1 /*
2 *******************************************************************************
3 *
4 *   Copyright (C) 2003-2014, International Business Machines
5 *   Corporation and others.  All Rights Reserved.
6 *
7 *******************************************************************************
8 *   file name:  gencnvex.c
9 *   encoding:   US-ASCII
10 *   tab size:   8 (not used)
11 *   indentation:4
12 *
13 *   created on: 2003oct12
14 *   created by: Markus W. Scherer
15 */
16 
17 #include <stdio.h>
18 #include "unicode/utypes.h"
19 #include "unicode/ustring.h"
20 #include "cstring.h"
21 #include "cmemory.h"
22 #include "ucnv_cnv.h"
23 #include "ucnvmbcs.h"
24 #include "toolutil.h"
25 #include "unewdata.h"
26 #include "ucm.h"
27 #include "makeconv.h"
28 #include "genmbcs.h"
29 
30 static void
31 CnvExtClose(NewConverter *cnvData);
32 
33 static UBool
34 CnvExtIsValid(NewConverter *cnvData,
35               const uint8_t *bytes, int32_t length);
36 
37 static UBool
38 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
39 
40 static uint32_t
41 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
42             UNewDataMemory *pData, int32_t tableType);
43 
44 typedef struct CnvExtData {
45     NewConverter newConverter;
46 
47     UCMFile *ucm;
48 
49     /* toUnicode (state table in ucm->states) */
50     UToolMemory *toUTable, *toUUChars;
51 
52     /* fromUnicode */
53     UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes;
54 
55     uint16_t stage1[MBCS_STAGE_1_SIZE];
56     uint16_t stage2[MBCS_STAGE_2_SIZE];
57     uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */
58     uint32_t stage3b[0x10000];
59 
60     int32_t stage1Top, stage2Top, stage3Top, stage3bTop;
61 
62     /* for stage3 compaction of <subchar1> |2 mappings */
63     uint16_t stage3Sub1Block;
64 
65     /* statistics */
66     int32_t
67         maxInBytes, maxOutBytes, maxBytesPerUChar,
68         maxInUChars, maxOutUChars, maxUCharsPerByte;
69 } CnvExtData;
70 
71 NewConverter *
CnvExtOpen(UCMFile * ucm)72 CnvExtOpen(UCMFile *ucm) {
73     CnvExtData *extData;
74 
75     extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData));
76     if(extData==NULL) {
77         printf("out of memory\n");
78         exit(U_MEMORY_ALLOCATION_ERROR);
79     }
80     uprv_memset(extData, 0, sizeof(CnvExtData));
81 
82     extData->ucm=ucm; /* aliased, not owned */
83 
84     extData->newConverter.close=CnvExtClose;
85     extData->newConverter.isValid=CnvExtIsValid;
86     extData->newConverter.addTable=CnvExtAddTable;
87     extData->newConverter.write=CnvExtWrite;
88     return &extData->newConverter;
89 }
90 
91 static void
CnvExtClose(NewConverter * cnvData)92 CnvExtClose(NewConverter *cnvData) {
93     CnvExtData *extData=(CnvExtData *)cnvData;
94     if(extData!=NULL) {
95         utm_close(extData->toUTable);
96         utm_close(extData->toUUChars);
97         utm_close(extData->fromUTableUChars);
98         utm_close(extData->fromUTableValues);
99         utm_close(extData->fromUBytes);
100         uprv_free(extData);
101     }
102 }
103 
104 /* we do not expect this to be called */
105 static UBool
CnvExtIsValid(NewConverter * cnvData,const uint8_t * bytes,int32_t length)106 CnvExtIsValid(NewConverter *cnvData,
107         const uint8_t *bytes, int32_t length) {
108     return FALSE;
109 }
110 
111 static uint32_t
CnvExtWrite(NewConverter * cnvData,const UConverterStaticData * staticData,UNewDataMemory * pData,int32_t tableType)112 CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
113             UNewDataMemory *pData, int32_t tableType) {
114     CnvExtData *extData=(CnvExtData *)cnvData;
115     int32_t length, top, headerSize;
116 
117     int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 };
118 
119     if(tableType&TABLE_BASE) {
120         headerSize=0;
121     } else {
122         _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };
123 
124         /* write the header and base table name for an extension-only table */
125         length=(int32_t)uprv_strlen(extData->ucm->baseName)+1;
126         while(length&3) {
127             /* add padding */
128             extData->ucm->baseName[length++]=0;
129         }
130 
131         headerSize=MBCS_HEADER_V4_LENGTH*4+length;
132 
133         /* fill the header */
134         header.version[0]=4;
135         header.version[1]=2;
136         header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY);
137 
138         /* write the header and the base table name */
139         udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4);
140         udata_writeBlock(pData, extData->ucm->baseName, length);
141     }
142 
143     /* fill indexes[] - offsets/indexes are in units of the target array */
144     top=0;
145 
146     indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH;
147     top+=length*4;
148 
