1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines several CodeGen-specific LLVM IR analysis utilities.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/SelectionDAG.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Target/TargetLowering.h"
28 #include "llvm/Target/TargetSubtargetInfo.h"
29 #include "llvm/Transforms/Utils/GlobalStatus.h"
30
31 using namespace llvm;
32
33 /// Compute the linearized index of a member in a nested aggregate/struct/array
34 /// by recursing and accumulating CurIndex as long as there are indices in the
35 /// index list.
ComputeLinearIndex(Type * Ty,const unsigned * Indices,const unsigned * IndicesEnd,unsigned CurIndex)36 unsigned llvm::ComputeLinearIndex(Type *Ty,
37 const unsigned *Indices,
38 const unsigned *IndicesEnd,
39 unsigned CurIndex) {
40 // Base case: We're done.
41 if (Indices && Indices == IndicesEnd)
42 return CurIndex;
43
44 // Given a struct type, recursively traverse the elements.
45 if (StructType *STy = dyn_cast<StructType>(Ty)) {
46 for (StructType::element_iterator EB = STy->element_begin(),
47 EI = EB,
48 EE = STy->element_end();
49 EI != EE; ++EI) {
50 if (Indices && *Indices == unsigned(EI - EB))
51 return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
52 CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
53 }
54 assert(!Indices && "Unexpected out of bound");
55 return CurIndex;
56 }
57 // Given an array type, recursively traverse the elements.
58 else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
59 Type *EltTy = ATy->getElementType();
60 unsigned NumElts = ATy->getNumElements();
61 // Compute the Linear offset when jumping one element of the array
62 unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
63 if (Indices) {
64 assert(*Indices < NumElts && "Unexpected out of bound");
65 // If the indice is inside the array, compute the index to the requested
66 // elt and recurse inside the element with the end of the indices list
67 CurIndex += EltLinearOffset* *Indices;
68 return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
69 }
70 CurIndex += EltLinearOffset*NumElts;
71 return CurIndex;
72 }
73 // We haven't found the type we're looking for, so keep searching.
74 return CurIndex + 1;
75 }
76
77 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
78 /// EVTs that represent all the individual underlying
79 /// non-aggregate types that comprise it.
80 ///
81 /// If Offsets is non-null, it points to a vector to be filled in
82 /// with the in-memory offsets of each of the individual values.
83 ///
ComputeValueVTs(const TargetLowering & TLI,Type * Ty,SmallVectorImpl<EVT> & ValueVTs,SmallVectorImpl<uint64_t> * Offsets,uint64_t StartingOffset)84 void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
85 SmallVectorImpl<EVT> &ValueVTs,
86 SmallVectorImpl<uint64_t> *Offsets,
87 uint64_t StartingOffset) {
88 // Given a struct type, recursively traverse the elements.
89 if (StructType *STy = dyn_cast<StructType>(Ty)) {
90 const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
91 for (StructType::element_iterator EB = STy->element_begin(),
92 EI = EB,
93 EE = STy->element_end();
94 EI != EE; ++EI)
95 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
96 StartingOffset + SL->getElementOffset(EI - EB));
97 return;
98 }
99 // Given an array type, recursively traverse the elements.
100 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
101 Type *EltTy = ATy->getElementType();
102 uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
103 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
104 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
105 StartingOffset + i * EltSize);
106 return;
107 }
108 // Interpret void as zero return values.
109 if (Ty->isVoidTy())
110 return;
111 // Base case: we can get an EVT for this LLVM IR type.
