1 /*
2 *******************************************************************************
3 * Copyright (C) 2010-2015, International Business Machines
4 * Corporation and others.  All Rights Reserved.
5 *******************************************************************************
6 * Collation.java, ported from collation.h/.cpp
7 *
8 * C++ version created on: 2010oct27
9 * created by: Markus W. Scherer
10 */
11 
12 package com.ibm.icu.impl.coll;
13 
14 /**
15  * Collation v2 basic definitions and static helper functions.
16  *
17  * Data structures except for expansion tables store 32-bit CEs which are
18  * either specials (see tags below) or are compact forms of 64-bit CEs.
19  */
20 public final class Collation {
21     /** UChar32 U_SENTINEL.
22      * TODO: Create a common, public constant?
23      */
24     public static final int SENTINEL_CP = -1;
25 
26     // ICU4C compare() API returns enum UCollationResult values (with UCOL_ prefix).
27     // ICU4J just returns int. We use these constants for ease of porting.
28     public static final int LESS = -1;
29     public static final int EQUAL = 0;
30     public static final int GREATER = 1;
31 
32     // Special sort key bytes for all levels.
33     public static final int TERMINATOR_BYTE = 0;
34     public static final int LEVEL_SEPARATOR_BYTE = 1;
35 
36     /** The secondary/tertiary lower limit for tailoring before any root elements. */
37     static final int BEFORE_WEIGHT16 = 0x100;
38 
39     /**
40      * Merge-sort-key separator.
41      * Same as the unique primary and identical-level weights of U+FFFE.
42      * Must not be used as primary compression low terminator.
43      * Otherwise usable.
44      */
45     public static final int MERGE_SEPARATOR_BYTE = 2;
46     public static final long MERGE_SEPARATOR_PRIMARY = 0x02000000;  // U+FFFE
47     static final int MERGE_SEPARATOR_CE32 = 0x02000505;  // U+FFFE
48 
49     /**
50      * Primary compression low terminator, must be greater than MERGE_SEPARATOR_BYTE.
51      * Reserved value in primary second byte if the lead byte is compressible.
52      * Otherwise usable in all CE weight bytes.
53      */
54     public static final int PRIMARY_COMPRESSION_LOW_BYTE = 3;
55     /**
56      * Primary compression high terminator.
57      * Reserved value in primary second byte if the lead byte is compressible.
58      * Otherwise usable in all CE weight bytes.
59      */
60     public static final int PRIMARY_COMPRESSION_HIGH_BYTE = 0xff;
61 
62     /** Default secondary/tertiary weight lead byte. */
63     static final int COMMON_BYTE = 5;
64     public static final int COMMON_WEIGHT16 = 0x0500;
65     /** Middle 16 bits of a CE with a common secondary weight. */
66     static final int COMMON_SECONDARY_CE = 0x05000000;
67     /** Lower 16 bits of a CE with a common tertiary weight. */
68     static final int COMMON_TERTIARY_CE = 0x0500;
69     /** Lower 32 bits of a CE with common secondary and tertiary weights. */
70     public static final int COMMON_SEC_AND_TER_CE = 0x05000500;
71 
72     static final int SECONDARY_MASK = 0xffff0000;
73     public static final int CASE_MASK = 0xc000;
74     static final int SECONDARY_AND_CASE_MASK = SECONDARY_MASK | CASE_MASK;
75     /** Only the 2*6 bits for the pure tertiary weight. */
76     public static final int ONLY_TERTIARY_MASK = 0x3f3f;
77     /** Only the secondary & tertiary bits; no case, no quaternary. */
78     static final int ONLY_SEC_TER_MASK = SECONDARY_MASK | ONLY_TERTIARY_MASK;
79     /** Case bits and tertiary bits. */
80     static final int CASE_AND_TERTIARY_MASK = CASE_MASK | ONLY_TERTIARY_MASK;
81     public static final int QUATERNARY_MASK = 0xc0;
82     /** Case bits and quaternary bits. */
83     public static final int CASE_AND_QUATERNARY_MASK = CASE_MASK | QUATERNARY_MASK;
84 
85     static final int UNASSIGNED_IMPLICIT_BYTE = 0xfe;  // compressible
86     /**
87      * First unassigned: AlphabeticIndex overflow boundary.