149     indexes[UCNV_EXT_TO_U_INDEX]=top;
150     indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable);
151     top+=length*4;
152 
153     indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top;
154     indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars);
155     top+=length*2;
156 
157     indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top;
158     length=utm_countItems(extData->fromUTableUChars);
159     top+=length*2;
160 
161     if(top&3) {
162         /* add padding */
163         *((UChar *)utm_alloc(extData->fromUTableUChars))=0;
164         *((uint32_t *)utm_alloc(extData->fromUTableValues))=0;
165         ++length;
166         top+=2;
167     }
168     indexes[UCNV_EXT_FROM_U_LENGTH]=length;
169 
170     indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top;
171     top+=length*4;
172 
173     indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top;
174     length=utm_countItems(extData->fromUBytes);
175     top+=length;
176 
177     if(top&1) {
178         /* add padding */
179         *((uint8_t *)utm_alloc(extData->fromUBytes))=0;
180         ++length;
181         ++top;
182     }
183     indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length;
184 
185     indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top;
186     indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top;
187     indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top;
188     top+=length*2;
189 
190     indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top;
191     length=extData->stage3Top;
192     top+=length*2;
193 
194     if(top&3) {
195         /* add padding */
196         extData->stage3[extData->stage3Top++]=0;
197         ++length;
198         top+=2;
199     }
200     indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length;
201 
202     indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top;
203     indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop;
204     top+=length*4;
205 
206     indexes[UCNV_EXT_SIZE]=top;
207 
208     /* statistics */
209     indexes[UCNV_EXT_COUNT_BYTES]=
210         (extData->maxInBytes<<16)|
211         (extData->maxOutBytes<<8)|
212         extData->maxBytesPerUChar;
213     indexes[UCNV_EXT_COUNT_UCHARS]=
214         (extData->maxInUChars<<16)|
215         (extData->maxOutUChars<<8)|
216         extData->maxUCharsPerByte;
217 
218     indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask;
219 
220     /* write the extension data */
221     udata_writeBlock(pData, indexes, sizeof(indexes));
222     udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4);
223     udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2);
224 
225     udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2);
226     udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4);
227     udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]);
228 
229     udata_writeBlock(pData, extData->stage1, extData->stage1Top*2);
230     udata_writeBlock(pData, extData->stage2, extData->stage2Top*2);
231     udata_writeBlock(pData, extData->stage3, extData->stage3Top*2);
232     udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4);
233 
234 #if 0
235     {
236         int32_t i, j;
237 
238         length=extData->stage1Top;
239         printf("\nstage1[%x]:\n", length);
240 
241         for(i=0; i<length; ++i) {
242             if(extData->stage1[i]!=length) {
243                 printf("stage1[%04x]=%04x\n", i, extData->stage1[i]);
244             }
245         }
246 
247         j=length;
248         length=extData->stage2Top;
249         printf("\nstage2[%x]:\n", length);
250 
251         for(i=0; i<length; ++j, ++i) {
252             if(extData->stage2[i]!=0) {
253                 printf("stage12[%04x]=%04x\n", j, extData->stage2[i]);
254             }
255         }
256 
257         length=extData->stage3Top;
258         printf("\nstage3[%x]:\n", length);
259 
260         for(i=0; i<length; ++i) {
261             if(extData->stage3[i]!=0) {
262                 printf("stage3[%04x]=%04x\n", i, extData->stage3[i]);
263             }
264         }
265 
266         length=extData->stage3bTop;
267         printf("\nstage3b[%x]:\n", length);
268 
269         for(i=0; i<length; ++i) {
270             if(extData->stage3b[i]!=0) {
271                 printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]);
272             }
273         }
274     }
275 #endif
276 
277     if(VERBOSE) {
278         printf("size of extension data: %ld\n", (long)top);
279     }
280 
281     /* return the number of bytes that should have been written */
282     return (uint32_t)(headerSize+top);
283 }
284 
285 /* to Unicode --------------------------------------------------------------- */
286 
287 /*
288  * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for
289  * the toUnicode table.
