1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for the loop memory dependence framework that
11 // was originally developed for the Loop Vectorizer.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
17 
18 #include "llvm/ADT/EquivalenceClasses.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AliasSetTracker.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Support/raw_ostream.h"
27 
28 namespace llvm {
29 
30 class Value;
31 class DataLayout;
32 class AliasAnalysis;
33 class ScalarEvolution;
34 class Loop;
35 class SCEV;
36 
37 /// Optimization analysis message produced during vectorization. Messages inform
38 /// the user why vectorization did not occur.
39 class LoopAccessReport {
40   std::string Message;
41   const Instruction *Instr;
42 
43 protected:
LoopAccessReport(const Twine & Message,const Instruction * I)44   LoopAccessReport(const Twine &Message, const Instruction *I)
45       : Message(Message.str()), Instr(I) {}
46 
47 public:
Instr(I)48   LoopAccessReport(const Instruction *I = nullptr) : Instr(I) {}
49 
50   template <typename A> LoopAccessReport &operator<<(const A &Value) {
51     raw_string_ostream Out(Message);
52     Out << Value;
53     return *this;
54   }
55 
getInstr()56   const Instruction *getInstr() const { return Instr; }
57 
str()58   std::string &str() { return Message; }
str()59   const std::string &str() const { return Message; }
Twine()60   operator Twine() { return Message; }
61 
62   /// \brief Emit an analysis note for \p PassName with the debug location from
63   /// the instruction in \p Message if available.  Otherwise use the location of
64   /// \p TheLoop.
65   static void emitAnalysis(const LoopAccessReport &Message,
66                            const Function *TheFunction,
67                            const Loop *TheLoop,
68                            const char *PassName);
69 };
70 
71 /// \brief Collection of parameters shared beetween the Loop Vectorizer and the
72 /// Loop Access Analysis.
73 struct VectorizerParams {
74   /// \brief Maximum SIMD width.
75   static const unsigned MaxVectorWidth;
76 
77   /// \brief VF as overridden by the user.
78   static unsigned VectorizationFactor;
79   /// \brief Interleave factor as overridden by the user.
80   static unsigned VectorizationInterleave;
81   /// \brief True if force-vector-interleave was specified by the user.
82   static bool isInterleaveForced();
83 
84   /// \\brief When performing memory disambiguation checks at runtime do not
85   /// make more than this number of comparisons.
86   static unsigned RuntimeMemoryCheckThreshold;
87 };
88 
89 /// \brief Checks memory dependences among accesses to the same underlying
90 /// object to determine whether there vectorization is legal or not (and at
91 /// which vectorization factor).
92 ///
93 /// Note: This class will compute a conservative dependence for access to
94 /// different underlying pointers. Clients, such as the loop vectorizer, will
95 /// sometimes deal these potential dependencies by emitting runtime checks.
96 ///
97 /// We use the ScalarEvolution framework to symbolically evalutate access
98 /// functions pairs. Since we currently don't restructure the loop we can rely
99 /// on the program order of memory accesses to determine their safety.
100 /// At the moment we will only deem accesses as safe for:
101 ///  * A negative constant distance assuming program order.
102 ///
103 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
104 ///            a[i] = tmp;                y = a[i];
105 ///
106 ///   The latter case is safe because later checks guarantuee that there can't
107 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
108 ///   the same variable: a header phi can only be an induction or a reduction, a
109 ///   reduction can't have a memory sink, an induction can't have a memory
110 ///   source). This is important and must not be violated (or we have to
111 ///   resort to checking for cycles through memory).
112 ///
113 ///  * A positive constant distance assuming program order that is bigger
114 ///    than the biggest memory access.
115 ///
116 ///     tmp = a[i]        OR              b[i] = x
117 ///     a[i+2] = tmp                      y = b[i+2];
118 ///
119 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
120 ///
121 ///  * Zero distances and all accesses have the same size.
122 ///
123 class MemoryDepChecker {
124 public:
125   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
126   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
127   /// \brief Set of potential dependent memory accesses.
128   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
129 
130   /// \brief Dependece between memory access instructions.
131   struct Dependence {
132     /// \brief The type of the dependence.
133     enum DepType {
134       // No dependence.
