1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifdef _MSC_VER
16 // Provide M_PI.
17 #define _USE_MATH_DEFINES
18 #include <cmath>
19 #endif
20
21 #include "SIISelLowering.h"
22 #include "AMDGPU.h"
23 #include "AMDGPUIntrinsicInfo.h"
24 #include "AMDGPUSubtarget.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "SIRegisterInfo.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/CodeGen/CallingConvLower.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SelectionDAG.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/ADT/SmallString.h"
35
36 using namespace llvm;
37
SITargetLowering(TargetMachine & TM,const AMDGPUSubtarget & STI)38 SITargetLowering::SITargetLowering(TargetMachine &TM,
39 const AMDGPUSubtarget &STI)
40 : AMDGPUTargetLowering(TM, STI) {
41 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
42 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
43
44 addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
45 addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
46
47 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
48 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
49
50 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
51 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
52 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
53
54 addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
55 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
56
57 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
58 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
59
60 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
61 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
62
63 computeRegisterProperties(STI.getRegisterInfo());
64
65 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
66 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
67 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
68 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
69
70 setOperationAction(ISD::ADD, MVT::i32, Legal);
71 setOperationAction(ISD::ADDC, MVT::i32, Legal);
72 setOperationAction(ISD::ADDE, MVT::i32, Legal);
73 setOperationAction(ISD::SUBC, MVT::i32, Legal);
74 setOperationAction(ISD::SUBE, MVT::i32, Legal);
75
76 setOperationAction(ISD::FSIN, MVT::f32, Custom);
77 setOperationAction(ISD::FCOS, MVT::f32, Custom);
78
79 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
80 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
81
82 // We need to custom lower vector stores from local memory
83 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
84 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
85 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
86
87 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
88 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
89
90 setOperationAction(ISD::STORE, MVT::i1, Custom);
91 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
92
93 setOperationAction(ISD::SELECT, MVT::i64, Custom);
94 setOperationAction(ISD::SELECT, MVT::f64, Promote);
95 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
96
97 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
98 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
99 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
100 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
101
102 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
103 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
104
105 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
106
107 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
108 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
109 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
110
111 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
112 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
113 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
114
115 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
117 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
118
119 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
120 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
121
122 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
123 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
124 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
125 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
126
127 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
128 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
129
130 for (MVT VT : MVT::integer_valuetypes()) {
131 if (VT == MVT::i64)
132 continue;
133
134 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
135 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
136 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
137 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
138
139 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
140 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
141 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
142 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
143
144 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
145 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
146 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
147 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
148 }
149
150 for (MVT VT : MVT::integer_vector_valuetypes()) {
151 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
152 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
153 }
154
155 for (MVT VT : MVT::fp_valuetypes())
156 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
157
158 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
159 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
160 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
161 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
162
163 setOperationAction(ISD::LOAD, MVT::i1, Custom);
164
165 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
166 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
167 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
168
169 // These should use UDIVREM, so set them to expand
170 setOperationAction(ISD::UDIV, MVT::i64, Expand);
171 setOperationAction(ISD::UREM, MVT::i64, Expand);
172
173 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
174 setOperationAction(ISD::SELECT, MVT::i1, Promote);
175
176 // We only support LOAD/STORE and vector manipulation ops for vectors
177 // with > 4 elements.
178 for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}) {
179 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
180 switch(Op) {
181 case ISD::LOAD:
182 case ISD::STORE:
183 case ISD::BUILD_VECTOR:
184 case ISD::BITCAST:
185 case ISD::EXTRACT_VECTOR_ELT:
186 case ISD::INSERT_VECTOR_ELT:
187 case ISD::INSERT_SUBVECTOR:
188 case ISD::EXTRACT_SUBVECTOR:
189 break;
190 case ISD::CONCAT_VECTORS:
191 setOperationAction(Op, VT, Custom);
192 break;
193 default:
194 setOperationAction(Op, VT, Expand);
195 break;
196 }
197 }
198 }
199
200 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
201 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
202 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
203 setOperationAction(ISD::FRINT, MVT::f64, Legal);
204 }
205
206 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
207 setOperationAction(ISD::FDIV, MVT::f32, Custom);
208 setOperationAction(ISD::FDIV, MVT::f64, Custom);
209
210 setTargetDAGCombine(ISD::FADD);
211 setTargetDAGCombine(ISD::FSUB);
212 setTargetDAGCombine(ISD::FMINNUM);
213 setTargetDAGCombine(ISD::FMAXNUM);
214 setTargetDAGCombine(ISD::SELECT_CC);
215 setTargetDAGCombine(ISD::SETCC);
216 setTargetDAGCombine(ISD::AND);
217 setTargetDAGCombine(ISD::OR);
218 setTargetDAGCombine(ISD::UINT_TO_FP);
219
220 // All memory operations. Some folding on the pointer operand is done to help
221 // matching the constant offsets in the addressing modes.
222 setTargetDAGCombine(ISD::LOAD);
223 setTargetDAGCombine(ISD::STORE);
224 setTargetDAGCombine(ISD::ATOMIC_LOAD);
225 setTargetDAGCombine(ISD::ATOMIC_STORE);
226 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
227 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
228 setTargetDAGCombine(ISD::ATOMIC_SWAP);
229 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
230 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
231 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
232 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
233 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
234 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
235 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
236 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
237 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
238 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
239
240 setSchedulingPreference(Sched::RegPressure);
241 }
242
243 //===----------------------------------------------------------------------===//
244 // TargetLowering queries
245 //===----------------------------------------------------------------------===//
246
isShuffleMaskLegal(const SmallVectorImpl<int> &,EVT) const247 bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
248 EVT) const {
249 // SI has some legal vector types, but no legal vector operations. Say no
250 // shuffles are legal in order to prefer scalarizing some vector operations.
251 return false;
252 }
253
254 // FIXME: This really needs an address space argument. The immediate offset
255 // size is different for different sets of memory instruction sets.
256
257 // The single offset DS instructions have a 16-bit unsigned byte offset.
258 //
259 // MUBUF / MTBUF have a 12-bit unsigned byte offset, and additionally can do r +
260 // r + i with addr64. 32-bit has more addressing mode options. Depending on the
261 // resource constant, it can also do (i64 r0) + (i32 r1) * (i14 i).
262 //
263 // SMRD instructions have an 8-bit, dword offset.
264 //
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const265 bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM,
266 Type *Ty) const {
267 // No global is ever allowed as a base.
268 if (AM.BaseGV)
269 return false;
270
271 // Allow a 16-bit unsigned immediate field, since this is what DS instructions
272 // use.
273 if (!isUInt<16>(AM.BaseOffs))
274 return false;
275
276 // Only support r+r,
277 switch (AM.Scale) {
278 case 0: // "r+i" or just "i", depending on HasBaseReg.
279 break;
280 case 1:
281 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
282 return false;
283 // Otherwise we have r+r or r+i.
284 break;
285 case 2:
286 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
287 return false;
288 // Allow 2*r as r+r.
289 break;
290 default: // Don't allow n * r
291 return false;
292 }
293
294 return true;
295 }
296
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Align,bool * IsFast) const297 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
298 unsigned AddrSpace,
299 unsigned Align,
300 bool *IsFast) const {
301 if (IsFast)
302 *IsFast = false;
303
304 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
305 // which isn't a simple VT.
306 if (!VT.isSimple() || VT == MVT::Other)
307 return false;
308
309 // TODO - CI+ supports unaligned memory accesses, but this requires driver
310 // support.
311
312 // XXX - The only mention I see of this in the ISA manual is for LDS direct
313 // reads the "byte address and must be dword aligned". Is it also true for the
314 // normal loads and stores?
315 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
316 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
317 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
318 // with adjacent offsets.
319 return Align % 4 == 0;
320 }
321
322 // Smaller than dword value must be aligned.
323 // FIXME: This should be allowed on CI+
324 if (VT.bitsLT(MVT::i32))
325 return false;
326
327 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
328 // byte-address are ignored, thus forcing Dword alignment.
329 // This applies to private, global, and constant memory.
