1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 /*
18  * A service that exchanges time synchronization information between
19  * a master that defines a timeline and clients that follow the timeline.
20  */
21 
22 #define __STDC_LIMIT_MACROS
23 #define LOG_TAG "common_time"
24 #include <utils/Log.h>
25 #include <inttypes.h>
26 #include <stdint.h>
27 
28 #include <common_time/local_clock.h>
29 #include <assert.h>
30 
31 #include "clock_recovery.h"
32 #include "common_clock.h"
33 #ifdef TIME_SERVICE_DEBUG
34 #include "diag_thread.h"
35 #endif
36 
37 // Define log macro so we can make LOGV into LOGE when we are exclusively
38 // debugging this code.
39 #ifdef TIME_SERVICE_DEBUG
40 #define LOG_TS ALOGE
41 #else
42 #define LOG_TS ALOGV
43 #endif
44 
45 namespace android {
46 
ClockRecoveryLoop(LocalClock * local_clock,CommonClock * common_clock)47 ClockRecoveryLoop::ClockRecoveryLoop(LocalClock* local_clock,
48                                      CommonClock* common_clock) {
49     assert(NULL != local_clock);
50     assert(NULL != common_clock);
51 
52     local_clock_  = local_clock;
53     common_clock_ = common_clock;
54 
55     local_clock_can_slew_ = local_clock_->initCheck() &&
56                            (local_clock_->setLocalSlew(0) == OK);
57     tgt_correction_ = 0;
58     cur_correction_ = 0;
59 
60     // Precompute the max rate at which we are allowed to change the VCXO
61     // control.
62     uint64_t N = 0x10000ull * 1000ull;
63     uint64_t D = local_clock_->getLocalFreq() * kMinFullRangeSlewChange_mSec;
64     LinearTransform::reduce(&N, &D);
65     while ((N > INT32_MAX) || (D > UINT32_MAX)) {
66         N >>= 1;
67         D >>= 1;
68         LinearTransform::reduce(&N, &D);
69     }
70     time_to_cur_slew_.a_to_b_numer = static_cast<int32_t>(N);
71     time_to_cur_slew_.a_to_b_denom = static_cast<uint32_t>(D);
72 
73     reset(true, true);
74 
75 #ifdef TIME_SERVICE_DEBUG
76     diag_thread_ = new DiagThread(common_clock_, local_clock_);
77     if (diag_thread_ != NULL) {
78         status_t res = diag_thread_->startWorkThread();
79         if (res != OK)
80             ALOGW("Failed to start A@H clock recovery diagnostic thread.");
81     } else
82         ALOGW("Failed to allocate diagnostic thread.");
83 #endif
84 }
85 
~ClockRecoveryLoop()86 ClockRecoveryLoop::~ClockRecoveryLoop() {
87 #ifdef TIME_SERVICE_DEBUG
88     diag_thread_->stopWorkThread();
89 #endif
90 }
91 
92 // Constants.
93 const float ClockRecoveryLoop::dT = 1.0;
94 const float ClockRecoveryLoop::Kc = 1.0f;
95 const float ClockRecoveryLoop::Ti = 15.0f;
96 const float ClockRecoveryLoop::Tf = 0.05;
97 const float ClockRecoveryLoop::bias_Fc = 0.01;
98 const float ClockRecoveryLoop::bias_RC = (dT / (2 * 3.14159f * bias_Fc));
99 const float ClockRecoveryLoop::bias_Alpha = (dT / (bias_RC + dT));
100 const int64_t ClockRecoveryLoop::panic_thresh_ = 50000;
101 const int64_t ClockRecoveryLoop::control_thresh_ = 10000;
102 const float ClockRecoveryLoop::COmin = -100.0f;
103 const float ClockRecoveryLoop::COmax = 100.0f;
104 const uint32_t ClockRecoveryLoop::kMinFullRangeSlewChange_mSec = 300;
105 const int ClockRecoveryLoop::kSlewChangeStepPeriod_mSec = 10;
106 
107 
reset(bool position,bool frequency)108 void ClockRecoveryLoop::reset(bool position, bool frequency) {
109     Mutex::Autolock lock(&lock_);
110     reset_l(position, frequency);
111 }
112 
findMinRTTNdx(DisciplineDataPoint * data,uint32_t count)113 uint32_t ClockRecoveryLoop::findMinRTTNdx(DisciplineDataPoint* data,
114                                           uint32_t count) {
115     uint32_t min_rtt = 0;
116     for (uint32_t i = 1; i < count; ++i)
117         if (data[min_rtt].rtt > data[i].rtt)
118             min_rtt = i;
119 
120     return min_rtt;
121 }
122 
pushDisciplineEvent(int64_t local_time,int64_t nominal_common_time,int64_t rtt)123 bool ClockRecoveryLoop::pushDisciplineEvent(int64_t local_time,
124                                             int64_t nominal_common_time,
125                                             int64_t rtt) {
126     Mutex::Autolock lock(&lock_);
127 
128     int64_t local_common_time = 0;
129     common_clock_->localToCommon(local_time, &local_common_time);