290  * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable
291  * for the base toUnicode table but not for the base fromUnicode table.
292  * The table must be sorted.
293  * Modifies previous data in the reverseMap.
294  */
295 static int32_t
reduceToUMappings(UCMTable * table)296 reduceToUMappings(UCMTable *table) {
297     UCMapping *mappings;
298     int32_t *map;
299     int32_t i, j, count;
300     int8_t flag;
301 
302     mappings=table->mappings;
303     map=table->reverseMap;
304     count=table->mappingsLength;
305 
306     /* leave the map alone for the initial mappings with desired flags */
307     for(i=j=0; i<count; ++i) {
308         flag=mappings[map[i]].f;
309         if(flag!=0 && flag!=3) {
310             break;
311         }
312     }
313 
314     /* reduce from here to the rest */
315     for(j=i; i<count; ++i) {
316         flag=mappings[map[i]].f;
317         if(flag==0 || flag==3) {
318             map[j++]=map[i];
319         }
320     }
321 
322     return j;
323 }
324 
325 static uint32_t
getToUnicodeValue(CnvExtData * extData,UCMTable * table,UCMapping * m)326 getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
327     UChar32 *u32;
328     UChar *u;
329     uint32_t value;
330     int32_t u16Length, ratio;
331     UErrorCode errorCode;
332 
333     /* write the Unicode result code point or string index */
334     if(m->uLen==1) {
335         u16Length=U16_LENGTH(m->u);
336         value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u);
337     } else {
338         /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */
339 
340         /* get the result code point string and its 16-bit string length */
341         u32=UCM_GET_CODE_POINTS(table, m);
342         errorCode=U_ZERO_ERROR;
343         u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode);
344         if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
345             exit(errorCode);
346         }
347 
348         /* allocate it and put its length and index into the value */
349         value=
350             (((uint32_t)u16Length+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)|
351             ((uint32_t)utm_countItems(extData->toUUChars));
352         u=utm_allocN(extData->toUUChars, u16Length);
353 
354         /* write the result 16-bit string */
355         errorCode=U_ZERO_ERROR;
356         u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode);
357         if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) {
358             exit(errorCode);
359         }
360     }
361     if(m->f==0) {
362         value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG;
363     }
364 
365     /* update statistics */
366     if(m->bLen>extData->maxInBytes) {
367         extData->maxInBytes=m->bLen;
368     }
369     if(u16Length>extData->maxOutUChars) {
370         extData->maxOutUChars=u16Length;
371     }
372 
373     ratio=(u16Length+(m->bLen-1))/m->bLen;
374     if(ratio>extData->maxUCharsPerByte) {
375         extData->maxUCharsPerByte=ratio;
376     }
377 
378     return value;
379 }
380 
381 /*
382  * Recursive toUTable generator core function.
383  * Preconditions:
384  * - start<limit (There is at least one mapping.)
385  * - The mappings are sorted lexically. (Access is through the reverseMap.)
386  * - All mappings between start and limit have input sequences that share
387  *   the same prefix of unitIndex length, and therefore all of these sequences
388  *   are at least unitIndex+1 long.
389  * - There are only relevant mappings available through the reverseMap,
390  *   see reduceToUMappings().
391  *
392  * One function invocation generates one section table.
393  *
394  * Steps:
395  * 1. Count the number of unique unit values and get the low/high unit values
396  *    that occur at unitIndex.
397  * 2. Allocate the section table with possible optimization for linear access.
398  * 3. Write temporary version of the section table with start indexes of
399  *    subsections, each corresponding to one unit value at unitIndex.
