1 /*
2 *******************************************************************************
3 *
4 * Copyright (C) 2003-2014, International Business Machines
5 * Corporation and others. All Rights Reserved.
6 *
7 *******************************************************************************
8 * file name: gencnvex.c
9 * encoding: US-ASCII
10 * tab size: 8 (not used)
11 * indentation:4
12 *
13 * created on: 2003oct12
14 * created by: Markus W. Scherer
15 */
16
17 #include <stdio.h>
18 #include "unicode/utypes.h"
19 #include "unicode/ustring.h"
20 #include "cstring.h"
21 #include "cmemory.h"
22 #include "ucnv_cnv.h"
23 #include "ucnvmbcs.h"
24 #include "toolutil.h"
25 #include "unewdata.h"
26 #include "ucm.h"
27 #include "makeconv.h"
28 #include "genmbcs.h"
29
30 static void
31 CnvExtClose(NewConverter *cnvData);
32
33 static UBool
34 CnvExtIsValid(NewConverter *cnvData,
35 const uint8_t *bytes, int32_t length);
36
37 static UBool
38 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
39
40 static uint32_t
41 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
42 UNewDataMemory *pData, int32_t tableType);
43
44 typedef struct CnvExtData {
45 NewConverter newConverter;
46
47 UCMFile *ucm;
48
49 /* toUnicode (state table in ucm->states) */
50 UToolMemory *toUTable, *toUUChars;
51
52 /* fromUnicode */
53 UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes;
54
55 uint16_t stage1[MBCS_STAGE_1_SIZE];
56 uint16_t stage2[MBCS_STAGE_2_SIZE];
57 uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */
58 uint32_t stage3b[0x10000];
59
60 int32_t stage1Top, stage2Top, stage3Top, stage3bTop;
61
62 /* for stage3 compaction of <subchar1> |2 mappings */
63 uint16_t stage3Sub1Block;
64
65 /* statistics */
66 int32_t
67 maxInBytes, maxOutBytes, maxBytesPerUChar,
68 maxInUChars, maxOutUChars, maxUCharsPerByte;
69 } CnvExtData;
70
71 NewConverter *
CnvExtOpen(UCMFile * ucm)72 CnvExtOpen(UCMFile *ucm) {
73 CnvExtData *extData;
74
75 extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData));
76 if(extData==NULL) {
77 printf("out of memory\n");
78 exit(U_MEMORY_ALLOCATION_ERROR);
79 }
80 uprv_memset(extData, 0, sizeof(CnvExtData));
81
82 extData->ucm=ucm; /* aliased, not owned */
83
84 extData->newConverter.close=CnvExtClose;
85 extData->newConverter.isValid=CnvExtIsValid;
86 extData->newConverter.addTable=CnvExtAddTable;
87 extData->newConverter.write=CnvExtWrite;
88 return &extData->newConverter;
89 }
90
91 static void
CnvExtClose(NewConverter * cnvData)92 CnvExtClose(NewConverter *cnvData) {
93 CnvExtData *extData=(CnvExtData *)cnvData;
94 if(extData!=NULL) {
95 utm_close(extData->toUTable);
96 utm_close(extData->toUUChars);
97 utm_close(extData->fromUTableUChars);
98 utm_close(extData->fromUTableValues);
99 utm_close(extData->fromUBytes);
100 uprv_free(extData);
101 }
102 }
103
104 /* we do not expect this to be called */
105 static UBool
CnvExtIsValid(NewConverter * cnvData,const uint8_t * bytes,int32_t length)106 CnvExtIsValid(NewConverter *cnvData,
107 const uint8_t *bytes, int32_t length) {
108 return FALSE;
109 }
110
111 static uint32_t
CnvExtWrite(NewConverter * cnvData,const UConverterStaticData * staticData,UNewDataMemory * pData,int32_t tableType)112 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
113 UNewDataMemory *pData, int32_t tableType) {
114 CnvExtData *extData=(CnvExtData *)cnvData;
115 int32_t length, top, headerSize;
116
117 int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 };
118
119 if(tableType&TABLE_BASE) {
120 headerSize=0;
121 } else {
122 _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };
123
124 /* write the header and base table name for an extension-only table */
125 length=(int32_t)uprv_strlen(extData->ucm->baseName)+1;
126 while(length&3) {
127 /* add padding */
128 extData->ucm->baseName[length++]=0;
129 }
130
131 headerSize=MBCS_HEADER_V4_LENGTH*4+length;
132
133 /* fill the header */
134 header.version[0]=4;
135 header.version[1]=2;
136 header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY);
137
138 /* write the header and the base table name */
139 udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4);
140 udata_writeBlock(pData, extData->ucm->baseName, length);
141 }
142
143 /* fill indexes[] - offsets/indexes are in units of the target array */