130     int64_t raw_delta = nominal_common_time - local_common_time;
131 
132 #ifdef TIME_SERVICE_DEBUG
133     ALOGE("local=%lld, common=%lld, delta=%lld, rtt=%lld\n",
134          local_common_time, nominal_common_time,
135          raw_delta, rtt);
136 #endif
137 
138     // If we have not defined a basis for common time, then we need to use these
139     // initial points to do so.  In order to avoid significant initial error
140     // from a particularly bad startup data point, we collect the first N data
141     // points and choose the best of them before moving on.
142     if (!common_clock_->isValid()) {
143         if (startup_filter_wr_ < kStartupFilterSize) {
144             DisciplineDataPoint& d =  startup_filter_data_[startup_filter_wr_];
145             d.local_time = local_time;
146             d.nominal_common_time = nominal_common_time;
147             d.rtt = rtt;
148             startup_filter_wr_++;
149         }
150 
151         if (startup_filter_wr_ == kStartupFilterSize) {
152             uint32_t min_rtt = findMinRTTNdx(startup_filter_data_,
153                     kStartupFilterSize);
154 
155             common_clock_->setBasis(
156                     startup_filter_data_[min_rtt].local_time,
157                     startup_filter_data_[min_rtt].nominal_common_time);
158         }
159 
160         return true;
161     }
162 
163     int64_t observed_common;
164     int64_t delta;
165     float delta_f, dCO;
166     int32_t tgt_correction;
167 
168     if (OK != common_clock_->localToCommon(local_time, &observed_common)) {
169         // Since we just checked to make certain that this conversion was valid,
170         // and no one else in the system should be messing with it, if this
171         // conversion is suddenly invalid, it is a good reason to panic.
172         ALOGE("Failed to convert local time to common time in %s:%d",
173                 __PRETTY_FUNCTION__, __LINE__);
174         return false;
175     }
176 
177     // Implement a filter which should match NTP filtering behavior when a
178     // client is associated with only one peer of lower stratum.  Basically,
179     // always use the best of the N last data points, where best is defined as
180     // lowest round trip time.  NTP uses an N of 8; we use a value of 6.
181     //
182     // TODO(johngro) : experiment with other filter strategies.  The goal here
183     // is to mitigate the effects of high RTT data points which typically have
184     // large asymmetries in the TX/RX legs.  Downside of the existing NTP
185     // approach (particularly because of the PID controller we are using to
186     // produce the control signal from the filtered data) are that the rate at
187     // which discipline events are actually acted upon becomes irregular and can
188     // become drawn out (the time between actionable event can go way up).  If
189     // the system receives a strong high quality data point, the proportional
190     // component of the controller can produce a strong correction which is left
191     // in place for too long causing overshoot.  In addition, the integral
192     // component of the system currently is an approximation based on the
193     // assumption of a more or less homogeneous sampling of the error.  Its
194     // unclear what the effect of undermining this assumption would be right
195     // now.
196 
197     // Two ideas which come to mind immediately would be to...
198     // 1) Keep a history of more data points (32 or so) and ignore data points
199     //    whose RTT is more than a certain number of standard deviations outside
200     //    of the norm.
201     // 2) Eliminate the PID controller portion of this system entirely.
202     //    Instead, move to a system which uses a very wide filter (128 data
203     //    points or more) with a sum-of-least-squares line fitting approach to
204     //    tracking the long term drift.  This would take the place of the I
205     //    component in the current PID controller.  Also use a much more narrow
206     //    outlier-rejector filter (as described in #1) to drive a short term
207     //    correction factor similar to the P component of the PID controller.
