1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner. This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/ValueMapper.h"
34 #include <map>
35 using namespace llvm;
36
37 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo)38 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
39 ValueToValueMapTy &VMap,
40 const Twine &NameSuffix, Function *F,
41 ClonedCodeInfo *CodeInfo) {
42 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
43 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
44
45 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
46
47 // Loop over all instructions, and copy them over.
48 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
49 II != IE; ++II) {
50 Instruction *NewInst = II->clone();
51 if (II->hasName())
52 NewInst->setName(II->getName()+NameSuffix);
53 NewBB->getInstList().push_back(NewInst);
54 VMap[II] = NewInst; // Add instruction map to value.
55
56 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
57 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
58 if (isa<ConstantInt>(AI->getArraySize()))
59 hasStaticAllocas = true;
60 else
61 hasDynamicAllocas = true;
62 }
63 }
64
65 if (CodeInfo) {
66 CodeInfo->ContainsCalls |= hasCalls;
67 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
68 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
69 BB != &BB->getParent()->getEntryBlock();
70 }
71 return NewBB;
72 }
73
74 // Clone OldFunc into NewFunc, transforming the old arguments into references to
75 // VMap values.
76 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)77 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
78 ValueToValueMapTy &VMap,
79 bool ModuleLevelChanges,
80 SmallVectorImpl<ReturnInst*> &Returns,
81 const char *NameSuffix, ClonedCodeInfo *CodeInfo,
82 ValueMapTypeRemapper *TypeMapper,
83 ValueMaterializer *Materializer) {
84 assert(NameSuffix && "NameSuffix cannot be null!");
85
86 #ifndef NDEBUG
87 for (Function::const_arg_iterator I = OldFunc->arg_begin(),
88 E = OldFunc->arg_end(); I != E; ++I)
89 assert(VMap.count(I) && "No mapping from source argument specified!");
90 #endif
91
92 // Copy all attributes other than those stored in the AttributeSet. We need
93 // to remap the parameter indices of the AttributeSet.
94 AttributeSet NewAttrs = NewFunc->getAttributes();
95 NewFunc->copyAttributesFrom(OldFunc);
96 NewFunc->setAttributes(NewAttrs);
97
98 AttributeSet OldAttrs = OldFunc->getAttributes();
99 // Clone any argument attributes that are present in the VMap.
100 for (const Argument &OldArg : OldFunc->args())
101 if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
102 AttributeSet attrs =
103 OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
104 if (attrs.getNumSlots() > 0)
105 NewArg->addAttr(attrs);
106 }
107
108 NewFunc->setAttributes(
109 NewFunc->getAttributes()
110 .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
111 OldAttrs.getRetAttributes())
112 .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
113 OldAttrs.getFnAttributes()));
114
115 // Loop over all of the basic blocks in the function, cloning them as
116 // appropriate. Note that we save BE this way in order to handle cloning of
117 // recursive functions into themselves.
118 //
119 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
120 BI != BE; ++BI) {
121 const BasicBlock &BB = *BI;
122
123 // Create a new basic block and copy instructions into it!
124 BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
125
126 // Add basic block mapping.
127 VMap[&BB] = CBB;
128
129 // It is only legal to clone a function if a block address within that
130 // function is never referenced outside of the function. Given that, we
131 // want to map block addresses from the old function to block addresses in
132 // the clone. (This is different from the generic ValueMapper
133 // implementation, which generates an invalid blockaddress when
134 // cloning a function.)
135 if (BB.hasAddressTaken()) {
136 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
137 const_cast<BasicBlock*>(&BB));
138 VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
139 }
140
141 // Note return instructions for the caller.
142 if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
143 Returns.push_back(RI);
144 }
145
146 // Loop over all of the instructions in the function, fixing up operand
147 // references as we go. This uses VMap to do all the hard work.
148 for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
149 BE = NewFunc->end(); BB != BE; ++BB)
150 // Loop over all instructions, fixing each one as we find it...
151 for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
152 RemapInstruction(II, VMap,
153 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
154 TypeMapper, Materializer);
155 }
156
157 // Find the MDNode which corresponds to the DISubprogram data that described F.
