1 /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de>
2 * and Bodo Moeller for the OpenSSL project. */
3 /* ====================================================================
4 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * 3. All advertising materials mentioning features or use of this
19 * software must display the following acknowledgment:
20 * "This product includes software developed by the OpenSSL Project
21 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
22 *
23 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
24 * endorse or promote products derived from this software without
25 * prior written permission. For written permission, please contact
26 * openssl-core@openssl.org.
27 *
28 * 5. Products derived from this software may not be called "OpenSSL"
29 * nor may "OpenSSL" appear in their names without prior written
30 * permission of the OpenSSL Project.
31 *
32 * 6. Redistributions of any form whatsoever must retain the following
33 * acknowledgment:
34 * "This product includes software developed by the OpenSSL Project
35 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
38 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
40 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
41 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
43 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
44 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
45 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
46 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
48 * OF THE POSSIBILITY OF SUCH DAMAGE.
49 * ====================================================================
50 *
51 * This product includes cryptographic software written by Eric Young
52 * (eay@cryptsoft.com). This product includes software written by Tim
53 * Hudson (tjh@cryptsoft.com). */
54
55 #include <openssl/bn.h>
56
57 #include <openssl/err.h>
58
59
60 /* Returns 'ret' such that
61 * ret^2 == a (mod p),
62 * using the Tonelli/Shanks algorithm (cf. Henri Cohen, "A Course
63 * in Algebraic Computational Number Theory", algorithm 1.5.1).
64 * 'p' must be prime! */
BN_mod_sqrt(BIGNUM * in,const BIGNUM * a,const BIGNUM * p,BN_CTX * ctx)65 BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
66 BIGNUM *ret = in;
67 int err = 1;
68 int r;
69 BIGNUM *A, *b, *q, *t, *x, *y;
70 int e, i, j;
71
72 if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
73 if (BN_abs_is_word(p, 2)) {
74 if (ret == NULL) {
75 ret = BN_new();
76 }
77 if (ret == NULL) {
78 goto end;
79 }
80 if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
81 if (ret != in) {
82 BN_free(ret);
83 }
84 return NULL;
85 }
86 return ret;
87 }
88
89 OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_P_IS_NOT_PRIME);
90 return (NULL);
91 }
92
93 if (BN_is_zero(a) || BN_is_one(a)) {
94 if (ret == NULL) {
95 ret = BN_new();
96 }
97 if (ret == NULL) {
98 goto end;
99 }
100 if (!BN_set_word(ret, BN_is_one(a))) {
101 if (ret != in) {
102 BN_free(ret);
103 }
104 return NULL;
105 }
106 return ret;
107 }
108
109 BN_CTX_start(ctx);
110 A = BN_CTX_get(ctx);
111 b = BN_CTX_get(ctx);
112 q = BN_CTX_get(ctx);
113 t = BN_CTX_get(ctx);
114 x = BN_CTX_get(ctx);
115 y = BN_CTX_get(ctx);
116 if (y == NULL) {
117 goto end;
118 }
119
120 if (ret == NULL) {
121 ret = BN_new();
122 }
123 if (ret == NULL) {
124 goto end;
125 }
126
127 /* A = a mod p */
128 if (!BN_nnmod(A, a, p, ctx)) {
129 goto end;
130 }
131
132 /* now write |p| - 1 as 2^e*q where q is odd */
133 e = 1;
134 while (!BN_is_bit_set(p, e)) {
135 e++;
136 }
137 /* we'll set q later (if needed) */
138
139 if (e == 1) {
140 /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse
141 * modulo (|p|-1)/2, and square roots can be computed
142 * directly by modular exponentiation.
143 * We have
144 * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2),
145 * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1.
146 */
147 if (!BN_rshift(q, p, 2)) {
148 goto end;
149 }
150 q->neg = 0;
151 if (!BN_add_word(q, 1) ||
152 !BN_mod_exp(ret, A, q, p, ctx)) {
153 goto end;
154 }
155 err = 0;
156 goto vrfy;
157 }
158
159 if (e == 2) {
160 /* |p| == 5 (mod 8)
161 *
162 * In this case 2 is always a non-square since
163 * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime.
164 * So if a really is a square, then 2*a is a non-square.
165 * Thus for
166 * b := (2*a)^((|p|-5)/8),
167 * i := (2*a)*b^2
168 * we have
169 * i^2 = (2*a)^((1 + (|p|-5)/4)*2)
170 * = (2*a)^((p-1)/2)
171 * = -1;
172 * so if we set
173 * x := a*b*(i-1),
174 * then
175 * x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
176 * = a^2 * b^2 * (-2*i)
177 * = a*(-i)*(2*a*b^2)
178 * = a*(-i)*i
179 * = a.
180 *
181 * (This is due to A.O.L. Atkin,
182 * <URL:
183 *http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
184 * November 1992.)