208     assert(filter_wr_ < kFilterSize);
209     filter_data_[filter_wr_].local_time           = local_time;
210     filter_data_[filter_wr_].observed_common_time = observed_common;
211     filter_data_[filter_wr_].nominal_common_time  = nominal_common_time;
212     filter_data_[filter_wr_].rtt                  = rtt;
213     filter_data_[filter_wr_].point_used           = false;
214     uint32_t current_point = filter_wr_;
215     filter_wr_ = (filter_wr_ + 1) % kFilterSize;
216     if (!filter_wr_)
217         filter_full_ = true;
218 
219     uint32_t scan_end = filter_full_ ? kFilterSize : filter_wr_;
220     uint32_t min_rtt = findMinRTTNdx(filter_data_, scan_end);
221     // We only use packets with low RTTs for control. If the packet RTT
222     // is less than the panic threshold, we can probably eat the jitter with the
223     // control loop. Otherwise, take the packet only if it better than all
224     // of the packets we have in the history. That way we try to track
225     // something, even if it is noisy.
226     if (current_point == min_rtt || rtt < control_thresh_) {
227         delta_f = delta = nominal_common_time - observed_common;
228 
229         last_error_est_valid_ = true;
230         last_error_est_usec_ = delta;
231 
232         // Compute the error then clamp to the panic threshold.  If we ever
233         // exceed this amt of error, its time to panic and reset the system.
234         // Given that the error in the measurement of the error could be as
235         // high as the RTT of the data point, we don't actually panic until
236         // the implied error (delta) is greater than the absolute panic
237         // threashold plus the RTT.  IOW - we don't panic until we are
238         // absoluely sure that our best case sync is worse than the absolute
239         // panic threshold.
240         int64_t effective_panic_thresh = panic_thresh_ + rtt;
241         if ((delta > effective_panic_thresh) ||
242             (delta < -effective_panic_thresh)) {
243             // PANIC!!!
244             reset_l(false, true);
245             return false;
246         }
247 
248     } else {
249         // We do not have a good packet to look at, but we also do not want to
250         // free-run the clock at some crazy slew rate. So we guess the
251         // trajectory of the clock based on the last controller output and the
252         // estimated bias of our clock against the master.
253         // The net effect of this is that CO == CObias after some extended
254         // period of no feedback.
255         delta_f = last_delta_f_ - dT*(CO - CObias);
256         delta = delta_f;
257     }
258 
259     // Velocity form PI control equation.
260     dCO = Kc * (1.0f + dT/Ti) * delta_f - Kc * last_delta_f_;
261     CO += dCO * Tf; // Filter CO by applying gain <1 here.
262 
263     // Save error terms for later.
264     last_delta_f_ = delta_f;
265 
266     // Clamp CO to +/- 100ppm.
267     if (CO < COmin)
268         CO = COmin;
269     else if (CO > COmax)
270         CO = COmax;
271 
272     // Update the controller bias.
273     CObias = bias_Alpha * CO + (1.0f - bias_Alpha) * lastCObias;
274     lastCObias = CObias;
275 
276     // Convert PPM to 16-bit int range. Add some guard band (-0.01) so we
277     // don't get fp weirdness.
278     tgt_correction = CO * 327.66;
279 
280     // If there was a change in the amt of correction to use, update the
281     // system.