135       NoDep,
136       // We couldn't determine the direction or the distance.
137       Unknown,
138       // Lexically forward.
139       Forward,
140       // Forward, but if vectorized, is likely to prevent store-to-load
141       // forwarding.
142       ForwardButPreventsForwarding,
143       // Lexically backward.
144       Backward,
145       // Backward, but the distance allows a vectorization factor of
146       // MaxSafeDepDistBytes.
147       BackwardVectorizable,
148       // Same, but may prevent store-to-load forwarding.
149       BackwardVectorizableButPreventsForwarding
150     };
151 
152     /// \brief String version of the types.
153     static const char *DepName[];
154 
155     /// \brief Index of the source of the dependence in the InstMap vector.
156     unsigned Source;
157     /// \brief Index of the destination of the dependence in the InstMap vector.
158     unsigned Destination;
159     /// \brief The type of the dependence.
160     DepType Type;
161 
DependenceDependence162     Dependence(unsigned Source, unsigned Destination, DepType Type)
163         : Source(Source), Destination(Destination), Type(Type) {}
164 
165     /// \brief Dependence types that don't prevent vectorization.
166     static bool isSafeForVectorization(DepType Type);
167 
168     /// \brief Dependence types that can be queried from the analysis.
169     static bool isInterestingDependence(DepType Type);
170 
171     /// \brief Lexically backward dependence types.
172     bool isPossiblyBackward() const;
173 
174     /// \brief Print the dependence.  \p Instr is used to map the instruction
175     /// indices to instructions.
176     void print(raw_ostream &OS, unsigned Depth,
177                const SmallVectorImpl<Instruction *> &Instrs) const;
178   };
179 
MemoryDepChecker(ScalarEvolution * Se,const Loop * L)180   MemoryDepChecker(ScalarEvolution *Se, const Loop *L)
181       : SE(Se), InnermostLoop(L), AccessIdx(0),
182         ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true),
183         RecordInterestingDependences(true) {}
184 
185   /// \brief Register the location (instructions are given increasing numbers)
186   /// of a write access.
addAccess(StoreInst * SI)187   void addAccess(StoreInst *SI) {
188     Value *Ptr = SI->getPointerOperand();
189     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
190     InstMap.push_back(SI);
191     ++AccessIdx;
192   }
193 
194   /// \brief Register the location (instructions are given increasing numbers)
195   /// of a write access.
addAccess(LoadInst * LI)196   void addAccess(LoadInst *LI) {
197     Value *Ptr = LI->getPointerOperand();
198     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
199     InstMap.push_back(LI);
200     ++AccessIdx;
201   }
202 
203   /// \brief Check whether the dependencies between the accesses are safe.
204   ///
205   /// Only checks sets with elements in \p CheckDeps.
206   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoSet &CheckDeps,
207                    const ValueToValueMap &Strides);
208 
209   /// \brief No memory dependence was encountered that would inhibit
210   /// vectorization.
isSafeForVectorization()211   bool isSafeForVectorization() const { return SafeForVectorization; }
212 
213   /// \brief The maximum number of bytes of a vector register we can vectorize
214   /// the accesses safely with.
getMaxSafeDepDistBytes()215   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
216 
217   /// \brief In same cases when the dependency check fails we can still
218   /// vectorize the loop with a dynamic array access check.
shouldRetryWithRuntimeCheck()219   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
220 
221   /// \brief Returns the interesting dependences.  If null is returned we
222   /// exceeded the MaxInterestingDependence threshold and this information is
223   /// not available.
getInterestingDependences()224   const SmallVectorImpl<Dependence> *getInterestingDependences() const {
225     return RecordInterestingDependences ? &InterestingDependences : nullptr;
226   }
227 
228   /// \brief The vector of memory access instructions.  The indices are used as
229   /// instruction identifiers in the Dependence class.
getMemoryInstructions()230   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
231     return InstMap;
232   }
233 
234   /// \brief Find the set of instructions that read or write via \p Ptr.
235   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
236                                                          bool isWrite) const;
237 
238 private:
239   ScalarEvolution *SE;
240   const Loop *InnermostLoop;
241 
242   /// \brief Maps access locations (ptr, read/write) to program order.