88      * We want a 3-byte primary so that it fits into the root elements table.
89      *
90      * This 3-byte primary will not collide with
91      * any unassigned-implicit 4-byte primaries because
92      * the first few hundred Unicode code points all have real mappings.
93      */
94     static final long FIRST_UNASSIGNED_PRIMARY = 0xfe040200L;
95 
96     static final int TRAIL_WEIGHT_BYTE = 0xff;  // not compressible
97     static final long FIRST_TRAILING_PRIMARY = 0xff020200L;  // [first trailing]
98     public static final long MAX_PRIMARY = 0xffff0000L;  // U+FFFF
99     static final int MAX_REGULAR_CE32 = 0xffff0505;  // U+FFFF
100 
101     // CE32 value for U+FFFD as well as illegal UTF-8 byte sequences (which behave like U+FFFD).
102     // We use the third-highest primary weight for U+FFFD (as in UCA 6.3+).
103     public static final long FFFD_PRIMARY = MAX_PRIMARY - 0x20000;
104     static final int FFFD_CE32 = MAX_REGULAR_CE32 - 0x20000;
105 
106     /**
107      * A CE32 is special if its low byte is this or greater.
108      * Impossible case bits 11 mark special CE32s.
109      * This value itself is used to indicate a fallback to the base collator.
110      */
111     static final int SPECIAL_CE32_LOW_BYTE = 0xc0;
112     static final int FALLBACK_CE32 = SPECIAL_CE32_LOW_BYTE;
113     /**
114      * Low byte of a long-primary special CE32.
115      */
116     static final int LONG_PRIMARY_CE32_LOW_BYTE = 0xc1;  // SPECIAL_CE32_LOW_BYTE | LONG_PRIMARY_TAG
117 
118     static final int UNASSIGNED_CE32 = 0xffffffff;  // Compute an unassigned-implicit CE.
119 
120     static final int NO_CE32 = 1;
121 
122     /** No CE: End of input. Only used in runtime code, not stored in data. */
123     static final long NO_CE_PRIMARY = 1;  // not a left-adjusted weight
124     static final int NO_CE_WEIGHT16 = 0x0100;  // weight of LEVEL_SEPARATOR_BYTE
125     public static final long NO_CE = 0x101000100L;  // NO_CE_PRIMARY, NO_CE_WEIGHT16, NO_CE_WEIGHT16
126 
127     /** Sort key levels. */
128 
129     /** Unspecified level. */
130     public static final int NO_LEVEL = 0;
131     public static final int PRIMARY_LEVEL = 1;
132     public static final int SECONDARY_LEVEL = 2;
133     public static final int CASE_LEVEL = 3;
134     public static final int TERTIARY_LEVEL = 4;
135     public static final int QUATERNARY_LEVEL = 5;
136     public static final int IDENTICAL_LEVEL = 6;
137     /** Beyond sort key bytes. */
138     public static final int ZERO_LEVEL = 7;
139 
140     /**
141      * Sort key level flags: xx_FLAG = 1 << xx_LEVEL.
142      * In Java, use enum Level with flag() getters, or use EnumSet rather than hand-made bit sets.
143      */
144     static final int NO_LEVEL_FLAG = 1;
145     static final int PRIMARY_LEVEL_FLAG = 2;
146     static final int SECONDARY_LEVEL_FLAG = 4;
147     static final int CASE_LEVEL_FLAG = 8;
148     static final int TERTIARY_LEVEL_FLAG = 0x10;
149     static final int QUATERNARY_LEVEL_FLAG = 0x20;
150     static final int IDENTICAL_LEVEL_FLAG = 0x40;
151     static final int ZERO_LEVEL_FLAG = 0x80;
152 
153     /**
154      * Special-CE32 tags, from bits 3..0 of a special 32-bit CE.
155      * Bits 31..8 are available for tag-specific data.