112 ValueVTs.push_back(TLI.getValueType(Ty));
113 if (Offsets)
114 Offsets->push_back(StartingOffset);
115 }
116
117 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
ExtractTypeInfo(Value * V)118 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
119 V = V->stripPointerCasts();
120 GlobalValue *GV = dyn_cast<GlobalValue>(V);
121 GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
122
123 if (Var && Var->getName() == "llvm.eh.catch.all.value") {
124 assert(Var->hasInitializer() &&
125 "The EH catch-all value must have an initializer");
126 Value *Init = Var->getInitializer();
127 GV = dyn_cast<GlobalValue>(Init);
128 if (!GV) V = cast<ConstantPointerNull>(Init);
129 }
130
131 assert((GV || isa<ConstantPointerNull>(V)) &&
132 "TypeInfo must be a global variable or NULL");
133 return GV;
134 }
135
136 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
137 /// processed uses a memory 'm' constraint.
138 bool
hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector & CInfos,const TargetLowering & TLI)139 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
140 const TargetLowering &TLI) {
141 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
142 InlineAsm::ConstraintInfo &CI = CInfos[i];
143 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
144 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
145 if (CType == TargetLowering::C_Memory)
146 return true;
147 }
148
149 // Indirect operand accesses access memory.
150 if (CI.isIndirect)
151 return true;
152 }
153
154 return false;
155 }
156
157 /// getFCmpCondCode - Return the ISD condition code corresponding to
158 /// the given LLVM IR floating-point condition code. This includes
159 /// consideration of global floating-point math flags.
160 ///
getFCmpCondCode(FCmpInst::Predicate Pred)161 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
162 switch (Pred) {
163 case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
164 case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
165 case FCmpInst::FCMP_OGT: return ISD::SETOGT;
166 case FCmpInst::FCMP_OGE: return ISD::SETOGE;
167 case FCmpInst::FCMP_OLT: return ISD::SETOLT;
168 case FCmpInst::FCMP_OLE: return ISD::SETOLE;
169 case FCmpInst::FCMP_ONE: return ISD::SETONE;
170 case FCmpInst::FCMP_ORD: return ISD::SETO;
171 case FCmpInst::FCMP_UNO: return ISD::SETUO;
172 case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
173 case FCmpInst::FCMP_UGT: return ISD::SETUGT;
174 case FCmpInst::FCMP_UGE: return ISD::SETUGE;
175 case FCmpInst::FCMP_ULT: return ISD::SETULT;
176 case FCmpInst::FCMP_ULE: return ISD::SETULE;
177 case FCmpInst::FCMP_UNE: return ISD::SETUNE;
178 case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
179 default: llvm_unreachable("Invalid FCmp predicate opcode!");
180 }
181 }
182
getFCmpCodeWithoutNaN(ISD::CondCode CC)183 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
184 switch (CC) {
185 case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
186 case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
187 case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
188 case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
189 case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
190 case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
191 default: return CC;
192 }
193 }
194
195 /// getICmpCondCode - Return the ISD condition code corresponding to
196 /// the given LLVM IR integer condition code.
197 ///
getICmpCondCode(ICmpInst::Predicate Pred)198 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
199 switch (Pred) {
200 case ICmpInst::ICMP_EQ: return ISD::SETEQ;
201 case ICmpInst::ICMP_NE: return ISD::SETNE;
202 case ICmpInst::ICMP_SLE: return ISD::SETLE;
203 case ICmpInst::ICMP_ULE: return ISD::SETULE;
204 case ICmpInst::ICMP_SGE: return ISD::SETGE;
205 case ICmpInst::ICMP_UGE: return ISD::SETUGE;
206 case ICmpInst::ICMP_SLT: return ISD::SETLT;
207 case ICmpInst::ICMP_ULT: return ISD::SETULT;
208 case ICmpInst::ICMP_SGT: return ISD::SETGT;
209 case ICmpInst::ICMP_UGT: return ISD::SETUGT;
210 default:
211 llvm_unreachable("Invalid ICmp predicate opcode!");
212 }
213 }
214
isNoopBitcast(Type * T1,Type * T2,const TargetLoweringBase & TLI)215 static bool isNoopBitcast(Type *T1, Type *T2,
216 const TargetLoweringBase& TLI) {
217 return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
218 (isa<VectorType>(T1) && isa<VectorType>(T2) &&
219 TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
220 }
221
222 /// Look through operations that will be free to find the earliest source of
223 /// this value.
