1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
18 #define ART_RUNTIME_MIRROR_ARRAY_INL_H_
19 
20 #include "array.h"
21 
22 #include "base/bit_utils.h"
23 #include "base/casts.h"
24 #include "base/logging.h"
25 #include "base/stringprintf.h"
26 #include "class-inl.h"
27 #include "gc/heap-inl.h"
28 #include "thread.h"
29 
30 namespace art {
31 namespace mirror {
32 
ClassSize(size_t pointer_size)33 inline uint32_t Array::ClassSize(size_t pointer_size) {
34   uint32_t vtable_entries = Object::kVTableLength;
35   return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
36 }
37 
38 template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
SizeOf()39 inline size_t Array::SizeOf() {
40   // This is safe from overflow because the array was already allocated, so we know it's sane.
41   size_t component_size_shift = GetClass<kVerifyFlags, kReadBarrierOption>()->
42       template GetComponentSizeShift<kReadBarrierOption>();
43   // Don't need to check this since we already check this in GetClass.
44   int32_t component_count =
45       GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
46   size_t header_size = DataOffset(1U << component_size_shift).SizeValue();
47   size_t data_size = component_count << component_size_shift;
48   return header_size + data_size;
49 }
50 
DataOffset(size_t component_size)51 inline MemberOffset Array::DataOffset(size_t component_size) {
52   DCHECK(IsPowerOfTwo(component_size)) << component_size;
53   size_t data_offset = RoundUp(OFFSETOF_MEMBER(Array, first_element_), component_size);
54   DCHECK_EQ(RoundUp(data_offset, component_size), data_offset)
55       << "Array data offset isn't aligned with component size";
56   return MemberOffset(data_offset);
57 }
58 
59 template<VerifyObjectFlags kVerifyFlags>
CheckIsValidIndex(int32_t index)60 inline bool Array::CheckIsValidIndex(int32_t index) {
61   if (UNLIKELY(static_cast<uint32_t>(index) >=
62                static_cast<uint32_t>(GetLength<kVerifyFlags>()))) {
63     ThrowArrayIndexOutOfBoundsException(index);
64     return false;
65   }
66   return true;
67 }
68 
ComputeArraySize(int32_t component_count,size_t component_size_shift)69 static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) {
70   DCHECK_GE(component_count, 0);
71 
72   size_t component_size = 1U << component_size_shift;
73   size_t header_size = Array::DataOffset(component_size).SizeValue();
74   size_t data_size = static_cast<size_t>(component_count) << component_size_shift;
75   size_t size = header_size + data_size;
76 
77   // Check for size_t overflow if this was an unreasonable request
78   // but let the caller throw OutOfMemoryError.
79 #ifdef __LP64__
80   // 64-bit. No overflow as component_count is 32-bit and the maximum
81   // component size is 8.
82   DCHECK_LE((1U << component_size_shift), 8U);
83 #else
84   // 32-bit.
85   DCHECK_NE(header_size, 0U);
86   DCHECK_EQ(RoundUp(header_size, component_size), header_size);
87   // The array length limit (exclusive).
88   const size_t length_limit = (0U - header_size) >> component_size_shift;
89   if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) {
90     return 0;  // failure
91   }
92 #endif
93   return size;
94 }
95 
96 // Used for setting the array length in the allocation code path to ensure it is guarded by a
97 // StoreStore fence.
98 class SetLengthVisitor {
99  public:
SetLengthVisitor(int32_t length)100   explicit SetLengthVisitor(int32_t length) : length_(length) {
101   }
102 
operator()103   void operator()(Object* obj, size_t usable_size) const
104       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
105     UNUSED(usable_size);
106     // Avoid AsArray as object is not yet in live bitmap or allocation stack.
107     Array* array = down_cast<Array*>(obj);
108     // DCHECK(array->IsArrayInstance());
109     array->SetLength(length_);
110   }
111 
112  private:
113   const int32_t length_;
114 
115   DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
116 };
117 
118 // Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
119 // array.
120 class SetLengthToUsableSizeVisitor {
121  public:
SetLengthToUsableSizeVisitor(int32_t min_length,size_t header_size,size_t component_size_shift)122   SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size,
123                                size_t component_size_shift) :
124       minimum_length_(min_length), header_size_(header_size),
125       component_size_shift_(component_size_shift) {
126   }
127 
operator()128   void operator()(Object* obj, size_t usable_size) const
129       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
130     // Avoid AsArray as object is not yet in live bitmap or allocation stack.
131     Array* array = down_cast<Array*>(obj);
132     // DCHECK(array->IsArrayInstance());
133     int32_t length = (usable_size - header_size_) >> component_size_shift_;
134     DCHECK_GE(length, minimum_length_);
135     uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
136                                                                     minimum_length_));
137     uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
138                                                                     length));
139     // Ensure space beyond original allocation is zeroed.