330 if (IsFast)
331 *IsFast = true;
332
333 return VT.bitsGT(MVT::i32) && Align % 4 == 0;
334 }
335
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const336 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
337 unsigned SrcAlign, bool IsMemset,
338 bool ZeroMemset,
339 bool MemcpyStrSrc,
340 MachineFunction &MF) const {
341 // FIXME: Should account for address space here.
342
343 // The default fallback uses the private pointer size as a guess for a type to
344 // use. Make sure we switch these to 64-bit accesses.
345
346 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
347 return MVT::v4i32;
348
349 if (Size >= 8 && DstAlign >= 4)
350 return MVT::v2i32;
351
352 // Use the default.
353 return MVT::Other;
354 }
355
356 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const357 SITargetLowering::getPreferredVectorAction(EVT VT) const {
358 if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
359 return TypeSplitVector;
360
361 return TargetLoweringBase::getPreferredVectorAction(VT);
362 }
363
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const364 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
365 Type *Ty) const {
366 const SIInstrInfo *TII =
367 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
368 return TII->isInlineConstant(Imm);
369 }
370
LowerParameter(SelectionDAG & DAG,EVT VT,EVT MemVT,SDLoc SL,SDValue Chain,unsigned Offset,bool Signed) const371 SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
372 SDLoc SL, SDValue Chain,
373 unsigned Offset, bool Signed) const {
374 const DataLayout *DL = getDataLayout();
375 MachineFunction &MF = DAG.getMachineFunction();
376 const SIRegisterInfo *TRI =
377 static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
378 unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
379
380 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
381
382 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
383 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
384 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
385 MRI.getLiveInVirtReg(InputPtrReg), MVT::i64);
386 SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, BasePtr,
387 DAG.getConstant(Offset, MVT::i64));
388 SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
389 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
390
391 return DAG.getLoad(ISD::UNINDEXED, Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD,
392 VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
393 false, // isVolatile
394 true, // isNonTemporal
395 true, // isInvariant
396 DL->getABITypeAlignment(Ty)); // Alignment
397 }
398
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const399 SDValue SITargetLowering::LowerFormalArguments(
400 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
401 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
402 SmallVectorImpl<SDValue> &InVals) const {
403 const SIRegisterInfo *TRI =
404 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
405
406 MachineFunction &MF = DAG.getMachineFunction();
407 FunctionType *FType = MF.getFunction()->getFunctionType();
408 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
409
410 assert(CallConv == CallingConv::C);
411
412 SmallVector<ISD::InputArg, 16> Splits;
413 BitVector Skipped(Ins.size());
414
415 for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
416 const ISD::InputArg &Arg = Ins[i];
417
418 // First check if it's a PS input addr
419 if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
420 !Arg.Flags.isByVal()) {
421
422 assert((PSInputNum <= 15) && "Too many PS inputs!");
423
424 if (!Arg.Used) {
425 // We can savely skip PS inputs
426 Skipped.set(i);
427 ++PSInputNum;
428 continue;
429 }
430
431 Info->PSInputAddr |= 1 << PSInputNum++;
432 }
433
434 // Second split vertices into their elements
435 if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
436 ISD::InputArg NewArg = Arg;
437 NewArg.Flags.setSplit();
438 NewArg.VT = Arg.VT.getVectorElementType();
439
440 // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
441 // three or five element vertex only needs three or five registers,
442 // NOT four or eigth.
443 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
444 unsigned NumElements = ParamType->getVectorNumElements();
445
446 for (unsigned j = 0; j != NumElements; ++j) {
447 Splits.push_back(NewArg);
448 NewArg.PartOffset += NewArg.VT.getStoreSize();
449 }
450
451 } else if (Info->getShaderType() != ShaderType::COMPUTE) {
452 Splits.push_back(Arg);
453 }
454 }
455
456 SmallVector<CCValAssign, 16> ArgLocs;
457 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
458 *DAG.getContext());
459
460 // At least one interpolation mode must be enabled or else the GPU will hang.
461 if (Info->getShaderType() == ShaderType::PIXEL &&
462 (Info->PSInputAddr & 0x7F) == 0) {
463 Info->PSInputAddr |= 1;
464 CCInfo.AllocateReg(AMDGPU::VGPR0);
465 CCInfo.AllocateReg(AMDGPU::VGPR1);
466 }
467
468 // The pointer to the list of arguments is stored in SGPR0, SGPR1
469 // The pointer to the scratch buffer is stored in SGPR2, SGPR3
470 if (Info->getShaderType() == ShaderType::COMPUTE) {
471 if (Subtarget->isAmdHsaOS())
472 Info->NumUserSGPRs = 2; // FIXME: Need to support scratch buffers.
473 else
474 Info->NumUserSGPRs = 4;
475
476 unsigned InputPtrReg =
477 TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR);
478 unsigned InputPtrRegLo =
479 TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0);
480 unsigned InputPtrRegHi =
481 TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1);
482
483 unsigned ScratchPtrReg =
484 TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR);
485 unsigned ScratchPtrRegLo =
486 TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0);
487 unsigned ScratchPtrRegHi =
488 TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1);
489
490 CCInfo.AllocateReg(InputPtrRegLo);
491 CCInfo.AllocateReg(InputPtrRegHi);
492 CCInfo.AllocateReg(ScratchPtrRegLo);
493 CCInfo.AllocateReg(ScratchPtrRegHi);
494 MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
495 MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass);
496 }
497
498 if (Info->getShaderType() == ShaderType::COMPUTE) {
499 getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
500 Splits);
501 }
502
503 AnalyzeFormalArguments(CCInfo, Splits);
504
505 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
506
507 const ISD::InputArg &Arg = Ins[i];
508 if (Skipped[i]) {
509 InVals.push_back(DAG.getUNDEF(Arg.VT));
510 continue;
511 }
512
513 CCValAssign &VA = ArgLocs[ArgIdx++];
514 MVT VT = VA.getLocVT();
515
516 if (VA.isMemLoc()) {
517 VT = Ins[i].VT;
518 EVT MemVT = Splits[i].VT;
519 const unsigned Offset = 36 + VA.getLocMemOffset();
520 // The first 36 bytes of the input buffer contains information about
521 // thread group and global sizes.
522 SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, DAG.getRoot(),
523 Offset, Ins[i].Flags.isSExt());
524
525 const PointerType *ParamTy =
526 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
527 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
528 ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
529 // On SI local pointers are just offsets into LDS, so they are always
530 // less than 16-bits. On CI and newer they could potentially be
531 // real pointers, so we can't guarantee their size.
532 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
533 DAG.getValueType(MVT::i16));
534 }
535
536 InVals.push_back(Arg);
537 Info->ABIArgOffset = Offset + MemVT.getStoreSize();
538 continue;
539 }
540 assert(VA.isRegLoc() && "Parameter must be in a register!");
541
542 unsigned Reg = VA.getLocReg();
543
544 if (VT == MVT::i64) {
545 // For now assume it is a pointer
546 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
547 &AMDGPU::SReg_64RegClass);
548 Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
549 InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
550 continue;
551 }
552
553 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
554
555 Reg = MF.addLiveIn(Reg, RC);
556 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
557
558 if (Arg.VT.isVector()) {
559
560 // Build a vector from the registers
561 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
562 unsigned NumElements = ParamType->getVectorNumElements();
563
564 SmallVector<SDValue, 4> Regs;
565 Regs.push_back(Val);
566 for (unsigned j = 1; j != NumElements; ++j) {
567 Reg = ArgLocs[ArgIdx++].getLocReg();
568 Reg = MF.addLiveIn(Reg, RC);
569 Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
570 }
571
572 // Fill up the missing vector elements
573 NumElements = Arg.VT.getVectorNumElements() - NumElements;
574 Regs.append(NumElements, DAG.getUNDEF(VT));
575
576 InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
577 continue;
578 }
579
580 InVals.push_back(Val);
581 }
582
583 if (Info->getShaderType() != ShaderType::COMPUTE) {
584 unsigned ScratchIdx = CCInfo.getFirstUnallocated(ArrayRef<MCPhysReg>(
585 AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs()));
586 Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx);
587 }
588 return Chain;
589 }
590
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const591 MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
592 MachineInstr * MI, MachineBasicBlock * BB) const {
593
594 MachineBasicBlock::iterator I = *MI;
595 const SIInstrInfo *TII =
596 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
597
598 switch (MI->getOpcode()) {
599 default:
600 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
601 case AMDGPU::BRANCH:
602 return BB;
603 case AMDGPU::SI_RegisterStorePseudo: {
604 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
605 unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
606 MachineInstrBuilder MIB =
607 BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
608 Reg);
609 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
610 MIB.addOperand(MI->getOperand(i));
611
612 MI->eraseFromParent();
613 break;
614 }
615 }
616 return BB;
617 }
618
enableAggressiveFMAFusion(EVT VT) const619 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
620 // This currently forces unfolding various combinations of fsub into fma with
621 // free fneg'd operands. As long as we have fast FMA (controlled by
622 // isFMAFasterThanFMulAndFAdd), we should perform these.