FindSubprogram(const Function * F,DebugInfoFinder & Finder)158 static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) {
159 for (DISubprogram Subprogram : Finder.subprograms()) {
160 if (Subprogram->describes(F))
161 return Subprogram;
162 }
163 return nullptr;
164 }
165
166 // Add an operand to an existing MDNode. The new operand will be added at the
167 // back of the operand list.
AddOperand(DICompileUnit CU,MDSubprogramArray SPs,Metadata * NewSP)168 static void AddOperand(DICompileUnit CU, MDSubprogramArray SPs, Metadata *NewSP) {
169 SmallVector<Metadata *, 16> NewSPs;
170 NewSPs.reserve(SPs.size() + 1);
171 for (auto *SP : SPs)
172 NewSPs.push_back(SP);
173 NewSPs.push_back(NewSP);
174 CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs));
175 }
176
177 // Clone the module-level debug info associated with OldFunc. The cloned data
178 // will point to NewFunc instead.
CloneDebugInfoMetadata(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap)179 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
180 ValueToValueMapTy &VMap) {
181 DebugInfoFinder Finder;
182 Finder.processModule(*OldFunc->getParent());
183
184 const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
185 if (!OldSubprogramMDNode) return;
186
187 // Ensure that OldFunc appears in the map.
188 // (if it's already there it must point to NewFunc anyway)
189 VMap[OldFunc] = NewFunc;
190 DISubprogram NewSubprogram =
191 cast<MDSubprogram>(MapMetadata(OldSubprogramMDNode, VMap));
192
193 for (DICompileUnit CU : Finder.compile_units()) {
194 auto Subprograms = CU->getSubprograms();
195 // If the compile unit's function list contains the old function, it should
196 // also contain the new one.
197 for (auto *SP : Subprograms) {
198 if (SP == OldSubprogramMDNode) {
199 AddOperand(CU, Subprograms, NewSubprogram);
200 break;
201 }
202 }
203 }
204 }
205
206 /// Return a copy of the specified function, but without
207 /// embedding the function into another module. Also, any references specified
208 /// in the VMap are changed to refer to their mapped value instead of the
209 /// original one. If any of the arguments to the function are in the VMap,
210 /// the arguments are deleted from the resultant function. The VMap is
211 /// updated to include mappings from all of the instructions and basicblocks in
212 /// the function from their old to new values.
213 ///
CloneFunction(const Function * F,ValueToValueMapTy & VMap,bool ModuleLevelChanges,ClonedCodeInfo * CodeInfo)214 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
215 bool ModuleLevelChanges,
216 ClonedCodeInfo *CodeInfo) {
217 std::vector<Type*> ArgTypes;
218
219 // The user might be deleting arguments to the function by specifying them in
220 // the VMap. If so, we need to not add the arguments to the arg ty vector
221 //
222 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
223 I != E; ++I)
224 if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet?
225 ArgTypes.push_back(I->getType());
226
227 // Create a new function type...
228 FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
229 ArgTypes, F->getFunctionType()->isVarArg());
230
231 // Create the new function...
232 Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
233
234 // Loop over the arguments, copying the names of the mapped arguments over...
235 Function::arg_iterator DestI = NewF->arg_begin();
236 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
237 I != E; ++I)
238 if (VMap.count(I) == 0) { // Is this argument preserved?
239 DestI->setName(I->getName()); // Copy the name over...
240 VMap[I] = DestI++; // Add mapping to VMap
241 }
242
243 if (ModuleLevelChanges)
244 CloneDebugInfoMetadata(NewF, F, VMap);
245
246 SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
247 CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
248 return NewF;
249 }
250
251
252
253 namespace {
254 /// This is a private class used to implement CloneAndPruneFunctionInto.
255 struct PruningFunctionCloner {
256 Function *NewFunc;
257 const Function *OldFunc;
258 ValueToValueMapTy &VMap;
259 bool ModuleLevelChanges;
260 const char *NameSuffix;
261 ClonedCodeInfo *CodeInfo;
262 CloningDirector *Director;
263 ValueMapTypeRemapper *TypeMapper;
264 ValueMaterializer *Materializer;
265
266 public:
PruningFunctionCloner__anondaf9d3c70111::PruningFunctionCloner267 PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
268 ValueToValueMapTy &valueMap, bool moduleLevelChanges,
269 const char *nameSuffix, ClonedCodeInfo *codeInfo,
270 CloningDirector *Director)
271 : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
272 ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
273 CodeInfo(codeInfo), Director(Director) {
274 // These are optional components. The Director may return null.
