1 //===------- CGObjCGNU.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides Objective-C code generation targeting the GNU runtime. The
11 // class in this file generates structures used by the GNU Objective-C runtime
12 // library. These structures are defined in objc/objc.h and objc/objc-api.h in
13 // the GNU runtime distribution.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CGObjCRuntime.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Basic/FileManager.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringMap.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Compiler.h"
36 #include <cstdarg>
37
38
39 using namespace clang;
40 using namespace CodeGen;
41
42
43 namespace {
44 /// Class that lazily initialises the runtime function. Avoids inserting the
45 /// types and the function declaration into a module if they're not used, and
46 /// avoids constructing the type more than once if it's used more than once.
47 class LazyRuntimeFunction {
48 CodeGenModule *CGM;
49 std::vector<llvm::Type*> ArgTys;
50 const char *FunctionName;
51 llvm::Constant *Function;
52 public:
53 /// Constructor leaves this class uninitialized, because it is intended to
54 /// be used as a field in another class and not all of the types that are
55 /// used as arguments will necessarily be available at construction time.
LazyRuntimeFunction()56 LazyRuntimeFunction()
57 : CGM(nullptr), FunctionName(nullptr), Function(nullptr) {}
58
59 /// Initialises the lazy function with the name, return type, and the types
60 /// of the arguments.
61 LLVM_END_WITH_NULL
init(CodeGenModule * Mod,const char * name,llvm::Type * RetTy,...)62 void init(CodeGenModule *Mod, const char *name,
63 llvm::Type *RetTy, ...) {
64 CGM =Mod;
65 FunctionName = name;
66 Function = nullptr;
67 ArgTys.clear();
68 va_list Args;
69 va_start(Args, RetTy);
70 while (llvm::Type *ArgTy = va_arg(Args, llvm::Type*))
71 ArgTys.push_back(ArgTy);
72 va_end(Args);
73 // Push the return type on at the end so we can pop it off easily
74 ArgTys.push_back(RetTy);
75 }
76 /// Overloaded cast operator, allows the class to be implicitly cast to an
77 /// LLVM constant.
operator llvm::Constant*()78 operator llvm::Constant*() {
79 if (!Function) {
80 if (!FunctionName) return nullptr;
81 // We put the return type on the end of the vector, so pop it back off
82 llvm::Type *RetTy = ArgTys.back();
83 ArgTys.pop_back();
84 llvm::FunctionType *FTy = llvm::FunctionType::get(RetTy, ArgTys, false);
85 Function =
86 cast<llvm::Constant>(CGM->CreateRuntimeFunction(FTy, FunctionName));
87 // We won't need to use the types again, so we may as well clean up the
88 // vector now
89 ArgTys.resize(0);
90 }
91 return Function;
92 }
operator llvm::Function*()93 operator llvm::Function*() {
94 return cast<llvm::Function>((llvm::Constant*)*this);
95 }
96
97 };
98
99
100 /// GNU Objective-C runtime code generation. This class implements the parts of
101 /// Objective-C support that are specific to the GNU family of runtimes (GCC,
102 /// GNUstep and ObjFW).
103 class CGObjCGNU : public CGObjCRuntime {
104 protected:
105 /// The LLVM module into which output is inserted
106 llvm::Module &TheModule;
107 /// strut objc_super. Used for sending messages to super. This structure
108 /// contains the receiver (object) and the expected class.
109 llvm::StructType *ObjCSuperTy;
110 /// struct objc_super*. The type of the argument to the superclass message
111 /// lookup functions.
112 llvm::PointerType *PtrToObjCSuperTy;
113 /// LLVM type for selectors. Opaque pointer (i8*) unless a header declaring
114 /// SEL is included in a header somewhere, in which case it will be whatever
115 /// type is declared in that header, most likely {i8*, i8*}.
116 llvm::PointerType *SelectorTy;
117 /// LLVM i8 type. Cached here to avoid repeatedly getting it in all of the
118 /// places where it's used
119 llvm::IntegerType *Int8Ty;
120 /// Pointer to i8 - LLVM type of char*, for all of the places where the
121 /// runtime needs to deal with C strings.
122 llvm::PointerType *PtrToInt8Ty;
123 /// Instance Method Pointer type. This is a pointer to a function that takes,
124 /// at a minimum, an object and a selector, and is the generic type for
125 /// Objective-C methods. Due to differences between variadic / non-variadic
126 /// calling conventions, it must always be cast to the correct type before
127 /// actually being used.
128 llvm::PointerType *IMPTy;
129 /// Type of an untyped Objective-C object. Clang treats id as a built-in type
130 /// when compiling Objective-C code, so this may be an opaque pointer (i8*),
131 /// but if the runtime header declaring it is included then it may be a
132 /// pointer to a structure.
133 llvm::PointerType *IdTy;
134 /// Pointer to a pointer to an Objective-C object. Used in the new ABI
135 /// message lookup function and some GC-related functions.
136 llvm::PointerType *PtrToIdTy;
137 /// The clang type of id. Used when using the clang CGCall infrastructure to
138 /// call Objective-C methods.
139 CanQualType ASTIdTy;
140 /// LLVM type for C int type.
141 llvm::IntegerType *IntTy;
142 /// LLVM type for an opaque pointer. This is identical to PtrToInt8Ty, but is
143 /// used in the code to document the difference between i8* meaning a pointer
144 /// to a C string and i8* meaning a pointer to some opaque type.
145 llvm::PointerType *PtrTy;
146 /// LLVM type for C long type. The runtime uses this in a lot of places where
147 /// it should be using intptr_t, but we can't fix this without breaking
148 /// compatibility with GCC...
149 llvm::IntegerType *LongTy;
150 /// LLVM type for C size_t. Used in various runtime data structures.
151 llvm::IntegerType *SizeTy;
152 /// LLVM type for C intptr_t.
153 llvm::IntegerType *IntPtrTy;
154 /// LLVM type for C ptrdiff_t. Mainly used in property accessor functions.
155 llvm::IntegerType *PtrDiffTy;
156 /// LLVM type for C int*. Used for GCC-ABI-compatible non-fragile instance
157 /// variables.
158 llvm::PointerType *PtrToIntTy;
159 /// LLVM type for Objective-C BOOL type.
160 llvm::Type *BoolTy;
161 /// 32-bit integer type, to save us needing to look it up every time it's used.
162 llvm::IntegerType *Int32Ty;
163 /// 64-bit integer type, to save us needing to look it up every time it's used.
164 llvm::IntegerType *Int64Ty;
165 /// Metadata kind used to tie method lookups to message sends. The GNUstep
166 /// runtime provides some LLVM passes that can use this to do things like
167 /// automatic IMP caching and speculative inlining.
