop - 1; i++, wnump--, resp--) {
252 BN_ULONG q, l0;
253 /* the first part of the loop uses the top two words of snum and sdiv to
254 * calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv */
255 BN_ULONG n0, n1, rem = 0;
256
257 n0 = wnump[0];
258 n1 = wnump[-1];
259 if (n0 == d0) {
260 q = BN_MASK2;
261 } else {
262 /* n0 < d0 */
263 #ifdef BN_LLONG
264 BN_ULLONG t2;
265
266 #if defined(BN_LLONG) && !defined(div_asm)
267 q = (BN_ULONG)(((((BN_ULLONG)n0) << BN_BITS2) | n1) / d0);
268 #else
269 q = div_asm(n0, n1, d0);
270 #endif
271
272 #ifndef REMAINDER_IS_ALREADY_CALCULATED
273 /* rem doesn't have to be BN_ULLONG. The least we know it's less that d0,
274 * isn't it? */
275 rem = (n1 - q * d0) & BN_MASK2;
276 #endif
277
278 t2 = (BN_ULLONG)d1 * q;
279
280 for (;;) {
281 if (t2 <= ((((BN_ULLONG)rem) << BN_BITS2) | wnump[-2])) {
282 break;
283 }
284 q--;
285 rem += d0;
286 if (rem < d0) {
287 break; /* don't let rem overflow */
288 }
289 t2 -= d1;
290 }
291 #else /* !BN_LLONG */
292 BN_ULONG t2l, t2h;
293
294 #if defined(div_asm)
295 q = div_asm(n0, n1, d0);
296 #else
297 q = bn_div_words(n0, n1, d0);
298 #endif
299
300 #ifndef REMAINDER_IS_ALREADY_CALCULATED
301 rem = (n1 - q * d0) & BN_MASK2;
302 #endif
303
304 #if defined(BN_UMULT_LOHI)
305 BN_UMULT_LOHI(t2l, t2h, d1, q);
306 #elif defined(BN_UMULT_HIGH)
307 t2l = d1 * q;
308 t2h = BN_UMULT_HIGH(d1, q);
309 #else
310 {
311 BN_ULONG ql, qh;
312 t2l = LBITS(d1);
313 t2h = HBITS(d1);
314 ql = LBITS(q);
315 qh = HBITS(q);
316 mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
317 }
318 #endif
319
320 for (;;) {
321 if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2]))) {
322 break;
323 }
324 q--;
325 rem += d0;
326 if (rem < d0) {
327 break; /* don't let rem overflow */
328 }
329 if (t2l < d1) {
330 t2h--;
331 }
332 t2l -= d1;
333 }
334 #endif /* !BN_LLONG */
335 }
336
337 l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
338 tmp->d[div_n] = l0;
339 wnum.d--;
340 /* ingore top values of the bignums just sub the two
341 * BN_ULONG arrays with bn_sub_words */
342 if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) {
343 /* Note: As we have considered only the leading
344 * two BN_ULONGs in the calculation of q, sdiv * q
345 * might be greater than wnum (but then (q-1) * sdiv
346 * is less or equal than wnum)
347 */
348 q--;
349 if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) {
350 /* we can't have an overflow here (assuming
351 * that q != 0, but if q == 0 then tmp is
352 * zero anyway) */
353 (*wnump)++;
354 }
355 }
356 /* store part of the result */
357 *resp = q;
358 }
359 bn_correct_top(snum);
360 if (rm != NULL) {
361 /* Keep a copy of the neg flag in num because if rm==num
362 * BN_rshift() will overwrite it.
363 */
364 int neg = num->neg;
365 if (!BN_rshift(rm, snum, norm_shift)) {
366 goto err;
367 }
368 if (!BN_is_zero(rm)) {
369 rm->neg = neg;
370 }
371 }
372 if (no_branch) {
373 bn_correct_top(res);
374 }
375 BN_CTX_end(ctx);
376 return 1;
377
378 err:
379 BN_CTX_end(ctx);
380 return 0;
381 }
382
BN_nnmod(BIGNUM * r,const BIGNUM * m,const BIGNUM * d,BN_CTX * ctx)383 int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) {
384 if (!(BN_mod(r, m, d, ctx))) {
385 return 0;
386 }
387 if (!r->neg) {
388 return 1;
389 }
390
391 /* now -|d| < r < 0, so we have to set r := r + |d|. */
392 return (d->neg ? BN_sub : BN_add)(r, r, d);
393 }
394
BN_mod_add(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)395 int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
396 BN_CTX *ctx) {
397 if (!BN_add(r, a, b)) {
398 return 0;
399 }
400 return BN_nnmod(r, r, m, ctx);
401 }
402
BN_mod_add_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m)403 int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
404 const BIGNUM *m) {
405 if (!BN_uadd(r, a, b)) {
406 return 0;
407 }
408 if (BN_ucmp(r, m) >= 0) {
409 return BN_usub(r, r, m);
410 }
411 return 1;
412 }
413
BN_mod_sub(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)414 int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
415 BN_CTX *ctx) {
416 if (!BN_sub(r, a, b)) {
417 return 0;
418 }
419 return BN_nnmod(r, r, m, ctx);
420 }
421
422 /* BN_mod_sub variant that may be used if both a and b are non-negative
423 * and less than m */