275 if (Director) {
276 TypeMapper = Director->getTypeRemapper();
277 Materializer = Director->getValueMaterializer();
278 } else {
279 TypeMapper = nullptr;
280 Materializer = nullptr;
281 }
282 }
283
284 /// The specified block is found to be reachable, clone it and
285 /// anything that it can reach.
286 void CloneBlock(const BasicBlock *BB,
287 BasicBlock::const_iterator StartingInst,
288 std::vector<const BasicBlock*> &ToClone);
289 };
290 }
291
292 /// The specified block is found to be reachable, clone it and
293 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)294 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
295 BasicBlock::const_iterator StartingInst,
296 std::vector<const BasicBlock*> &ToClone){
297 WeakVH &BBEntry = VMap[BB];
298
299 // Have we already cloned this block?
300 if (BBEntry) return;
301
302 // Nope, clone it now.
303 BasicBlock *NewBB;
304 BBEntry = NewBB = BasicBlock::Create(BB->getContext());
305 if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
306
307 // It is only legal to clone a function if a block address within that
308 // function is never referenced outside of the function. Given that, we
309 // want to map block addresses from the old function to block addresses in
310 // the clone. (This is different from the generic ValueMapper
311 // implementation, which generates an invalid blockaddress when
312 // cloning a function.)
313 //
314 // Note that we don't need to fix the mapping for unreachable blocks;
315 // the default mapping there is safe.
316 if (BB->hasAddressTaken()) {
317 Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
318 const_cast<BasicBlock*>(BB));
319 VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
320 }
321
322 bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
323
324 // Loop over all instructions, and copy them over, DCE'ing as we go. This
325 // loop doesn't include the terminator.
326 for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
327 II != IE; ++II) {
328 // If the "Director" remaps the instruction, don't clone it.
329 if (Director) {
330 CloningDirector::CloningAction Action
331 = Director->handleInstruction(VMap, II, NewBB);
332 // If the cloning director says stop, we want to stop everything, not
333 // just break out of the loop (which would cause the terminator to be
334 // cloned). The cloning director is responsible for inserting a proper
335 // terminator into the new basic block in this case.
336 if (Action == CloningDirector::StopCloningBB)
337 return;
338 // If the cloning director says skip, continue to the next instruction.
339 // In this case, the cloning director is responsible for mapping the
340 // skipped instruction to some value that is defined in the new
341 // basic block.
342 if (Action == CloningDirector::SkipInstruction)
343 continue;
344 }
345
346 Instruction *NewInst = II->clone();
347
348 // Eagerly remap operands to the newly cloned instruction, except for PHI
349 // nodes for which we defer processing until we update the CFG.
350 if (!isa<PHINode>(NewInst)) {
351 RemapInstruction(NewInst, VMap,
352 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
353 TypeMapper, Materializer);
354
355 // If we can simplify this instruction to some other value, simply add
356 // a mapping to that value rather than inserting a new instruction into
357 // the basic block.
358 if (Value *V =
359 SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
360 // On the off-chance that this simplifies to an instruction in the old
361 // function, map it back into the new function.
362 if (Value *MappedV = VMap.lookup(V))
363 V = MappedV;
364
365 VMap[II] = V;
366 delete NewInst;
367 continue;
368 }
369 }
370
371 if (II->hasName())
372 NewInst->setName(II->getName()+NameSuffix);
373 VMap[II] = NewInst; // Add instruction map to value.
374 NewBB->getInstList().push_back(NewInst);
375 hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
376 if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
377 if (isa<ConstantInt>(AI->getArraySize()))
378 hasStaticAllocas = true;
379 else
380 hasDynamicAllocas = true;
381 }
382 }
383
384 // Finally, clone over the terminator.