168 unsigned msgSendMDKind;
169 /// Helper function that generates a constant string and returns a pointer to
170 /// the start of the string. The result of this function can be used anywhere
171 /// where the C code specifies const char*.
MakeConstantString(const std::string & Str,const std::string & Name="")172 llvm::Constant *MakeConstantString(const std::string &Str,
173 const std::string &Name="") {
174 auto *ConstStr = CGM.GetAddrOfConstantCString(Str, Name.c_str());
175 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
176 ConstStr, Zeros);
177 }
178 /// Emits a linkonce_odr string, whose name is the prefix followed by the
179 /// string value. This allows the linker to combine the strings between
180 /// different modules. Used for EH typeinfo names, selector strings, and a
181 /// few other things.
ExportUniqueString(const std::string & Str,const std::string prefix)182 llvm::Constant *ExportUniqueString(const std::string &Str,
183 const std::string prefix) {
184 std::string name = prefix + Str;
185 auto *ConstStr = TheModule.getGlobalVariable(name);
186 if (!ConstStr) {
187 llvm::Constant *value = llvm::ConstantDataArray::getString(VMContext,Str);
188 ConstStr = new llvm::GlobalVariable(TheModule, value->getType(), true,
189 llvm::GlobalValue::LinkOnceODRLinkage, value, prefix + Str);
190 }
191 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
192 ConstStr, Zeros);
193 }
194 /// Generates a global structure, initialized by the elements in the vector.
195 /// The element types must match the types of the structure elements in the
196 /// first argument.
MakeGlobal(llvm::StructType * Ty,ArrayRef<llvm::Constant * > V,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)197 llvm::GlobalVariable *MakeGlobal(llvm::StructType *Ty,
198 ArrayRef<llvm::Constant *> V,
199 StringRef Name="",
200 llvm::GlobalValue::LinkageTypes linkage
201 =llvm::GlobalValue::InternalLinkage) {
202 llvm::Constant *C = llvm::ConstantStruct::get(Ty, V);
203 return new llvm::GlobalVariable(TheModule, Ty, false,
204 linkage, C, Name);
205 }
206 /// Generates a global array. The vector must contain the same number of
207 /// elements that the array type declares, of the type specified as the array
208 /// element type.
MakeGlobal(llvm::ArrayType * Ty,ArrayRef<llvm::Constant * > V,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)209 llvm::GlobalVariable *MakeGlobal(llvm::ArrayType *Ty,
210 ArrayRef<llvm::Constant *> V,
211 StringRef Name="",
212 llvm::GlobalValue::LinkageTypes linkage
213 =llvm::GlobalValue::InternalLinkage) {
214 llvm::Constant *C = llvm::ConstantArray::get(Ty, V);
215 return new llvm::GlobalVariable(TheModule, Ty, false,
216 linkage, C, Name);
217 }
218 /// Generates a global array, inferring the array type from the specified
219 /// element type and the size of the initialiser.
MakeGlobalArray(llvm::Type * Ty,ArrayRef<llvm::Constant * > V,StringRef Name="",llvm::GlobalValue::LinkageTypes linkage=llvm::GlobalValue::InternalLinkage)220 llvm::GlobalVariable *MakeGlobalArray(llvm::Type *Ty,
221 ArrayRef<llvm::Constant *> V,
222 StringRef Name="",
223 llvm::GlobalValue::LinkageTypes linkage
224 =llvm::GlobalValue::InternalLinkage) {
225 llvm::ArrayType *ArrayTy = llvm::ArrayType::get(Ty, V.size());
226 return MakeGlobal(ArrayTy, V, Name, linkage);
227 }
228 /// Returns a property name and encoding string.
MakePropertyEncodingString(const ObjCPropertyDecl * PD,const Decl * Container)229 llvm::Constant *MakePropertyEncodingString(const ObjCPropertyDecl *PD,
230 const Decl *Container) {
231 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
232 if ((R.getKind() == ObjCRuntime::GNUstep) &&
233 (R.getVersion() >= VersionTuple(1, 6))) {
234 std::string NameAndAttributes;
235 std::string TypeStr;
236 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
237 NameAndAttributes += '\0';
238 NameAndAttributes += TypeStr.length() + 3;
239 NameAndAttributes += TypeStr;
240 NameAndAttributes += '\0';
241 NameAndAttributes += PD->getNameAsString();
242 auto *ConstStr = CGM.GetAddrOfConstantCString(NameAndAttributes);
243 return llvm::ConstantExpr::getGetElementPtr(ConstStr->getValueType(),
244 ConstStr, Zeros);
245 }
246 return MakeConstantString(PD->getNameAsString());
247 }
248 /// Push the property attributes into two structure fields.
PushPropertyAttributes(std::vector<llvm::Constant * > & Fields,ObjCPropertyDecl * property,bool isSynthesized=true,bool isDynamic=true)249 void PushPropertyAttributes(std::vector<llvm::Constant*> &Fields,
250 ObjCPropertyDecl *property, bool isSynthesized=true, bool
251 isDynamic=true) {
252 int attrs = property->getPropertyAttributes();
253 // For read-only properties, clear the copy and retain flags
254 if (attrs & ObjCPropertyDecl::OBJC_PR_readonly) {
255 attrs &= ~ObjCPropertyDecl::OBJC_PR_copy;
256 attrs &= ~ObjCPropertyDecl::OBJC_PR_retain;
257 attrs &= ~ObjCPropertyDecl::OBJC_PR_weak;
258 attrs &= ~ObjCPropertyDecl::OBJC_PR_strong;
259 }
260 // The first flags field has the same attribute values as clang uses internally
261 Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
262 attrs >>= 8;
263 attrs <<= 2;
264 // For protocol properties, synthesized and dynamic have no meaning, so we
265 // reuse these flags to indicate that this is a protocol property (both set
266 // has no meaning, as a property can't be both synthesized and dynamic)
267 attrs |= isSynthesized ? (1<<0) : 0;
268 attrs |= isDynamic ? (1<<1) : 0;
269 // The second field is the next four fields left shifted by two, with the
270 // low bit set to indicate whether the field is synthesized or dynamic.
271 Fields.push_back(llvm::ConstantInt::get(Int8Ty, attrs & 0xff));
272 // Two padding fields
273 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
274 Fields.push_back(llvm::ConstantInt::get(Int8Ty, 0));
275 }
276 /// Ensures that the value has the required type, by inserting a bitcast if
277 /// required. This function lets us avoid inserting bitcasts that are
278 /// redundant.
EnforceType(CGBuilderTy & B,llvm::Value * V,llvm::Type * Ty)279 llvm::Value* EnforceType(CGBuilderTy &B, llvm::Value *V, llvm::Type *Ty) {
280 if (V->getType() == Ty) return V;
281 return B.CreateBitCast(V, Ty);
282 }
283 // Some zeros used for GEPs in lots of places.
