1 //===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements straight-line strength reduction (SLSR). Unlike loop
11 // strength reduction, this algorithm is designed to reduce arithmetic
12 // redundancy in straight-line code instead of loops. It has proven to be
13 // effective in simplifying arithmetic statements derived from an unrolled loop.
14 // It can also simplify the logic of SeparateConstOffsetFromGEP.
15 //
16 // There are many optimizations we can perform in the domain of SLSR. This file
17 // for now contains only an initial step. Specifically, we look for strength
18 // reduction candidates in the following forms:
19 //
20 // Form 1: B + i * S
21 // Form 2: (B + i) * S
22 // Form 3: &B[i * S]
23 //
24 // where S is an integer variable, and i is a constant integer. If we found two
25 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26 // in a simpler way with respect to S1. For example,
27 //
28 // S1: X = B + i * S
29 // S2: Y = B + i' * S => X + (i' - i) * S
30 //
31 // S1: X = (B + i) * S
32 // S2: Y = (B + i') * S => X + (i' - i) * S
33 //
34 // S1: X = &B[i * S]
35 // S2: Y = &B[i' * S] => &X[(i' - i) * S]
36 //
37 // Note: (i' - i) * S is folded to the extent possible.
38 //
39 // This rewriting is in general a good idea. The code patterns we focus on
40 // usually come from loop unrolling, so (i' - i) * S is likely the same
41 // across iterations and can be reused. When that happens, the optimized form
42 // takes only one add starting from the second iteration.
43 //
44 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
46 // basis, the basis that is the closest ancestor in the dominator tree.
47 //
48 // TODO:
49 //
50 // - Floating point arithmetics when fast math is enabled.
51 //
52 // - SLSR may decrease ILP at the architecture level. Targets that are very
53 // sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54 // left as future work.
55 //
56 // - When (i' - i) is constant but i and i' are not, we could still perform
57 // SLSR.
58 #include <vector>
59
60 #include "llvm/ADT/DenseSet.h"
61 #include "llvm/ADT/FoldingSet.h"
62 #include "llvm/Analysis/ScalarEvolution.h"
63 #include "llvm/Analysis/TargetTransformInfo.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/Dominators.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Scalar.h"
71
72 using namespace llvm;
73 using namespace PatternMatch;
74
75 namespace {
76
77 class StraightLineStrengthReduce : public FunctionPass {
78 public:
79 // SLSR candidate. Such a candidate must be in one of the forms described in
80 // the header comments.
81 struct Candidate : public ilist_node<Candidate> {
82 enum Kind {
83 Invalid, // reserved for the default constructor
84 Add, // B + i * S
85 Mul, // (B + i) * S
86 GEP, // &B[..][i * S][..]
87 };
88
Candidate__anonaa4ec62a0111::StraightLineStrengthReduce::Candidate89 Candidate()
90 : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
91 Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
Candidate__anonaa4ec62a0111::StraightLineStrengthReduce::Candidate92 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
93 Instruction *I)
94 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
95 Basis(nullptr) {}
96 Kind CandidateKind;
97 const SCEV *Base;
98 // Note that Index and Stride of a GEP candidate do not necessarily have the
99 // same integer type. In that case, during rewriting, Stride will be
100 // sign-extended or truncated to Index's type.
101 ConstantInt *Index;
102 Value *Stride;
103 // The instruction this candidate corresponds to. It helps us to rewrite a
104 // candidate with respect to its immediate basis. Note that one instruction
105 // can correspond to multiple candidates depending on how you associate the
106 // expression. For instance,
107 //
108 // (a + 1) * (b + 2)
109 //
110 // can be treated as
111 //
112 // <Base: a, Index: 1, Stride: b + 2>
113 //
114 // or
115 //
116 // <Base: b, Index: 2, Stride: a + 1>
117 Instruction *Ins;
118 // Points to the immediate basis of this candidate, or nullptr if we cannot
119 // find any basis for this candidate.