144 top=0;
145
146 indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH;
147 top+=length*4;
148
149 indexes[UCNV_EXT_TO_U_INDEX]=top;
150 indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable);
151 top+=length*4;
152
153 indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top;
154 indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars);
155 top+=length*2;
156
157 indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top;
158 length=utm_countItems(extData->fromUTableUChars);
159 top+=length*2;
160
161 if(top&3) {
162 /* add padding */
163 *((UChar *)utm_alloc(extData->fromUTableUChars))=0;
164 *((uint32_t *)utm_alloc(extData->fromUTableValues))=0;
165 ++length;
166 top+=2;
167 }
168 indexes[UCNV_EXT_FROM_U_LENGTH]=length;
169
170 indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top;
171 top+=length*4;
172
173 indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top;
174 length=utm_countItems(extData->fromUBytes);
175 top+=length;
176
177 if(top&1) {
178 /* add padding */
179 *((uint8_t *)utm_alloc(extData->fromUBytes))=0;
180 ++length;
181 ++top;
182 }
183 indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length;
184
185 indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top;
186 indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top;
187 indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top;
188 top+=length*2;
189
190 indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top;
191 length=extData->stage3Top;
192 top+=length*2;
193
194 if(top&3) {
195 /* add padding */
196 extData->stage3[extData->stage3Top++]=0;
197 ++length;
198 top+=2;
199 }
200 indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length;
201
202 indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top;
203 indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop;
204 top+=length*4;
205
206 indexes[UCNV_EXT_SIZE]=top;
207
208 /* statistics */
209 indexes[UCNV_EXT_COUNT_BYTES]=
210 (extData->maxInBytes<<16)|
211 (extData->maxOutBytes<<8)|
212 extData->maxBytesPerUChar;
213 indexes[UCNV_EXT_COUNT_UCHARS]=
214 (extData->maxInUChars<<16)|
215 (extData->maxOutUChars<<8)|
216 extData->maxUCharsPerByte;
217
218 indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask;
219
220 /* write the extension data */
221 udata_writeBlock(pData, indexes, sizeof(indexes));
222 udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4);
223 udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2);
224
225 udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2);
226 udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4);
227 udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]);
228
229 udata_writeBlock(pData, extData->stage1, extData->stage1Top*2);
230 udata_writeBlock(pData, extData->stage2, extData->stage2Top*2);
231 udata_writeBlock(pData, extData->stage3, extData->stage3Top*2);
232 udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4);
233
234 #if 0
235 {
236 int32_t i, j;
237
238 length=extData->stage1Top;
239 printf("\nstage1[%x]:\n", length);
240
241 for(i=0; i<length; ++i) {
242 if(extData->stage1[i]!=length) {
243 printf("stage1[%04x]=%04x\n", i, extData->stage1[i]);
244 }
245 }
246
247 j=length;
248 length=extData->stage2Top;
249 printf("\nstage2[%x]:\n", length);
250
251 for(i=0; i<length; ++j, ++i) {
252 if(extData->stage2[i]!=0) {
253 printf("stage12[%04x]=%04x\n", j, extData->stage2[i]);
254 }
255 }
256
257 length=extData->stage3Top;
258 printf("\nstage3[%x]:\n", length);
259
260 for(i=0; i<length; ++i) {
261 if(extData->stage3[i]!=0) {
262 printf("stage3[%04x]=%04x\n", i, extData->stage3[i]);
263 }
264 }
265
266 length=extData->stage3bTop;
267 printf("\nstage3b[%x]:\n", length);
268
269 for(i=0; i<length; ++i) {
270 if(extData->stage3b[i]!=0) {
271 printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]);
272 }
273 }
274 }
275 #endif
276
277 if(VERBOSE) {
278 printf("size of extension data: %ld\n", (long)top);
279 }
280
281 /* return the number of bytes that should have been written */
282 return (uint32_t)(headerSize+top);
283 }
284
285 /* to Unicode --------------------------------------------------------------- */
286
287 /*
288 * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for
289 * the toUnicode table.