156      * Bits  5..4: Reserved. May be used in the future to indicate lccc!=0 and tccc!=0.
157      */
158 
159     /**
160      * Fall back to the base collator.
161      * This is the tag value in SPECIAL_CE32_LOW_BYTE and FALLBACK_CE32.
162      * Bits 31..8: Unused, 0.
163      */
164     static final int FALLBACK_TAG = 0;
165     /**
166      * Long-primary CE with COMMON_SEC_AND_TER_CE.
167      * Bits 31..8: Three-byte primary.
168      */
169     static final int LONG_PRIMARY_TAG = 1;
170     /**
171      * Long-secondary CE with zero primary.
172      * Bits 31..16: Secondary weight.
173      * Bits 15.. 8: Tertiary weight.
174      */
175     static final int LONG_SECONDARY_TAG = 2;
176     /**
177      * Unused.
178      * May be used in the future for single-byte secondary CEs (SHORT_SECONDARY_TAG),
179      * storing the secondary in bits 31..24, the ccc in bits 23..16,
180      * and the tertiary in bits 15..8.
181      */
182     static final int RESERVED_TAG_3 = 3;
183     /**
184      * Latin mini expansions of two simple CEs [pp, 05, tt] [00, ss, 05].
185      * Bits 31..24: Single-byte primary weight pp of the first CE.
186      * Bits 23..16: Tertiary weight tt of the first CE.
187      * Bits 15.. 8: Secondary weight ss of the second CE.
188      */
189     static final int LATIN_EXPANSION_TAG = 4;
190     /**
191      * Points to one or more simple/long-primary/long-secondary 32-bit CE32s.
192      * Bits 31..13: Index into int table.
193      * Bits 12.. 8: Length=1..31.
194      */
195     static final int EXPANSION32_TAG = 5;
196     /**
197      * Points to one or more 64-bit CEs.
198      * Bits 31..13: Index into CE table.
199      * Bits 12.. 8: Length=1..31.
200      */
201     static final int EXPANSION_TAG = 6;
202     /**
203      * Builder data, used only in the CollationDataBuilder, not in runtime data.
204      *
205      * If bit 8 is 0: Builder context, points to a list of context-sensitive mappings.
206      * Bits 31..13: Index to the builder's list of ConditionalCE32 for this character.
207      * Bits 12.. 9: Unused, 0.
208      *
209      * If bit 8 is 1 (IS_BUILDER_JAMO_CE32): Builder-only jamoCE32 value.
210      * The builder fetches the Jamo CE32 from the trie.
211      * Bits 31..13: Jamo code point.
212      * Bits 12.. 9: Unused, 0.
213      */
214     static final int BUILDER_DATA_TAG = 7;
215     /**
216      * Points to prefix trie.
217      * Bits 31..13: Index into prefix/contraction data.
218      * Bits 12.. 8: Unused, 0.
219      */
220     static final int PREFIX_TAG = 8;
221     /**
222      * Points to contraction data.
223      * Bits 31..13: Index into prefix/contraction data.
224      * Bits 12..11: Unused, 0.
225      * Bit      10: CONTRACT_TRAILING_CCC flag.
226      * Bit       9: CONTRACT_NEXT_CCC flag.
227      * Bit       8: CONTRACT_SINGLE_CP_NO_MATCH flag.
228      */
229     static final int CONTRACTION_TAG = 9;
230     /**
231      * Decimal digit.
232      * Bits 31..13: Index into int table for non-numeric-collation CE32.
233      * Bit      12: Unused, 0.
234      * Bits 11.. 8: Digit value 0..9.
235      */
236     static final int DIGIT_TAG = 10;
237     /**
238      * Tag for U+0000, for moving the NUL-termination handling
239      * from the regular fastpath into specials-handling code.
240      * Bits 31..8: Unused, 0.
241      */
242     static final int U0000_TAG = 11;
243     /**
244      * Tag for a Hangul syllable.
245      * Bits 31..9: Unused, 0.
246      * Bit      8: HANGUL_NO_SPECIAL_JAMO flag.
247      */
248     static final int HANGUL_TAG = 12;
249     /**
250      * Tag for a lead surrogate code unit.