120 Candidate *Basis;
121 };
122
123 static char ID;
124
StraightLineStrengthReduce()125 StraightLineStrengthReduce()
126 : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
127 initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
128 }
129
getAnalysisUsage(AnalysisUsage & AU) const130 void getAnalysisUsage(AnalysisUsage &AU) const override {
131 AU.addRequired<DominatorTreeWrapperPass>();
132 AU.addRequired<ScalarEvolution>();
133 AU.addRequired<TargetTransformInfoWrapperPass>();
134 // We do not modify the shape of the CFG.
135 AU.setPreservesCFG();
136 }
137
doInitialization(Module & M)138 bool doInitialization(Module &M) override {
139 DL = &M.getDataLayout();
140 return false;
141 }
142
143 bool runOnFunction(Function &F) override;
144
145 private:
146 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
147 // share the same base and stride.
148 bool isBasisFor(const Candidate &Basis, const Candidate &C);
149 // Returns whether the candidate can be folded into an addressing mode.
150 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
151 const DataLayout *DL);
152 // Returns true if C is already in a simplest form and not worth being
153 // rewritten.
154 bool isSimplestForm(const Candidate &C);
155 // Checks whether I is in a candidate form. If so, adds all the matching forms
156 // to Candidates, and tries to find the immediate basis for each of them.
157 void allocateCandidatesAndFindBasis(Instruction *I);
158 // Allocate candidates and find bases for Add instructions.
159 void allocateCandidatesAndFindBasisForAdd(Instruction *I);
160 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
161 // candidate.
162 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
163 Instruction *I);
164 // Allocate candidates and find bases for Mul instructions.
165 void allocateCandidatesAndFindBasisForMul(Instruction *I);
166 // Splits LHS into Base + Index and, if succeeds, calls
167 // allocateCandidatesAndFindBasis.
168 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
169 Instruction *I);
170 // Allocate candidates and find bases for GetElementPtr instructions.
171 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
172 // A helper function that scales Idx with ElementSize before invoking
173 // allocateCandidatesAndFindBasis.
174 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
175 Value *S, uint64_t ElementSize,
176 Instruction *I);
177 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
178 // basis.
179 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
180 ConstantInt *Idx, Value *S,
181 Instruction *I);
182 // Rewrites candidate C with respect to Basis.
183 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
184 // A helper function that factors ArrayIdx to a product of a stride and a
185 // constant index, and invokes allocateCandidatesAndFindBasis with the
186 // factorings.
187 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
188 GetElementPtrInst *GEP);
189 // Emit code that computes the "bump" from Basis to C. If the candidate is a
190 // GEP and the bump is not divisible by the element size of the GEP, this
191 // function sets the BumpWithUglyGEP flag to notify its caller to bump the
192 // basis using an ugly GEP.
193 static Value *emitBump(const Candidate &Basis, const Candidate &C,
194 IRBuilder<> &Builder, const DataLayout *DL,
195 bool &BumpWithUglyGEP);
196
197 const DataLayout *DL;
198 DominatorTree *DT;
199 ScalarEvolution *SE;
200 TargetTransformInfo *TTI;
201 ilist<Candidate> Candidates;
202 // Temporarily holds all instructions that are unlinked (but not deleted) by
203 // rewriteCandidateWithBasis. These instructions will be actually removed
204 // after all rewriting finishes.
205 std::vector<Instruction *> UnlinkedInstructions;
206 };
207 } // anonymous namespace
208
209 char StraightLineStrengthReduce::ID = 0;
210 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
211 "Straight line strength reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
213 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
214 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
215 INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
216 "Straight line strength reduction", false, false)
217
218 FunctionPass *llvm::createStraightLineStrengthReducePass() {
219 return new StraightLineStrengthReduce();
220 }
221
isBasisFor(const Candidate & Basis,const Candidate & C)222 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
223 const Candidate &C) {
224 return (Basis.Ins != C.Ins && // skip the same instruction
225 // Basis must dominate C in order to rewrite C with respect to Basis.
226 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
227 // They share the same base, stride, and candidate kind.