185 */
186
187 /* t := 2*a */
188 if (!BN_mod_lshift1_quick(t, A, p)) {
189 goto end;
190 }
191
192 /* b := (2*a)^((|p|-5)/8) */
193 if (!BN_rshift(q, p, 3)) {
194 goto end;
195 }
196 q->neg = 0;
197 if (!BN_mod_exp(b, t, q, p, ctx)) {
198 goto end;
199 }
200
201 /* y := b^2 */
202 if (!BN_mod_sqr(y, b, p, ctx)) {
203 goto end;
204 }
205
206 /* t := (2*a)*b^2 - 1*/
207 if (!BN_mod_mul(t, t, y, p, ctx) ||
208 !BN_sub_word(t, 1)) {
209 goto end;
210 }
211
212 /* x = a*b*t */
213 if (!BN_mod_mul(x, A, b, p, ctx) ||
214 !BN_mod_mul(x, x, t, p, ctx)) {
215 goto end;
216 }
217
218 if (!BN_copy(ret, x)) {
219 goto end;
220 }
221 err = 0;
222 goto vrfy;
223 }
224
225 /* e > 2, so we really have to use the Tonelli/Shanks algorithm.
226 * First, find some y that is not a square. */
227 if (!BN_copy(q, p)) {
228 goto end; /* use 'q' as temp */
229 }
230 q->neg = 0;
231 i = 2;
232 do {
233 /* For efficiency, try small numbers first;
234 * if this fails, try random numbers.
235 */
236 if (i < 22) {
237 if (!BN_set_word(y, i)) {
238 goto end;
239 }
240 } else {
241 if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) {
242 goto end;
243 }
244 if (BN_ucmp(y, p) >= 0) {
245 if (!(p->neg ? BN_add : BN_sub)(y, y, p)) {
246 goto end;
247 }
248 }
249 /* now 0 <= y < |p| */
250 if (BN_is_zero(y)) {
251 if (!BN_set_word(y, i)) {
252 goto end;
253 }
254 }
255 }
256
257 r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
258 if (r < -1) {
259 goto end;
260 }
261 if (r == 0) {
262 /* m divides p */
263 OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_P_IS_NOT_PRIME);
264 goto end;
265 }
266 } while (r == 1 && ++i < 82);
267
268 if (r != -1) {
269 /* Many rounds and still no non-square -- this is more likely
270 * a bug than just bad luck.
271 * Even if p is not prime, we should have found some y
272 * such that r == -1.
273 */
274 OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_TOO_MANY_ITERATIONS);
275 goto end;
276 }
277
278 /* Here's our actual 'q': */
279 if (!BN_rshift(q, q, e)) {
280 goto end;
281 }
282
283 /* Now that we have some non-square, we can find an element
284 * of order 2^e by computing its q'th power. */
285 if (!BN_mod_exp(y, y, q, p, ctx)) {
286 goto end;
287 }
288 if (BN_is_one(y)) {
289 OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_P_IS_NOT_PRIME);
290 goto end;
291 }
292
293 /* Now we know that (if p is indeed prime) there is an integer
294 * k, 0 <= k < 2^e, such that
295 *
296 * a^q * y^k == 1 (mod p).
297 *
298 * As a^q is a square and y is not, k must be even.
299 * q+1 is even, too, so there is an element
300 *
301 * X := a^((q+1)/2) * y^(k/2),
302 *
303 * and it satisfies
304 *
305 * X^2 = a^q * a * y^k
306 * = a,
307 *
308 * so it is the square root that we are looking for.
309 */
310
311 /* t := (q-1)/2 (note that q is odd) */
312 if (!BN_rshift1(t, q)) {
313 goto end;
314 }
315
316 /* x := a^((q-1)/2) */
317 if (BN_is_zero(t)) /* special case: p = 2^e + 1 */
318 {
319 if (!BN_nnmod(t, A, p, ctx)) {
320 goto end;
321 }
322 if (BN_is_zero(t)) {
323 /* special case: a == 0 (mod p) */
324 BN_zero(ret);
325 err = 0;
326 goto end;
327 } else if (!BN_one(x)) {
328 goto end;
329 }
330 } else {
331 if (!BN_mod_exp(x, A, t, p, ctx)) {
332 goto end;
333 }
334 if (BN_is_zero(x)) {
335 /* special case: a == 0 (mod p) */
336 BN_zero(ret);
337 err = 0;
338 goto end;
339 }
340 }
341
342 /* b := a*x^2 (= a^q) */
343 if (!BN_mod_sqr(b, x, p, ctx) ||
344 !BN_mod_mul(b, b, A, p, ctx)) {
345 goto end;
346 }
347
348 /* x := a*x (= a^((q+1)/2)) */
349 if (!BN_mod_mul(x, x, A, p, ctx)) {
350 goto end;
351 }
352
353 while (1) {
354 /* Now b is a^q * y^k for some even k (0 <= k < 2^E
355 * where E refers to the original value of e, which we
356 * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2).
357 *
358 * We have a*b = x^2,
359 * y^2^(e-1) = -1,
360 * b^2^(e-1) = 1.
