1 /**
2  * Copyright (c) 2011, Novyon Events
3  *
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * - Redistributions of source code must retain the above copyright notice, this
10  * list of conditions and the following disclaimer.
11  *
12  * - Redistributions in binary form must reproduce the above copyright notice,
13  * this list of conditions and the following disclaimer in the documentation
14  * and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
20  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
25  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
26  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * @author Anthyon
29  */
30 package com.jme3.terrain.noise;
31 
32 import java.awt.Color;
33 import java.awt.Graphics2D;
34 import java.awt.image.BufferedImage;
35 import java.awt.image.DataBuffer;
36 import java.awt.image.DataBufferInt;
37 import java.awt.image.WritableRaster;
38 import java.nio.ByteBuffer;
39 import java.nio.ByteOrder;
40 
41 /**
42  * Helper class containing useful functions explained in the book:
43  * Texturing & Modeling - A Procedural Approach
44  *
45  * @author Anthyon
46  *
47  */
48 public class ShaderUtils {
49 
i2c(final int color)50 	public static final float[] i2c(final int color) {
51 		return new float[] { (color & 0x00ff0000) / 256f, (color & 0x0000ff00) / 256f, (color & 0x000000ff) / 256f,
52 				(color & 0xff000000) / 256f };
53 	}
54 
c2i(final float[] color)55 	public static final int c2i(final float[] color) {
56 		return (color.length == 4 ? (int) (color[3] * 256) : 0xff000000) | ((int) (color[0] * 256) << 16) | ((int) (color[1] * 256) << 8)
57 				| (int) (color[2] * 256);
58 	}
59 
mix(final float a, final float b, final float f)60 	public static final float mix(final float a, final float b, final float f) {
61 		return (1 - f) * a + f * b;
62 	}
63 
mix(final Color a, final Color b, final float f)64 	public static final Color mix(final Color a, final Color b, final float f) {
65 		return new Color((int) ShaderUtils.clamp(ShaderUtils.mix(a.getRed(), b.getRed(), f), 0, 255), (int) ShaderUtils.clamp(
66 				ShaderUtils.mix(a.getGreen(), b.getGreen(), f), 0, 255), (int) ShaderUtils.clamp(
67 				ShaderUtils.mix(a.getBlue(), b.getBlue(), f), 0, 255));
68 	}
69 
mix(final int a, final int b, final float f)70 	public static final int mix(final int a, final int b, final float f) {
71 		return (int) ((1 - f) * a + f * b);
72 	}
73 
mix(final float[] c1, final float[] c2, final float f)74 	public static final float[] mix(final float[] c1, final float[] c2, final float f) {
75 		return new float[] { ShaderUtils.mix(c1[0], c2[0], f), ShaderUtils.mix(c1[1], c2[1], f), ShaderUtils.mix(c1[2], c2[2], f) };
76 	}
77 
step(final float a, final float x)78 	public static final float step(final float a, final float x) {
79 		return x < a ? 0 : 1;
80 	}
81 
boxstep(final float a, final float b, final float x)82 	public static final float boxstep(final float a, final float b, final float x) {
83 		return ShaderUtils.clamp((x - a) / (b - a), 0, 1);
84 	}
85 
pulse(final float a, final float b, final float x)86 	public static final float pulse(final float a, final float b, final float x) {
87 		return ShaderUtils.step(a, x) - ShaderUtils.step(b, x);
88 	}
89 
clamp(final float x, final float a, final float b)90 	public static final float clamp(final float x, final float a, final float b) {
91 		return x < a ? a : x > b ? b : x;
92 	}
93 
min(final float a, final float b)94 	public static final float min(final float a, final float b) {