290 * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable
291 * for the base toUnicode table but not for the base fromUnicode table.
292 * The table must be sorted.
293 * Modifies previous data in the reverseMap.
294 */
295 static int32_t
reduceToUMappings(UCMTable * table)296 reduceToUMappings(UCMTable *table) {
297 UCMapping *mappings;
298 int32_t *map;
299 int32_t i, j, count;
300 int8_t flag;
301
302 mappings=table->mappings;
303 map=table->reverseMap;
304 count=table->mappingsLength;
305
306 /* leave the map alone for the initial mappings with desired flags */
307 for(i=j=0; i<count; ++i) {
308 flag=mappings[map[i]].f;
309 if(flag!=0 && flag!=3) {
310 break;
311 }
312 }
313
314 /* reduce from here to the rest */
315 for(j=i; i<count; ++i) {
316 flag=mappings[map[i]].f;
317 if(flag==0 || flag==3) {
318 map[j++]=map[i];
319 }
320 }
321
322 return j;
323 }
324
325 static uint32_t
getToUnicodeValue(CnvExtData * extData,UCMTable * table,UCMapping * m)326 getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
327 UChar32 *u32;
328 UChar *u;
329 uint32_t value;
330 int32_t u16Length, ratio;
331 UErrorCode errorCode;
332
333 /* write the Unicode result code point or string index */
334 if(m->uLen==1) {
335 u16Length=U16_LENGTH(m->u);
336 value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u);
337 } else {
338 /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */
339
340 /* get the result code point string and its 16-bit string length */
341 u32=UCM_GET_CODE_POINTS(table, m);
342 errorCode=U_ZERO_ERROR;
343 u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode);
344 if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
345 exit(errorCode);
346 }
347
348 /* allocate it and put its length and index into the value */
349 value=
350 (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)|
351 ((uint32_t)utm_countItems(extData->toUUChars));
352 u=utm_allocN(extData->toUUChars, u16Length);
353
354 /* write the result 16-bit string */
355 errorCode=U_ZERO_ERROR;
356 u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode);
357 if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
358 exit(errorCode);
359 }
360 }
361 if(m->f==0) {
362 value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG;
363 }
364
365 /* update statistics */
366 if(m->bLen>extData->maxInBytes) {
367 extData->maxInBytes=m->bLen;
368 }
369 if(u16Length>extData->maxOutUChars) {
370 extData->maxOutUChars=u16Length;
371 }
372
373 ratio=(u16Length+(m->bLen-1))/m->bLen;
374 if(ratio>extData->maxUCharsPerByte) {
375 extData->maxUCharsPerByte=ratio;
376 }
377
378 return value;
379 }
380
381 /*
382 * Recursive toUTable generator core function.
383 * Preconditions:
384 * - start<limit (There is at least one mapping.)
385 * - The mappings are sorted lexically. (Access is through the reverseMap.)
386 * - All mappings between start and limit have input sequences that share
387 * the same prefix of unitIndex length, and therefore all of these sequences
388 * are at least unitIndex+1 long.
389 * - There are only relevant mappings available through the reverseMap,
390 * see reduceToUMappings().
391 *
392 * One function invocation generates one section table.
393 *
394 * Steps:
395 * 1. Count the number of unique unit values and get the low/high unit values
396 * that occur at unitIndex.
397 * 2. Allocate the section table with possible optimization for linear access.
398 * 3. Write temporary version of the section table with start indexes of
399 * subsections, each corresponding to one unit value at unitIndex.