228 Basis.Base == C.Base &&
229 Basis.Stride == C.Stride &&
230 Basis.CandidateKind == C.CandidateKind);
231 }
232
isGEPFoldable(GetElementPtrInst * GEP,const TargetTransformInfo * TTI,const DataLayout * DL)233 static bool isGEPFoldable(GetElementPtrInst *GEP,
234 const TargetTransformInfo *TTI,
235 const DataLayout *DL) {
236 GlobalVariable *BaseGV = nullptr;
237 int64_t BaseOffset = 0;
238 bool HasBaseReg = false;
239 int64_t Scale = 0;
240
241 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
242 BaseGV = GV;
243 else
244 HasBaseReg = true;
245
246 gep_type_iterator GTI = gep_type_begin(GEP);
247 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
248 if (isa<SequentialType>(*GTI)) {
249 int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
250 if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
251 BaseOffset += ConstIdx->getSExtValue() * ElementSize;
252 } else {
253 // Needs scale register.
254 if (Scale != 0) {
255 // No addressing mode takes two scale registers.
256 return false;
257 }
258 Scale = ElementSize;
259 }
260 } else {
261 StructType *STy = cast<StructType>(*GTI);
262 uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
263 BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
264 }
265 }
266 return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
267 BaseOffset, HasBaseReg, Scale);
268 }
269
270 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
isAddFoldable(const SCEV * Base,ConstantInt * Index,Value * Stride,TargetTransformInfo * TTI)271 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
272 TargetTransformInfo *TTI) {
273 return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
274 Index->getSExtValue());
275 }
276
isFoldable(const Candidate & C,TargetTransformInfo * TTI,const DataLayout * DL)277 bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
278 TargetTransformInfo *TTI,
279 const DataLayout *DL) {
280 if (C.CandidateKind == Candidate::Add)
281 return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
282 if (C.CandidateKind == Candidate::GEP)
283 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
284 return false;
285 }
286
287 // Returns true if GEP has zero or one non-zero index.
hasOnlyOneNonZeroIndex(GetElementPtrInst * GEP)288 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
289 unsigned NumNonZeroIndices = 0;
290 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
291 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
292 if (ConstIdx == nullptr || !ConstIdx->isZero())
293 ++NumNonZeroIndices;
294 }
295 return NumNonZeroIndices <= 1;
296 }
297
isSimplestForm(const Candidate & C)298 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
299 if (C.CandidateKind == Candidate::Add) {
300 // B + 1 * S or B + (-1) * S
301 return C.Index->isOne() || C.Index->isMinusOne();
302 }
303 if (C.CandidateKind == Candidate::Mul) {
304 // (B + 0) * S
305 return C.Index->isZero();
306 }
307 if (C.CandidateKind == Candidate::GEP) {
308 // (char*)B + S or (char*)B - S
309 return ((C.Index->isOne() || C.Index->isMinusOne()) &&
310 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
311 }
312 return false;
313 }
314
315 // TODO: We currently implement an algorithm whose time complexity is linear in
316 // the number of existing candidates. However, we could do better by using
317 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
318 // maintain all the candidates that dominate the basic block being traversed in
319 // a ScopedHashTable. This hash table is indexed by the base and the stride of
320 // a candidate. Therefore, finding the immediate basis of a candidate boils down
321 // to one hash-table look up.
allocateCandidatesAndFindBasis(Candidate::Kind CT,const SCEV * B,ConstantInt * Idx,Value * S,Instruction * I)322 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
323 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
324 Instruction *I) {
325 Candidate C(CT, B, Idx, S, I);
326 // SLSR can complicate an instruction in two cases:
327 //
328 // 1. If we can fold I into an addressing mode, computing I is likely free or
329 // takes only one instruction.
330 //
331 // 2. I is already in a simplest form. For example, when
332 // X = B + 8 * S
333 // Y = B + S,
334 // rewriting Y to X - 7 * S is probably a bad idea.
335 //
336 // In the above cases, we still add I to the candidate list so that I can be
337 // the basis of other candidates, but we leave I's basis blank so that I
338 // won't be rewritten.
339 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
340 // Try to compute the immediate basis of C.