224 ///
225 /// @param ValLoc If V has aggegate type, we will be interested in a particular
226 /// scalar component. This records its address; the reverse of this list gives a
227 /// sequence of indices appropriate for an extractvalue to locate the important
228 /// value. This value is updated during the function and on exit will indicate
229 /// similar information for the Value returned.
230 ///
231 /// @param DataBits If this function looks through truncate instructions, this
232 /// will record the smallest size attained.
getNoopInput(const Value * V,SmallVectorImpl<unsigned> & ValLoc,unsigned & DataBits,const TargetLoweringBase & TLI)233 static const Value *getNoopInput(const Value *V,
234 SmallVectorImpl<unsigned> &ValLoc,
235 unsigned &DataBits,
236 const TargetLoweringBase &TLI) {
237 while (true) {
238 // Try to look through V1; if V1 is not an instruction, it can't be looked
239 // through.
240 const Instruction *I = dyn_cast<Instruction>(V);
241 if (!I || I->getNumOperands() == 0) return V;
242 const Value *NoopInput = nullptr;
243
244 Value *Op = I->getOperand(0);
245 if (isa<BitCastInst>(I)) {
246 // Look through truly no-op bitcasts.
247 if (isNoopBitcast(Op->getType(), I->getType(), TLI))
248 NoopInput = Op;
249 } else if (isa<GetElementPtrInst>(I)) {
250 // Look through getelementptr
251 if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
252 NoopInput = Op;
253 } else if (isa<IntToPtrInst>(I)) {
254 // Look through inttoptr.
255 // Make sure this isn't a truncating or extending cast. We could
256 // support this eventually, but don't bother for now.
257 if (!isa<VectorType>(I->getType()) &&
258 TLI.getPointerTy().getSizeInBits() ==
259 cast<IntegerType>(Op->getType())->getBitWidth())
260 NoopInput = Op;
261 } else if (isa<PtrToIntInst>(I)) {
262 // Look through ptrtoint.
263 // Make sure this isn't a truncating or extending cast. We could
264 // support this eventually, but don't bother for now.
265 if (!isa<VectorType>(I->getType()) &&
266 TLI.getPointerTy().getSizeInBits() ==
267 cast<IntegerType>(I->getType())->getBitWidth())
268 NoopInput = Op;
269 } else if (isa<TruncInst>(I) &&
270 TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
271 DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
272 NoopInput = Op;
273 } else if (isa<CallInst>(I)) {
274 // Look through call (skipping callee)
275 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
276 i != e; ++i) {
277 unsigned attrInd = i - I->op_begin() + 1;
278 if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
279 isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
280 NoopInput = *i;
281 break;
282 }
283 }
284 } else if (isa<InvokeInst>(I)) {
285 // Look through invoke (skipping BB, BB, Callee)
286 for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
287 i != e; ++i) {
288 unsigned attrInd = i - I->op_begin() + 1;
289 if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
290 isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
291 NoopInput = *i;
292 break;
293 }
294 }
295 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
296 // Value may come from either the aggregate or the scalar
297 ArrayRef<unsigned> InsertLoc = IVI->getIndices();
298 if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(),
299 ValLoc.rbegin())) {
300 // The type being inserted is a nested sub-type of the aggregate; we
301 // have to remove those initial indices to get the location we're
302 // interested in for the operand.
303 ValLoc.resize(ValLoc.size() - InsertLoc.size());
304 NoopInput = IVI->getInsertedValueOperand();
305 } else {
306 // The struct we're inserting into has the value we're interested in, no
307 // change of address.
308 NoopInput = Op;
309 }
310 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
311 // The part we're interested in will inevitably be some sub-section of the
312 // previous aggregate. Combine the two paths to obtain the true address of
313 // our element.