400 * 4. Iterate through the table once more, and depending on the subsection length:
401 * 0: write 0 as a result value (unused byte in linear-access section table)
402 * >0: if there is one mapping with an input unit sequence of unitIndex+1
403 * then defaultValue=compute the mapping result for this whole sequence
404 * else defaultValue=0
405 *
406 * recurse into the subsection
407 */
408 static UBool
generateToUTable(CnvExtData * extData,UCMTable * table,int32_t start,int32_t limit,int32_t unitIndex,uint32_t defaultValue)409 generateToUTable(CnvExtData *extData, UCMTable *table,
410 int32_t start, int32_t limit, int32_t unitIndex,
411 uint32_t defaultValue) {
412 UCMapping *mappings, *m;
413 int32_t *map;
414 int32_t i, j, uniqueCount, count, subStart, subLimit;
415
416 uint8_t *bytes;
417 int32_t low, high, prev;
418
419 uint32_t *section;
420
421 mappings=table->mappings;
422 map=table->reverseMap;
423
424 /* step 1: examine the input units; set low, high, uniqueCount */
425 m=mappings+map[start];
426 bytes=UCM_GET_BYTES(table, m);
427 low=bytes[unitIndex];
428 uniqueCount=1;
429
430 prev=high=low;
431 for(i=start+1; i<limit; ++i) {
432 m=mappings+map[i];
433 bytes=UCM_GET_BYTES(table, m);
434 high=bytes[unitIndex];
435
436 if(high!=prev) {
437 prev=high;
438 ++uniqueCount;
439 }
440 }
441
442 /* step 2: allocate the section; set count, section */
443 count=(high-low)+1;
444 if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) {
445 /*
446 * for the root table and for fairly full tables:
447 * allocate for direct, linear array access
448 * by keeping count, to write an entry for each unit value
449 * from low to high
450 * exception: use a compact table if count==0x100 because
451 * that cannot be encoded in the length byte
452 */
453 } else {
454 count=uniqueCount;
455 }
456
457 if(count>=0x100) {
458 fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count);
459 return FALSE;
460 }
461
462 /* allocate the section: 1 entry for the header + count for the items */
463 section=(uint32_t *)utm_allocN(extData->toUTable, 1+count);
464
465 /* write the section header */
466 *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue;
467
468 /* step 3: write temporary section table with subsection starts */
469 prev=low-1; /* just before low to prevent empty subsections before low */
470 j=0; /* section table index */
471 for(i=start; i<limit; ++i) {
472 m=mappings+map[i];
473 bytes=UCM_GET_BYTES(table, m);
474 high=bytes[unitIndex];
475
476 if(high!=prev) {
477 /* start of a new subsection for unit high */
478 if(count>uniqueCount) {
479 /* write empty subsections for unused units in a linear table */
480 while(++prev<high) {
481 section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
482 }
483 } else {
484 prev=high;
485 }
486
487 /* write the entry with the subsection start */
488 section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
489 }
490 }
491 /* assert(j==count) */
492
493 /* step 4: recurse and write results */
494 subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]);
495 for(j=0; j<count; ++j) {
496 subStart=subLimit;
497 subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit;
498
499 /* remove the subStart temporary value */
500 section[j]&=~UCNV_EXT_TO_U_VALUE_MASK;
501
502 if(subStart==subLimit) {
503 /* leave the value zero: empty subsection for unused unit in a linear table */
504 continue;
505 }
506
507 /* see if there is exactly one input unit sequence of length unitIndex+1 */
508 defaultValue=0;
509 m=mappings+map[subStart];
510 if(m->bLen==unitIndex+1) {
511 /* do not include this in generateToUTable() */
512 ++subStart;
513
514 if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) {
515 /* print error for multiple same-input-sequence mappings */
516 fprintf(stderr, "error: multiple mappings from same bytes\n");
517 ucm_printMapping(table, m, stderr);
518 ucm_printMapping(table, mappings+map[subStart], stderr);
519 return FALSE;
520 }
521
522 defaultValue=getToUnicodeValue(extData, table, m);
523 }
524
525 if(subStart==subLimit) {
526 /* write the result for the input sequence ending here */
527 section[j]|=defaultValue;
528 } else {
529 /* write the index to the subsection table */
530 section[j]|=(uint32_t)utm_countItems(extData->toUTable);
531
532 /* recurse */
533 if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
534 return FALSE;
535 }
536 }
537 }
538 return TRUE;
539 }
540
541 /*
542 * Generate the toUTable and toUUChars from the input table.