400  * 4. Iterate through the table once more, and depending on the subsection length:
401  *    0: write 0 as a result value (unused byte in linear-access section table)
402  *   >0: if there is one mapping with an input unit sequence of unitIndex+1
403  *       then defaultValue=compute the mapping result for this whole sequence
404  *       else defaultValue=0
405  *
406  *       recurse into the subsection
407  */
408 static UBool
generateToUTable(CnvExtData * extData,UCMTable * table,int32_t start,int32_t limit,int32_t unitIndex,uint32_t defaultValue)409 generateToUTable(CnvExtData *extData, UCMTable *table,
410                  int32_t start, int32_t limit, int32_t unitIndex,
411                  uint32_t defaultValue) {
412     UCMapping *mappings, *m;
413     int32_t *map;
414     int32_t i, j, uniqueCount, count, subStart, subLimit;
415 
416     uint8_t *bytes;
417     int32_t low, high, prev;
418 
419     uint32_t *section;
420 
421     mappings=table->mappings;
422     map=table->reverseMap;
423 
424     /* step 1: examine the input units; set low, high, uniqueCount */
425     m=mappings+map[start];
426     bytes=UCM_GET_BYTES(table, m);
427     low=bytes[unitIndex];
428     uniqueCount=1;
429 
430     prev=high=low;
431     for(i=start+1; i<limit; ++i) {
432         m=mappings+map[i];
433         bytes=UCM_GET_BYTES(table, m);
434         high=bytes[unitIndex];
435 
436         if(high!=prev) {
437             prev=high;
438             ++uniqueCount;
439         }
440     }
441 
442     /* step 2: allocate the section; set count, section */
443     count=(high-low)+1;
444     if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) {
445         /*
446          * for the root table and for fairly full tables:
447          * allocate for direct, linear array access
448          * by keeping count, to write an entry for each unit value
449          * from low to high
450          * exception: use a compact table if count==0x100 because
451          * that cannot be encoded in the length byte
452          */
453     } else {
454         count=uniqueCount;
455     }
456 
457     if(count>=0x100) {
458         fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count);
459         return FALSE;
460     }
461 
462     /* allocate the section: 1 entry for the header + count for the items */
463     section=(uint32_t *)utm_allocN(extData->toUTable, 1+count);
464 
465     /* write the section header */
466     *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue;
467 
468     /* step 3: write temporary section table with subsection starts */
469     prev=low-1; /* just before low to prevent empty subsections before low */
470     j=0; /* section table index */
471     for(i=start; i<limit; ++i) {
472         m=mappings+map[i];
473         bytes=UCM_GET_BYTES(table, m);
474         high=bytes[unitIndex];
475 
476         if(high!=prev) {
477             /* start of a new subsection for unit high */
478             if(count>uniqueCount) {
479                 /* write empty subsections for unused units in a linear table */
480                 while(++prev<high) {
481                     section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
482                 }
483             } else {
484                 prev=high;
485             }
486 
487             /* write the entry with the subsection start */
488             section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i;
489         }
490     }
491     /* assert(j==count) */
492 
493     /* step 4: recurse and write results */
494     subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]);
495     for(j=0; j<count; ++j) {
496         subStart=subLimit;
497         subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit;
498 
499         /* remove the subStart temporary value */
500         section[j]&=~UCNV_EXT_TO_U_VALUE_MASK;
501 
502         if(subStart==subLimit) {
503             /* leave the value zero: empty subsection for unused unit in a linear table */
504             continue;
505         }
506 
507         /* see if there is exactly one input unit sequence of length unitIndex+1 */
508         defaultValue=0;
509         m=mappings+map[subStart];
510         if(m->bLen==unitIndex+1) {
511             /* do not include this in generateToUTable() */
512             ++subStart;
513 
514             if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) {
515                 /* print error for multiple same-input-sequence mappings */
516                 fprintf(stderr, "error: multiple mappings from same bytes\n");
517                 ucm_printMapping(table, m, stderr);
518                 ucm_printMapping(table, mappings+map[subStart], stderr);
519                 return FALSE;
520             }
521 
522             defaultValue=getToUnicodeValue(extData, table, m);
523         }
524 
525         if(subStart==subLimit) {
526             /* write the result for the input sequence ending here */
527             section[j]|=defaultValue;
528         } else {
529             /* write the index to the subsection table */
530             section[j]|=(uint32_t)utm_countItems(extData->toUTable);
531 
532             /* recurse */
533             if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
534                 return FALSE;
535             }
536         }
537     }
538     return TRUE;
539 }
540 
541 /*
542  * Generate the toUTable and toUUChars from the input table.
543  * The input table must be sorted, and all precision flags must be 0..3.
544  * This function will modify the table's reverseMap.