341 unsigned NumIterations = 0;
342 // Limit the scan radius to avoid running in quadratice time.
343 static const unsigned MaxNumIterations = 50;
344 for (auto Basis = Candidates.rbegin();
345 Basis != Candidates.rend() && NumIterations < MaxNumIterations;
346 ++Basis, ++NumIterations) {
347 if (isBasisFor(*Basis, C)) {
348 C.Basis = &(*Basis);
349 break;
350 }
351 }
352 }
353 // Regardless of whether we find a basis for C, we need to push C to the
354 // candidate list so that it can be the basis of other candidates.
355 Candidates.push_back(C);
356 }
357
allocateCandidatesAndFindBasis(Instruction * I)358 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
359 Instruction *I) {
360 switch (I->getOpcode()) {
361 case Instruction::Add:
362 allocateCandidatesAndFindBasisForAdd(I);
363 break;
364 case Instruction::Mul:
365 allocateCandidatesAndFindBasisForMul(I);
366 break;
367 case Instruction::GetElementPtr:
368 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
369 break;
370 }
371 }
372
allocateCandidatesAndFindBasisForAdd(Instruction * I)373 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
374 Instruction *I) {
375 // Try matching B + i * S.
376 if (!isa<IntegerType>(I->getType()))
377 return;
378
379 assert(I->getNumOperands() == 2 && "isn't I an add?");
380 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
381 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
382 if (LHS != RHS)
383 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
384 }
385
allocateCandidatesAndFindBasisForAdd(Value * LHS,Value * RHS,Instruction * I)386 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
387 Value *LHS, Value *RHS, Instruction *I) {
388 Value *S = nullptr;
389 ConstantInt *Idx = nullptr;
390 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
391 // I = LHS + RHS = LHS + Idx * S
392 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
393 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
394 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
395 APInt One(Idx->getBitWidth(), 1);
396 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
397 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
398 } else {
399 // At least, I = LHS + 1 * RHS
400 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
401 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
402 I);
403 }
404 }
405
allocateCandidatesAndFindBasisForMul(Value * LHS,Value * RHS,Instruction * I)406 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
407 Value *LHS, Value *RHS, Instruction *I) {
408 Value *B = nullptr;
409 ConstantInt *Idx = nullptr;
410 // Only handle the canonical operand ordering.
411 if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
412 // If LHS is in the form of "Base + Index", then I is in the form of
413 // "(Base + Index) * RHS".
414 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
415 } else {
416 // Otherwise, at least try the form (LHS + 0) * RHS.
417 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
418 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
419 I);
420 }
421 }
422
allocateCandidatesAndFindBasisForMul(Instruction * I)423 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
424 Instruction *I) {
425 // Try matching (B + i) * S.
426 // TODO: we could extend SLSR to float and vector types.
427 if (!isa<IntegerType>(I->getType()))
428 return;
429
430 assert(I->getNumOperands() == 2 && "isn't I a mul?");
431 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
432 allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
433 if (LHS != RHS) {
434 // Symmetrically, try to split RHS to Base + Index.
435 allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
436 }
437 }
438
allocateCandidatesAndFindBasisForGEP(const SCEV * B,ConstantInt * Idx,Value * S,uint64_t ElementSize,Instruction * I)439 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
440 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
441 Instruction *I) {
442 // I = B + sext(Idx *nsw S) * ElementSize
443 // = B + (sext(Idx) * sext(S)) * ElementSize
444 // = B + (sext(Idx) * ElementSize) * sext(S)
445 // Casting to IntegerType is safe because we skipped vector GEPs.
446 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
447 ConstantInt *ScaledIdx = ConstantInt::get(
448 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
449 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
450 }
451
factorArrayIndex(Value * ArrayIdx,const SCEV * Base,uint64_t ElementSize,GetElementPtrInst * GEP)452 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
453 const SCEV *Base,
454 uint64_t ElementSize,
455 GetElementPtrInst *GEP) {
456 // At least, ArrayIdx = ArrayIdx *nsw 1.