243   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
244 
245   /// \brief Memory access instructions in program order.
246   SmallVector<Instruction *, 16> InstMap;
247 
248   /// \brief The program order index to be used for the next instruction.
249   unsigned AccessIdx;
250 
251   // We can access this many bytes in parallel safely.
252   unsigned MaxSafeDepDistBytes;
253 
254   /// \brief If we see a non-constant dependence distance we can still try to
255   /// vectorize this loop with runtime checks.
256   bool ShouldRetryWithRuntimeCheck;
257 
258   /// \brief No memory dependence was encountered that would inhibit
259   /// vectorization.
260   bool SafeForVectorization;
261 
262   //// \brief True if InterestingDependences reflects the dependences in the
263   //// loop.  If false we exceeded MaxInterestingDependence and
264   //// InterestingDependences is invalid.
265   bool RecordInterestingDependences;
266 
267   /// \brief Interesting memory dependences collected during the analysis as
268   /// defined by isInterestingDependence.  Only valid if
269   /// RecordInterestingDependences is true.
270   SmallVector<Dependence, 8> InterestingDependences;
271 
272   /// \brief Check whether there is a plausible dependence between the two
273   /// accesses.
274   ///
275   /// Access \p A must happen before \p B in program order. The two indices
276   /// identify the index into the program order map.
277   ///
278   /// This function checks  whether there is a plausible dependence (or the
279   /// absence of such can't be proved) between the two accesses. If there is a
280   /// plausible dependence but the dependence distance is bigger than one
281   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
282   /// distance is smaller than any other distance encountered so far).
283   /// Otherwise, this function returns true signaling a possible dependence.
284   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
285                                   const MemAccessInfo &B, unsigned BIdx,
286                                   const ValueToValueMap &Strides);
287 
288   /// \brief Check whether the data dependence could prevent store-load
289   /// forwarding.
290   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
291 };
292 
293 /// \brief Drive the analysis of memory accesses in the loop
294 ///
295 /// This class is responsible for analyzing the memory accesses of a loop.  It
296 /// collects the accesses and then its main helper the AccessAnalysis class
297 /// finds and categorizes the dependences in buildDependenceSets.
298 ///
299 /// For memory dependences that can be analyzed at compile time, it determines
300 /// whether the dependence is part of cycle inhibiting vectorization.  This work
301 /// is delegated to the MemoryDepChecker class.
302 ///
303 /// For memory dependences that cannot be determined at compile time, it
304 /// generates run-time checks to prove independence.  This is done by
305 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
306 /// RuntimePointerCheck class.
307 class LoopAccessInfo {
308 public:
309   /// This struct holds information about the memory runtime legality check that
310   /// a group of pointers do not overlap.
311   struct RuntimePointerCheck {
RuntimePointerCheckRuntimePointerCheck312     RuntimePointerCheck() : Need(false) {}
313 
314     /// Reset the state of the pointer runtime information.
resetRuntimePointerCheck315     void reset() {
316       Need = false;
317       Pointers.clear();
318       Starts.clear();
319       Ends.clear();
320       IsWritePtr.clear();
321       DependencySetId.clear();
322       AliasSetId.clear();
323     }
324 
325     /// Insert a pointer and calculate the start and end SCEVs.
326     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
327                 unsigned DepSetId, unsigned ASId,
328                 const ValueToValueMap &Strides);
329 
330     /// \brief No run-time memory checking is necessary.
emptyRuntimePointerCheck331     bool empty() const { return Pointers.empty(); }
332 
333     /// \brief Decide whether we need to issue a run-time check for pointer at
334     /// index \p I and \p J to prove their independence.
335     ///
336     /// If \p PtrPartition is set, it contains the partition number for
337     /// pointers (-1 if the pointer belongs to multiple partitions).  In this
338     /// case omit checks between pointers belonging to the same partition.
339     bool needsChecking(unsigned I, unsigned J,
340                        const SmallVectorImpl<int> *PtrPartition) const;
341 
342     /// \brief Return true if any pointer requires run-time checking according
343     /// to needsChecking.
344     bool needsAnyChecking(const SmallVectorImpl<int> *PtrPartition) const;
345 
346     /// \brief Print the list run-time memory checks necessary.