284 llvm::Constant *Zeros[2];
285 /// Null pointer value. Mainly used as a terminator in various arrays.
286 llvm::Constant *NULLPtr;
287 /// LLVM context.
288 llvm::LLVMContext &VMContext;
289 private:
290 /// Placeholder for the class. Lots of things refer to the class before we've
291 /// actually emitted it. We use this alias as a placeholder, and then replace
292 /// it with a pointer to the class structure before finally emitting the
293 /// module.
294 llvm::GlobalAlias *ClassPtrAlias;
295 /// Placeholder for the metaclass. Lots of things refer to the class before
296 /// we've / actually emitted it. We use this alias as a placeholder, and then
297 /// replace / it with a pointer to the metaclass structure before finally
298 /// emitting the / module.
299 llvm::GlobalAlias *MetaClassPtrAlias;
300 /// All of the classes that have been generated for this compilation units.
301 std::vector<llvm::Constant*> Classes;
302 /// All of the categories that have been generated for this compilation units.
303 std::vector<llvm::Constant*> Categories;
304 /// All of the Objective-C constant strings that have been generated for this
305 /// compilation units.
306 std::vector<llvm::Constant*> ConstantStrings;
307 /// Map from string values to Objective-C constant strings in the output.
308 /// Used to prevent emitting Objective-C strings more than once. This should
309 /// not be required at all - CodeGenModule should manage this list.
310 llvm::StringMap<llvm::Constant*> ObjCStrings;
311 /// All of the protocols that have been declared.
312 llvm::StringMap<llvm::Constant*> ExistingProtocols;
313 /// For each variant of a selector, we store the type encoding and a
314 /// placeholder value. For an untyped selector, the type will be the empty
315 /// string. Selector references are all done via the module's selector table,
316 /// so we create an alias as a placeholder and then replace it with the real
317 /// value later.
318 typedef std::pair<std::string, llvm::GlobalAlias*> TypedSelector;
319 /// Type of the selector map. This is roughly equivalent to the structure
320 /// used in the GNUstep runtime, which maintains a list of all of the valid
321 /// types for a selector in a table.
322 typedef llvm::DenseMap<Selector, SmallVector<TypedSelector, 2> >
323 SelectorMap;
324 /// A map from selectors to selector types. This allows us to emit all
325 /// selectors of the same name and type together.
326 SelectorMap SelectorTable;
327
328 /// Selectors related to memory management. When compiling in GC mode, we
329 /// omit these.
330 Selector RetainSel, ReleaseSel, AutoreleaseSel;
331 /// Runtime functions used for memory management in GC mode. Note that clang
332 /// supports code generation for calling these functions, but neither GNU
333 /// runtime actually supports this API properly yet.
334 LazyRuntimeFunction IvarAssignFn, StrongCastAssignFn, MemMoveFn, WeakReadFn,
335 WeakAssignFn, GlobalAssignFn;
336
337 typedef std::pair<std::string, std::string> ClassAliasPair;
338 /// All classes that have aliases set for them.
339 std::vector<ClassAliasPair> ClassAliases;
340
341 protected:
342 /// Function used for throwing Objective-C exceptions.
343 LazyRuntimeFunction ExceptionThrowFn;
344 /// Function used for rethrowing exceptions, used at the end of \@finally or
345 /// \@synchronize blocks.
346 LazyRuntimeFunction ExceptionReThrowFn;
347 /// Function called when entering a catch function. This is required for
348 /// differentiating Objective-C exceptions and foreign exceptions.
349 LazyRuntimeFunction EnterCatchFn;
350 /// Function called when exiting from a catch block. Used to do exception
351 /// cleanup.
352 LazyRuntimeFunction ExitCatchFn;
353 /// Function called when entering an \@synchronize block. Acquires the lock.
354 LazyRuntimeFunction SyncEnterFn;
355 /// Function called when exiting an \@synchronize block. Releases the lock.
356 LazyRuntimeFunction SyncExitFn;
357
358 private:
359
360 /// Function called if fast enumeration detects that the collection is
361 /// modified during the update.
362 LazyRuntimeFunction EnumerationMutationFn;
363 /// Function for implementing synthesized property getters that return an
364 /// object.
365 LazyRuntimeFunction GetPropertyFn;
366 /// Function for implementing synthesized property setters that return an
367 /// object.
368 LazyRuntimeFunction SetPropertyFn;
369 /// Function used for non-object declared property getters.
370 LazyRuntimeFunction GetStructPropertyFn;
371 /// Function used for non-object declared property setters.
372 LazyRuntimeFunction SetStructPropertyFn;
373
374 /// The version of the runtime that this class targets. Must match the
375 /// version in the runtime.
376 int RuntimeVersion;
377 /// The version of the protocol class. Used to differentiate between ObjC1
378 /// and ObjC2 protocols. Objective-C 1 protocols can not contain optional
379 /// components and can not contain declared properties. We always emit
380 /// Objective-C 2 property structures, but we have to pretend that they're
381 /// Objective-C 1 property structures when targeting the GCC runtime or it
382 /// will abort.
383 const int ProtocolVersion;
384 private:
385 /// Generates an instance variable list structure. This is a structure
386 /// containing a size and an array of structures containing instance variable
387 /// metadata. This is used purely for introspection in the fragile ABI. In
388 /// the non-fragile ABI, it's used for instance variable fixup.
389 llvm::Constant *GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
390 ArrayRef<llvm::Constant *> IvarTypes,
391 ArrayRef<llvm::Constant *> IvarOffsets);
392 /// Generates a method list structure. This is a structure containing a size
393 /// and an array of structures containing method metadata.
394 ///
395 /// This structure is used by both classes and categories, and contains a next
396 /// pointer allowing them to be chained together in a linked list.
397 llvm::Constant *GenerateMethodList(StringRef ClassName,
398 StringRef CategoryName,
399 ArrayRef<Selector> MethodSels,
400 ArrayRef<llvm::Constant *> MethodTypes,
401 bool isClassMethodList);
402 /// Emits an empty protocol. This is used for \@protocol() where no protocol
403 /// is found. The runtime will (hopefully) fix up the pointer to refer to the
404 /// real protocol.
405 llvm::Constant *GenerateEmptyProtocol(const std::string &ProtocolName);
406 /// Generates a list of property metadata structures. This follows the same
407 /// pattern as method and instance variable metadata lists.
408 llvm::Constant *GeneratePropertyList(const ObjCImplementationDecl *OID,
409 SmallVectorImpl<Selector> &InstanceMethodSels,
410 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes);
411 /// Generates a list of referenced protocols. Classes, categories, and
412 /// protocols all use this structure.