545  */
546 static UBool
makeToUTable(CnvExtData * extData,UCMTable * table)547 makeToUTable(CnvExtData *extData, UCMTable *table) {
548     int32_t toUCount;
549 
550     toUCount=reduceToUMappings(table);
551 
552     extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4);
553     extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2);
554 
555     return generateToUTable(extData, table, 0, toUCount, 0, 0);
556 }
557 
558 /* from Unicode ------------------------------------------------------------- */
559 
560 /*
561  * preprocessing:
562  * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode
563  * change each Unicode string to encode all but the first code point in 16-bit form
564  *
565  * generation:
566  * for each unique code point
567  *   write an entry in the 3-stage trie
568  *   check that there is only one single-code point sequence
569  *   start recursion for following 16-bit input units
570  */
571 
572 /*
573  * Remove toUnicode fallbacks and non-<subchar1> SUB mappings
574  * which are irrelevant for the fromUnicode extension table.
575  * Remove MBCS_FROM_U_EXT_FLAG bits.
576  * Overwrite the reverseMap with an index array to the relevant mappings.
577  * Modify the code point sequences to a generator-friendly format where
578  * the first code points remains unchanged but the following are recoded
579  * into 16-bit Unicode string form.
580  * The table must be sorted.
581  * Destroys previous data in the reverseMap.
582  */
583 static int32_t
prepareFromUMappings(UCMTable * table)584 prepareFromUMappings(UCMTable *table) {
585     UCMapping *mappings, *m;
586     int32_t *map;
587     int32_t i, j, count;
588     int8_t flag;
589 
590     mappings=table->mappings;
591     map=table->reverseMap;
592     count=table->mappingsLength;
593 
594     /*
595      * we do not go through the map on input because the mappings are
596      * sorted lexically
597      */
598     m=mappings;
599 
600     for(i=j=0; i<count; ++m, ++i) {
601         flag=m->f;
602         if(flag>=0) {
603             flag&=MBCS_FROM_U_EXT_MASK;
604             m->f=flag;
605         }
606         if(flag==0 || flag==1 || (flag==2 && m->bLen==1) || flag==4) {
607             map[j++]=i;
608 
609             if(m->uLen>1) {
610                 /* recode all but the first code point to 16-bit Unicode */
611                 UChar32 *u32;
612                 UChar *u;
613                 UChar32 c;
614                 int32_t q, r;
615 
616                 u32=UCM_GET_CODE_POINTS(table, m);
617                 u=(UChar *)u32; /* destructive in-place recoding */
618                 for(r=2, q=1; q<m->uLen; ++q) {
619                     c=u32[q];
620                     U16_APPEND_UNSAFE(u, r, c);
621                 }
622 
623                 /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */
624                 m->uLen=(int8_t)r;
625             }
626         }
627     }
628 
629     return j;
630 }
631 
632 static uint32_t
getFromUBytesValue(CnvExtData * extData,UCMTable * table,UCMapping * m)633 getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) {
634     uint8_t *bytes, *resultBytes;
635     uint32_t value;
636     int32_t u16Length, ratio;
637 
638     if(m->f==2) {
639         /*
640          * no mapping, <subchar1> preferred
641          *
642          * no need to count in statistics because the subchars are already
643          * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData,
644          * and this non-mapping does not count for maxInUChars which are always
645          * trivially at least two if counting unmappable supplementary code points
646          */
647         return UCNV_EXT_FROM_U_SUBCHAR1;
648     }
649 
650     bytes=UCM_GET_BYTES(table, m);
651     value=0;
652     switch(m->bLen) {
653         /* 1..3: store the bytes in the value word */
654     case 3:
655         value=((uint32_t)*bytes++)<<16;
656     case 2:
657         value|=((uint32_t)*bytes++)<<8;
658     case 1:
659         value|=*bytes;
660         break;
661     default:
662         /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */
663         /* store the bytes in fromUBytes[] and the index in the value word */
664         value=(uint32_t)utm_countItems(extData->fromUBytes);
665         resultBytes=utm_allocN(extData->fromUBytes, m->bLen);
666         uprv_memcpy(resultBytes, bytes, m->bLen);
667         break;
668     }
669     value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT;
670     if(m->f==0) {
671         value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG;
672     } else if(m->f==4) {
673         value|=UCNV_EXT_FROM_U_GOOD_ONE_WAY_FLAG;
674     }
675 
676     /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */
677     if(m->uLen==1) {
678         u16Length=U16_LENGTH(m->u);
679     } else {
680         u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2);
681     }
682 