385 const TerminatorInst *OldTI = BB->getTerminator();
386 bool TerminatorDone = false;
387 if (Director) {
388 CloningDirector::CloningAction Action
389 = Director->handleInstruction(VMap, OldTI, NewBB);
390 // If the cloning director says stop, we want to stop everything, not
391 // just break out of the loop (which would cause the terminator to be
392 // cloned). The cloning director is responsible for inserting a proper
393 // terminator into the new basic block in this case.
394 if (Action == CloningDirector::StopCloningBB)
395 return;
396 if (Action == CloningDirector::CloneSuccessors) {
397 // If the director says to skip with a terminate instruction, we still
398 // need to clone this block's successors.
399 const TerminatorInst *TI = NewBB->getTerminator();
400 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
401 ToClone.push_back(TI->getSuccessor(i));
402 return;
403 }
404 assert(Action != CloningDirector::SkipInstruction &&
405 "SkipInstruction is not valid for terminators.");
406 }
407 if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
408 if (BI->isConditional()) {
409 // If the condition was a known constant in the callee...
410 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
411 // Or is a known constant in the caller...
412 if (!Cond) {
413 Value *V = VMap[BI->getCondition()];
414 Cond = dyn_cast_or_null<ConstantInt>(V);
415 }
416
417 // Constant fold to uncond branch!
418 if (Cond) {
419 BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
420 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
421 ToClone.push_back(Dest);
422 TerminatorDone = true;
423 }
424 }
425 } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
426 // If switching on a value known constant in the caller.
427 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
428 if (!Cond) { // Or known constant after constant prop in the callee...
429 Value *V = VMap[SI->getCondition()];
430 Cond = dyn_cast_or_null<ConstantInt>(V);
431 }
432 if (Cond) { // Constant fold to uncond branch!
433 SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
434 BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
435 VMap[OldTI] = BranchInst::Create(Dest, NewBB);
436 ToClone.push_back(Dest);
437 TerminatorDone = true;
438 }
439 }
440
441 if (!TerminatorDone) {
442 Instruction *NewInst = OldTI->clone();
443 if (OldTI->hasName())
444 NewInst->setName(OldTI->getName()+NameSuffix);
445 NewBB->getInstList().push_back(NewInst);
446 VMap[OldTI] = NewInst; // Add instruction map to value.
447
448 // Recursively clone any reachable successor blocks.
449 const TerminatorInst *TI = BB->getTerminator();
450 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
451 ToClone.push_back(TI->getSuccessor(i));
452 }
453
454 if (CodeInfo) {
455 CodeInfo->ContainsCalls |= hasCalls;
456 CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
457 CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
458 BB != &BB->getParent()->front();
459 }
460 }
461
462 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
463 /// entire function. Instead it starts at an instruction provided by the caller
464 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,CloningDirector * Director)465 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
466 const Instruction *StartingInst,
467 ValueToValueMapTy &VMap,
468 bool ModuleLevelChanges,
469 SmallVectorImpl<ReturnInst *> &Returns,
470 const char *NameSuffix,
471 ClonedCodeInfo *CodeInfo,
472 CloningDirector *Director) {
473 assert(NameSuffix && "NameSuffix cannot be null!");
474
475 ValueMapTypeRemapper *TypeMapper = nullptr;
476 ValueMaterializer *Materializer = nullptr;
477
478 if (Director) {
479 TypeMapper = Director->getTypeRemapper();
480 Materializer = Director->getValueMaterializer();
481 }
482
483 #ifndef NDEBUG
484 // If the cloning starts at the begining of the function, verify that
485 // the function arguments are mapped.
486 if (!StartingInst)
487 for (Function::const_arg_iterator II = OldFunc->arg_begin(),
488 E = OldFunc->arg_end(); II != E; ++II)
489 assert(VMap.count(II) && "No mapping from source argument specified!");
490 #endif
491
492 PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
493 NameSuffix, CodeInfo, Director);
494 const BasicBlock *StartingBB;
495 if (StartingInst)
496 StartingBB = StartingInst->getParent();
497 else {
498 StartingBB = &OldFunc->getEntryBlock();
499 StartingInst = StartingBB->begin();
500 }
501
502 // Clone the entry block, and anything recursively reachable from it.