347     ///
348     /// If \p PtrPartition is set, it contains the partition number for
349     /// pointers (-1 if the pointer belongs to multiple partitions).  In this
350     /// case omit checks between pointers belonging to the same partition.
351     void print(raw_ostream &OS, unsigned Depth = 0,
352                const SmallVectorImpl<int> *PtrPartition = nullptr) const;
353 
354     /// This flag indicates if we need to add the runtime check.
355     bool Need;
356     /// Holds the pointers that we need to check.
357     SmallVector<TrackingVH<Value>, 2> Pointers;
358     /// Holds the pointer value at the beginning of the loop.
359     SmallVector<const SCEV*, 2> Starts;
360     /// Holds the pointer value at the end of the loop.
361     SmallVector<const SCEV*, 2> Ends;
362     /// Holds the information if this pointer is used for writing to memory.
363     SmallVector<bool, 2> IsWritePtr;
364     /// Holds the id of the set of pointers that could be dependent because of a
365     /// shared underlying object.
366     SmallVector<unsigned, 2> DependencySetId;
367     /// Holds the id of the disjoint alias set to which this pointer belongs.
368     SmallVector<unsigned, 2> AliasSetId;
369   };
370 
371   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const DataLayout &DL,
372                  const TargetLibraryInfo *TLI, AliasAnalysis *AA,
373                  DominatorTree *DT, const ValueToValueMap &Strides);
374 
375   /// Return true we can analyze the memory accesses in the loop and there are
376   /// no memory dependence cycles.
canVectorizeMemory()377   bool canVectorizeMemory() const { return CanVecMem; }
378 
getRuntimePointerCheck()379   const RuntimePointerCheck *getRuntimePointerCheck() const {
380     return &PtrRtCheck;
381   }
382 
383   /// \brief Number of memchecks required to prove independence of otherwise
384   /// may-alias pointers.
getNumRuntimePointerChecks()385   unsigned getNumRuntimePointerChecks() const { return NumComparisons; }
386 
387   /// Return true if the block BB needs to be predicated in order for the loop
388   /// to be vectorized.
389   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
390                                     DominatorTree *DT);
391 
392   /// Returns true if the value V is uniform within the loop.
393   bool isUniform(Value *V) const;
394 
getMaxSafeDepDistBytes()395   unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
getNumStores()396   unsigned getNumStores() const { return NumStores; }
getNumLoads()397   unsigned getNumLoads() const { return NumLoads;}
398 
399   /// \brief Add code that checks at runtime if the accessed arrays overlap.
400   ///
401   /// Returns a pair of instructions where the first element is the first
402   /// instruction generated in possibly a sequence of instructions and the
403   /// second value is the final comparator value or NULL if no check is needed.
404   ///
405   /// If \p PtrPartition is set, it contains the partition number for pointers
406   /// (-1 if the pointer belongs to multiple partitions).  In this case omit
407   /// checks between pointers belonging to the same partition.
408   std::pair<Instruction *, Instruction *>
409   addRuntimeCheck(Instruction *Loc,
410                   const SmallVectorImpl<int> *PtrPartition = nullptr) const;
411 
412   /// \brief The diagnostics report generated for the analysis.  E.g. why we
413   /// couldn't analyze the loop.
getReport()414   const Optional<LoopAccessReport> &getReport() const { return Report; }
415 
416   /// \brief the Memory Dependence Checker which can determine the
417   /// loop-independent and loop-carried dependences between memory accesses.
getDepChecker()418   const MemoryDepChecker &getDepChecker() const { return DepChecker; }
419 
420   /// \brief Return the list of instructions that use \p Ptr to read or write
421   /// memory.
getInstructionsForAccess(Value * Ptr,bool isWrite)422   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
423                                                          bool isWrite) const {
424     return DepChecker.getInstructionsForAccess(Ptr, isWrite);
425   }
426 
427   /// \brief Print the information about the memory accesses in the loop.
428   void print(raw_ostream &OS, unsigned Depth = 0) const;
429 
430   /// \brief Used to ensure that if the analysis was run with speculating the
431   /// value of symbolic strides, the client queries it with the same assumption.
432   /// Only used in DEBUG build but we don't want NDEBUG-dependent ABI.