457 allocateCandidatesAndFindBasisForGEP(
458 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
459 ArrayIdx, ElementSize, GEP);
460 Value *LHS = nullptr;
461 ConstantInt *RHS = nullptr;
462 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
463 // itself. This would allow us to handle the shl case for free. However,
464 // matching SCEVs has two issues:
465 //
466 // 1. this would complicate rewriting because the rewriting procedure
467 // would have to translate SCEVs back to IR instructions. This translation
468 // is difficult when LHS is further evaluated to a composite SCEV.
469 //
470 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
471 // to strip nsw/nuw flags which are critical for SLSR to trace into
472 // sext'ed multiplication.
473 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
474 // SLSR is currently unsafe if i * S may overflow.
475 // GEP = Base + sext(LHS *nsw RHS) * ElementSize
476 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
477 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
478 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
479 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
480 APInt One(RHS->getBitWidth(), 1);
481 ConstantInt *PowerOf2 =
482 ConstantInt::get(RHS->getContext(), One << RHS->getValue());
483 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
484 }
485 }
486
allocateCandidatesAndFindBasisForGEP(GetElementPtrInst * GEP)487 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
488 GetElementPtrInst *GEP) {
489 // TODO: handle vector GEPs
490 if (GEP->getType()->isVectorTy())
491 return;
492
493 const SCEV *GEPExpr = SE->getSCEV(GEP);
494 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
495
496 gep_type_iterator GTI = gep_type_begin(GEP);
497 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
498 if (!isa<SequentialType>(*GTI++))
499 continue;
500 Value *ArrayIdx = *I;
501 // Compute the byte offset of this index.
502 uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
503 const SCEV *ElementSizeExpr = SE->getSizeOfExpr(IntPtrTy, *GTI);
504 const SCEV *ArrayIdxExpr = SE->getSCEV(ArrayIdx);
505 ArrayIdxExpr = SE->getTruncateOrSignExtend(ArrayIdxExpr, IntPtrTy);
506 const SCEV *LocalOffset =
507 SE->getMulExpr(ArrayIdxExpr, ElementSizeExpr, SCEV::FlagNSW);
508 // The base of this candidate equals GEPExpr less the byte offset of this
509 // index.
510 const SCEV *Base = SE->getMinusSCEV(GEPExpr, LocalOffset);
511 factorArrayIndex(ArrayIdx, Base, ElementSize, GEP);
512 // When ArrayIdx is the sext of a value, we try to factor that value as
513 // well. Handling this case is important because array indices are
514 // typically sign-extended to the pointer size.
515 Value *TruncatedArrayIdx = nullptr;
516 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
517 factorArrayIndex(TruncatedArrayIdx, Base, ElementSize, GEP);
518 }
519 }
520
521 // A helper function that unifies the bitwidth of A and B.
unifyBitWidth(APInt & A,APInt & B)522 static void unifyBitWidth(APInt &A, APInt &B) {
523 if (A.getBitWidth() < B.getBitWidth())
524 A = A.sext(B.getBitWidth());
525 else if (A.getBitWidth() > B.getBitWidth())
526 B = B.sext(A.getBitWidth());
527 }
528
emitBump(const Candidate & Basis,const Candidate & C,IRBuilder<> & Builder,const DataLayout * DL,bool & BumpWithUglyGEP)529 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
530 const Candidate &C,
531 IRBuilder<> &Builder,
532 const DataLayout *DL,
533 bool &BumpWithUglyGEP) {
534 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
535 unifyBitWidth(Idx, BasisIdx);
536 APInt IndexOffset = Idx - BasisIdx;
537
538 BumpWithUglyGEP = false;
539 if (Basis.CandidateKind == Candidate::GEP) {
540 APInt ElementSize(
541 IndexOffset.getBitWidth(),
542 DL->getTypeAllocSize(
543 cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
544 APInt Q, R;
545 APInt::sdivrem(IndexOffset, ElementSize, Q, R);
546 if (R.getSExtValue() == 0)
547 IndexOffset = Q;
548 else
549 BumpWithUglyGEP = true;
550 }
551
552 // Compute Bump = C - Basis = (i' - i) * S.