503 std::vector<const BasicBlock*> CloneWorklist;
504 PFC.CloneBlock(StartingBB, StartingInst, CloneWorklist);
505 while (!CloneWorklist.empty()) {
506 const BasicBlock *BB = CloneWorklist.back();
507 CloneWorklist.pop_back();
508 PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
509 }
510
511 // Loop over all of the basic blocks in the old function. If the block was
512 // reachable, we have cloned it and the old block is now in the value map:
513 // insert it into the new function in the right order. If not, ignore it.
514 //
515 // Defer PHI resolution until rest of function is resolved.
516 SmallVector<const PHINode*, 16> PHIToResolve;
517 for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
518 BI != BE; ++BI) {
519 Value *V = VMap[BI];
520 BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
521 if (!NewBB) continue; // Dead block.
522
523 // Add the new block to the new function.
524 NewFunc->getBasicBlockList().push_back(NewBB);
525
526 // Handle PHI nodes specially, as we have to remove references to dead
527 // blocks.
528 for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
529 // PHI nodes may have been remapped to non-PHI nodes by the caller or
530 // during the cloning process.
531 if (const PHINode *PN = dyn_cast<PHINode>(I)) {
532 if (isa<PHINode>(VMap[PN]))
533 PHIToResolve.push_back(PN);
534 else
535 break;
536 } else {
537 break;
538 }
539 }
540
541 // Finally, remap the terminator instructions, as those can't be remapped
542 // until all BBs are mapped.
543 RemapInstruction(NewBB->getTerminator(), VMap,
544 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
545 TypeMapper, Materializer);
546 }
547
548 // Defer PHI resolution until rest of function is resolved, PHI resolution
549 // requires the CFG to be up-to-date.
550 for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
551 const PHINode *OPN = PHIToResolve[phino];
552 unsigned NumPreds = OPN->getNumIncomingValues();
553 const BasicBlock *OldBB = OPN->getParent();
554 BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
555
556 // Map operands for blocks that are live and remove operands for blocks
557 // that are dead.
558 for (; phino != PHIToResolve.size() &&
559 PHIToResolve[phino]->getParent() == OldBB; ++phino) {
560 OPN = PHIToResolve[phino];
561 PHINode *PN = cast<PHINode>(VMap[OPN]);
562 for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
563 Value *V = VMap[PN->getIncomingBlock(pred)];
564 if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
565 Value *InVal = MapValue(PN->getIncomingValue(pred),
566 VMap,
567 ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
568 assert(InVal && "Unknown input value?");
569 PN->setIncomingValue(pred, InVal);
570 PN->setIncomingBlock(pred, MappedBlock);
571 } else {
572 PN->removeIncomingValue(pred, false);
573 --pred, --e; // Revisit the next entry.
574 }
575 }
576 }
577
578 // The loop above has removed PHI entries for those blocks that are dead
579 // and has updated others. However, if a block is live (i.e. copied over)
580 // but its terminator has been changed to not go to this block, then our
581 // phi nodes will have invalid entries. Update the PHI nodes in this
582 // case.
583 PHINode *PN = cast<PHINode>(NewBB->begin());
584 NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
585 if (NumPreds != PN->getNumIncomingValues()) {
586 assert(NumPreds < PN->getNumIncomingValues());
587 // Count how many times each predecessor comes to this block.
588 std::map<BasicBlock*, unsigned> PredCount;
589 for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
590 PI != E; ++PI)
591 --PredCount[*PI];
592
593 // Figure out how many entries to remove from each PHI.
594 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
595 ++PredCount[PN->getIncomingBlock(i)];
596
597 // At this point, the excess predecessor entries are positive in the
598 // map. Loop over all of the PHIs and remove excess predecessor
599 // entries.
600 BasicBlock::iterator I = NewBB->begin();
601 for (; (PN = dyn_cast<PHINode>(I)); ++I) {
602 for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
603 E = PredCount.end(); PCI != E; ++PCI) {
604 BasicBlock *Pred = PCI->first;
605 for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
606 PN->removeIncomingValue(Pred, false);
607 }
608 }
609 }
610
611 // If the loops above have made these phi nodes have 0 or 1 operand,
612 // replace them with undef or the input value. We must do this for
613 // correctness, because 0-operand phis are not valid.