314 ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
315 ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
316 NoopInput = Op;
317 }
318 // Terminate if we couldn't find anything to look through.
319 if (!NoopInput)
320 return V;
321
322 V = NoopInput;
323 }
324 }
325
326 /// Return true if this scalar return value only has bits discarded on its path
327 /// from the "tail call" to the "ret". This includes the obvious noop
328 /// instructions handled by getNoopInput above as well as free truncations (or
329 /// extensions prior to the call).
slotOnlyDiscardsData(const Value * RetVal,const Value * CallVal,SmallVectorImpl<unsigned> & RetIndices,SmallVectorImpl<unsigned> & CallIndices,bool AllowDifferingSizes,const TargetLoweringBase & TLI)330 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
331 SmallVectorImpl<unsigned> &RetIndices,
332 SmallVectorImpl<unsigned> &CallIndices,
333 bool AllowDifferingSizes,
334 const TargetLoweringBase &TLI) {
335
336 // Trace the sub-value needed by the return value as far back up the graph as
337 // possible, in the hope that it will intersect with the value produced by the
338 // call. In the simple case with no "returned" attribute, the hope is actually
339 // that we end up back at the tail call instruction itself.
340 unsigned BitsRequired = UINT_MAX;
341 RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI);
342
343 // If this slot in the value returned is undef, it doesn't matter what the
344 // call puts there, it'll be fine.
345 if (isa<UndefValue>(RetVal))
346 return true;
347
348 // Now do a similar search up through the graph to find where the value
349 // actually returned by the "tail call" comes from. In the simple case without
350 // a "returned" attribute, the search will be blocked immediately and the loop
351 // a Noop.
352 unsigned BitsProvided = UINT_MAX;
353 CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI);
354
355 // There's no hope if we can't actually trace them to (the same part of!) the
356 // same value.
357 if (CallVal != RetVal || CallIndices != RetIndices)
358 return false;
359
360 // However, intervening truncates may have made the call non-tail. Make sure
361 // all the bits that are needed by the "ret" have been provided by the "tail
362 // call". FIXME: with sufficiently cunning bit-tracking, we could look through
363 // extensions too.
364 if (BitsProvided < BitsRequired ||
365 (!AllowDifferingSizes && BitsProvided != BitsRequired))
366 return false;
367
368 return true;
369 }
370
371 /// For an aggregate type, determine whether a given index is within bounds or
372 /// not.
indexReallyValid(CompositeType * T,unsigned Idx)373 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
374 if (ArrayType *AT = dyn_cast<ArrayType>(T))
375 return Idx < AT->getNumElements();
376
377 return Idx < cast<StructType>(T)->getNumElements();
378 }
379
380 /// Move the given iterators to the next leaf type in depth first traversal.
381 ///
382 /// Performs a depth-first traversal of the type as specified by its arguments,
383 /// stopping at the next leaf node (which may be a legitimate scalar type or an
384 /// empty struct or array).
385 ///
386 /// @param SubTypes List of the partial components making up the type from
387 /// outermost to innermost non-empty aggregate. The element currently
388 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
389 ///
390 /// @param Path Set of extractvalue indices leading from the outermost type
391 /// (SubTypes[0]) to the leaf node currently represented.
392 ///
393 /// @returns true if a new type was found, false otherwise. Calling this
394 /// function again on a finished iterator will repeatedly return
395 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
396 /// aggregate or a non-aggregate
advanceToNextLeafType(SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)397 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
398 SmallVectorImpl<unsigned> &Path) {
399 // First march back up the tree until we can successfully increment one of the
400 // coordinates in Path.
401 while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
402 Path.pop_back();
403 SubTypes.pop_back();
404 }
405
406 // If we reached the top, then the iterator is done.
407 if (Path.empty())
408 return false;
409
410 // We know there's *some* valid leaf now, so march back down the tree picking
411 // out the left-most element at each node.