553 // Common case 1: if (i' - i) is 1, Bump = S.
554 if (IndexOffset.getSExtValue() == 1)
555 return C.Stride;
556 // Common case 2: if (i' - i) is -1, Bump = -S.
557 if (IndexOffset.getSExtValue() == -1)
558 return Builder.CreateNeg(C.Stride);
559
560 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
561 // have different bit widths.
562 IntegerType *DeltaType =
563 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
564 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
565 if (IndexOffset.isPowerOf2()) {
566 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
567 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
568 return Builder.CreateShl(ExtendedStride, Exponent);
569 }
570 if ((-IndexOffset).isPowerOf2()) {
571 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
572 ConstantInt *Exponent =
573 ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
574 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
575 }
576 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
577 return Builder.CreateMul(ExtendedStride, Delta);
578 }
579
rewriteCandidateWithBasis(const Candidate & C,const Candidate & Basis)580 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
581 const Candidate &C, const Candidate &Basis) {
582 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
583 C.Stride == Basis.Stride);
584 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
585 // basis of a candidate cannot be unlinked before the candidate.
586 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
587
588 // An instruction can correspond to multiple candidates. Therefore, instead of
589 // simply deleting an instruction when we rewrite it, we mark its parent as
590 // nullptr (i.e. unlink it) so that we can skip the candidates whose
591 // instruction is already rewritten.
592 if (!C.Ins->getParent())
593 return;
594
595 IRBuilder<> Builder(C.Ins);
596 bool BumpWithUglyGEP;
597 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
598 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
599 switch (C.CandidateKind) {
600 case Candidate::Add:
601 case Candidate::Mul:
602 if (BinaryOperator::isNeg(Bump)) {
603 Reduced =
604 Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
605 } else {
606 Reduced = Builder.CreateAdd(Basis.Ins, Bump);
607 }
608 break;
609 case Candidate::GEP:
610 {
611 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
612 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
613 if (BumpWithUglyGEP) {
614 // C = (char *)Basis + Bump
615 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
616 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
617 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
618 if (InBounds)
619 Reduced =
620 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
621 else
622 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
623 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
624 } else {
625 // C = gep Basis, Bump
626 // Canonicalize bump to pointer size.
627 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
628 if (InBounds)
629 Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
630 else
631 Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
632 }
633 }
634 break;
635 default:
636 llvm_unreachable("C.CandidateKind is invalid");
637 };
638 Reduced->takeName(C.Ins);
639 C.Ins->replaceAllUsesWith(Reduced);
640 C.Ins->dropAllReferences();
641 // Unlink C.Ins so that we can skip other candidates also corresponding to
642 // C.Ins. The actual deletion is postponed to the end of runOnFunction.
643 C.Ins->removeFromParent();
644 UnlinkedInstructions.push_back(C.Ins);
645 }
646
runOnFunction(Function & F)647 bool StraightLineStrengthReduce::runOnFunction(Function &F) {
648 if (skipOptnoneFunction(F))
649 return false;
650
651 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
652 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
653 SE = &getAnalysis<ScalarEvolution>();
654 // Traverse the dominator tree in the depth-first order. This order makes sure
655 // all bases of a candidate are in Candidates when we process it.
656 for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
657 node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
658 for (auto &I : *node->getBlock())
659 allocateCandidatesAndFindBasis(&I);
660 }
661
662 // Rewrite candidates in the reverse depth-first order. This order makes sure
663 // a candidate being rewritten is not a basis for any other candidate.
664 while (!Candidates.empty()) {
665 const Candidate &C = Candidates.back();
666 if (C.Basis != nullptr) {
667 rewriteCandidateWithBasis(C, *C.Basis);
668 }
669 Candidates.pop_back();
670 }
671
672 // Delete all unlink instructions.
673 for (auto I : UnlinkedInstructions) {
674 delete I;
675 }
676 bool Ret = !UnlinkedInstructions.empty();
677 UnlinkedInstructions.clear();
678 return Ret;
679 }
680