95 		return a < b ? a : b;
96 	}
97 
max(final float a, final float b)98 	public static final float max(final float a, final float b) {
99 		return a > b ? a : b;
100 	}
101 
abs(final float x)102 	public static final float abs(final float x) {
103 		return x < 0 ? -x : x;
104 	}
105 
smoothstep(final float a, final float b, final float x)106 	public static final float smoothstep(final float a, final float b, final float x) {
107 		if (x < a) {
108 			return 0;
109 		} else if (x > b) {
110 			return 1;
111 		}
112 		float xx = (x - a) / (b - a);
113 		return xx * xx * (3 - 2 * xx);
114 	}
115 
mod(final float a, final float b)116 	public static final float mod(final float a, final float b) {
117 		int n = (int) (a / b);
118 		float aa = a - n * b;
119 		if (aa < 0) {
120 			aa += b;
121 		}
122 		return aa;
123 	}
124 
floor(final float x)125 	public static final int floor(final float x) {
126 		return x > 0 ? (int) x : (int) x - 1;
127 	}
128 
ceil(final float x)129 	public static final float ceil(final float x) {
130 		return (int) x + (x > 0 && x != (int) x ? 1 : 0);
131 	}
132 
spline(float x, final float[] knot)133 	public static final float spline(float x, final float[] knot) {
134 		float CR00 = -0.5f;
135 		float CR01 = 1.5f;
136 		float CR02 = -1.5f;
137 		float CR03 = 0.5f;
138 		float CR10 = 1.0f;
139 		float CR11 = -2.5f;
140 		float CR12 = 2.0f;
141 		float CR13 = -0.5f;
142 		float CR20 = -0.5f;
143 		float CR21 = 0.0f;
144 		float CR22 = 0.5f;
145 		float CR23 = 0.0f;
146 		float CR30 = 0.0f;
147 		float CR31 = 1.0f;
148 		float CR32 = 0.0f;
149 		float CR33 = 0.0f;
150 
151 		int span;
152 		int nspans = knot.length - 3;
153 		float c0, c1, c2, c3; /* coefficients of the cubic. */
154 		if (nspans < 1) {/* illegal */
155 			throw new RuntimeException("Spline has too few knots.");
156 		}
157 		/* Find the appropriate 4-point span of the spline. */
158 		x = ShaderUtils.clamp(x, 0, 1) * nspans;
159 		span = (int) x;
160 		if (span >= knot.length - 3) {
161 			span = knot.length - 3;
162 		}
163 		x -= span;
164 		/* Evaluate the span cubic at x using Horner’s rule. */
165 		c3 = CR00 * knot[span + 0] + CR01 * knot[span + 1] + CR02 * knot[span + 2] + CR03 * knot[span + 3];
166 		c2 = CR10 * knot[span + 0] + CR11 * knot[span + 1] + CR12 * knot[span + 2] + CR13 * knot[span + 3];
167 		c1 = CR20 * knot[span + 0] + CR21 * knot[span + 1] + CR22 * knot[span + 2] + CR23 * knot[span + 3];
168 		c0 = CR30 * knot[span + 0] + CR31 * knot[span + 1] + CR32 * knot[span + 2] + CR33 * knot[span + 3];
169 		return ((c3 * x + c2) * x + c1) * x + c0;
170 	}
171 
spline(final float x, final float[][] knots)172 	public static final float[] spline(final float x, final float[][] knots) {
173 		float[] retval = new float[knots.length];
174 		for (int i = 0; i < knots.length; i++) {
175 			retval[i] = ShaderUtils.spline(x, knots[i]);
176 		}
177 		return retval;
178 	}
179 
gammaCorrection(final float gamma, final float x)180 	public static final float gammaCorrection(final float gamma, final float x) {
181 		return (float) Math.pow(x, 1 / gamma);
182 	}
183 
bias(final float b, final float x)184 	public static final float bias(final float b, final float x) {
185 		return (float) Math.pow(x, Math.log(b) / Math.log(0.5));
186 	}
187 
gain(final float g, final float x)188 	public static final float gain(final float g, final float x) {
189 		return x < 0.5 ? ShaderUtils.bias(1 - g, 2 * x) / 2 : 1 - ShaderUtils.bias(1 - g, 2 - 2 * x) / 2;
190 	}
191 