251      * Optional optimization for UTF-16 string processing.
252      * Bits 31..10: Unused, 0.
253      *       9.. 8: =0: All associated supplementary code points are unassigned-implict.
254      *              =1: All associated supplementary code points fall back to the base data.
255      *              else: (Normally 2) Look up the data for the supplementary code point.
256      */
257     static final int LEAD_SURROGATE_TAG = 13;
258     /**
259      * Tag for CEs with primary weights in code point order.
260      * Bits 31..13: Index into CE table, for one data "CE".
261      * Bits 12.. 8: Unused, 0.
262      *
263      * This data "CE" has the following bit fields:
264      * Bits 63..32: Three-byte primary pppppp00.
265      *      31.. 8: Start/base code point of the in-order range.
266      *           7: Flag isCompressible primary.
267      *       6.. 0: Per-code point primary-weight increment.
268      */
269     static final int OFFSET_TAG = 14;
270     /**
271      * Implicit CE tag. Compute an unassigned-implicit CE.
272      * All bits are set (UNASSIGNED_CE32=0xffffffff).
273      */
274     static final int IMPLICIT_TAG = 15;
275 
isAssignedCE32(int ce32)276     static boolean isAssignedCE32(int ce32) {
277         return ce32 != FALLBACK_CE32 && ce32 != UNASSIGNED_CE32;
278     }
279 
280     /**
281      * We limit the number of CEs in an expansion
282      * so that we can use a small number of length bits in the data structure,
283      * and so that an implementation can copy CEs at runtime without growing a destination buffer.
284      */
285     static final int MAX_EXPANSION_LENGTH = 31;
286     static final int MAX_INDEX = 0x7ffff;
287 
288     /**
289      * Set if there is no match for the single (no-suffix) character itself.
290      * This is only possible if there is a prefix.
291      * In this case, discontiguous contraction matching cannot add combining marks
292      * starting from an empty suffix.
293      * The default CE32 is used anyway if there is no suffix match.
294      */
295     static final int CONTRACT_SINGLE_CP_NO_MATCH = 0x100;
296     /** Set if the first character of every contraction suffix has lccc!=0. */
297     static final int CONTRACT_NEXT_CCC = 0x200;
298     /** Set if any contraction suffix ends with lccc!=0. */
299     static final int CONTRACT_TRAILING_CCC = 0x400;
300 
301     /** For HANGUL_TAG: None of its Jamo CE32s isSpecialCE32(). */
302     static final int HANGUL_NO_SPECIAL_JAMO = 0x100;
303 
304     static final int LEAD_ALL_UNASSIGNED = 0;
305     static final int LEAD_ALL_FALLBACK = 0x100;
306     static final int LEAD_MIXED = 0x200;
307     static final int LEAD_TYPE_MASK = 0x300;
308 
makeLongPrimaryCE32(long p)309     static int makeLongPrimaryCE32(long p) { return (int)(p | LONG_PRIMARY_CE32_LOW_BYTE); }
310 
311     /** Turns the long-primary CE32 into a primary weight pppppp00. */
primaryFromLongPrimaryCE32(int ce32)312     static long primaryFromLongPrimaryCE32(int ce32) {
313         return (long)ce32 & 0xffffff00L;
314     }
ceFromLongPrimaryCE32(int ce32)315     static long ceFromLongPrimaryCE32(int ce32) {
316         return ((long)(ce32 & 0xffffff00) << 32) | COMMON_SEC_AND_TER_CE;
317     }
318 
makeLongSecondaryCE32(int lower32)319     static int makeLongSecondaryCE32(int lower32) {
320         return lower32 | SPECIAL_CE32_LOW_BYTE | LONG_SECONDARY_TAG;
321     }
ceFromLongSecondaryCE32(int ce32)322     static long ceFromLongSecondaryCE32(int ce32) {