412 ++Path.back();
413 Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
414 while (DeeperType->isAggregateType()) {
415 CompositeType *CT = cast<CompositeType>(DeeperType);
416 if (!indexReallyValid(CT, 0))
417 return true;
418
419 SubTypes.push_back(CT);
420 Path.push_back(0);
421
422 DeeperType = CT->getTypeAtIndex(0U);
423 }
424
425 return true;
426 }
427
428 /// Find the first non-empty, scalar-like type in Next and setup the iterator
429 /// components.
430 ///
431 /// Assuming Next is an aggregate of some kind, this function will traverse the
432 /// tree from left to right (i.e. depth-first) looking for the first
433 /// non-aggregate type which will play a role in function return.
434 ///
435 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
436 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
437 /// i32 in that type.
firstRealType(Type * Next,SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)438 static bool firstRealType(Type *Next,
439 SmallVectorImpl<CompositeType *> &SubTypes,
440 SmallVectorImpl<unsigned> &Path) {
441 // First initialise the iterator components to the first "leaf" node
442 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
443 // despite nominally being an aggregate).
444 while (Next->isAggregateType() &&
445 indexReallyValid(cast<CompositeType>(Next), 0)) {
446 SubTypes.push_back(cast<CompositeType>(Next));
447 Path.push_back(0);
448 Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
449 }
450
451 // If there's no Path now, Next was originally scalar already (or empty
452 // leaf). We're done.
453 if (Path.empty())
454 return true;
455
456 // Otherwise, use normal iteration to keep looking through the tree until we
457 // find a non-aggregate type.
458 while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
459 if (!advanceToNextLeafType(SubTypes, Path))
460 return false;
461 }
462
463 return true;
464 }
465
466 /// Set the iterator data-structures to the next non-empty, non-aggregate
467 /// subtype.
nextRealType(SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)468 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
469 SmallVectorImpl<unsigned> &Path) {
470 do {
471 if (!advanceToNextLeafType(SubTypes, Path))
472 return false;
473
474 assert(!Path.empty() && "found a leaf but didn't set the path?");
475 } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
476
477 return true;
478 }
479
480
481 /// Test if the given instruction is in a position to be optimized
482 /// with a tail-call. This roughly means that it's in a block with
483 /// a return and there's nothing that needs to be scheduled
484 /// between it and the return.
485 ///
486 /// This function only tests target-independent requirements.
isInTailCallPosition(ImmutableCallSite CS,const TargetMachine & TM)487 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
488 const Instruction *I = CS.getInstruction();
489 const BasicBlock *ExitBB = I->getParent();
490 const TerminatorInst *Term = ExitBB->getTerminator();
491 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
492
493 // The block must end in a return statement or unreachable.
494 //
495 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
496 // an unreachable, for now. The way tailcall optimization is currently
497 // implemented means it will add an epilogue followed by a jump. That is
498 // not profitable. Also, if the callee is a special function (e.g.
499 // longjmp on x86), it can end up causing miscompilation that has not
500 // been fully understood.
501 if (!Ret &&
502 (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
503 return false;
504
505 // If I will have a chain, make sure no other instruction that will have a
506 // chain interposes between I and the return.
507 if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
508 !isSafeToSpeculativelyExecute(I))
509 for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
510 if (&*BBI == I)
511 break;
512 // Debug info intrinsics do not get in the way of tail call optimization.
513 if (isa<DbgInfoIntrinsic>(BBI))
514 continue;
515 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
516 !isSafeToSpeculativelyExecute(BBI))
517 return false;
518 }
519
520 const Function *F = ExitBB->getParent();
521 return returnTypeIsEligibleForTailCall(
522 F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
523 }
524
returnTypeIsEligibleForTailCall(const Function * F,const Instruction * I,const ReturnInst * Ret,const TargetLoweringBase & TLI)525 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
526 const Instruction *I,
527 const ReturnInst *Ret,
528 const TargetLoweringBase &TLI) {
529 // If the block ends with a void return or unreachable, it doesn't matter
530 // what the call's return type is.