413 llvm::Constant *GenerateProtocolList(ArrayRef<std::string> Protocols);
414 /// To ensure that all protocols are seen by the runtime, we add a category on
415 /// a class defined in the runtime, declaring no methods, but adopting the
416 /// protocols. This is a horribly ugly hack, but it allows us to collect all
417 /// of the protocols without changing the ABI.
418 void GenerateProtocolHolderCategory();
419 /// Generates a class structure.
420 llvm::Constant *GenerateClassStructure(
421 llvm::Constant *MetaClass,
422 llvm::Constant *SuperClass,
423 unsigned info,
424 const char *Name,
425 llvm::Constant *Version,
426 llvm::Constant *InstanceSize,
427 llvm::Constant *IVars,
428 llvm::Constant *Methods,
429 llvm::Constant *Protocols,
430 llvm::Constant *IvarOffsets,
431 llvm::Constant *Properties,
432 llvm::Constant *StrongIvarBitmap,
433 llvm::Constant *WeakIvarBitmap,
434 bool isMeta=false);
435 /// Generates a method list. This is used by protocols to define the required
436 /// and optional methods.
437 llvm::Constant *GenerateProtocolMethodList(
438 ArrayRef<llvm::Constant *> MethodNames,
439 ArrayRef<llvm::Constant *> MethodTypes);
440 /// Returns a selector with the specified type encoding. An empty string is
441 /// used to return an untyped selector (with the types field set to NULL).
442 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
443 const std::string &TypeEncoding, bool lval);
444 /// Returns the variable used to store the offset of an instance variable.
445 llvm::GlobalVariable *ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
446 const ObjCIvarDecl *Ivar);
447 /// Emits a reference to a class. This allows the linker to object if there
448 /// is no class of the matching name.
449 protected:
450 void EmitClassRef(const std::string &className);
451 /// Emits a pointer to the named class
452 virtual llvm::Value *GetClassNamed(CodeGenFunction &CGF,
453 const std::string &Name, bool isWeak);
454 /// Looks up the method for sending a message to the specified object. This
455 /// mechanism differs between the GCC and GNU runtimes, so this method must be
456 /// overridden in subclasses.
457 virtual llvm::Value *LookupIMP(CodeGenFunction &CGF,
458 llvm::Value *&Receiver,
459 llvm::Value *cmd,
460 llvm::MDNode *node,
461 MessageSendInfo &MSI) = 0;
462 /// Looks up the method for sending a message to a superclass. This
463 /// mechanism differs between the GCC and GNU runtimes, so this method must
464 /// be overridden in subclasses.
465 virtual llvm::Value *LookupIMPSuper(CodeGenFunction &CGF,
466 llvm::Value *ObjCSuper,
467 llvm::Value *cmd,
468 MessageSendInfo &MSI) = 0;
469 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
470 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
471 /// bits set to their values, LSB first, while larger ones are stored in a
472 /// structure of this / form:
473 ///
474 /// struct { int32_t length; int32_t values[length]; };
475 ///
476 /// The values in the array are stored in host-endian format, with the least
477 /// significant bit being assumed to come first in the bitfield. Therefore,
478 /// a bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] },
479 /// while a bitfield / with the 63rd bit set will be 1<<64.
480 llvm::Constant *MakeBitField(ArrayRef<bool> bits);
481 public:
482 CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
483 unsigned protocolClassVersion);
484
485 llvm::Constant *GenerateConstantString(const StringLiteral *) override;
486
487 RValue
488 GenerateMessageSend(CodeGenFunction &CGF, ReturnValueSlot Return,
489 QualType ResultType, Selector Sel,
490 llvm::Value *Receiver, const CallArgList &CallArgs,
491 const ObjCInterfaceDecl *Class,
492 const ObjCMethodDecl *Method) override;
493 RValue
494 GenerateMessageSendSuper(CodeGenFunction &CGF, ReturnValueSlot Return,
495 QualType ResultType, Selector Sel,
496 const ObjCInterfaceDecl *Class,
497 bool isCategoryImpl, llvm::Value *Receiver,
498 bool IsClassMessage, const CallArgList &CallArgs,
499 const ObjCMethodDecl *Method) override;
500 llvm::Value *GetClass(CodeGenFunction &CGF,
501 const ObjCInterfaceDecl *OID) override;
502 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel,
503 bool lval = false) override;
504 llvm::Value *GetSelector(CodeGenFunction &CGF,
505 const ObjCMethodDecl *Method) override;
506 llvm::Constant *GetEHType(QualType T) override;
507
508 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
509 const ObjCContainerDecl *CD) override;
510 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
511 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
512 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override;
513 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
514 const ObjCProtocolDecl *PD) override;
515 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
516 llvm::Function *ModuleInitFunction() override;
517 llvm::Constant *GetPropertyGetFunction() override;
518 llvm::Constant *GetPropertySetFunction() override;
519 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
520 bool copy) override;
521 llvm::Constant *GetSetStructFunction() override;
522 llvm::Constant *GetGetStructFunction() override;
523 llvm::Constant *GetCppAtomicObjectGetFunction() override;
524 llvm::Constant *GetCppAtomicObjectSetFunction() override;
525 llvm::Constant *EnumerationMutationFunction() override;
526
527 void EmitTryStmt(CodeGenFunction &CGF,
528 const ObjCAtTryStmt &S) override;
529 void EmitSynchronizedStmt(CodeGenFunction &CGF,
530 const ObjCAtSynchronizedStmt &S) override;
531 void EmitThrowStmt(CodeGenFunction &CGF,
532 const ObjCAtThrowStmt &S,
533 bool ClearInsertionPoint=true) override;
534 llvm::Value * EmitObjCWeakRead(CodeGenFunction &CGF,
535 llvm::Value *AddrWeakObj) override;
536 void EmitObjCWeakAssign(CodeGenFunction &CGF,
537 llvm::Value *src, llvm::Value *dst) override;
538 void EmitObjCGlobalAssign(CodeGenFunction &CGF,
539 llvm::Value *src, llvm::Value *dest,
540 bool threadlocal=false) override;
541 void EmitObjCIvarAssign(CodeGenFunction &CGF, llvm::Value *src,
542 llvm::Value *dest, llvm::Value *ivarOffset) override;
543 void EmitObjCStrongCastAssign(CodeGenFunction &CGF,
544 llvm::Value *src, llvm::Value *dest) override;
545 void EmitGCMemmoveCollectable(CodeGenFunction &CGF, llvm::Value *DestPtr,
546 llvm::Value *SrcPtr,
547 llvm::Value *Size) override;
548 LValue EmitObjCValueForIvar(CodeGenFunction &CGF, QualType ObjectTy,
549 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
550 unsigned CVRQualifiers) override;
551 llvm::Value *EmitIvarOffset(CodeGenFunction &CGF,
552 const ObjCInterfaceDecl *Interface,
553 const ObjCIvarDecl *Ivar) override;
554 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
BuildGCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)555 llvm::Constant *BuildGCBlockLayout(CodeGenModule &CGM,
556 const CGBlockInfo &blockInfo) override {
557 return NULLPtr;
558 }
BuildRCBlockLayout(CodeGenModule & CGM,const CGBlockInfo & blockInfo)559 llvm::Constant *BuildRCBlockLayout(CodeGenModule &CGM,
560 const CGBlockInfo &blockInfo) override {
561 return NULLPtr;
562 }
563
BuildByrefLayout(CodeGenModule & CGM,QualType T)564 llvm::Constant *BuildByrefLayout(CodeGenModule &CGM, QualType T) override {
565 return NULLPtr;
566 }
567
GetClassGlobal(const std::string & Name,bool Weak=false)568 llvm::GlobalVariable *GetClassGlobal(const std::string &Name,
569 bool Weak = false) override {
570 return nullptr;
571 }
572 };
573 /// Class representing the legacy GCC Objective-C ABI. This is the default when
574 /// -fobjc-nonfragile-abi is not specified.