282     setTargetCorrection_l(tgt_correction);
283 
284     LOG_TS("clock_loop %" PRId64 " %f %f %f %d\n", raw_delta, delta_f, CO, CObias, tgt_correction);
285 
286 #ifdef TIME_SERVICE_DEBUG
287     diag_thread_->pushDisciplineEvent(
288             local_time,
289             observed_common,
290             nominal_common_time,
291             tgt_correction,
292             rtt);
293 #endif
294 
295     return true;
296 }
297 
getLastErrorEstimate()298 int32_t ClockRecoveryLoop::getLastErrorEstimate() {
299     Mutex::Autolock lock(&lock_);
300 
301     if (last_error_est_valid_)
302         return last_error_est_usec_;
303     else
304         return ICommonClock::kErrorEstimateUnknown;
305 }
306 
reset_l(bool position,bool frequency)307 void ClockRecoveryLoop::reset_l(bool position, bool frequency) {
308     assert(NULL != common_clock_);
309 
310     if (position) {
311         common_clock_->resetBasis();
312         startup_filter_wr_ = 0;
313     }
314 
315     if (frequency) {
316         last_error_est_valid_ = false;
317         last_error_est_usec_ = 0;
318         last_delta_f_ = 0.0;
319         CO = 0.0f;
320         lastCObias = CObias = 0.0f;
321         setTargetCorrection_l(0);
322         applySlew_l();
323     }
324 
325     filter_wr_   = 0;
326     filter_full_ = false;
327 }
328 
setTargetCorrection_l(int32_t tgt)329 void ClockRecoveryLoop::setTargetCorrection_l(int32_t tgt) {
330     // When we make a change to the slew rate, we need to be careful to not
331     // change it too quickly as it can anger some HDMI sinks out there, notably
332     // some Sony panels from the 2010-2011 timeframe.  From experimenting with
333     // some of these sinks, it seems like swinging from one end of the range to
334     // another in less that 190mSec or so can start to cause trouble.  Adding in
335     // a hefty margin, we limit the system to a full range sweep in no less than
336     // 300mSec.
337     if (tgt_correction_ != tgt) {
338         int64_t now = local_clock_->getLocalTime();
339 
340         tgt_correction_ = tgt;
341 
342         // Set up the transformation to figure out what the slew should be at
343         // any given point in time in the future.
344         time_to_cur_slew_.a_zero = now;
345         time_to_cur_slew_.b_zero = cur_correction_;
346 
347         // Make sure the sign of the slope is headed in the proper direction.
348         bool needs_increase = (cur_correction_ < tgt_correction_);
349         bool is_increasing  = (time_to_cur_slew_.a_to_b_numer > 0);
350         if (( needs_increase && !is_increasing) ||
351             (!needs_increase &&  is_increasing)) {
352             time_to_cur_slew_.a_to_b_numer = -time_to_cur_slew_.a_to_b_numer;
353         }
354 
355         // Finally, figure out when the change will be finished and start the
356         // slew operation.
357         time_to_cur_slew_.doReverseTransform(tgt_correction_,
358                                              &slew_change_end_time_);
359 
360         applySlew_l();
361     }
362 }
363 
applySlew_l()364 bool ClockRecoveryLoop::applySlew_l() {
365     bool ret = true;
366 
367     // If cur == tgt, there is no ongoing sleq rate change and we are already
368     // finished.
369     if (cur_correction_ == tgt_correction_)
370         goto bailout;
371 
372     if (local_clock_can_slew_) {
373         int64_t now = local_clock_->getLocalTime();
374         int64_t tmp;
375 
376         if (now >= slew_change_end_time_) {
377             cur_correction_ = tgt_correction_;
378             next_slew_change_timeout_.setTimeout(-1);
379         } else {
380             time_to_cur_slew_.doForwardTransform(now, &tmp);
381 
382             if (tmp > INT16_MAX)
383                 cur_correction_ = INT16_MAX;
384             else if (tmp < INT16_MIN)
385                 cur_correction_ = INT16_MIN;
386             else
387                 cur_correction_ = static_cast<int16_t>(tmp);
388 
389             next_slew_change_timeout_.setTimeout(kSlewChangeStepPeriod_mSec);
390             ret = false;
391         }
392 
393         local_clock_->setLocalSlew(cur_correction_);
394     } else {
395         // Since we are not actually changing the rate of a HW clock, we don't
396         // need to worry to much about changing the slew rate so fast that we
397         // anger any downstream HDMI devices.
398         cur_correction_ = tgt_correction_;
399         next_slew_change_timeout_.setTimeout(-1);
400 
401         // The SW clock recovery implemented by the common clock class expects
402         // values expressed in PPM. CO is in ppm.
403         common_clock_->setSlew(local_clock_->getLocalTime(), CO);
404     }
405 
406 bailout:
407     return ret;
408 }
409 
applyRateLimitedSlew()410 int ClockRecoveryLoop::applyRateLimitedSlew() {
411     Mutex::Autolock lock(&lock_);
412 
413     int ret = next_slew_change_timeout_.msecTillTimeout();
414     if (!ret) {
415         if (applySlew_l())
416             next_slew_change_timeout_.setTimeout(-1);
417         ret = next_slew_change_timeout_.msecTillTimeout();
418     }
419 
420     return ret;
421 }
422 
423 }  // namespace android
424