623
624 // When fma is quarter rate, for f64 where add / sub are at best half rate,
625 // most of these combines appear to be cycle neutral but save on instruction
626 // count / code size.
627 return true;
628 }
629
getSetCCResultType(LLVMContext & Ctx,EVT VT) const630 EVT SITargetLowering::getSetCCResultType(LLVMContext &Ctx, EVT VT) const {
631 if (!VT.isVector()) {
632 return MVT::i1;
633 }
634 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
635 }
636
getScalarShiftAmountTy(EVT VT) const637 MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
638 return MVT::i32;
639 }
640
641 // Answering this is somewhat tricky and depends on the specific device which
642 // have different rates for fma or all f64 operations.
643 //
644 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
645 // regardless of which device (although the number of cycles differs between
646 // devices), so it is always profitable for f64.
647 //
648 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
649 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
650 // which we can always do even without fused FP ops since it returns the same
651 // result as the separate operations and since it is always full
652 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
653 // however does not support denormals, so we do report fma as faster if we have
654 // a fast fma device and require denormals.
655 //
isFMAFasterThanFMulAndFAdd(EVT VT) const656 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
657 VT = VT.getScalarType();
658
659 if (!VT.isSimple())
660 return false;
661
662 switch (VT.getSimpleVT().SimpleTy) {
663 case MVT::f32:
664 // This is as fast on some subtargets. However, we always have full rate f32
665 // mad available which returns the same result as the separate operations
666 // which we should prefer over fma. We can't use this if we want to support
667 // denormals, so only report this in these cases.
668 return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
669 case MVT::f64:
670 return true;
671 default:
672 break;
673 }
674
675 return false;
676 }
677
678 //===----------------------------------------------------------------------===//
679 // Custom DAG Lowering Operations
680 //===----------------------------------------------------------------------===//
681
LowerOperation(SDValue Op,SelectionDAG & DAG) const682 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
683 switch (Op.getOpcode()) {
684 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
685 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
686 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
687 case ISD::LOAD: {
688 SDValue Result = LowerLOAD(Op, DAG);
689 assert((!Result.getNode() ||
690 Result.getNode()->getNumValues() == 2) &&
691 "Load should return a value and a chain");
692 return Result;
693 }
694
695 case ISD::FSIN:
696 case ISD::FCOS:
697 return LowerTrig(Op, DAG);
698 case ISD::SELECT: return LowerSELECT(Op, DAG);
699 case ISD::FDIV: return LowerFDIV(Op, DAG);
700 case ISD::STORE: return LowerSTORE(Op, DAG);
701 case ISD::GlobalAddress: {
702 MachineFunction &MF = DAG.getMachineFunction();
703 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
704 return LowerGlobalAddress(MFI, Op, DAG);
705 }
706 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
707 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
708 }
709 return SDValue();
710 }
711
712 /// \brief Helper function for LowerBRCOND
findUser(SDValue Value,unsigned Opcode)713 static SDNode *findUser(SDValue Value, unsigned Opcode) {
714
715 SDNode *Parent = Value.getNode();
716 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
717 I != E; ++I) {
718
719 if (I.getUse().get() != Value)
720 continue;
721
722 if (I->getOpcode() == Opcode)
723 return *I;
724 }
725 return nullptr;
726 }
727
LowerFrameIndex(SDValue Op,SelectionDAG & DAG) const728 SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
729
730 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
731 unsigned FrameIndex = FINode->getIndex();
732
733 return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
734 }
735
736 /// This transforms the control flow intrinsics to get the branch destination as
737 /// last parameter, also switches branch target with BR if the need arise
LowerBRCOND(SDValue BRCOND,SelectionDAG & DAG) const738 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
739 SelectionDAG &DAG) const {
740
741 SDLoc DL(BRCOND);
742
743 SDNode *Intr = BRCOND.getOperand(1).getNode();
744 SDValue Target = BRCOND.getOperand(2);
745 SDNode *BR = nullptr;
746
747 if (Intr->getOpcode() == ISD::SETCC) {
748 // As long as we negate the condition everything is fine
749 SDNode *SetCC = Intr;
750 assert(SetCC->getConstantOperandVal(1) == 1);
751 assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
752 ISD::SETNE);
753 Intr = SetCC->getOperand(0).getNode();
754
755 } else {
756 // Get the target from BR if we don't negate the condition
757 BR = findUser(BRCOND, ISD::BR);
758 Target = BR->getOperand(1);
759 }
760
761 assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
762
763 // Build the result and
764 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
765
766 // operands of the new intrinsic call
767 SmallVector<SDValue, 4> Ops;
768 Ops.push_back(BRCOND.getOperand(0));
769 Ops.append(Intr->op_begin() + 1, Intr->op_end());
770 Ops.push_back(Target);
771
772 // build the new intrinsic call
773 SDNode *Result = DAG.getNode(
774 Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
775 DAG.getVTList(Res), Ops).getNode();
776
777 if (BR) {
778 // Give the branch instruction our target
779 SDValue Ops[] = {
780 BR->getOperand(0),
781 BRCOND.getOperand(2)
782 };
783 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
784 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
785 BR = NewBR.getNode();
786 }
787
788 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
789
790 // Copy the intrinsic results to registers
791 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
792 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
793 if (!CopyToReg)
794 continue;
795
796 Chain = DAG.getCopyToReg(
797 Chain, DL,
798 CopyToReg->getOperand(1),
799 SDValue(Result, i - 1),
800 SDValue());
801
802 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
803 }
804
805 // Remove the old intrinsic from the chain
806 DAG.ReplaceAllUsesOfValueWith(
807 SDValue(Intr, Intr->getNumValues() - 1),
808 Intr->getOperand(0));
809
810 return Chain;
811 }
812
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const813 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
814 SDValue Op,
815 SelectionDAG &DAG) const {
816 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
817
818 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
819 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
820
821 SDLoc DL(GSD);
822 const GlobalValue *GV = GSD->getGlobal();
823 MVT PtrVT = getPointerTy(GSD->getAddressSpace());
824
825 SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
826 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
827
828 SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
829 DAG.getConstant(0, MVT::i32));
830 SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
831 DAG.getConstant(1, MVT::i32));
832
833 SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
834 PtrLo, GA);
835 SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
836 PtrHi, DAG.getConstant(0, MVT::i32),
837 SDValue(Lo.getNode(), 1));
838 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
839 }
840
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const841 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
842 SelectionDAG &DAG) const {
843 MachineFunction &MF = DAG.getMachineFunction();
844 const SIRegisterInfo *TRI =
845 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
846
847 EVT VT = Op.getValueType();
848 SDLoc DL(Op);
849 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
850
851 switch (IntrinsicID) {
852 case Intrinsic::r600_read_ngroups_x:
853 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
854 SI::KernelInputOffsets::NGROUPS_X, false);
855 case Intrinsic::r600_read_ngroups_y:
856 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
857 SI::KernelInputOffsets::NGROUPS_Y, false);
858 case Intrinsic::r600_read_ngroups_z:
859 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
860 SI::KernelInputOffsets::NGROUPS_Z, false);
861 case Intrinsic::r600_read_global_size_x:
862 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
863 SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
864 case Intrinsic::r600_read_global_size_y:
865 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
866 SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
867 case Intrinsic::r600_read_global_size_z:
868 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
869 SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
870 case Intrinsic::r600_read_local_size_x:
871 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
872 SI::KernelInputOffsets::LOCAL_SIZE_X, false);
873 case Intrinsic::r600_read_local_size_y:
874 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
875 SI::KernelInputOffsets::LOCAL_SIZE_Y, false);
876 case Intrinsic::r600_read_local_size_z:
877 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
878 SI::KernelInputOffsets::LOCAL_SIZE_Z, false);
879
880 case Intrinsic::AMDGPU_read_workdim:
881 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
882 MF.getInfo<SIMachineFunctionInfo>()->ABIArgOffset,
883 false);
884
885 case Intrinsic::r600_read_tgid_x:
886 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
887 TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT);
888 case Intrinsic::r600_read_tgid_y:
889 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
890 TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT);
891 case Intrinsic::r600_read_tgid_z:
892 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
893 TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT);
894 case Intrinsic::r600_read_tidig_x:
895 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
896 TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT);
897 case Intrinsic::r600_read_tidig_y:
898 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
899 TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT);
900 case Intrinsic::r600_read_tidig_z:
901 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
902 TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT);
903 case AMDGPUIntrinsic::SI_load_const: {
904 SDValue Ops[] = {
905 Op.getOperand(1),
906 Op.getOperand(2)
907 };
908
909 MachineMemOperand *MMO = MF.getMachineMemOperand(
910 MachinePointerInfo(),
911 MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
912 VT.getStoreSize(), 4);
913 return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
914 Op->getVTList(), Ops, VT, MMO);
915 }
916 case AMDGPUIntrinsic::SI_sample:
917 return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
918 case AMDGPUIntrinsic::SI_sampleb:
919 return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
920 case AMDGPUIntrinsic::SI_sampled:
921 return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
922 case AMDGPUIntrinsic::SI_samplel:
923 return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
924 case AMDGPUIntrinsic::SI_vs_load_input:
925 return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
926 Op.getOperand(1),
927 Op.getOperand(2),
928 Op.getOperand(3));
929
930 case AMDGPUIntrinsic::AMDGPU_fract:
931 case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
932 return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1),
933 DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1)));
934
935 default:
936 return AMDGPUTargetLowering::LowerOperation(Op, DAG);
937 }
938 }
939
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const940 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
941 SelectionDAG &DAG) const {
942 MachineFunction &MF = DAG.getMachineFunction();
943 SDValue Chain = Op.getOperand(0);
944 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
945
946 switch (IntrinsicID) {
947 case AMDGPUIntrinsic::SI_tbuffer_store: {
948 SDLoc DL(Op);
949 SDValue Ops[] = {
950 Chain,
951 Op.getOperand(2),
952 Op.getOperand(3),
953 Op.getOperand(4),
954 Op.getOperand(5),
955 Op.getOperand(6),
956 Op.getOperand(7),
957 Op.getOperand(8),
958 Op.getOperand(9),
959 Op.getOperand(10),
960 Op.getOperand(11),
961 Op.getOperand(12),
962 Op.getOperand(13),
963 Op.getOperand(14)
964 };
965
966 EVT VT = Op.getOperand(3).getValueType();
967
968 MachineMemOperand *MMO = MF.getMachineMemOperand(
969 MachinePointerInfo(),
970 MachineMemOperand::MOStore,
971 VT.getStoreSize(), 4);
972 return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
973 Op->getVTList(), Ops, VT, MMO);
974 }
975 default:
976 return SDValue();
977 }
978 }
979
LowerLOAD(SDValue Op,SelectionDAG & DAG) const980 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
981 SDLoc DL(Op);
982 LoadSDNode *Load = cast<LoadSDNode>(Op);
983
984 if (Op.getValueType().isVector()) {
985 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
986 "Custom lowering for non-i32 vectors hasn't been implemented.");
987 unsigned NumElements = Op.getValueType().getVectorNumElements();
988 assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
989 switch (Load->getAddressSpace()) {
990 default: break;
991 case AMDGPUAS::GLOBAL_ADDRESS:
992 case AMDGPUAS::PRIVATE_ADDRESS:
993 // v4 loads are supported for private and global memory.
994 if (NumElements <= 4)
995 break;
996 // fall-through
997 case AMDGPUAS::LOCAL_ADDRESS:
998 return ScalarizeVectorLoad(Op, DAG);
999 }
1000 }
1001
1002 return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
1003 }
1004
LowerSampleIntrinsic(unsigned Opcode,const SDValue & Op,SelectionDAG & DAG) const1005 SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
1006 const SDValue &Op,
1007 SelectionDAG &DAG) const {
1008 return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
1009 Op.getOperand(2),
1010 Op.getOperand(3),
1011 Op.getOperand(4));
1012 }
1013
LowerSELECT(SDValue Op,SelectionDAG & DAG) const1014 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1015 if (Op.getValueType() != MVT::i64)
1016 return SDValue();
1017
1018 SDLoc DL(Op);
1019 SDValue Cond = Op.getOperand(0);
1020
1021 SDValue Zero = DAG.getConstant(0, MVT::i32);
1022 SDValue One = DAG.getConstant(1, MVT::i32);
1023
1024 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
1025 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
1026
1027 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
1028 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
1029
1030 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
1031
1032 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
1033 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
1034
1035 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
1036
1037 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
1038 return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
1039 }
1040
1041 // Catch division cases where we can use shortcuts with rcp and rsq
1042 // instructions.
LowerFastFDIV(SDValue Op,SelectionDAG & DAG) const1043 SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
1044 SDLoc SL(Op);
1045 SDValue LHS = Op.getOperand(0);
1046 SDValue RHS = Op.getOperand(1);
1047 EVT VT = Op.getValueType();
1048 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
1049
1050 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
1051 if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
1052 CLHS->isExactlyValue(1.0)) {
1053 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
1054 // the CI documentation has a worst case error of 1 ulp.
1055 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
1056 // use it as long as we aren't trying to use denormals.
1057
1058 // 1.0 / sqrt(x) -> rsq(x)
1059 //
1060 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
1061 // error seems really high at 2^29 ULP.
1062 if (RHS.getOpcode() == ISD::FSQRT)
1063 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
1064
1065 // 1.0 / x -> rcp(x)
1066 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1067 }
1068 }
1069
1070 if (Unsafe) {
1071 // Turn into multiply by the reciprocal.
1072 // x / y -> x * (1.0 / y)
1073 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1074 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
1075 }
1076
1077 return SDValue();
1078 }
1079
LowerFDIV32(SDValue Op,SelectionDAG & DAG) const1080 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
1081 SDValue FastLowered = LowerFastFDIV(Op, DAG);
1082 if (FastLowered.getNode())
1083 return FastLowered;
1084
1085 // This uses v_rcp_f32 which does not handle denormals. Let this hit a
1086 // selection error for now rather than do something incorrect.
1087 if (Subtarget->hasFP32Denormals())
1088 return SDValue();
1089
1090 SDLoc SL(Op);
1091 SDValue LHS = Op.getOperand(0);
1092 SDValue RHS = Op.getOperand(1);
1093
1094 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
1095
1096 const APFloat K0Val(BitsToFloat(0x6f800000));
1097 const SDValue K0 = DAG.getConstantFP(K0Val, MVT::f32);
1098
1099 const APFloat K1Val(BitsToFloat(0x2f800000));
1100 const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32);
1101
1102 const SDValue One = DAG.getConstantFP(1.0, MVT::f32);
1103
1104 EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
1105
1106 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
1107
1108 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
1109
1110 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
1111
1112 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
1113
1114 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
1115
1116 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
1117 }
1118
LowerFDIV64(SDValue Op,SelectionDAG & DAG) const1119 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
1120 if (DAG.getTarget().Options.UnsafeFPMath)
1121 return LowerFastFDIV(Op, DAG);
1122
1123 SDLoc SL(Op);
1124 SDValue X = Op.getOperand(0);
1125 SDValue Y = Op.getOperand(1);
1126
1127 const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
1128
1129 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
1130
1131 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
1132
1133 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
1134
1135 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
1136
1137 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
1138
1139 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
1140
1141 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
1142
1143 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
1144
1145 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
1146 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
1147
1148 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
1149 NegDivScale0, Mul, DivScale1);
1150
1151 SDValue Scale;
1152
1153 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1154 // Workaround a hardware bug on SI where the condition output from div_scale
1155 // is not usable.