BN_mod_sub_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m)424 int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
425 const BIGNUM *m) {
426 if (!BN_sub(r, a, b)) {
427 return 0;
428 }
429 if (r->neg) {
430 return BN_add(r, r, m);
431 }
432 return 1;
433 }
434
BN_mod_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,const BIGNUM * m,BN_CTX * ctx)435 int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m,
436 BN_CTX *ctx) {
437 BIGNUM *t;
438 int ret = 0;
439
440 BN_CTX_start(ctx);
441 t = BN_CTX_get(ctx);
442 if (t == NULL) {
443 goto err;
444 }
445
446 if (a == b) {
447 if (!BN_sqr(t, a, ctx)) {
448 goto err;
449 }
450 } else {
451 if (!BN_mul(t, a, b, ctx)) {
452 goto err;
453 }
454 }
455
456 if (!BN_nnmod(r, t, m, ctx)) {
457 goto err;
458 }
459
460 ret = 1;
461
462 err:
463 BN_CTX_end(ctx);
464 return ret;
465 }
466
BN_mod_sqr(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)467 int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
468 if (!BN_sqr(r, a, ctx)) {
469 return 0;
470 }
471
472 /* r->neg == 0, thus we don't need BN_nnmod */
473 return BN_mod(r, r, m, ctx);
474 }
475
BN_mod_lshift(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m,BN_CTX * ctx)476 int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m,
477 BN_CTX *ctx) {
478 BIGNUM *abs_m = NULL;
479 int ret;
480
481 if (!BN_nnmod(r, a, m, ctx)) {
482 return 0;
483 }
484
485 if (m->neg) {
486 abs_m = BN_dup(m);
487 if (abs_m == NULL) {
488 return 0;
489 }
490 abs_m->neg = 0;
491 }
492
493 ret = BN_mod_lshift_quick(r, r, n, (abs_m ? abs_m : m));
494
495 BN_free(abs_m);
496 return ret;
497 }
498
BN_mod_lshift_quick(BIGNUM * r,const BIGNUM * a,int n,const BIGNUM * m)499 int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) {
500 if (r != a) {
501 if (BN_copy(r, a) == NULL) {
502 return 0;
503 }
504 }
505
506 while (n > 0) {
507 int max_shift;
508
509 /* 0 < r < m */
510 max_shift = BN_num_bits(m) - BN_num_bits(r);
511 /* max_shift >= 0 */
512
513 if (max_shift < 0) {
514 OPENSSL_PUT_ERROR(BN, BN_mod_lshift_quick, BN_R_INPUT_NOT_REDUCED);
515 return 0;
516 }
517
518 if (max_shift > n) {
519 max_shift = n;
520 }
521
522 if (max_shift) {
523 if (!BN_lshift(r, r, max_shift)) {
524 return 0;
525 }
526 n -= max_shift;
527 } else {
528 if (!BN_lshift1(r, r)) {
529 return 0;
530 }
531 --n;
532 }
533
534 /* BN_num_bits(r) <= BN_num_bits(m) */
535 if (BN_cmp(r, m) >= 0) {
536 if (!BN_sub(r, r, m)) {
537 return 0;
538 }
539 }
540 }
541
542 return 1;
543 }
544
BN_mod_lshift1(BIGNUM * r,const BIGNUM * a,const BIGNUM * m,BN_CTX * ctx)545 int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) {
546 if (!BN_lshift1(r, a)) {
547 return 0;
548 }
549
550 return BN_nnmod(r, r, m, ctx);
551 }
552
BN_mod_lshift1_quick(BIGNUM * r,const BIGNUM * a,const BIGNUM * m)553 int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) {
554 if (!BN_lshift1(r, a)) {
555 return 0;
556 }
557 if (BN_cmp(r, m) >= 0) {
558 return BN_sub(r, r, m);
559 }
560
561 return 1;
562 }
563
BN_div_word(BIGNUM * a,BN_ULONG w)564 BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) {
565 BN_ULONG ret = 0;
566 int i, j;
567
568 w &= BN_MASK2;
569
570 if (!w) {
571 /* actually this an error (division by zero) */
572 return (BN_ULONG) - 1;
573 }
574
575 if (a->top == 0) {
576 return 0;
577 }
578
579 /* normalize input (so bn_div_words doesn't complain) */
580 j = BN_BITS2 - BN_num_bits_word(w);
581 w <<= j;
582 if (!BN_lshift(a, a, j)) {
583 return (BN_ULONG) - 1;
584 }
585
586 for (i = a->top - 1; i >= 0; i--) {
587 BN_ULONG l, d;
588
589 l = a->d[i];
590 d = bn_div_words(ret, l, w);
591 ret = (l - ((d * w) & BN_MASK2)) & BN_MASK2;
592 a->d[i] = d;
593 }
594
595 if ((a->top > 0) && (a->d[a->top - 1] == 0)) {
596 a->top--;
597 }
598
599 ret >>= j;
600 return ret;
601 }
602
BN_mod_word(const BIGNUM * a,BN_ULONG w)603 BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) {
604 #ifndef BN_LLONG
605 BN_ULONG ret = 0;
606 #else
607 BN_ULLONG ret = 0;
608 #endif
609 int i;
610
611 if (w == 0) {
612 return (BN_ULONG) -1;
613 }
614
615 w &= BN_MASK2;
616 for (i = a->top - 1; i >= 0; i--) {
617 #ifndef BN_LLONG
618 ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w;
619 ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w;
620 #else
621 ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w);
622 #endif
623 }
624 return (BN_ULONG)ret;
625 }
626