575 ///
576 /// The GCC ABI target actually generates code that is approximately compatible
577 /// with the new GNUstep runtime ABI, but refrains from using any features that
578 /// would not work with the GCC runtime. For example, clang always generates
579 /// the extended form of the class structure, and the extra fields are simply
580 /// ignored by GCC libobjc.
581 class CGObjCGCC : public CGObjCGNU {
582 /// The GCC ABI message lookup function. Returns an IMP pointing to the
583 /// method implementation for this message.
584 LazyRuntimeFunction MsgLookupFn;
585 /// The GCC ABI superclass message lookup function. Takes a pointer to a
586 /// structure describing the receiver and the class, and a selector as
587 /// arguments. Returns the IMP for the corresponding method.
588 LazyRuntimeFunction MsgLookupSuperFn;
589 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)590 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
591 llvm::Value *cmd, llvm::MDNode *node,
592 MessageSendInfo &MSI) override {
593 CGBuilderTy &Builder = CGF.Builder;
594 llvm::Value *args[] = {
595 EnforceType(Builder, Receiver, IdTy),
596 EnforceType(Builder, cmd, SelectorTy) };
597 llvm::CallSite imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
598 imp->setMetadata(msgSendMDKind, node);
599 return imp.getInstruction();
600 }
LookupIMPSuper(CodeGenFunction & CGF,llvm::Value * ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)601 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
602 llvm::Value *cmd, MessageSendInfo &MSI) override {
603 CGBuilderTy &Builder = CGF.Builder;
604 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
605 PtrToObjCSuperTy), cmd};
606 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
607 }
608 public:
CGObjCGCC(CodeGenModule & Mod)609 CGObjCGCC(CodeGenModule &Mod) : CGObjCGNU(Mod, 8, 2) {
610 // IMP objc_msg_lookup(id, SEL);
611 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy,
612 nullptr);
613 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
614 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
615 PtrToObjCSuperTy, SelectorTy, nullptr);
616 }
617 };
618 /// Class used when targeting the new GNUstep runtime ABI.
619 class CGObjCGNUstep : public CGObjCGNU {
620 /// The slot lookup function. Returns a pointer to a cacheable structure
621 /// that contains (among other things) the IMP.
622 LazyRuntimeFunction SlotLookupFn;
623 /// The GNUstep ABI superclass message lookup function. Takes a pointer to
624 /// a structure describing the receiver and the class, and a selector as
625 /// arguments. Returns the slot for the corresponding method. Superclass
626 /// message lookup rarely changes, so this is a good caching opportunity.
627 LazyRuntimeFunction SlotLookupSuperFn;
628 /// Specialised function for setting atomic retain properties
629 LazyRuntimeFunction SetPropertyAtomic;
630 /// Specialised function for setting atomic copy properties
631 LazyRuntimeFunction SetPropertyAtomicCopy;
632 /// Specialised function for setting nonatomic retain properties
633 LazyRuntimeFunction SetPropertyNonAtomic;
634 /// Specialised function for setting nonatomic copy properties
635 LazyRuntimeFunction SetPropertyNonAtomicCopy;
636 /// Function to perform atomic copies of C++ objects with nontrivial copy
637 /// constructors from Objective-C ivars.
638 LazyRuntimeFunction CxxAtomicObjectGetFn;
639 /// Function to perform atomic copies of C++ objects with nontrivial copy
640 /// constructors to Objective-C ivars.
641 LazyRuntimeFunction CxxAtomicObjectSetFn;
642 /// Type of an slot structure pointer. This is returned by the various
643 /// lookup functions.
644 llvm::Type *SlotTy;
645 public:
646 llvm::Constant *GetEHType(QualType T) override;
647 protected:
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)648 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
649 llvm::Value *cmd, llvm::MDNode *node,
650 MessageSendInfo &MSI) override {
651 CGBuilderTy &Builder = CGF.Builder;
652 llvm::Function *LookupFn = SlotLookupFn;
653
654 // Store the receiver on the stack so that we can reload it later
655 llvm::Value *ReceiverPtr = CGF.CreateTempAlloca(Receiver->getType());
656 Builder.CreateStore(Receiver, ReceiverPtr);
657
658 llvm::Value *self;
659
660 if (isa<ObjCMethodDecl>(CGF.CurCodeDecl)) {
661 self = CGF.LoadObjCSelf();
662 } else {
663 self = llvm::ConstantPointerNull::get(IdTy);
664 }
665
666 // The lookup function is guaranteed not to capture the receiver pointer.
667 LookupFn->setDoesNotCapture(1);
668
669 llvm::Value *args[] = {
670 EnforceType(Builder, ReceiverPtr, PtrToIdTy),
671 EnforceType(Builder, cmd, SelectorTy),
672 EnforceType(Builder, self, IdTy) };
673 llvm::CallSite slot = CGF.EmitRuntimeCallOrInvoke(LookupFn, args);
674 slot.setOnlyReadsMemory();
675 slot->setMetadata(msgSendMDKind, node);
676
677 // Load the imp from the slot
678 llvm::Value *imp = Builder.CreateLoad(
679 Builder.CreateStructGEP(nullptr, slot.getInstruction(), 4));
680
681 // The lookup function may have changed the receiver, so make sure we use
682 // the new one.