323         return (long)ce32 & 0xffffff00L;
324     }
325 
326     /** Makes a special CE32 with tag, index and length. */
makeCE32FromTagIndexAndLength(int tag, int index, int length)327     static int makeCE32FromTagIndexAndLength(int tag, int index, int length) {
328         return (index << 13) | (length << 8) | SPECIAL_CE32_LOW_BYTE | tag;
329     }
330     /** Makes a special CE32 with only tag and index. */
makeCE32FromTagAndIndex(int tag, int index)331     static int makeCE32FromTagAndIndex(int tag, int index) {
332         return (index << 13) | SPECIAL_CE32_LOW_BYTE | tag;
333     }
334 
isSpecialCE32(int ce32)335     static boolean isSpecialCE32(int ce32) {
336         return (ce32 & 0xff) >= SPECIAL_CE32_LOW_BYTE;
337     }
338 
tagFromCE32(int ce32)339     static int tagFromCE32(int ce32) {
340         return ce32 & 0xf;
341     }
342 
hasCE32Tag(int ce32, int tag)343     static boolean hasCE32Tag(int ce32, int tag) {
344         return isSpecialCE32(ce32) && tagFromCE32(ce32) == tag;
345     }
346 
isLongPrimaryCE32(int ce32)347     static boolean isLongPrimaryCE32(int ce32) {
348         return hasCE32Tag(ce32, LONG_PRIMARY_TAG);
349     }
350 
isSimpleOrLongCE32(int ce32)351     static boolean isSimpleOrLongCE32(int ce32) {
352         return !isSpecialCE32(ce32) ||
353                 tagFromCE32(ce32) == LONG_PRIMARY_TAG ||
354                 tagFromCE32(ce32) == LONG_SECONDARY_TAG;
355     }
356 
357     /**
358      * @return true if the ce32 yields one or more CEs without further data lookups
359      */
isSelfContainedCE32(int ce32)360     static boolean isSelfContainedCE32(int ce32) {
361         return !isSpecialCE32(ce32) ||
362                 tagFromCE32(ce32) == LONG_PRIMARY_TAG ||
363                 tagFromCE32(ce32) == LONG_SECONDARY_TAG ||
364                 tagFromCE32(ce32) == LATIN_EXPANSION_TAG;
365     }
366 
isPrefixCE32(int ce32)367     static boolean isPrefixCE32(int ce32) {
368         return hasCE32Tag(ce32, PREFIX_TAG);
369     }
370 
isContractionCE32(int ce32)371     static boolean isContractionCE32(int ce32) {
372         return hasCE32Tag(ce32, CONTRACTION_TAG);
373     }
374 
ce32HasContext(int ce32)375     static boolean ce32HasContext(int ce32) {
376         return isSpecialCE32(ce32) &&
377                 (tagFromCE32(ce32) == PREFIX_TAG ||
378                 tagFromCE32(ce32) == CONTRACTION_TAG);
379     }
380 
381     /**
382      * Get the first of the two Latin-expansion CEs encoded in ce32.
383      * @see LATIN_EXPANSION_TAG
384      */
latinCE0FromCE32(int ce32)385     static long latinCE0FromCE32(int ce32) {
386         return ((long)(ce32 & 0xff000000) << 32) | COMMON_SECONDARY_CE | ((ce32 & 0xff0000) >> 8);
387     }
388 
389     /**
390      * Get the second of the two Latin-expansion CEs encoded in ce32.
391      * @see LATIN_EXPANSION_TAG
392      */
latinCE1FromCE32(int ce32)393     static long latinCE1FromCE32(int ce32) {
394         return (((long)ce32 & 0xff00) << 16) | COMMON_TERTIARY_CE;
395     }
396 
397     /**
398      * Returns the data index from a special CE32.
399      */
indexFromCE32(int ce32)400     static int indexFromCE32(int ce32) {
401         return ce32 >>> 13;
402     }
403 
404     /**
405      * Returns the data length from a ce32.
406      */
lengthFromCE32(int ce32)407     static int lengthFromCE32(int ce32) {
408         return (ce32 >> 8) & 31;
409     }
410 
411     /**
412      * Returns the digit value from a DIGIT_TAG ce32.