sinValue(final float s, final float minFreq, final float maxFreq, final float swidth)192 	public static final float sinValue(final float s, final float minFreq, final float maxFreq, final float swidth) {
193 		float value = 0;
194 		float cutoff = ShaderUtils.clamp(0.5f / swidth, 0, maxFreq);
195 		float f;
196 		for (f = minFreq; f < 0.5 * cutoff; f *= 2) {
197 			value += Math.sin(2 * Math.PI * f * s) / f;
198 		}
199 		float fade = ShaderUtils.clamp(2 * (cutoff - f) / cutoff, 0, 1);
200 		value += fade * Math.sin(2 * Math.PI * f * s) / f;
201 		return value;
202 	}
203 
length(final float x, final float y, final float z)204 	public static final float length(final float x, final float y, final float z) {
205 		return (float) Math.sqrt(x * x + y * y + z * z);
206 	}
207 
rotate(final float[] v, final float[][] m)208 	public static final float[] rotate(final float[] v, final float[][] m) {
209 		float x = v[0] * m[0][0] + v[1] * m[0][1] + v[2] * m[0][2];
210 		float y = v[0] * m[1][0] + v[1] * m[1][1] + v[2] * m[1][2];
211 		float z = v[0] * m[2][0] + v[1] * m[2][1] + v[2] * m[2][2];
212 		return new float[] { x, y, z };
213 	}
214 
calcRotationMatrix(final float ax, final float ay, final float az)215 	public static final float[][] calcRotationMatrix(final float ax, final float ay, final float az) {
216 		float[][] retval = new float[3][3];
217 		float cax = (float) Math.cos(ax);
218 		float sax = (float) Math.sin(ax);
219 		float cay = (float) Math.cos(ay);
220 		float say = (float) Math.sin(ay);
221 		float caz = (float) Math.cos(az);
222 		float saz = (float) Math.sin(az);
223 
224 		retval[0][0] = cay * caz;
225 		retval[0][1] = -cay * saz;
226 		retval[0][2] = say;
227 		retval[1][0] = sax * say * caz + cax * saz;
228 		retval[1][1] = -sax * say * saz + cax * caz;
229 		retval[1][2] = -sax * cay;
230 		retval[2][0] = -cax * say * caz + sax * saz;
231 		retval[2][1] = cax * say * saz + sax * caz;
232 		retval[2][2] = cax * cay;
233 
234 		return retval;
235 	}
236 
normalize(final float[] v)237 	public static final float[] normalize(final float[] v) {
238 		float l = ShaderUtils.length(v);
239 		float[] r = new float[v.length];
240 		int i = 0;
241 		for (float vv : v) {
242 			r[i++] = vv / l;
243 		}
244 		return r;
245 	}
246 
length(final float[] v)247 	public static final float length(final float[] v) {
248 		float s = 0;
249 		for (float vv : v) {
250 			s += vv * vv;
251 		}
252 		return (float) Math.sqrt(s);
253 	}
254 
getImageDataFromImage(BufferedImage bufferedImage)255 	public static final ByteBuffer getImageDataFromImage(BufferedImage bufferedImage) {
256 		WritableRaster wr;
257 		DataBuffer db;
258 
259 		BufferedImage bi = new BufferedImage(128, 64, BufferedImage.TYPE_INT_ARGB);
260 		Graphics2D g = bi.createGraphics();
261 		g.drawImage(bufferedImage, null, null);
262 		bufferedImage = bi;
263 		wr = bi.getRaster();
264 		db = wr.getDataBuffer();
265 
266 		DataBufferInt dbi = (DataBufferInt) db;
267 		int[] data = dbi.getData();
268 
269 		ByteBuffer byteBuffer = ByteBuffer.allocateDirect(data.length * 4);
270 		byteBuffer.order(ByteOrder.LITTLE_ENDIAN);
271 		byteBuffer.asIntBuffer().put(data);
272 		byteBuffer.flip();
273 
274 		return byteBuffer;
275 	}
276 
frac(float f)277 	public static float frac(float f) {
278 		return f - ShaderUtils.floor(f);
279 	}
280 
floor(float[] fs)281 	public static float[] floor(float[] fs) {
282 		float[] retval = new float[fs.length];
283 		for (int i = 0; i < fs.length; i++) {
284 			retval[i] = ShaderUtils.floor(fs[i]);
285 		}
286 		return retval;
287 	}
288 }
289