683 Receiver = Builder.CreateLoad(ReceiverPtr, true);
684 return imp;
685 }
LookupIMPSuper(CodeGenFunction & CGF,llvm::Value * ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)686 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
687 llvm::Value *cmd,
688 MessageSendInfo &MSI) override {
689 CGBuilderTy &Builder = CGF.Builder;
690 llvm::Value *lookupArgs[] = {ObjCSuper, cmd};
691
692 llvm::CallInst *slot =
693 CGF.EmitNounwindRuntimeCall(SlotLookupSuperFn, lookupArgs);
694 slot->setOnlyReadsMemory();
695
696 return Builder.CreateLoad(Builder.CreateStructGEP(nullptr, slot, 4));
697 }
698 public:
CGObjCGNUstep(CodeGenModule & Mod)699 CGObjCGNUstep(CodeGenModule &Mod) : CGObjCGNU(Mod, 9, 3) {
700 const ObjCRuntime &R = CGM.getLangOpts().ObjCRuntime;
701
702 llvm::StructType *SlotStructTy = llvm::StructType::get(PtrTy,
703 PtrTy, PtrTy, IntTy, IMPTy, nullptr);
704 SlotTy = llvm::PointerType::getUnqual(SlotStructTy);
705 // Slot_t objc_msg_lookup_sender(id *receiver, SEL selector, id sender);
706 SlotLookupFn.init(&CGM, "objc_msg_lookup_sender", SlotTy, PtrToIdTy,
707 SelectorTy, IdTy, nullptr);
708 // Slot_t objc_msg_lookup_super(struct objc_super*, SEL);
709 SlotLookupSuperFn.init(&CGM, "objc_slot_lookup_super", SlotTy,
710 PtrToObjCSuperTy, SelectorTy, nullptr);
711 // If we're in ObjC++ mode, then we want to make
712 if (CGM.getLangOpts().CPlusPlus) {
713 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
714 // void *__cxa_begin_catch(void *e)
715 EnterCatchFn.init(&CGM, "__cxa_begin_catch", PtrTy, PtrTy, nullptr);
716 // void __cxa_end_catch(void)
717 ExitCatchFn.init(&CGM, "__cxa_end_catch", VoidTy, nullptr);
718 // void _Unwind_Resume_or_Rethrow(void*)
719 ExceptionReThrowFn.init(&CGM, "_Unwind_Resume_or_Rethrow", VoidTy,
720 PtrTy, nullptr);
721 } else if (R.getVersion() >= VersionTuple(1, 7)) {
722 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
723 // id objc_begin_catch(void *e)
724 EnterCatchFn.init(&CGM, "objc_begin_catch", IdTy, PtrTy, nullptr);
725 // void objc_end_catch(void)
726 ExitCatchFn.init(&CGM, "objc_end_catch", VoidTy, nullptr);
727 // void _Unwind_Resume_or_Rethrow(void*)
728 ExceptionReThrowFn.init(&CGM, "objc_exception_rethrow", VoidTy,
729 PtrTy, nullptr);
730 }
731 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
732 SetPropertyAtomic.init(&CGM, "objc_setProperty_atomic", VoidTy, IdTy,
733 SelectorTy, IdTy, PtrDiffTy, nullptr);
734 SetPropertyAtomicCopy.init(&CGM, "objc_setProperty_atomic_copy", VoidTy,
735 IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
736 SetPropertyNonAtomic.init(&CGM, "objc_setProperty_nonatomic", VoidTy,
737 IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
738 SetPropertyNonAtomicCopy.init(&CGM, "objc_setProperty_nonatomic_copy",
739 VoidTy, IdTy, SelectorTy, IdTy, PtrDiffTy, nullptr);
740 // void objc_setCppObjectAtomic(void *dest, const void *src, void
741 // *helper);
742 CxxAtomicObjectSetFn.init(&CGM, "objc_setCppObjectAtomic", VoidTy, PtrTy,
743 PtrTy, PtrTy, nullptr);
744 // void objc_getCppObjectAtomic(void *dest, const void *src, void
745 // *helper);
746 CxxAtomicObjectGetFn.init(&CGM, "objc_getCppObjectAtomic", VoidTy, PtrTy,
747 PtrTy, PtrTy, nullptr);
748 }
GetCppAtomicObjectGetFunction()749 llvm::Constant *GetCppAtomicObjectGetFunction() override {
750 // The optimised functions were added in version 1.7 of the GNUstep
751 // runtime.
752 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
753 VersionTuple(1, 7));
754 return CxxAtomicObjectGetFn;
755 }
GetCppAtomicObjectSetFunction()756 llvm::Constant *GetCppAtomicObjectSetFunction() override {
757 // The optimised functions were added in version 1.7 of the GNUstep
758 // runtime.
759 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
760 VersionTuple(1, 7));
761 return CxxAtomicObjectSetFn;
762 }
GetOptimizedPropertySetFunction(bool atomic,bool copy)763 llvm::Constant *GetOptimizedPropertySetFunction(bool atomic,
764 bool copy) override {
765 // The optimised property functions omit the GC check, and so are not
766 // safe to use in GC mode. The standard functions are fast in GC mode,
767 // so there is less advantage in using them.
768 assert ((CGM.getLangOpts().getGC() == LangOptions::NonGC));
769 // The optimised functions were added in version 1.7 of the GNUstep
770 // runtime.
771 assert (CGM.getLangOpts().ObjCRuntime.getVersion() >=
772 VersionTuple(1, 7));
773
774 if (atomic) {
775 if (copy) return SetPropertyAtomicCopy;
776 return SetPropertyAtomic;
777 }
778
779 return copy ? SetPropertyNonAtomicCopy : SetPropertyNonAtomic;
780 }
781 };
782
783 /// Support for the ObjFW runtime.
784 class CGObjCObjFW: public CGObjCGNU {
785 protected:
786 /// The GCC ABI message lookup function. Returns an IMP pointing to the
787 /// method implementation for this message.
788 LazyRuntimeFunction MsgLookupFn;
789 /// stret lookup function. While this does not seem to make sense at the
790 /// first look, this is required to call the correct forwarding function.
791 LazyRuntimeFunction MsgLookupFnSRet;
792 /// The GCC ABI superclass message lookup function. Takes a pointer to a
793 /// structure describing the receiver and the class, and a selector as
794 /// arguments. Returns the IMP for the corresponding method.