614 PN = cast<PHINode>(NewBB->begin());
615 if (PN->getNumIncomingValues() == 0) {
616 BasicBlock::iterator I = NewBB->begin();
617 BasicBlock::const_iterator OldI = OldBB->begin();
618 while ((PN = dyn_cast<PHINode>(I++))) {
619 Value *NV = UndefValue::get(PN->getType());
620 PN->replaceAllUsesWith(NV);
621 assert(VMap[OldI] == PN && "VMap mismatch");
622 VMap[OldI] = NV;
623 PN->eraseFromParent();
624 ++OldI;
625 }
626 }
627 }
628
629 // Make a second pass over the PHINodes now that all of them have been
630 // remapped into the new function, simplifying the PHINode and performing any
631 // recursive simplifications exposed. This will transparently update the
632 // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
633 // two PHINodes, the iteration over the old PHIs remains valid, and the
634 // mapping will just map us to the new node (which may not even be a PHI
635 // node).
636 for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
637 if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
638 recursivelySimplifyInstruction(PN);
639
640 // Now that the inlined function body has been fully constructed, go through
641 // and zap unconditional fall-through branches. This happens all the time when
642 // specializing code: code specialization turns conditional branches into
643 // uncond branches, and this code folds them.
644 Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB]);
645 Function::iterator I = Begin;
646 while (I != NewFunc->end()) {
647 // Check if this block has become dead during inlining or other
648 // simplifications. Note that the first block will appear dead, as it has
649 // not yet been wired up properly.
650 if (I != Begin && (pred_begin(I) == pred_end(I) ||
651 I->getSinglePredecessor() == I)) {
652 BasicBlock *DeadBB = I++;
653 DeleteDeadBlock(DeadBB);
654 continue;
655 }
656
657 // We need to simplify conditional branches and switches with a constant
658 // operand. We try to prune these out when cloning, but if the
659 // simplification required looking through PHI nodes, those are only
660 // available after forming the full basic block. That may leave some here,
661 // and we still want to prune the dead code as early as possible.
662 ConstantFoldTerminator(I);
663
664 BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
665 if (!BI || BI->isConditional()) { ++I; continue; }
666
667 BasicBlock *Dest = BI->getSuccessor(0);
668 if (!Dest->getSinglePredecessor()) {
669 ++I; continue;
670 }
671
672 // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
673 // above should have zapped all of them..
674 assert(!isa<PHINode>(Dest->begin()));
675
676 // We know all single-entry PHI nodes in the inlined function have been
677 // removed, so we just need to splice the blocks.
678 BI->eraseFromParent();
679
680 // Make all PHI nodes that referred to Dest now refer to I as their source.
681 Dest->replaceAllUsesWith(I);
682
683 // Move all the instructions in the succ to the pred.
684 I->getInstList().splice(I->end(), Dest->getInstList());
685
686 // Remove the dest block.
687 Dest->eraseFromParent();
688
689 // Do not increment I, iteratively merge all things this block branches to.
690 }
691
692 // Make a final pass over the basic blocks from the old function to gather
693 // any return instructions which survived folding. We have to do this here
694 // because we can iteratively remove and merge returns above.
695 for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB]),
696 E = NewFunc->end();
697 I != E; ++I)
698 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
699 Returns.push_back(RI);
700 }
701
702
703 /// This works exactly like CloneFunctionInto,
704 /// except that it does some simple constant prop and DCE on the fly. The
705 /// effect of this is to copy significantly less code in cases where (for
706 /// example) a function call with constant arguments is inlined, and those
707 /// constant arguments cause a significant amount of code in the callee to be
708 /// dead. Since this doesn't produce an exact copy of the input, it can't be
709 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,Instruction * TheCall)710 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
711 ValueToValueMapTy &VMap,
712 bool ModuleLevelChanges,
713 SmallVectorImpl<ReturnInst*> &Returns,
714 const char *NameSuffix,
715 ClonedCodeInfo *CodeInfo,
716 Instruction *TheCall) {
717 CloneAndPruneIntoFromInst(NewFunc, OldFunc, OldFunc->front().begin(), VMap,
718 ModuleLevelChanges, Returns, NameSuffix, CodeInfo,
719 nullptr);
720 }
721