1156
1157 const SDValue Hi = DAG.getConstant(1, MVT::i32);
1158
1159 // Figure out if the scale to use for div_fmas.
1160 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1161 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
1162 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
1163 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
1164
1165 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
1166 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
1167
1168 SDValue Scale0Hi
1169 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
1170 SDValue Scale1Hi
1171 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
1172
1173 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
1174 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
1175 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
1176 } else {
1177 Scale = DivScale1.getValue(1);
1178 }
1179
1180 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
1181 Fma4, Fma3, Mul, Scale);
1182
1183 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
1184 }
1185
LowerFDIV(SDValue Op,SelectionDAG & DAG) const1186 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
1187 EVT VT = Op.getValueType();
1188
1189 if (VT == MVT::f32)
1190 return LowerFDIV32(Op, DAG);
1191
1192 if (VT == MVT::f64)
1193 return LowerFDIV64(Op, DAG);
1194
1195 llvm_unreachable("Unexpected type for fdiv");
1196 }
1197
LowerSTORE(SDValue Op,SelectionDAG & DAG) const1198 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1199 SDLoc DL(Op);
1200 StoreSDNode *Store = cast<StoreSDNode>(Op);
1201 EVT VT = Store->getMemoryVT();
1202
1203 // These stores are legal.
1204 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1205 if (VT.isVector() && VT.getVectorNumElements() > 4)
1206 return ScalarizeVectorStore(Op, DAG);
1207 return SDValue();
1208 }
1209
1210 SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
1211 if (Ret.getNode())
1212 return Ret;
1213
1214 if (VT.isVector() && VT.getVectorNumElements() >= 8)
1215 return ScalarizeVectorStore(Op, DAG);
1216
1217 if (VT == MVT::i1)
1218 return DAG.getTruncStore(Store->getChain(), DL,
1219 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
1220 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
1221
1222 return SDValue();
1223 }
1224
LowerTrig(SDValue Op,SelectionDAG & DAG) const1225 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
1226 EVT VT = Op.getValueType();
1227 SDValue Arg = Op.getOperand(0);
1228 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
1229 DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
1230 DAG.getConstantFP(0.5 / M_PI, VT)));
1231
1232 switch (Op.getOpcode()) {
1233 case ISD::FCOS:
1234 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
1235 case ISD::FSIN:
1236 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
1237 default:
1238 llvm_unreachable("Wrong trig opcode");
1239 }
1240 }
1241
1242 //===----------------------------------------------------------------------===//
1243 // Custom DAG optimizations
1244 //===----------------------------------------------------------------------===//
1245
performUCharToFloatCombine(SDNode * N,DAGCombinerInfo & DCI) const1246 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
1247 DAGCombinerInfo &DCI) const {
1248 EVT VT = N->getValueType(0);
1249 EVT ScalarVT = VT.getScalarType();
1250 if (ScalarVT != MVT::f32)
1251 return SDValue();
1252
1253 SelectionDAG &DAG = DCI.DAG;
1254 SDLoc DL(N);
1255
1256 SDValue Src = N->getOperand(0);
1257 EVT SrcVT = Src.getValueType();
1258
1259 // TODO: We could try to match extracting the higher bytes, which would be
1260 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
1261 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
1262 // about in practice.
1263 if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
1264 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
1265 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
1266 DCI.AddToWorklist(Cvt.getNode());
1267 return Cvt;
1268 }
1269 }
1270
1271 // We are primarily trying to catch operations on illegal vector types
1272 // before they are expanded.
1273 // For scalars, we can use the more flexible method of checking masked bits
1274 // after legalization.
1275 if (!DCI.isBeforeLegalize() ||
1276 !SrcVT.isVector() ||
1277 SrcVT.getVectorElementType() != MVT::i8) {
1278 return SDValue();
1279 }
1280
1281 assert(DCI.isBeforeLegalize() && "Unexpected legal type");
1282
1283 // Weird sized vectors are a pain to handle, but we know 3 is really the same
1284 // size as 4.
1285 unsigned NElts = SrcVT.getVectorNumElements();
1286 if (!SrcVT.isSimple() && NElts != 3)
1287 return SDValue();
1288
1289 // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
1290 // prevent a mess from expanding to v4i32 and repacking.
1291 if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
1292 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
1293 EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
1294 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
1295 LoadSDNode *Load = cast<LoadSDNode>(Src);
1296
1297 unsigned AS = Load->getAddressSpace();
1298 unsigned Align = Load->getAlignment();
1299 Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
1300 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
1301
1302 // Don't try to replace the load if we have to expand it due to alignment
1303 // problems. Otherwise we will end up scalarizing the load, and trying to
1304 // repack into the vector for no real reason.
1305 if (Align < ABIAlignment &&
1306 !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
1307 return SDValue();
1308 }
1309
1310 SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
1311 Load->getChain(),
1312 Load->getBasePtr(),
1313 LoadVT,
1314 Load->getMemOperand());
1315
1316 // Make sure successors of the original load stay after it by updating
1317 // them to use the new Chain.
1318 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
1319
1320 SmallVector<SDValue, 4> Elts;
1321 if (RegVT.isVector())
1322 DAG.ExtractVectorElements(NewLoad, Elts);
1323 else
1324 Elts.push_back(NewLoad);
1325
1326 SmallVector<SDValue, 4> Ops;
1327
1328 unsigned EltIdx = 0;
1329 for (SDValue Elt : Elts) {
1330 unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
1331 for (unsigned I = 0; I < ComponentsInElt; ++I) {
1332 unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
1333 SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
1334 DCI.AddToWorklist(Cvt.getNode());
1335 Ops.push_back(Cvt);
1336 }
1337
1338 ++EltIdx;
1339 }
1340
1341 assert(Ops.size() == NElts);
1342
1343 return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
1344 }
1345
1346 return SDValue();
1347 }
1348
1349 /// \brief Return true if the given offset Size in bytes can be folded into
1350 /// the immediate offsets of a memory instruction for the given address space.
canFoldOffset(unsigned OffsetSize,unsigned AS,const AMDGPUSubtarget & STI)1351 static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
1352 const AMDGPUSubtarget &STI) {
1353 switch (AS) {
1354 case AMDGPUAS::GLOBAL_ADDRESS: {
1355 // MUBUF instructions a 12-bit offset in bytes.
1356 return isUInt<12>(OffsetSize);
1357 }
1358 case AMDGPUAS::CONSTANT_ADDRESS: {
1359 // SMRD instructions have an 8-bit offset in dwords on SI and
1360 // a 20-bit offset in bytes on VI.
1361 if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1362 return isUInt<20>(OffsetSize);
1363 else
1364 return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
1365 }
1366 case AMDGPUAS::LOCAL_ADDRESS:
1367 case AMDGPUAS::REGION_ADDRESS: {
1368 // The single offset versions have a 16-bit offset in bytes.
1369 return isUInt<16>(OffsetSize);
1370 }
1371 case AMDGPUAS::PRIVATE_ADDRESS:
1372 // Indirect register addressing does not use any offsets.
1373 default:
1374 return 0;
1375 }
1376 }
1377
1378 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
1379
1380 // This is a variant of
1381 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
1382 //
1383 // The normal DAG combiner will do this, but only if the add has one use since
1384 // that would increase the number of instructions.
1385 //
1386 // This prevents us from seeing a constant offset that can be folded into a
1387 // memory instruction's addressing mode. If we know the resulting add offset of
1388 // a pointer can be folded into an addressing offset, we can replace the pointer
1389 // operand with the add of new constant offset. This eliminates one of the uses,
1390 // and may allow the remaining use to also be simplified.