413      */
digitFromCE32(int ce32)414     static char digitFromCE32(int ce32) {
415         return (char)((ce32 >> 8) & 0xf);
416     }
417 
418     /** Returns a 64-bit CE from a simple CE32 (not special). */
ceFromSimpleCE32(int ce32)419     static long ceFromSimpleCE32(int ce32) {
420         // normal form ppppsstt -> pppp0000ss00tt00
421         assert (ce32 & 0xff) < SPECIAL_CE32_LOW_BYTE;
422         return ((long)(ce32 & 0xffff0000) << 32) | ((long)(ce32 & 0xff00) << 16) | ((ce32 & 0xff) << 8);
423     }
424 
425     /** Returns a 64-bit CE from a simple/long-primary/long-secondary CE32. */
426     static long ceFromCE32(int ce32) {
427         int tertiary = ce32 & 0xff;
428         if(tertiary < SPECIAL_CE32_LOW_BYTE) {
429             // normal form ppppsstt -> pppp0000ss00tt00
430             return ((long)(ce32 & 0xffff0000) << 32) | ((long)(ce32 & 0xff00) << 16) | (tertiary << 8);
431         } else {
432             ce32 -= tertiary;
433             if((tertiary & 0xf) == LONG_PRIMARY_TAG) {
434                 // long-primary form ppppppC1 -> pppppp00050000500
435                 return ((long)ce32 << 32) | COMMON_SEC_AND_TER_CE;
436             } else {
437                 // long-secondary form ssssttC2 -> 00000000sssstt00
438                 assert (tertiary & 0xf) == LONG_SECONDARY_TAG;
439                 return ce32 & 0xffffffffL;
440             }
441         }
442     }
443 
444     /** Creates a CE from a primary weight. */
445     public static long makeCE(long p) {
446         return (p << 32) | COMMON_SEC_AND_TER_CE;
447     }
448     /**
449      * Creates a CE from a primary weight,
450      * 16-bit secondary/tertiary weights, and a 2-bit quaternary.
451      */
452     static long makeCE(long p, int s, int t, int q) {
453         return (p << 32) | ((long)s << 16) | t | (q << 6);
454     }
455 
456     /**
457      * Increments a 2-byte primary by a code point offset.
458      */
459     public static long incTwoBytePrimaryByOffset(long basePrimary, boolean isCompressible,
460                                               int offset) {
461         // Extract the second byte, minus the minimum byte value,
462         // plus the offset, modulo the number of usable byte values, plus the minimum.
463         // Reserve the PRIMARY_COMPRESSION_LOW_BYTE and high byte if necessary.
464         long primary;
465         if(isCompressible) {
466             offset += ((int)(basePrimary >> 16) & 0xff) - 4;
467             primary = ((offset % 251) + 4) << 16;
468             offset /= 251;
469         } else {
470             offset += ((int)(basePrimary >> 16) & 0xff) - 2;
471             primary = ((offset % 254) + 2) << 16;
472             offset /= 254;
473         }
474         // First byte, assume no further overflow.
475         return primary | ((basePrimary & 0xff000000L) + ((long)offset << 24));
476     }
477 
478     /**
479      * Increments a 3-byte primary by a code point offset.
480      */
481     public static long incThreeBytePrimaryByOffset(long basePrimary, boolean isCompressible,
482                                                 int offset) {
483         // Extract the third byte, minus the minimum byte value,
484         // plus the offset, modulo the number of usable byte values, plus the minimum.
485         offset += ((int)(basePrimary >> 8) & 0xff) - 2;
486         long primary = ((offset % 254) + 2) << 8;
487         offset /= 254;
488         // Same with the second byte,
489         // but reserve the PRIMARY_COMPRESSION_LOW_BYTE and high byte if necessary.
490         if(isCompressible) {
491             offset += ((int)(basePrimary >> 16) & 0xff) - 4;
492             primary |= ((offset % 251) + 4) << 16;
493             offset /= 251;
494         } else {
495             offset += ((int)(basePrimary >> 16) & 0xff) - 2;
496             primary |= ((offset % 254) + 2) << 16;
497             offset /= 254;
498         }
499         // First byte, assume no further overflow.