683     /* update statistics */
684     if(u16Length>extData->maxInUChars) {
685         extData->maxInUChars=u16Length;
686     }
687     if(m->bLen>extData->maxOutBytes) {
688         extData->maxOutBytes=m->bLen;
689     }
690 
691     ratio=(m->bLen+(u16Length-1))/u16Length;
692     if(ratio>extData->maxBytesPerUChar) {
693         extData->maxBytesPerUChar=ratio;
694     }
695 
696     return value;
697 }
698 
699 /*
700  * works like generateToUTable(), except that the
701  * output section consists of two arrays, one for input UChars and one
702  * for result values
703  *
704  * also, fromUTable sections are always stored in a compact form for
705  * access via binary search
706  */
707 static UBool
generateFromUTable(CnvExtData * extData,UCMTable * table,int32_t start,int32_t limit,int32_t unitIndex,uint32_t defaultValue)708 generateFromUTable(CnvExtData *extData, UCMTable *table,
709                    int32_t start, int32_t limit, int32_t unitIndex,
710                    uint32_t defaultValue) {
711     UCMapping *mappings, *m;
712     int32_t *map;
713     int32_t i, j, uniqueCount, count, subStart, subLimit;
714 
715     UChar *uchars;
716     UChar32 low, high, prev;
717 
718     UChar *sectionUChars;
719     uint32_t *sectionValues;
720 
721     mappings=table->mappings;
722     map=table->reverseMap;
723 
724     /* step 1: examine the input units; set low, high, uniqueCount */
725     m=mappings+map[start];
726     uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
727     low=uchars[unitIndex];
728     uniqueCount=1;
729 
730     prev=high=low;
731     for(i=start+1; i<limit; ++i) {
732         m=mappings+map[i];
733         uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
734         high=uchars[unitIndex];
735 
736         if(high!=prev) {
737             prev=high;
738             ++uniqueCount;
739         }
740     }
741 
742     /* step 2: allocate the section; set count, section */
743     /* the fromUTable always stores for access via binary search */
744     count=uniqueCount;
745 
746     /* allocate the section: 1 entry for the header + count for the items */
747     sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count);
748     sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count);
749 
750     /* write the section header */
751     *sectionUChars++=(UChar)count;
752     *sectionValues++=defaultValue;
753 
754     /* step 3: write temporary section table with subsection starts */
755     prev=low-1; /* just before low to prevent empty subsections before low */
756     j=0; /* section table index */
757     for(i=start; i<limit; ++i) {
758         m=mappings+map[i];
759         uchars=(UChar *)UCM_GET_CODE_POINTS(table, m);
760         high=uchars[unitIndex];
761 
762         if(high!=prev) {
763             /* start of a new subsection for unit high */
764             prev=high;
765 
766             /* write the entry with the subsection start */
767             sectionUChars[j]=(UChar)high;
768             sectionValues[j]=(uint32_t)i;
769             ++j;
770         }
771     }
772     /* assert(j==count) */
773 
774     /* step 4: recurse and write results */
775     subLimit=(int32_t)(sectionValues[0]);
776     for(j=0; j<count; ++j) {
777         subStart=subLimit;
778         subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit;
779 
780         /* see if there is exactly one input unit sequence of length unitIndex+1 */
781         defaultValue=0;
782         m=mappings+map[subStart];
783         if(m->uLen==unitIndex+1) {
784             /* do not include this in generateToUTable() */
785             ++subStart;
786 
787             if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) {
788                 /* print error for multiple same-input-sequence mappings */
789                 fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
790                 ucm_printMapping(table, m, stderr);
791                 ucm_printMapping(table, mappings+map[subStart], stderr);
792                 return FALSE;
793             }
794 
795             defaultValue=getFromUBytesValue(extData, table, m);
796         }
797 
798         if(subStart==subLimit) {
799             /* write the result for the input sequence ending here */
800             sectionValues[j]=defaultValue;
801         } else {
802             /* write the index to the subsection table */
803             sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues);
804 
805             /* recurse */
806             if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) {
807                 return FALSE;
808             }
809         }
810     }
811     return TRUE;
812 }
813 
814 /*
815  * add entries to the fromUnicode trie,
816  * assume to be called with code points in ascending order
817  * and use that to build the trie in precompacted form
818  */
819 static void