543 * The input table must be sorted, and all precision flags must be 0..3.
544 * This function will modify the table's reverseMap.
545 */
546 static UBool
makeToUTable(CnvExtData * extData,UCMTable * table)547 makeToUTable(CnvExtData *extData, UCMTable *table) {
548 int32_t toUCount;
549
550 toUCount=reduceToUMappings(table);
551
552 extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4);
553 extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2);
554
555 return generateToUTable(extData, table, 0, toUCount, 0, 0);
556 }
557
558 /* from Unicode ------------------------------------------------------------- */
559
560 /*
561 * preprocessing:
562 * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode
563 * change each Unicode string to encode all but the first code point in 16-bit form
564 *
565 * generation:
566 * for each unique code point
567 * write an entry in the 3-stage trie
568 * check that there is only one single-code point sequence
569 * start recursion for following 16-bit input units
570 */
571
572 /*
573 * Remove toUnicode fallbacks and non-<subchar1> SUB mappings
574 * which are irrelevant for the fromUnicode extension table.
575 * Remove MBCS_FROM_U_EXT_FLAG bits.
576 * Overwrite the reverseMap with an index array to the relevant mappings.
577 * Modify the code point sequences to a generator-friendly format where
578 * the first code points remains unchanged but the following are recoded
579 * into 16-bit Unicode string form.
580 * The table must be sorted.
581 * Destroys previous data in the reverseMap.
582 */
583 static int32_t
prepareFromUMappings(UCMTable * table)584 prepareFromUMappings(UCMTable *table) {
585 UCMapping *mappings, *m;
586 int32_t *map;
587 int32_t i, j, count;
588 int8_t flag;
589
590 mappings=table->mappings;
591 map=table->reverseMap;
592 count=table->mappingsLength;
593
594 /*
595 * we do not go through the map on input because the mappings are
596 * sorted lexically
597 */
598 m=mappings;
599
600 for(i=j=0; i<count; ++m, ++i) {
601 flag=m->f;
602 if(flag>=0) {
603 flag&=MBCS_FROM_U_EXT_MASK;
604 m->f=flag;
605 }
606 if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) {
607 map[j++]=i;
608
609 if(m->uLen>1) {
610 /* recode all but the first code point to 16-bit Unicode */
611 UChar32 *u32;
612 UChar *u;
613 UChar32 c;
614 int32_t q, r;
615
616 u32=UCM_GET_CODE_POINTS(table, m);
617 u=(UChar *)u32; /* destructive in-place recoding */
618 for(r=2, q=1; q<m->uLen; ++q) {
619 c=u32[q];
620 U16_APPEND_UNSAFE(u, r, c);
621 }
622
623 /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */
624 m->uLen=(int8_t)r;
625 }
626 }
627 }
628
629 return j;
630 }
631
632 static uint32_t
getFromUBytesValue(CnvExtData * extData,UCMTable * table,UCMapping * m)633 getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
634 uint8_t *bytes, *resultBytes;
635 uint32_t value;
636 int32_t u16Length, ratio;
637
638 if(m->f==2) {
639 /*
640 * no mapping, <subchar1> preferred
641 *
642 * no need to count in statistics because the subchars are already
643 * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData,
644 * and this non-mapping does not count for maxInUChars which are always
645 * trivially at least two if counting unmappable supplementary code points
646 */
647 return UCNV_EXT_FROM_U_SUBCHAR1;
648 }
649
650 bytes=UCM_GET_BYTES(table, m);
651 value=0;
652 switch(m->bLen) {
653 /* 1..3: store the bytes in the value word */
654 case 3:
655 value=((uint32_t)*bytes++)<<16;
656 case 2:
657 value|=((uint32_t)*bytes++)<<8;
658 case 1:
659 value|=*bytes;
660 break;
661 default:
662 /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */
663 /* store the bytes in fromUBytes[] and the index in the value word */
664 value=(uint32_t)utm_countItems(extData->fromUBytes);
665 resultBytes=utm_allocN(extData->fromUBytes, m->bLen);
666 uprv_memcpy(resultBytes, bytes, m->bLen);
667 break;
668 }
669 value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT;
670 if(m->f==0) {
671 value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG;
672 } else if(m->f==4) {
673 value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG;
674 }
675
676 /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */
677 if(m->uLen==1) {
678 u16Length=U16_LENGTH(m->u);
679 } else {
680 u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2);
681 }
682
683 /* update statistics */
684 if(u16Length>extData->maxInUChars) {
685 extData->maxInUChars=u16Length;
686 }
687 if(m->bLen>extData->maxOutBytes) {
688 extData->maxOutBytes=m->bLen;
689 }
690
691 ratio=(m->bLen+(u16Length-1))/u16Length;
692 if(ratio>extData->maxBytesPerUChar) {
693 extData->maxBytesPerUChar=ratio;
694 }
695
696 return value;
697 }
698
699 /*
700 * works like generateToUTable(), except that the
701 * output section consists of two arrays, one for input UChars and one
702 * for result values
703 *
704 * also, fromUTable sections are always stored in a compact form for
705 * access via binary search
706 */
707 static UBool
generateFromUTable(CnvExtData * extData,UCMTable * table,int32_t start,int32_t limit,int32_t unitIndex,uint32_t defaultValue)708 generateFromUTable(CnvExtData *extData, UCMTable *table,
709 int32_t start, int32_t limit, int32_t unitIndex,
710 uint32_t defaultValue) {
711 UCMapping *mappings, *m;
712 int32_t *map;
713 int32_t i, j, uniqueCount, count, subStart, subLimit;
714
715 UChar *uchars;
716 UChar32 low, high, prev;
717
718 UChar *sectionUChars;
719 uint32_t *sectionValues;
720
721 mappings=table->mappings;
722 map=table->reverseMap;
723
724 /* step 1: examine the input units; set low, high, uniqueCount */
725 m=mappings+map[start];
726 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
727 low=uchars[unitIndex];
728 uniqueCount=1;
729
730 prev=high=low;
731 for(i=start+1; i<limit; ++i) {
732 m=mappings+map[i];
733 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
734 high=uchars[unitIndex];
735
736 if(high!=prev) {
737 prev=high;
738 ++uniqueCount;
739 }
740 }
741
742 /* step 2: allocate the section; set count, section */
743 /* the fromUTable always stores for access via binary search */
744 count=uniqueCount;
745
746 /* allocate the section: 1 entry for the header + count for the items */
747 sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count);
748 sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count);
749
750 /* write the section header */
751 *sectionUChars++=(UChar)count;
752 *sectionValues++=defaultValue;
753
754 /* step 3: write temporary section table with subsection starts */
755 prev=low-1; /* just before low to prevent empty subsections before low */
756 j=0; /* section table index */
757 for(i=start; i<limit; ++i) {
758 m=mappings+map[i];
759 uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
760 high=uchars[unitIndex];
761
762 if(high!=prev) {
763 /* start of a new subsection for unit high */
764 prev=high;
765
766 /* write the entry with the subsection start */
767 sectionUChars[j]=(UChar)high;
768 sectionValues[j]=(uint32_t)i;
769 ++j;
770 }
771 }
772 /* assert(j==count) */
773
774 /* step 4: recurse and write results */
775 subLimit=(int32_t)(sectionValues[0]);
776 for(j=0; j<count; ++j) {
777 subStart=subLimit;
778 subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit;
779
780 /* see if there is exactly one input unit sequence of length unitIndex+1 */
781 defaultValue=0;
782 m=mappings+map[subStart];
783 if(m->uLen==unitIndex+1) {
784 /* do not include this in generateToUTable() */
785 ++subStart;
786
787 if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) {
788 /* print error for multiple same-input-sequence mappings */
789 fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
790 ucm_printMapping(table, m, stderr);
791 ucm_printMapping(table, mappings+map[subStart], stderr);
792 return FALSE;
793 }
794
795 defaultValue=getFromUBytesValue(extData, table, m);
796 }
797
798 if(subStart==subLimit) {
799 /* write the result for the input sequence ending here */
800 sectionValues[j]=defaultValue;
801 } else {
802 /* write the index to the subsection table */
803 sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues);
804
805 /* recurse */
806 if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
807 return FALSE;
808 }
809 }
810 }
811 return TRUE;
812 }
813
814 /*
815 * add entries to the fromUnicode trie,
816 * assume to be called with code points in ascending order