361 */
362
363 if (BN_is_one(b)) {
364 if (!BN_copy(ret, x)) {
365 goto end;
366 }
367 err = 0;
368 goto vrfy;
369 }
370
371
372 /* find smallest i such that b^(2^i) = 1 */
373 i = 1;
374 if (!BN_mod_sqr(t, b, p, ctx)) {
375 goto end;
376 }
377 while (!BN_is_one(t)) {
378 i++;
379 if (i == e) {
380 OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_NOT_A_SQUARE);
381 goto end;
382 }
383 if (!BN_mod_mul(t, t, t, p, ctx)) {
384 goto end;
385 }
386 }
387
388
389 /* t := y^2^(e - i - 1) */
390 if (!BN_copy(t, y)) {
391 goto end;
392 }
393 for (j = e - i - 1; j > 0; j--) {
394 if (!BN_mod_sqr(t, t, p, ctx)) {
395 goto end;
396 }
397 }
398 if (!BN_mod_mul(y, t, t, p, ctx) ||
399 !BN_mod_mul(x, x, t, p, ctx) ||
400 !BN_mod_mul(b, b, y, p, ctx)) {
401 goto end;
402 }
403 e = i;
404 }
405
406 vrfy:
407 if (!err) {
408 /* verify the result -- the input might have been not a square
409 * (test added in 0.9.8) */
410
411 if (!BN_mod_sqr(x, ret, p, ctx)) {
412 err = 1;
413 }
414
415 if (!err && 0 != BN_cmp(x, A)) {
416 OPENSSL_PUT_ERROR(BN, BN_mod_sqrt, BN_R_NOT_A_SQUARE);
417 err = 1;
418 }
419 }
420
421 end:
422 if (err) {
423 if (ret != in) {
424 BN_clear_free(ret);
425 }
426 ret = NULL;
427 }
428 BN_CTX_end(ctx);
429 return ret;
430 }
431
BN_sqrt(BIGNUM * out_sqrt,const BIGNUM * in,BN_CTX * ctx)432 int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx) {
433 BIGNUM *estimate, *tmp, *delta, *last_delta, *tmp2;
434 int ok = 0, last_delta_valid = 0;
435
436 if (in->neg) {
437 OPENSSL_PUT_ERROR(BN, BN_sqrt, BN_R_NEGATIVE_NUMBER);
438 return 0;
439 }
440 if (BN_is_zero(in)) {
441 BN_zero(out_sqrt);
442 return 1;
443 }
444
445 BN_CTX_start(ctx);
446 if (out_sqrt == in) {
447 estimate = BN_CTX_get(ctx);
448 } else {
449 estimate = out_sqrt;
450 }
451 tmp = BN_CTX_get(ctx);
452 last_delta = BN_CTX_get(ctx);
453 delta = BN_CTX_get(ctx);
454 if (estimate == NULL || tmp == NULL || last_delta == NULL || delta == NULL) {
455 OPENSSL_PUT_ERROR(BN, BN_sqrt, ERR_R_MALLOC_FAILURE);
456 goto err;
457 }
458
459 /* We estimate that the square root of an n-bit number is 2^{n/2}. */
460 BN_lshift(estimate, BN_value_one(), BN_num_bits(in)/2);
461
462 /* This is Newton's method for finding a root of the equation |estimate|^2 -
463 * |in| = 0. */
464 for (;;) {
465 /* |estimate| = 1/2 * (|estimate| + |in|/|estimate|) */
466 if (!BN_div(tmp, NULL, in, estimate, ctx) ||
467 !BN_add(tmp, tmp, estimate) ||
468 !BN_rshift1(estimate, tmp) ||
469 /* |tmp| = |estimate|^2 */
470 !BN_sqr(tmp, estimate, ctx) ||
471 /* |delta| = |in| - |tmp| */
472 !BN_sub(delta, in, tmp)) {
473 OPENSSL_PUT_ERROR(BN, BN_sqrt, ERR_R_BN_LIB);
474 goto err;
475 }
476
477 delta->neg = 0;
478 /* The difference between |in| and |estimate| squared is required to always
479 * decrease. This ensures that the loop always terminates, but I don't have
480 * a proof that it always finds the square root for a given square. */
481 if (last_delta_valid && BN_cmp(delta, last_delta) >= 0) {
482 break;
483 }
484
485 last_delta_valid = 1;
486
487 tmp2 = last_delta;
488 last_delta = delta;
489 delta = tmp2;
490 }
491
492 if (BN_cmp(tmp, in) != 0) {
493 OPENSSL_PUT_ERROR(BN, BN_sqrt, BN_R_NOT_A_SQUARE);
494 goto err;
495 }
496
497 ok = 1;
498
499 err:
500 if (ok && out_sqrt == in) {
501 BN_copy(out_sqrt, estimate);
502 }
503 BN_CTX_end(ctx);
504 return ok;
505 }
506