531 if (!Ret || Ret->getNumOperands() == 0) return true;
532
533 // If the return value is undef, it doesn't matter what the call's
534 // return type is.
535 if (isa<UndefValue>(Ret->getOperand(0))) return true;
536
537 // Make sure the attributes attached to each return are compatible.
538 AttrBuilder CallerAttrs(F->getAttributes(),
539 AttributeSet::ReturnIndex);
540 AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
541 AttributeSet::ReturnIndex);
542
543 // Noalias is completely benign as far as calling convention goes, it
544 // shouldn't affect whether the call is a tail call.
545 CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
546 CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
547
548 bool AllowDifferingSizes = true;
549 if (CallerAttrs.contains(Attribute::ZExt)) {
550 if (!CalleeAttrs.contains(Attribute::ZExt))
551 return false;
552
553 AllowDifferingSizes = false;
554 CallerAttrs.removeAttribute(Attribute::ZExt);
555 CalleeAttrs.removeAttribute(Attribute::ZExt);
556 } else if (CallerAttrs.contains(Attribute::SExt)) {
557 if (!CalleeAttrs.contains(Attribute::SExt))
558 return false;
559
560 AllowDifferingSizes = false;
561 CallerAttrs.removeAttribute(Attribute::SExt);
562 CalleeAttrs.removeAttribute(Attribute::SExt);
563 }
564
565 // If they're still different, there's some facet we don't understand
566 // (currently only "inreg", but in future who knows). It may be OK but the
567 // only safe option is to reject the tail call.
568 if (CallerAttrs != CalleeAttrs)
569 return false;
570
571 const Value *RetVal = Ret->getOperand(0), *CallVal = I;
572 SmallVector<unsigned, 4> RetPath, CallPath;
573 SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
574
575 bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
576 bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
577
578 // Nothing's actually returned, it doesn't matter what the callee put there
579 // it's a valid tail call.
580 if (RetEmpty)
581 return true;
582
583 // Iterate pairwise through each of the value types making up the tail call
584 // and the corresponding return. For each one we want to know whether it's
585 // essentially going directly from the tail call to the ret, via operations
586 // that end up not generating any code.
587 //
588 // We allow a certain amount of covariance here. For example it's permitted
589 // for the tail call to define more bits than the ret actually cares about
590 // (e.g. via a truncate).
591 do {
592 if (CallEmpty) {
593 // We've exhausted the values produced by the tail call instruction, the
594 // rest are essentially undef. The type doesn't really matter, but we need
595 // *something*.
596 Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
597 CallVal = UndefValue::get(SlotType);
598 }
599
600 // The manipulations performed when we're looking through an insertvalue or
601 // an extractvalue would happen at the front of the RetPath list, so since
602 // we have to copy it anyway it's more efficient to create a reversed copy.
603 SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
604 SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
605
606 // Finally, we can check whether the value produced by the tail call at this
607 // index is compatible with the value we return.
608 if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
609 AllowDifferingSizes, TLI))
610 return false;
611
612 CallEmpty = !nextRealType(CallSubTypes, CallPath);
613 } while(nextRealType(RetSubTypes, RetPath));
614
615 return true;
616 }
617
canBeOmittedFromSymbolTable(const GlobalValue * GV)618 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
619 if (!GV->hasLinkOnceODRLinkage())
620 return false;
621
622 if (GV->hasUnnamedAddr())
623 return true;
624
625 // If it is a non constant variable, it needs to be uniqued across shared
626 // objects.
627 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
628 if (!Var->isConstant())
629 return false;
630 }
631
632 // An alias can point to a variable. We could try to resolve the alias to
633 // decide, but for now just don't hide them.
634 if (isa<GlobalAlias>(GV))
635 return false;
636
637 GlobalStatus GS;
638 if (GlobalStatus::analyzeGlobal(GV, GS))
639 return false;
640
641 return !GS.IsCompared;
642 }
643