140     memset(old_end, 0, new_end - old_end);
141     array->SetLength(length);
142   }
143 
144  private:
145   const int32_t minimum_length_;
146   const size_t header_size_;
147   const size_t component_size_shift_;
148 
149   DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
150 };
151 
152 template <bool kIsInstrumented, bool kFillUsable>
Alloc(Thread * self,Class * array_class,int32_t component_count,size_t component_size_shift,gc::AllocatorType allocator_type)153 inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count,
154                            size_t component_size_shift, gc::AllocatorType allocator_type) {
155   DCHECK(allocator_type != gc::kAllocatorTypeLOS);
156   DCHECK(array_class != nullptr);
157   DCHECK(array_class->IsArrayClass());
158   DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift);
159   DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift));
160   size_t size = ComputeArraySize(component_count, component_size_shift);
161 #ifdef __LP64__
162   // 64-bit. No size_t overflow.
163   DCHECK_NE(size, 0U);
164 #else
165   // 32-bit.
166   if (UNLIKELY(size == 0)) {
167     self->ThrowOutOfMemoryError(StringPrintf("%s of length %d would overflow",
168                                              PrettyDescriptor(array_class).c_str(),
169                                              component_count).c_str());
170     return nullptr;
171   }
172 #endif
173   gc::Heap* heap = Runtime::Current()->GetHeap();
174   Array* result;
175   if (!kFillUsable) {
176     SetLengthVisitor visitor(component_count);
177     result = down_cast<Array*>(
178         heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
179                                                               allocator_type, visitor));
180   } else {
181     SetLengthToUsableSizeVisitor visitor(component_count,
182                                          DataOffset(1U << component_size_shift).SizeValue(),
183                                          component_size_shift);
184     result = down_cast<Array*>(
185         heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
186                                                               allocator_type, visitor));
187   }
188   if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
189     array_class = result->GetClass();  // In case the array class moved.
190     CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift);
191     if (!kFillUsable) {
192       CHECK_EQ(result->SizeOf(), size);
193     } else {
194       CHECK_GE(result->SizeOf(), size);
195     }
196   }
197   return result;
198 }
199 
200 template<class T>
VisitRoots(RootVisitor * visitor)201 inline void PrimitiveArray<T>::VisitRoots(RootVisitor* visitor) {
202   array_class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass));
203 }
204 
205 template<typename T>
Alloc(Thread * self,size_t length)206 inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
207   Array* raw_array = Array::Alloc<true>(self, GetArrayClass(), length,
208                                         ComponentSizeShiftWidth(sizeof(T)),
209                                         Runtime::Current()->GetHeap()->GetCurrentAllocator());
210   return down_cast<PrimitiveArray<T>*>(raw_array);
211 }
212 
213 template<typename T>
Get(int32_t i)214 inline T PrimitiveArray<T>::Get(int32_t i) {
215   if (!CheckIsValidIndex(i)) {
216     DCHECK(Thread::Current()->IsExceptionPending());
217     return T(0);
218   }
219   return GetWithoutChecks(i);
220 }
221 
222 template<typename T>
Set(int32_t i,T value)223 inline void PrimitiveArray<T>::Set(int32_t i, T value) {
224   if (Runtime::Current()->IsActiveTransaction()) {
225     Set<true>(i, value);
226   } else {
227     Set<false>(i, value);
228   }
229 }
230 
231 template<typename T>
232 template<bool kTransactionActive, bool kCheckTransaction>
Set(int32_t i,T value)233 inline void PrimitiveArray<T>::Set(int32_t i, T value) {
234   if (CheckIsValidIndex(i)) {
235     SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value);
236   } else {
237     DCHECK(Thread::Current()->IsExceptionPending());
238   }
239 }
240 
241 template<typename T>
242 template<bool kTransactionActive, bool kCheckTransaction>
SetWithoutChecks(int32_t i,T value)243 inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) {
244   if (kCheckTransaction) {
245     DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
246   }
247   if (kTransactionActive) {
248     Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i));
249   }
250   DCHECK(CheckIsValidIndex(i));
251   GetData()[i] = value;
252 }
253 // Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
254 // Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
255 template<typename T>
ArrayBackwardCopy(T * d,const T * s,int32_t count)256 static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
257   d += count;
258   s += count;
259   for (int32_t i = 0; i < count; ++i) {
260     d--;
261     s--;
262     *d = *s;
263   }
264 }
265 
266 // Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
267 // Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
268 template<typename T>
ArrayForwardCopy(T * d,const T * s,int32_t count)269 static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
270   for (int32_t i = 0; i < count; ++i) {
271     *d = *s;
272     d++;
273     s++;
274   }
275 }
276 
277 template<class T>
Memmove(int32_t dst_pos,PrimitiveArray<T> * src,int32_t src_pos,int32_t count)278 inline void PrimitiveArray<T>::Memmove(int32_t dst_pos, PrimitiveArray<T>* src, int32_t src_pos,
279                                        int32_t count) {
280   if (UNLIKELY(count == 0)) {
281     return;
282   }
283   DCHECK_GE(dst_pos, 0);
284   DCHECK_GE(src_pos, 0);
285   DCHECK_GT(count, 0);
286   DCHECK(src != nullptr);
287   DCHECK_LT(dst_pos, GetLength());
288   DCHECK_LE(dst_pos, GetLength() - count);
289   DCHECK_LT(src_pos, src->GetLength());
290   DCHECK_LE(src_pos, src->GetLength() - count);
291 
292   // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
293   // in our implementation, because they may copy byte-by-byte.