1391 //
performSHLPtrCombine(SDNode * N,unsigned AddrSpace,DAGCombinerInfo & DCI) const1392 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
1393 unsigned AddrSpace,
1394 DAGCombinerInfo &DCI) const {
1395 SDValue N0 = N->getOperand(0);
1396 SDValue N1 = N->getOperand(1);
1397
1398 if (N0.getOpcode() != ISD::ADD)
1399 return SDValue();
1400
1401 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
1402 if (!CN1)
1403 return SDValue();
1404
1405 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
1406 if (!CAdd)
1407 return SDValue();
1408
1409 // If the resulting offset is too large, we can't fold it into the addressing
1410 // mode offset.
1411 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
1412 if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
1413 return SDValue();
1414
1415 SelectionDAG &DAG = DCI.DAG;
1416 SDLoc SL(N);
1417 EVT VT = N->getValueType(0);
1418
1419 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
1420 SDValue COffset = DAG.getConstant(Offset, MVT::i32);
1421
1422 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
1423 }
1424
performAndCombine(SDNode * N,DAGCombinerInfo & DCI) const1425 SDValue SITargetLowering::performAndCombine(SDNode *N,
1426 DAGCombinerInfo &DCI) const {
1427 if (DCI.isBeforeLegalize())
1428 return SDValue();
1429
1430 SelectionDAG &DAG = DCI.DAG;
1431
1432 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
1433 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
1434 SDValue LHS = N->getOperand(0);
1435 SDValue RHS = N->getOperand(1);
1436
1437 if (LHS.getOpcode() == ISD::SETCC &&
1438 RHS.getOpcode() == ISD::SETCC) {
1439 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
1440 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
1441
1442 SDValue X = LHS.getOperand(0);
1443 SDValue Y = RHS.getOperand(0);
1444 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
1445 return SDValue();
1446
1447 if (LCC == ISD::SETO) {
1448 if (X != LHS.getOperand(1))
1449 return SDValue();
1450
1451 if (RCC == ISD::SETUNE) {
1452 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
1453 if (!C1 || !C1->isInfinity() || C1->isNegative())
1454 return SDValue();
1455
1456 const uint32_t Mask = SIInstrFlags::N_NORMAL |
1457 SIInstrFlags::N_SUBNORMAL |
1458 SIInstrFlags::N_ZERO |
1459 SIInstrFlags::P_ZERO |
1460 SIInstrFlags::P_SUBNORMAL |
1461 SIInstrFlags::P_NORMAL;
1462
1463 static_assert(((~(SIInstrFlags::S_NAN |
1464 SIInstrFlags::Q_NAN |
1465 SIInstrFlags::N_INFINITY |
1466 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
1467 "mask not equal");
1468
1469 return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
1470 X, DAG.getConstant(Mask, MVT::i32));
1471 }
1472 }
1473 }
1474
1475 return SDValue();
1476 }
1477
performOrCombine(SDNode * N,DAGCombinerInfo & DCI) const1478 SDValue SITargetLowering::performOrCombine(SDNode *N,
1479 DAGCombinerInfo &DCI) const {
1480 SelectionDAG &DAG = DCI.DAG;
1481 SDValue LHS = N->getOperand(0);
1482 SDValue RHS = N->getOperand(1);
1483
1484 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
1485 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
1486 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
1487 SDValue Src = LHS.getOperand(0);
1488 if (Src != RHS.getOperand(0))
1489 return SDValue();
1490
1491 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
1492 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
1493 if (!CLHS || !CRHS)
1494 return SDValue();
1495
1496 // Only 10 bits are used.
1497 static const uint32_t MaxMask = 0x3ff;
1498
1499 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
1500 return DAG.getNode(AMDGPUISD::FP_CLASS, SDLoc(N), MVT::i1,
1501 Src, DAG.getConstant(NewMask, MVT::i32));
1502 }
1503
1504 return SDValue();
1505 }
1506
performClassCombine(SDNode * N,DAGCombinerInfo & DCI) const1507 SDValue SITargetLowering::performClassCombine(SDNode *N,
1508 DAGCombinerInfo &DCI) const {
1509 SelectionDAG &DAG = DCI.DAG;
1510 SDValue Mask = N->getOperand(1);
1511
1512 // fp_class x, 0 -> false
1513 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
1514 if (CMask->isNullValue())
1515 return DAG.getConstant(0, MVT::i1);
1516 }
1517
1518 return SDValue();
1519 }
1520
minMaxOpcToMin3Max3Opc(unsigned Opc)1521 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
1522 switch (Opc) {
1523 case ISD::FMAXNUM:
1524 return AMDGPUISD::FMAX3;
1525 case AMDGPUISD::SMAX:
1526 return AMDGPUISD::SMAX3;
1527 case AMDGPUISD::UMAX:
1528 return AMDGPUISD::UMAX3;
1529 case ISD::FMINNUM:
1530 return AMDGPUISD::FMIN3;
1531 case AMDGPUISD::SMIN:
1532 return AMDGPUISD::SMIN3;
1533 case AMDGPUISD::UMIN:
1534 return AMDGPUISD::UMIN3;
1535 default:
1536 llvm_unreachable("Not a min/max opcode");
1537 }
1538 }
1539
performMin3Max3Combine(SDNode * N,DAGCombinerInfo & DCI) const1540 SDValue SITargetLowering::performMin3Max3Combine(SDNode *N,
1541 DAGCombinerInfo &DCI) const {
1542 SelectionDAG &DAG = DCI.DAG;
1543
1544 unsigned Opc = N->getOpcode();
1545 SDValue Op0 = N->getOperand(0);
1546 SDValue Op1 = N->getOperand(1);
1547
1548 // Only do this if the inner op has one use since this will just increases
1549 // register pressure for no benefit.
1550
1551 // max(max(a, b), c)
1552 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
1553 SDLoc DL(N);
1554 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1555 DL,
1556 N->getValueType(0),
1557 Op0.getOperand(0),
1558 Op0.getOperand(1),
1559 Op1);
1560 }
1561
1562 // max(a, max(b, c))
1563 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
1564 SDLoc DL(N);
1565 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
1566 DL,
1567 N->getValueType(0),
1568 Op0,
1569 Op1.getOperand(0),
1570 Op1.getOperand(1));
1571 }
1572
1573 return SDValue();
1574 }
1575
performSetCCCombine(SDNode * N,DAGCombinerInfo & DCI) const1576 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
1577 DAGCombinerInfo &DCI) const {
1578 SelectionDAG &DAG = DCI.DAG;
1579 SDLoc SL(N);
1580
1581 SDValue LHS = N->getOperand(0);
1582 SDValue RHS = N->getOperand(1);
1583 EVT VT = LHS.getValueType();
1584
1585 if (VT != MVT::f32 && VT != MVT::f64)
1586 return SDValue();
1587
1588 // Match isinf pattern
1589 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
1590 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
1591 if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
1592 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
1593 if (!CRHS)
1594 return SDValue();
1595
1596 const APFloat &APF = CRHS->getValueAPF();
1597 if (APF.isInfinity() && !APF.isNegative()) {
1598 unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
1599 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1,
1600 LHS.getOperand(0), DAG.getConstant(Mask, MVT::i32));
1601 }
1602 }
1603
1604 return SDValue();
1605 }
1606
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1607 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
1608 DAGCombinerInfo &DCI) const {
1609 SelectionDAG &DAG = DCI.DAG;
1610 SDLoc DL(N);
1611
1612 switch (N->getOpcode()) {
1613 default:
1614 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1615 case ISD::SETCC:
1616 return performSetCCCombine(N, DCI);
1617 case ISD::FMAXNUM: // TODO: What about fmax_legacy?