795 LazyRuntimeFunction MsgLookupSuperFn, MsgLookupSuperFnSRet;
796
LookupIMP(CodeGenFunction & CGF,llvm::Value * & Receiver,llvm::Value * cmd,llvm::MDNode * node,MessageSendInfo & MSI)797 llvm::Value *LookupIMP(CodeGenFunction &CGF, llvm::Value *&Receiver,
798 llvm::Value *cmd, llvm::MDNode *node,
799 MessageSendInfo &MSI) override {
800 CGBuilderTy &Builder = CGF.Builder;
801 llvm::Value *args[] = {
802 EnforceType(Builder, Receiver, IdTy),
803 EnforceType(Builder, cmd, SelectorTy) };
804
805 llvm::CallSite imp;
806 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
807 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFnSRet, args);
808 else
809 imp = CGF.EmitRuntimeCallOrInvoke(MsgLookupFn, args);
810
811 imp->setMetadata(msgSendMDKind, node);
812 return imp.getInstruction();
813 }
814
LookupIMPSuper(CodeGenFunction & CGF,llvm::Value * ObjCSuper,llvm::Value * cmd,MessageSendInfo & MSI)815 llvm::Value *LookupIMPSuper(CodeGenFunction &CGF, llvm::Value *ObjCSuper,
816 llvm::Value *cmd, MessageSendInfo &MSI) override {
817 CGBuilderTy &Builder = CGF.Builder;
818 llvm::Value *lookupArgs[] = {EnforceType(Builder, ObjCSuper,
819 PtrToObjCSuperTy), cmd};
820
821 if (CGM.ReturnTypeUsesSRet(MSI.CallInfo))
822 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFnSRet, lookupArgs);
823 else
824 return CGF.EmitNounwindRuntimeCall(MsgLookupSuperFn, lookupArgs);
825 }
826
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)827 llvm::Value *GetClassNamed(CodeGenFunction &CGF,
828 const std::string &Name, bool isWeak) override {
829 if (isWeak)
830 return CGObjCGNU::GetClassNamed(CGF, Name, isWeak);
831
832 EmitClassRef(Name);
833
834 std::string SymbolName = "_OBJC_CLASS_" + Name;
835
836 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(SymbolName);
837
838 if (!ClassSymbol)
839 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
840 llvm::GlobalValue::ExternalLinkage,
841 nullptr, SymbolName);
842
843 return ClassSymbol;
844 }
845
846 public:
CGObjCObjFW(CodeGenModule & Mod)847 CGObjCObjFW(CodeGenModule &Mod): CGObjCGNU(Mod, 9, 3) {
848 // IMP objc_msg_lookup(id, SEL);
849 MsgLookupFn.init(&CGM, "objc_msg_lookup", IMPTy, IdTy, SelectorTy, nullptr);
850 MsgLookupFnSRet.init(&CGM, "objc_msg_lookup_stret", IMPTy, IdTy,
851 SelectorTy, nullptr);
852 // IMP objc_msg_lookup_super(struct objc_super*, SEL);
853 MsgLookupSuperFn.init(&CGM, "objc_msg_lookup_super", IMPTy,
854 PtrToObjCSuperTy, SelectorTy, nullptr);
855 MsgLookupSuperFnSRet.init(&CGM, "objc_msg_lookup_super_stret", IMPTy,
856 PtrToObjCSuperTy, SelectorTy, nullptr);
857 }
858 };
859 } // end anonymous namespace
860
861
862 /// Emits a reference to a dummy variable which is emitted with each class.
863 /// This ensures that a linker error will be generated when trying to link
864 /// together modules where a referenced class is not defined.
EmitClassRef(const std::string & className)865 void CGObjCGNU::EmitClassRef(const std::string &className) {
866 std::string symbolRef = "__objc_class_ref_" + className;
867 // Don't emit two copies of the same symbol
868 if (TheModule.getGlobalVariable(symbolRef))
869 return;
870 std::string symbolName = "__objc_class_name_" + className;
871 llvm::GlobalVariable *ClassSymbol = TheModule.getGlobalVariable(symbolName);
872 if (!ClassSymbol) {
873 ClassSymbol = new llvm::GlobalVariable(TheModule, LongTy, false,
874 llvm::GlobalValue::ExternalLinkage,
875 nullptr, symbolName);
876 }
877 new llvm::GlobalVariable(TheModule, ClassSymbol->getType(), true,
878 llvm::GlobalValue::WeakAnyLinkage, ClassSymbol, symbolRef);
879 }
880
SymbolNameForMethod(StringRef ClassName,StringRef CategoryName,const Selector MethodName,bool isClassMethod)881 static std::string SymbolNameForMethod( StringRef ClassName,
882 StringRef CategoryName, const Selector MethodName,
883 bool isClassMethod) {
884 std::string MethodNameColonStripped = MethodName.getAsString();
885 std::replace(MethodNameColonStripped.begin(), MethodNameColonStripped.end(),
886 ':', '_');
887 return (Twine(isClassMethod ? "_c_" : "_i_") + ClassName + "_" +
888 CategoryName + "_" + MethodNameColonStripped).str();
889 }
890
CGObjCGNU(CodeGenModule & cgm,unsigned runtimeABIVersion,unsigned protocolClassVersion)891 CGObjCGNU::CGObjCGNU(CodeGenModule &cgm, unsigned runtimeABIVersion,
892 unsigned protocolClassVersion)
893 : CGObjCRuntime(cgm), TheModule(CGM.getModule()),
894 VMContext(cgm.getLLVMContext()), ClassPtrAlias(nullptr),
895 MetaClassPtrAlias(nullptr), RuntimeVersion(runtimeABIVersion),
896 ProtocolVersion(protocolClassVersion) {
897
898 msgSendMDKind = VMContext.getMDKindID("GNUObjCMessageSend");
899
900 CodeGenTypes &Types = CGM.getTypes();
901 IntTy = cast<llvm::IntegerType>(
902 Types.ConvertType(CGM.getContext().IntTy));
903 LongTy = cast<llvm::IntegerType>(
904 Types.ConvertType(CGM.getContext().LongTy));
905 SizeTy = cast<llvm::IntegerType>(
906 Types.ConvertType(CGM.getContext().getSizeType()));
907 PtrDiffTy = cast<llvm::IntegerType>(
908 Types.ConvertType(CGM.getContext().getPointerDiffType()));
909 BoolTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
910
911 Int8Ty = llvm::Type::getInt8Ty(VMContext);
912 // C string type. Used in lots of places.
913 PtrToInt8Ty = llvm::PointerType::getUnqual(Int8Ty);
914
915 Zeros[0] = llvm::ConstantInt::get(LongTy, 0);
916 Zeros[1] = Zeros[0];
917 NULLPtr = llvm::ConstantPointerNull::get(PtrToInt8Ty);
918 // Get the selector Type.