addFromUTrieEntry(CnvExtData * extData,UChar32 c,uint32_t value)820 addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) {
821     int32_t i1, i2, i3, i3b, nextOffset, min, newBlock;
822 
823     if(value==0) {
824         return;
825     }
826 
827     /*
828      * compute the index for each stage,
829      * allocate a stage block if necessary,
830      * and write the stage value
831      */
832     i1=c>>10;
833     if(i1>=extData->stage1Top) {
834         extData->stage1Top=i1+1;
835     }
836 
837     nextOffset=(c>>4)&0x3f;
838 
839     if(extData->stage1[i1]==0) {
840         /* allocate another block in stage 2; overlap with the previous block */
841         newBlock=extData->stage2Top;
842         min=newBlock-nextOffset; /* minimum block start with overlap */
843         while(min<newBlock && extData->stage2[newBlock-1]==0) {
844             --newBlock;
845         }
846 
847         extData->stage1[i1]=(uint16_t)newBlock;
848         extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
849         if(extData->stage2Top>UPRV_LENGTHOF(extData->stage2)) {
850             fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c);
851             exit(U_MEMORY_ALLOCATION_ERROR);
852         }
853     }
854 
855     i2=extData->stage1[i1]+nextOffset;
856     nextOffset=c&0xf;
857 
858     if(extData->stage2[i2]==0) {
859         /* allocate another block in stage 3; overlap with the previous block */
860         newBlock=extData->stage3Top;
861         min=newBlock-nextOffset; /* minimum block start with overlap */
862         while(min<newBlock && extData->stage3[newBlock-1]==0) {
863             --newBlock;
864         }
865 
866         /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */
867         newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1);
868         extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT);
869 
870         extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE;
871         if(extData->stage3Top>UPRV_LENGTHOF(extData->stage3)) {
872             fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c);
873             exit(U_MEMORY_ALLOCATION_ERROR);
874         }
875     }
876 
877     i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset;
878     /*
879      * assume extData->stage3[i3]==0 because we get
880      * code points in strictly ascending order
881      */
882 
883     if(value==UCNV_EXT_FROM_U_SUBCHAR1) {
884         /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */
885         extData->stage3[i3]=1;
886 
887         /*
888          * precompaction is not optimal for <subchar1> |2 mappings because
889          * stage3 values for them are all the same, unlike for other mappings
890          * which all have unique values;
891          * use a simple compaction of reusing a whole block filled with these
892          * mappings
893          */
894 
895         /* is the entire block filled with <subchar1> |2 mappings? */
896         if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) {
897             for(min=i3-nextOffset;
898                 min<i3 && extData->stage3[min]==1;
899                 ++min) {}
900 
901             if(min==i3) {
902                 /* the entire block is filled with these mappings */
903                 if(extData->stage3Sub1Block!=0) {
904                     /* point to the previous such block and remove this block from stage3 */
905                     extData->stage2[i2]=extData->stage3Sub1Block;
906                     extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE;
907                     uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2);
908                 } else {
909                     /* remember this block's stage2 entry */
910                     extData->stage3Sub1Block=extData->stage2[i2];
911                 }
912             }
913         }
914     } else {
915         if((i3b=extData->stage3bTop++)>=UPRV_LENGTHOF(extData->stage3b)) {
916             fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c);
917             exit(U_MEMORY_ALLOCATION_ERROR);
918         }
919 
920         /* roundtrip or fallback mapping */
921         extData->stage3[i3]=(uint16_t)i3b;
922         extData->stage3b[i3b]=value;
923     }
924 }
925 
926 static UBool
generateFromUTrie(CnvExtData * extData,UCMTable * table,int32_t mapLength)927 generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) {
928     UCMapping *mappings, *m;
929     int32_t *map;
930     uint32_t value;
931     int32_t subStart, subLimit;
932 
933     UChar32 *codePoints;
934     UChar32 c, next;
935 
936     if(mapLength==0) {
937         return TRUE;
938     }
939 
940     mappings=table->mappings;
941     map=table->reverseMap;
942 
943     /*
944      * iterate over same-initial-code point mappings,
945      * enter the initial code point into the trie,
946      * and start a recursion on the corresponding mappings section