817 * and use that to build the trie in precompacted form
818 */
819 static void
addFromUTrieEntry(CnvExtData * extData,UChar32 c,uint32_t value)820 addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) {
821 int32_t i1, i2, i3, i3b, nextOffset, min, newBlock;
822
823 if(value==0) {
824 return;
825 }
826
827 /*
828 * compute the index for each stage,
829 * allocate a stage block if necessary,
830 * and write the stage value
831 */
832 i1=c>>10;
833 if(i1>=extData->stage1Top) {
834 extData->stage1Top=i1+1;
835 }
836
837 nextOffset=(c>>4)&0x3f;
838
839 if(extData->stage1[i1]==0) {
840 /* allocate another block in stage 2; overlap with the previous block */
841 newBlock=extData->stage2Top;
842 min=newBlock-nextOffset; /* minimum block start with overlap */
843 while(min<newBlock && extData->stage2[newBlock-1]==0) {
844 --newBlock;
845 }
846
847 extData->stage1[i1]=(uint16_t)newBlock;
848 extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
849 if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) {
850 fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c);
851 exit(U_MEMORY_ALLOCATION_ERROR);
852 }
853 }
854
855 i2=extData->stage1[i1]+nextOffset;
856 nextOffset=c&0xf;
857
858 if(extData->stage2[i2]==0) {
859 /* allocate another block in stage 3; overlap with the previous block */
860 newBlock=extData->stage3Top;
861 min=newBlock-nextOffset; /* minimum block start with overlap */
862 while(min<newBlock && extData->stage3[newBlock-1]==0) {
863 --newBlock;
864 }
865
866 /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */
867 newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1);
868 extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT);
869
870 extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE;
871 if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) {
872 fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c);
873 exit(U_MEMORY_ALLOCATION_ERROR);
874 }
875 }
876
877 i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset;
878 /*
879 * assume extData->stage3[i3]==0 because we get
880 * code points in strictly ascending order
881 */
882
883 if(value==UCNV_EXT_FROM_U_SUBCHAR1) {
884 /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */
885 extData->stage3[i3]=1;
886
887 /*
888 * precompaction is not optimal for <subchar1> |2 mappings because
889 * stage3 values for them are all the same, unlike for other mappings
890 * which all have unique values;
891 * use a simple compaction of reusing a whole block filled with these
892 * mappings
893 */
894
895 /* is the entire block filled with <subchar1> |2 mappings? */
896 if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) {
897 for(min=i3-nextOffset;
898 min<i3 && extData->stage3[min]==1;
899 ++min) {}
900
901 if(min==i3) {
902 /* the entire block is filled with these mappings */
903 if(extData->stage3Sub1Block!=0) {
904 /* point to the previous such block and remove this block from stage3 */
905 extData->stage2[i2]=extData->stage3Sub1Block;
906 extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE;
907 uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2);
908 } else {
909 /* remember this block's stage2 entry */
910 extData->stage3Sub1Block=extData->stage2[i2];
911 }
912 }
913 }
914 } else {
915 if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) {
916 fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c);
917 exit(U_MEMORY_ALLOCATION_ERROR);
918 }
919
920 /* roundtrip or fallback mapping */
921 extData->stage3[i3]=(uint16_t)i3b;
922 extData->stage3b[i3b]=value;
923 }
924 }
925
926 static UBool
generateFromUTrie(CnvExtData * extData,UCMTable * table,int32_t mapLength)927 generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) {
928 UCMapping *mappings, *m;
929 int32_t *map;
930 uint32_t value;
931 int32_t subStart, subLimit;
932
933 UChar32 *codePoints;
934 UChar32 c, next;
935
936 if(mapLength==0) {
937 return TRUE;
938 }
939
940 mappings=table->mappings;
941 map=table->reverseMap;
942
943 /*
944 * iterate over same-initial-code point mappings,
945 * enter the initial code point into the trie,
946 * and start a recursion on the corresponding mappings section
947 * with generateFromUTable()