433   unsigned NumSymbolicStrides;
434 
435   /// \brief Checks existence of store to invariant address inside loop.
436   /// If the loop has any store to invariant address, then it returns true,
437   /// else returns false.
hasStoreToLoopInvariantAddress()438   bool hasStoreToLoopInvariantAddress() const {
439     return StoreToLoopInvariantAddress;
440   }
441 
442 private:
443   /// \brief Analyze the loop.  Substitute symbolic strides using Strides.
444   void analyzeLoop(const ValueToValueMap &Strides);
445 
446   /// \brief Check if the structure of the loop allows it to be analyzed by this
447   /// pass.
448   bool canAnalyzeLoop();
449 
450   void emitAnalysis(LoopAccessReport &Message);
451 
452   /// We need to check that all of the pointers in this list are disjoint
453   /// at runtime.
454   RuntimePointerCheck PtrRtCheck;
455 
456   /// \brief the Memory Dependence Checker which can determine the
457   /// loop-independent and loop-carried dependences between memory accesses.
458   MemoryDepChecker DepChecker;
459 
460   /// \brief Number of memchecks required to prove independence of otherwise
461   /// may-alias pointers
462   unsigned NumComparisons;
463 
464   Loop *TheLoop;
465   ScalarEvolution *SE;
466   const DataLayout &DL;
467   const TargetLibraryInfo *TLI;
468   AliasAnalysis *AA;
469   DominatorTree *DT;
470 
471   unsigned NumLoads;
472   unsigned NumStores;
473 
474   unsigned MaxSafeDepDistBytes;
475 
476   /// \brief Cache the result of analyzeLoop.
477   bool CanVecMem;
478 
479   /// \brief Indicator for storing to uniform addresses.
480   /// If a loop has write to a loop invariant address then it should be true.
481   bool StoreToLoopInvariantAddress;
482 
483   /// \brief The diagnostics report generated for the analysis.  E.g. why we
484   /// couldn't analyze the loop.
485   Optional<LoopAccessReport> Report;
486 };
487 
488 Value *stripIntegerCast(Value *V);
489 
490 ///\brief Return the SCEV corresponding to a pointer with the symbolic stride
491 ///replaced with constant one.
492 ///
493 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
494 /// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
495 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
496 const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
497                                       const ValueToValueMap &PtrToStride,
498                                       Value *Ptr, Value *OrigPtr = nullptr);
499 
500 /// \brief This analysis provides dependence information for the memory accesses
501 /// of a loop.
502 ///
503 /// It runs the analysis for a loop on demand.  This can be initiated by
504 /// querying the loop access info via LAA::getInfo.  getInfo return a
505 /// LoopAccessInfo object.  See this class for the specifics of what information
506 /// is provided.
507 class LoopAccessAnalysis : public FunctionPass {
508 public:
509   static char ID;
510 
LoopAccessAnalysis()511   LoopAccessAnalysis() : FunctionPass(ID) {
512     initializeLoopAccessAnalysisPass(*PassRegistry::getPassRegistry());
513   }
514 
515   bool runOnFunction(Function &F) override;
516 
517   void getAnalysisUsage(AnalysisUsage &AU) const override;
518 
519   /// \brief Query the result of the loop access information for the loop \p L.
520   ///
521   /// If the client speculates (and then issues run-time checks) for the values
522   /// of symbolic strides, \p Strides provides the mapping (see
523   /// replaceSymbolicStrideSCEV).  If there is no cached result available run
524   /// the analysis.
525   const LoopAccessInfo &getInfo(Loop *L, const ValueToValueMap &Strides);
526 
releaseMemory()527   void releaseMemory() override {
528     // Invalidate the cache when the pass is freed.
529     LoopAccessInfoMap.clear();
530   }
531 
532   /// \brief Print the result of the analysis when invoked with -analyze.
533   void print(raw_ostream &OS, const Module *M = nullptr) const override;
534 
535 private:
536   /// \brief The cache.
537   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
538 
539   // The used analysis passes.
540   ScalarEvolution *SE;
541   const TargetLibraryInfo *TLI;
542   AliasAnalysis *AA;
543   DominatorTree *DT;
544 };
545 } // End llvm namespace
546 
547 #endif
548