1618 case ISD::FMINNUM:
1619 case AMDGPUISD::SMAX:
1620 case AMDGPUISD::SMIN:
1621 case AMDGPUISD::UMAX:
1622 case AMDGPUISD::UMIN: {
1623 if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
1624 N->getValueType(0) != MVT::f64 &&
1625 getTargetMachine().getOptLevel() > CodeGenOpt::None)
1626 return performMin3Max3Combine(N, DCI);
1627 break;
1628 }
1629
1630 case AMDGPUISD::CVT_F32_UBYTE0:
1631 case AMDGPUISD::CVT_F32_UBYTE1:
1632 case AMDGPUISD::CVT_F32_UBYTE2:
1633 case AMDGPUISD::CVT_F32_UBYTE3: {
1634 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
1635
1636 SDValue Src = N->getOperand(0);
1637 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
1638
1639 APInt KnownZero, KnownOne;
1640 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1641 !DCI.isBeforeLegalizeOps());
1642 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1643 if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
1644 TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
1645 DCI.CommitTargetLoweringOpt(TLO);
1646 }
1647
1648 break;
1649 }
1650
1651 case ISD::UINT_TO_FP: {
1652 return performUCharToFloatCombine(N, DCI);
1653
1654 case ISD::FADD: {
1655 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
1656 break;
1657
1658 EVT VT = N->getValueType(0);
1659 if (VT != MVT::f32)
1660 break;
1661
1662 // Only do this if we are not trying to support denormals. v_mad_f32 does
1663 // not support denormals ever.
1664 if (Subtarget->hasFP32Denormals())
1665 break;
1666
1667 SDValue LHS = N->getOperand(0);
1668 SDValue RHS = N->getOperand(1);
1669
1670 // These should really be instruction patterns, but writing patterns with
1671 // source modiifiers is a pain.
1672
1673 // fadd (fadd (a, a), b) -> mad 2.0, a, b
1674 if (LHS.getOpcode() == ISD::FADD) {
1675 SDValue A = LHS.getOperand(0);
1676 if (A == LHS.getOperand(1)) {
1677 const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
1678 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
1679 }
1680 }
1681
1682 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
1683 if (RHS.getOpcode() == ISD::FADD) {
1684 SDValue A = RHS.getOperand(0);
1685 if (A == RHS.getOperand(1)) {
1686 const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
1687 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
1688 }
1689 }
1690
1691 return SDValue();
1692 }
1693 case ISD::FSUB: {
1694 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
1695 break;
1696
1697 EVT VT = N->getValueType(0);
1698
1699 // Try to get the fneg to fold into the source modifier. This undoes generic
1700 // DAG combines and folds them into the mad.
1701 //
1702 // Only do this if we are not trying to support denormals. v_mad_f32 does
1703 // not support denormals ever.
1704 if (VT == MVT::f32 &&
1705 !Subtarget->hasFP32Denormals()) {
1706 SDValue LHS = N->getOperand(0);
1707 SDValue RHS = N->getOperand(1);
1708 if (LHS.getOpcode() == ISD::FADD) {
1709 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
1710
1711 SDValue A = LHS.getOperand(0);
1712 if (A == LHS.getOperand(1)) {
1713 const SDValue Two = DAG.getConstantFP(2.0, MVT::f32);
1714 SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
1715
1716 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
1717 }
1718 }
1719
1720 if (RHS.getOpcode() == ISD::FADD) {
1721 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
1722
1723 SDValue A = RHS.getOperand(0);
1724 if (A == RHS.getOperand(1)) {
1725 const SDValue NegTwo = DAG.getConstantFP(-2.0, MVT::f32);
1726 return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
1727 }
1728 }
1729
1730 return SDValue();
1731 }
1732
1733 break;
1734 }
1735 }
1736 case ISD::LOAD:
1737 case ISD::STORE:
1738 case ISD::ATOMIC_LOAD:
1739 case ISD::ATOMIC_STORE:
1740 case ISD::ATOMIC_CMP_SWAP:
1741 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1742 case ISD::ATOMIC_SWAP:
1743 case ISD::ATOMIC_LOAD_ADD:
1744 case ISD::ATOMIC_LOAD_SUB:
1745 case ISD::ATOMIC_LOAD_AND:
1746 case ISD::ATOMIC_LOAD_OR:
1747 case ISD::ATOMIC_LOAD_XOR:
1748 case ISD::ATOMIC_LOAD_NAND:
1749 case ISD::ATOMIC_LOAD_MIN:
1750 case ISD::ATOMIC_LOAD_MAX:
1751 case ISD::ATOMIC_LOAD_UMIN:
1752 case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics.
1753 if (DCI.isBeforeLegalize())
1754 break;
1755
1756 MemSDNode *MemNode = cast<MemSDNode>(N);
1757 SDValue Ptr = MemNode->getBasePtr();
1758
1759 // TODO: We could also do this for multiplies.
1760 unsigned AS = MemNode->getAddressSpace();
1761 if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
1762 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
1763 if (NewPtr) {
1764 SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
1765
1766 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
1767 return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
1768 }
1769 }
1770 break;
1771 }
1772 case ISD::AND:
1773 return performAndCombine(N, DCI);
1774 case ISD::OR:
1775 return performOrCombine(N, DCI);
1776 case AMDGPUISD::FP_CLASS:
1777 return performClassCombine(N, DCI);
1778 }
1779 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1780 }
1781
1782 /// \brief Analyze the possible immediate value Op
1783 ///
1784 /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
1785 /// and the immediate value if it's a literal immediate
analyzeImmediate(const SDNode * N) const1786 int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
1787
1788 const SIInstrInfo *TII =
1789 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1790
1791 if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
1792 if (TII->isInlineConstant(Node->getAPIntValue()))
1793 return 0;
1794
1795 uint64_t Val = Node->getZExtValue();
1796 return isUInt<32>(Val) ? Val : -1;
1797 }
1798
1799 if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
1800 if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
1801 return 0;
1802
1803 if (Node->getValueType(0) == MVT::f32)
1804 return FloatToBits(Node->getValueAPF().convertToFloat());
1805
1806 return -1;
1807 }
1808
1809 return -1;
1810 }
1811
1812 /// \brief Helper function for adjustWritemask
SubIdx2Lane(unsigned Idx)1813 static unsigned SubIdx2Lane(unsigned Idx) {
1814 switch (Idx) {
1815 default: return 0;
1816 case AMDGPU::sub0: return 0;
1817 case AMDGPU::sub1: return 1;
1818 case AMDGPU::sub2: return 2;
1819 case AMDGPU::sub3: return 3;
1820 }
1821 }
1822
1823 /// \brief Adjust the writemask of MIMG instructions
adjustWritemask(MachineSDNode * & Node,SelectionDAG & DAG) const1824 void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
1825 SelectionDAG &DAG) const {
1826 SDNode *Users[4] = { };
1827 unsigned Lane = 0;
1828 unsigned OldDmask = Node->getConstantOperandVal(0);
1829 unsigned NewDmask = 0;
1830
1831 // Try to figure out the used register components
1832 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
1833 I != E; ++I) {
1834
1835 // Abort if we can't understand the usage
1836 if (!I->isMachineOpcode() ||
1837 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
1838 return;
1839
1840 // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
1841 // Note that subregs are packed, i.e. Lane==0 is the first bit set
1842 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
1843 // set, etc.
1844 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
1845
1846 // Set which texture component corresponds to the lane.
1847 unsigned Comp;
1848 for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
1849 assert(Dmask);
1850 Comp = countTrailingZeros(Dmask);
1851 Dmask &= ~(1 << Comp);
1852 }
1853
1854 // Abort if we have more than one user per component
1855 if (Users[Lane])
1856 return;
1857
1858 Users[Lane] = *I;
1859 NewDmask |= 1 << Comp;
1860 }
1861
1862 // Abort if there's no change
1863 if (NewDmask == OldDmask)
1864 return;
1865
1866 // Adjust the writemask in the node
1867 std::vector<SDValue> Ops;
1868 Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
1869 Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end());
1870 Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
1871
1872 // If we only got one lane, replace it with a copy
1873 // (if NewDmask has only one bit set...)