947      * with generateFromUTable()
948      */
949     m=mappings+map[0];
950     codePoints=UCM_GET_CODE_POINTS(table, m);
951     next=codePoints[0];
952     subLimit=0;
953     while(subLimit<mapLength) {
954         /* get a new subsection of mappings starting with the same code point */
955         subStart=subLimit;
956         c=next;
957         while(next==c && ++subLimit<mapLength) {
958             m=mappings+map[subLimit];
959             codePoints=UCM_GET_CODE_POINTS(table, m);
960             next=codePoints[0];
961         }
962 
963         /*
964          * compute the value for this code point;
965          * if there is a mapping for this code point alone, it is at subStart
966          * because the table is sorted lexically
967          */
968         value=0;
969         m=mappings+map[subStart];
970         codePoints=UCM_GET_CODE_POINTS(table, m);
971         if(m->uLen==1) {
972             /* do not include this in generateFromUTable() */
973             ++subStart;
974 
975             if(subStart<subLimit && mappings[map[subStart]].uLen==1) {
976                 /* print error for multiple same-input-sequence mappings */
977                 fprintf(stderr, "error: multiple mappings from same Unicode code points\n");
978                 ucm_printMapping(table, m, stderr);
979                 ucm_printMapping(table, mappings+map[subStart], stderr);
980                 return FALSE;
981             }
982 
983             value=getFromUBytesValue(extData, table, m);
984         }
985 
986         if(subStart==subLimit) {
987             /* write the result for this one code point */
988             addFromUTrieEntry(extData, c, value);
989         } else {
990             /* write the index to the subsection table */
991             addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues));
992 
993             /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */
994             if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) {
995                 return FALSE;
996             }
997         }
998     }
999     return TRUE;
1000 }
1001 
1002 /*
1003  * Generate the fromU data structures from the input table.
1004  * The input table must be sorted, and all precision flags must be 0..3.
1005  * This function will modify the table's reverseMap.
1006  */
1007 static UBool
makeFromUTable(CnvExtData * extData,UCMTable * table)1008 makeFromUTable(CnvExtData *extData, UCMTable *table) {
1009     uint16_t *stage1;
1010     int32_t i, stage1Top, fromUCount;
1011 
1012     fromUCount=prepareFromUMappings(table);
1013 
1014     extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2);
1015     extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4);
1016     extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1);
1017 
1018     /* allocate all-unassigned stage blocks */
1019     extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED;
1020     extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED;
1021 
1022     /*
1023      * stage 3b stores only unique values, and in
1024      * index 0: 0 for "no mapping"
1025      * index 1: "no mapping" with preference for <subchar1> rather than <subchar>
1026      */
1027     extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1;
1028     extData->stage3bTop=2;
1029 
1030     /* allocate the first entry in the fromUTable because index 0 means "no result" */
1031     utm_alloc(extData->fromUTableUChars);
1032     utm_alloc(extData->fromUTableValues);
1033 
1034     if(!generateFromUTrie(extData, table, fromUCount)) {
1035         return FALSE;
1036     }
1037 
1038     /*
1039      * offset the stage 1 trie entries by stage1Top because they will
1040      * be stored in a single array
1041      */
1042     stage1=extData->stage1;
1043     stage1Top=extData->stage1Top;
1044     for(i=0; i<stage1Top; ++i) {
1045         stage1[i]=(uint16_t)(stage1[i]+stage1Top);
1046     }
1047 
1048     return TRUE;
1049 }
1050 
1051 /* -------------------------------------------------------------------------- */
1052 
1053 static UBool
CnvExtAddTable(NewConverter * cnvData,UCMTable * table,UConverterStaticData * staticData)1054 CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
1055     CnvExtData *extData;
1056 
1057     if(table->unicodeMask&UCNV_HAS_SURROGATES) {
1058         fprintf(stderr, "error: contains mappings for surrogate code points\n");
1059         return FALSE;
1060     }
1061 
1062     staticData->conversionType=UCNV_MBCS;
1063 
1064     extData=(CnvExtData *)cnvData;
1065 
1066     /*
1067      * assume that the table is sorted
1068      *
1069      * call the functions in this order because
1070      * makeToUTable() modifies the original reverseMap,
1071      * makeFromUTable() writes a whole new mapping into reverseMap
1072      */
1073     return
1074         makeToUTable(extData, table) &&
1075         makeFromUTable(extData, table);
1076 }
1077