500         return primary | ((basePrimary & 0xff000000L) + ((long)offset << 24));
501     }
502 
503     /**
504      * Decrements a 2-byte primary by one range step (1..0x7f).
505      */
506     static long decTwoBytePrimaryByOneStep(long basePrimary, boolean isCompressible, int step) {
507         // Extract the second byte, minus the minimum byte value,
508         // minus the step, modulo the number of usable byte values, plus the minimum.
509         // Reserve the PRIMARY_COMPRESSION_LOW_BYTE and high byte if necessary.
510         // Assume no further underflow for the first byte.
511         assert(0 < step && step <= 0x7f);
512         int byte2 = ((int)(basePrimary >> 16) & 0xff) - step;
513         if(isCompressible) {
514             if(byte2 < 4) {
515                 byte2 += 251;
516                 basePrimary -= 0x1000000;
517             }
518         } else {
519             if(byte2 < 2) {
520                 byte2 += 254;
521                 basePrimary -= 0x1000000;
522             }
523         }
524         return (basePrimary & 0xff000000L) | (byte2 << 16);
525     }
526 
527     /**
528      * Decrements a 3-byte primary by one range step (1..0x7f).
529      */
530     static long decThreeBytePrimaryByOneStep(long basePrimary, boolean isCompressible, int step) {
531         // Extract the third byte, minus the minimum byte value,
532         // minus the step, modulo the number of usable byte values, plus the minimum.
533         assert(0 < step && step <= 0x7f);
534         int byte3 = ((int)(basePrimary >> 8) & 0xff) - step;
535         if(byte3 >= 2) {
536             return (basePrimary & 0xffff0000L) | (byte3 << 8);
537         }
538         byte3 += 254;
539         // Same with the second byte,
540         // but reserve the PRIMARY_COMPRESSION_LOW_BYTE and high byte if necessary.
541         int byte2 = ((int)(basePrimary >> 16) & 0xff) - 1;
542         if(isCompressible) {
543             if(byte2 < 4) {
544                 byte2 = 0xfe;
545                 basePrimary -= 0x1000000;
546             }
547         } else {
548             if(byte2 < 2) {
549                 byte2 = 0xff;
550                 basePrimary -= 0x1000000;
551             }
552         }
553         // First byte, assume no further underflow.
554         return (basePrimary & 0xff000000L) | (byte2 << 16) | (byte3 << 8);
555     }
556 
557     /**
558      * Computes a 3-byte primary for c's OFFSET_TAG data "CE".
559      */
560     static long getThreeBytePrimaryForOffsetData(int c, long dataCE) {
561         long p = dataCE >>> 32;  // three-byte primary pppppp00
562         int lower32 = (int)dataCE;  // base code point b & step s: bbbbbbss (bit 7: isCompressible)
563         int offset = (c - (lower32 >> 8)) * (lower32 & 0x7f);  // delta * increment
564         boolean isCompressible = (lower32 & 0x80) != 0;
565         return Collation.incThreeBytePrimaryByOffset(p, isCompressible, offset);
566     }
567 
568     /**
569      * Returns the unassigned-character implicit primary weight for any valid code point c.
570      */
571     static long unassignedPrimaryFromCodePoint(int c) {
572         // Create a gap before U+0000. Use c=-1 for [first unassigned].
573         ++c;
574         // Fourth byte: 18 values, every 14th byte value (gap of 13).
575         long primary = 2 + (c % 18) * 14;
576         c /= 18;
577         // Third byte: 254 values.
578         primary |= (2 + (c % 254)) << 8;
579         c /= 254;
580         // Second byte: 251 values 04..FE excluding the primary compression bytes.
581         primary |= (4 + (c % 251)) << 16;
582         // One lead byte covers all code points (c < 0x1182B4 = 1*251*254*18).
583         return primary | ((long)UNASSIGNED_IMPLICIT_BYTE << 24);
584     }
585 
586     static long unassignedCEFromCodePoint(int c) {
587         return makeCE(unassignedPrimaryFromCodePoint(c));
588     }
589 
590     // private Collation()  // No instantiation.
591 }
592