294   if (LIKELY(src != this)) {
295     // Memcpy ok for guaranteed non-overlapping distinct arrays.
296     Memcpy(dst_pos, src, src_pos, count);
297   } else {
298     // Handle copies within the same array using the appropriate direction copy.
299     void* dst_raw = GetRawData(sizeof(T), dst_pos);
300     const void* src_raw = src->GetRawData(sizeof(T), src_pos);
301     if (sizeof(T) == sizeof(uint8_t)) {
302       uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
303       const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
304       memmove(d, s, count);
305     } else {
306       const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
307       if (sizeof(T) == sizeof(uint16_t)) {
308         uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
309         const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
310         if (copy_forward) {
311           ArrayForwardCopy<uint16_t>(d, s, count);
312         } else {
313           ArrayBackwardCopy<uint16_t>(d, s, count);
314         }
315       } else if (sizeof(T) == sizeof(uint32_t)) {
316         uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
317         const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
318         if (copy_forward) {
319           ArrayForwardCopy<uint32_t>(d, s, count);
320         } else {
321           ArrayBackwardCopy<uint32_t>(d, s, count);
322         }
323       } else {
324         DCHECK_EQ(sizeof(T), sizeof(uint64_t));
325         uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
326         const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
327         if (copy_forward) {
328           ArrayForwardCopy<uint64_t>(d, s, count);
329         } else {
330           ArrayBackwardCopy<uint64_t>(d, s, count);
331         }
332       }
333     }
334   }
335 }
336 
337 template<class T>
Memcpy(int32_t dst_pos,PrimitiveArray<T> * src,int32_t src_pos,int32_t count)338 inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos, PrimitiveArray<T>* src, int32_t src_pos,
339                                       int32_t count) {
340   if (UNLIKELY(count == 0)) {
341     return;
342   }
343   DCHECK_GE(dst_pos, 0);
344   DCHECK_GE(src_pos, 0);
345   DCHECK_GT(count, 0);
346   DCHECK(src != nullptr);
347   DCHECK_LT(dst_pos, GetLength());
348   DCHECK_LE(dst_pos, GetLength() - count);
349   DCHECK_LT(src_pos, src->GetLength());
350   DCHECK_LE(src_pos, src->GetLength() - count);
351 
352   // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
353   // in our implementation, because they may copy byte-by-byte.
354   void* dst_raw = GetRawData(sizeof(T), dst_pos);
355   const void* src_raw = src->GetRawData(sizeof(T), src_pos);
356   if (sizeof(T) == sizeof(uint8_t)) {
357     memcpy(dst_raw, src_raw, count);
358   } else if (sizeof(T) == sizeof(uint16_t)) {
359     uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
360     const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
361     ArrayForwardCopy<uint16_t>(d, s, count);
362   } else if (sizeof(T) == sizeof(uint32_t)) {
363     uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
364     const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
365     ArrayForwardCopy<uint32_t>(d, s, count);
366   } else {
367     DCHECK_EQ(sizeof(T), sizeof(uint64_t));
368     uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
369     const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
370     ArrayForwardCopy<uint64_t>(d, s, count);
371   }
372 }
373 
374 template<typename T>
GetElementPtrSize(uint32_t idx,size_t ptr_size)375 inline T PointerArray::GetElementPtrSize(uint32_t idx, size_t ptr_size) {
376   // C style casts here since we sometimes have T be a pointer, or sometimes an integer
377   // (for stack traces).
378   if (ptr_size == 8) {
379     return (T)static_cast<uintptr_t>(AsLongArray()->GetWithoutChecks(idx));
380   }
381   DCHECK_EQ(ptr_size, 4u);
382   return (T)static_cast<uintptr_t>(AsIntArray()->GetWithoutChecks(idx));
383 }
384 
385 template<bool kTransactionActive, bool kUnchecked, typename T>
SetElementPtrSize(uint32_t idx,T element,size_t ptr_size)386 inline void PointerArray::SetElementPtrSize(uint32_t idx, T element, size_t ptr_size) {
387   if (ptr_size == 8) {
388     (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray())->
389         SetWithoutChecks<kTransactionActive>(idx, (uint64_t)(element));
390   } else {
391     DCHECK_EQ(ptr_size, 4u);
392     DCHECK_LE((uintptr_t)element, 0xFFFFFFFFu);
393     (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray())
394         ->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>((uintptr_t)element));
395   }
396 }
397 
398 }  // namespace mirror
399 }  // namespace art
400 
401 #endif  // ART_RUNTIME_MIRROR_ARRAY_INL_H_
402