1874 if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
1875 SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, MVT::i32);
1876 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1877 SDLoc(), Users[Lane]->getValueType(0),
1878 SDValue(Node, 0), RC);
1879 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
1880 return;
1881 }
1882
1883 // Update the users of the node with the new indices
1884 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
1885
1886 SDNode *User = Users[i];
1887 if (!User)
1888 continue;
1889
1890 SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
1891 DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
1892
1893 switch (Idx) {
1894 default: break;
1895 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
1896 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
1897 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
1898 }
1899 }
1900 }
1901
1902 /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
1903 /// with frame index operands.
1904 /// LLVM assumes that inputs are to these instructions are registers.
legalizeTargetIndependentNode(SDNode * Node,SelectionDAG & DAG) const1905 void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
1906 SelectionDAG &DAG) const {
1907
1908 SmallVector<SDValue, 8> Ops;
1909 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
1910 if (!isa<FrameIndexSDNode>(Node->getOperand(i))) {
1911 Ops.push_back(Node->getOperand(i));
1912 continue;
1913 }
1914
1915 SDLoc DL(Node);
1916 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
1917 Node->getOperand(i).getValueType(),
1918 Node->getOperand(i)), 0));
1919 }
1920
1921 DAG.UpdateNodeOperands(Node, Ops);
1922 }
1923
1924 /// \brief Fold the instructions after selecting them.
PostISelFolding(MachineSDNode * Node,SelectionDAG & DAG) const1925 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
1926 SelectionDAG &DAG) const {
1927 const SIInstrInfo *TII =
1928 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1929
1930 if (TII->isMIMG(Node->getMachineOpcode()))
1931 adjustWritemask(Node, DAG);
1932
1933 if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG ||
1934 Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) {
1935 legalizeTargetIndependentNode(Node, DAG);
1936 return Node;
1937 }
1938 return Node;
1939 }
1940
1941 /// \brief Assign the register class depending on the number of
1942 /// bits set in the writemask
AdjustInstrPostInstrSelection(MachineInstr * MI,SDNode * Node) const1943 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
1944 SDNode *Node) const {
1945 const SIInstrInfo *TII =
1946 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1947
1948 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1949 TII->legalizeOperands(MI);
1950
1951 if (TII->isMIMG(MI->getOpcode())) {
1952 unsigned VReg = MI->getOperand(0).getReg();
1953 unsigned Writemask = MI->getOperand(1).getImm();
1954 unsigned BitsSet = 0;
1955 for (unsigned i = 0; i < 4; ++i)
1956 BitsSet += Writemask & (1 << i) ? 1 : 0;
1957
1958 const TargetRegisterClass *RC;
1959 switch (BitsSet) {
1960 default: return;
1961 case 1: RC = &AMDGPU::VGPR_32RegClass; break;
1962 case 2: RC = &AMDGPU::VReg_64RegClass; break;
1963 case 3: RC = &AMDGPU::VReg_96RegClass; break;
1964 }
1965
1966 unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
1967 MI->setDesc(TII->get(NewOpcode));
1968 MRI.setRegClass(VReg, RC);
1969 return;
1970 }
1971
1972 // Replace unused atomics with the no return version.
1973 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
1974 if (NoRetAtomicOp != -1) {
1975 if (!Node->hasAnyUseOfValue(0)) {
1976 MI->setDesc(TII->get(NoRetAtomicOp));
1977 MI->RemoveOperand(0);
1978 }
1979
1980 return;
1981 }
1982 }
1983
buildSMovImm32(SelectionDAG & DAG,SDLoc DL,uint64_t Val)1984 static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
1985 SDValue K = DAG.getTargetConstant(Val, MVT::i32);
1986 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
1987 }
1988
wrapAddr64Rsrc(SelectionDAG & DAG,SDLoc DL,SDValue Ptr) const1989 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
1990 SDLoc DL,
1991 SDValue Ptr) const {
1992 const SIInstrInfo *TII =
1993 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1994 #if 1
1995 // XXX - Workaround for moveToVALU not handling different register class
1996 // inserts for REG_SEQUENCE.
1997
1998 // Build the half of the subregister with the constants.
1999 const SDValue Ops0[] = {
2000 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, MVT::i32),
2001 buildSMovImm32(DAG, DL, 0),
2002 DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
2003 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
2004 DAG.getTargetConstant(AMDGPU::sub1, MVT::i32)
2005 };
2006
2007 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
2008 MVT::v2i32, Ops0), 0);
2009
2010 // Combine the constants and the pointer.
2011 const SDValue Ops1[] = {
2012 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
2013 Ptr,
2014 DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
2015 SubRegHi,
2016 DAG.getTargetConstant(AMDGPU::sub2_sub3, MVT::i32)
2017 };
2018
2019 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
2020 #else
2021 const SDValue Ops[] = {
2022 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
2023 Ptr,
2024 DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32),
2025 buildSMovImm32(DAG, DL, 0),
2026 DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
2027 buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32),
2028 DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
2029 };
2030
2031 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2032
2033 #endif
2034 }
2035
2036 /// \brief Return a resource descriptor with the 'Add TID' bit enabled
2037 /// The TID (Thread ID) is multipled by the stride value (bits [61:48]
2038 /// of the resource descriptor) to create an offset, which is added to the
2039 /// resource ponter.
buildRSRC(SelectionDAG & DAG,SDLoc DL,SDValue Ptr,uint32_t RsrcDword1,uint64_t RsrcDword2And3) const2040 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
2041 SDLoc DL,
2042 SDValue Ptr,
2043 uint32_t RsrcDword1,
2044 uint64_t RsrcDword2And3) const {
2045 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
2046 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
2047 if (RsrcDword1) {
2048 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
2049 DAG.getConstant(RsrcDword1, MVT::i32)), 0);
2050 }
2051
2052 SDValue DataLo = buildSMovImm32(DAG, DL,
2053 RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
2054 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
2055
2056 const SDValue Ops[] = {
2057 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32),
2058 PtrLo,
2059 DAG.getTargetConstant(AMDGPU::sub0, MVT::i32),
2060 PtrHi,
2061 DAG.getTargetConstant(AMDGPU::sub1, MVT::i32),
2062 DataLo,
2063 DAG.getTargetConstant(AMDGPU::sub2, MVT::i32),
2064 DataHi,
2065 DAG.getTargetConstant(AMDGPU::sub3, MVT::i32)
2066 };
2067
2068 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
2069 }
2070
buildScratchRSRC(SelectionDAG & DAG,SDLoc DL,SDValue Ptr) const2071 MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG,
2072 SDLoc DL,
2073 SDValue Ptr) const {
2074 const SIInstrInfo *TII =
2075 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2076 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE |
2077 0xffffffff; // Size
2078
2079 return buildRSRC(DAG, DL, Ptr, 0, Rsrc);
2080 }
2081
CreateLiveInRegister(SelectionDAG & DAG,const TargetRegisterClass * RC,unsigned Reg,EVT VT) const2082 SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2083 const TargetRegisterClass *RC,
2084 unsigned Reg, EVT VT) const {
2085 SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
2086
2087 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
2088 cast<RegisterSDNode>(VReg)->getReg(), VT);
2089 }
2090
2091 //===----------------------------------------------------------------------===//
2092 // SI Inline Assembly Support
2093 //===----------------------------------------------------------------------===//
2094
2095 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,const std::string & Constraint,MVT VT) const2096 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2097 const std::string &Constraint,
2098 MVT VT) const {
2099 if (Constraint == "r") {
2100 switch(VT.SimpleTy) {
2101 default: llvm_unreachable("Unhandled type for 'r' inline asm constraint");
2102 case MVT::i64:
2103 return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
2104 case MVT::i32:
2105 return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
2106 }
2107 }
2108
2109 if (Constraint.size() > 1) {
2110 const TargetRegisterClass *RC = nullptr;
2111 if (Constraint[1] == 'v') {
2112 RC = &AMDGPU::VGPR_32RegClass;
2113 } else if (Constraint[1] == 's') {
2114 RC = &AMDGPU::SGPR_32RegClass;
2115 }
2116
2117 if (RC) {
2118 unsigned Idx = std::atoi(Constraint.substr(2).c_str());
2119 if (Idx < RC->getNumRegs())
2120 return std::make_pair(RC->getRegister(Idx), RC);
2121 }
2122 }
2123 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
2124 }
2125