948 */
949 m=mappings+map[0];
950 codePoints=UCM_GET_CODE_POINTS(table, m);
951 next=codePoints[0];
952 subLimit=0;
953 while(subLimit<mapLength) {
954 /* get a new subsection of mappings starting with the same code point */
955 subStart=subLimit;
956 c=next;
957 while(next==c && ++subLimit<mapLength) {
958 m=mappings+map[subLimit];
959 codePoints=UCM_GET_CODE_POINTS(table, m);
960 next=codePoints[0];
961 }
962
963 /*
964 * compute the value for this code point;
965 * if there is a mapping for this code point alone, it is at subStart
966 * because the table is sorted lexically
967 */
968 value=0;
969 m=mappings+map[subStart];
970 codePoints=UCM_GET_CODE_POINTS(table, m);
971 if(m->uLen==1) {
972 /* do not include this in generateFromUTable() */
973 ++subStart;
974
975 if(subStart<subLimit && mappings[map[subStart]].uLen==1) {
976 /* print error for multiple same-input-sequence mappings */
977 fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
978 ucm_printMapping(table, m, stderr);
979 ucm_printMapping(table, mappings+map[subStart], stderr);
980 return FALSE;
981 }
982
983 value=getFromUBytesValue(extData, table, m);
984 }
985
986 if(subStart==subLimit) {
987 /* write the result for this one code point */
988 addFromUTrieEntry(extData, c, value);
989 } else {
990 /* write the index to the subsection table */
991 addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues));
992
993 /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */
994 if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) {
995 return FALSE;
996 }
997 }
998 }
999 return TRUE;
1000 }
1001
1002 /*
1003 * Generate the fromU data structures from the input table.
1004 * The input table must be sorted, and all precision flags must be 0..3.
1005 * This function will modify the table's reverseMap.
1006 */
1007 static UBool
makeFromUTable(CnvExtData * extData,UCMTable * table)1008 makeFromUTable(CnvExtData *extData, UCMTable *table) {
1009 uint16_t *stage1;
1010 int32_t i, stage1Top, fromUCount;
1011
1012 fromUCount=prepareFromUMappings(table);
1013
1014 extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2);
1015 extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4);
1016 extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1);
1017
1018 /* allocate all-unassigned stage blocks */
1019 extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED;
1020 extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED;
1021
1022 /*
1023 * stage 3b stores only unique values, and in
1024 * index 0: 0 for "no mapping"
1025 * index 1: "no mapping" with preference for <subchar1> rather than <subchar>
1026 */
1027 extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1;
1028 extData->stage3bTop=2;
1029
1030 /* allocate the first entry in the fromUTable because index 0 means "no result" */
1031 utm_alloc(extData->fromUTableUChars);
1032 utm_alloc(extData->fromUTableValues);
1033
1034 if(!generateFromUTrie(extData, table, fromUCount)) {
1035 return FALSE;
1036 }
1037
1038 /*
1039 * offset the stage 1 trie entries by stage1Top because they will
1040 * be stored in a single array
1041 */
1042 stage1=extData->stage1;
1043 stage1Top=extData->stage1Top;
1044 for(i=0; i<stage1Top; ++i) {
1045 stage1[i]=(uint16_t)(stage1[i]+stage1Top);
1046 }
1047
1048 return TRUE;
1049 }
1050
1051 /* -------------------------------------------------------------------------- */
1052
1053 static UBool
CnvExtAddTable(NewConverter * cnvData,UCMTable * table,UConverterStaticData * staticData)1054 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
1055 CnvExtData *extData;
1056
1057 if(table->unicodeMask&UCNV_HAS_SURROGATES) {
1058 fprintf(stderr, "error: contains mappings for surrogate code points\n");
1059 return FALSE;
1060 }
1061
1062 staticData->conversionType=UCNV_MBCS;
1063
1064 extData=(CnvExtData *)cnvData;
1065
1066 /*
1067 * assume that the table is sorted
1068 *
1069 * call the functions in this order because
1070 * makeToUTable() modifies the original reverseMap,
1071 * makeFromUTable() writes a whole new mapping into reverseMap
1072 */
1073 return
1074 makeToUTable(extData, table) &&
1075 makeFromUTable(extData, table);
1076 }
1077