919 QualType selTy = CGM.getContext().getObjCSelType();
920 if (QualType() == selTy) {
921 SelectorTy = PtrToInt8Ty;
922 } else {
923 SelectorTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(selTy));
924 }
925
926 PtrToIntTy = llvm::PointerType::getUnqual(IntTy);
927 PtrTy = PtrToInt8Ty;
928
929 Int32Ty = llvm::Type::getInt32Ty(VMContext);
930 Int64Ty = llvm::Type::getInt64Ty(VMContext);
931
932 IntPtrTy =
933 CGM.getDataLayout().getPointerSizeInBits() == 32 ? Int32Ty : Int64Ty;
934
935 // Object type
936 QualType UnqualIdTy = CGM.getContext().getObjCIdType();
937 ASTIdTy = CanQualType();
938 if (UnqualIdTy != QualType()) {
939 ASTIdTy = CGM.getContext().getCanonicalType(UnqualIdTy);
940 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
941 } else {
942 IdTy = PtrToInt8Ty;
943 }
944 PtrToIdTy = llvm::PointerType::getUnqual(IdTy);
945
946 ObjCSuperTy = llvm::StructType::get(IdTy, IdTy, nullptr);
947 PtrToObjCSuperTy = llvm::PointerType::getUnqual(ObjCSuperTy);
948
949 llvm::Type *VoidTy = llvm::Type::getVoidTy(VMContext);
950
951 // void objc_exception_throw(id);
952 ExceptionThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
953 ExceptionReThrowFn.init(&CGM, "objc_exception_throw", VoidTy, IdTy, nullptr);
954 // int objc_sync_enter(id);
955 SyncEnterFn.init(&CGM, "objc_sync_enter", IntTy, IdTy, nullptr);
956 // int objc_sync_exit(id);
957 SyncExitFn.init(&CGM, "objc_sync_exit", IntTy, IdTy, nullptr);
958
959 // void objc_enumerationMutation (id)
960 EnumerationMutationFn.init(&CGM, "objc_enumerationMutation", VoidTy,
961 IdTy, nullptr);
962
963 // id objc_getProperty(id, SEL, ptrdiff_t, BOOL)
964 GetPropertyFn.init(&CGM, "objc_getProperty", IdTy, IdTy, SelectorTy,
965 PtrDiffTy, BoolTy, nullptr);
966 // void objc_setProperty(id, SEL, ptrdiff_t, id, BOOL, BOOL)
967 SetPropertyFn.init(&CGM, "objc_setProperty", VoidTy, IdTy, SelectorTy,
968 PtrDiffTy, IdTy, BoolTy, BoolTy, nullptr);
969 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
970 GetStructPropertyFn.init(&CGM, "objc_getPropertyStruct", VoidTy, PtrTy, PtrTy,
971 PtrDiffTy, BoolTy, BoolTy, nullptr);
972 // void objc_setPropertyStruct(void*, void*, ptrdiff_t, BOOL, BOOL)
973 SetStructPropertyFn.init(&CGM, "objc_setPropertyStruct", VoidTy, PtrTy, PtrTy,
974 PtrDiffTy, BoolTy, BoolTy, nullptr);
975
976 // IMP type
977 llvm::Type *IMPArgs[] = { IdTy, SelectorTy };
978 IMPTy = llvm::PointerType::getUnqual(llvm::FunctionType::get(IdTy, IMPArgs,
979 true));
980
981 const LangOptions &Opts = CGM.getLangOpts();
982 if ((Opts.getGC() != LangOptions::NonGC) || Opts.ObjCAutoRefCount)
983 RuntimeVersion = 10;
984
985 // Don't bother initialising the GC stuff unless we're compiling in GC mode
986 if (Opts.getGC() != LangOptions::NonGC) {
987 // This is a bit of an hack. We should sort this out by having a proper
988 // CGObjCGNUstep subclass for GC, but we may want to really support the old
989 // ABI and GC added in ObjectiveC2.framework, so we fudge it a bit for now
990 // Get selectors needed in GC mode
991 RetainSel = GetNullarySelector("retain", CGM.getContext());
992 ReleaseSel = GetNullarySelector("release", CGM.getContext());
993 AutoreleaseSel = GetNullarySelector("autorelease", CGM.getContext());
994
995 // Get functions needed in GC mode
996
997 // id objc_assign_ivar(id, id, ptrdiff_t);
998 IvarAssignFn.init(&CGM, "objc_assign_ivar", IdTy, IdTy, IdTy, PtrDiffTy,
999 nullptr);
1000 // id objc_assign_strongCast (id, id*)
1001 StrongCastAssignFn.init(&CGM, "objc_assign_strongCast", IdTy, IdTy,
1002 PtrToIdTy, nullptr);
1003 // id objc_assign_global(id, id*);
1004 GlobalAssignFn.init(&CGM, "objc_assign_global", IdTy, IdTy, PtrToIdTy,
1005 nullptr);
1006 // id objc_assign_weak(id, id*);
1007 WeakAssignFn.init(&CGM, "objc_assign_weak", IdTy, IdTy, PtrToIdTy, nullptr);
1008 // id objc_read_weak(id*);
1009 WeakReadFn.init(&CGM, "objc_read_weak", IdTy, PtrToIdTy, nullptr);
1010 // void *objc_memmove_collectable(void*, void *, size_t);
1011 MemMoveFn.init(&CGM, "objc_memmove_collectable", PtrTy, PtrTy, PtrTy,
1012 SizeTy, nullptr);
1013 }
1014 }
1015
GetClassNamed(CodeGenFunction & CGF,const std::string & Name,bool isWeak)1016 llvm::Value *CGObjCGNU::GetClassNamed(CodeGenFunction &CGF,
1017 const std::string &Name,
1018 bool isWeak) {
1019 llvm::GlobalVariable *ClassNameGV = CGM.GetAddrOfConstantCString(Name);
1020 // With the incompatible ABI, this will need to be replaced with a direct
1021 // reference to the class symbol. For the compatible nonfragile ABI we are
1022 // still performing this lookup at run time but emitting the symbol for the
1023 // class externally so that we can make the switch later.
1024 //
1025 // Libobjc2 contains an LLVM pass that replaces calls to objc_lookup_class
1026 // with memoized versions or with static references if it's safe to do so.
1027 if (!isWeak)
1028 EmitClassRef(Name);
1029 llvm::Value *ClassName =
1030 CGF.Builder.CreateStructGEP(ClassNameGV->getValueType(), ClassNameGV, 0);
1031
1032 llvm::Constant *ClassLookupFn =
1033 CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, PtrToInt8Ty, true),
1034 "objc_lookup_class");
1035 return CGF.EmitNounwindRuntimeCall(ClassLookupFn, ClassName);
1036 }
1037
1038 // This has to perform the lookup every time, since posing and related
1039 // techniques can modify the name -> class mapping.
GetClass(CodeGenFunction & CGF,const ObjCInterfaceDecl * OID)1040 llvm::Value *CGObjCGNU::GetClass(CodeGenFunction &CGF,
1041 const ObjCInterfaceDecl *OID) {
1042 return GetClassNamed(CGF, OID->getNameAsString(), OID->isWeakImported());
1043 }
EmitNSAutoreleasePoolClassRef(CodeGenFunction & CGF)1044 llvm::Value *CGObjCGNU::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
1045 return GetClassNamed(CGF, "NSAutoreleasePool", false);
1046 }
1047
GetSelector(CodeGenFunction & CGF,Selector Sel,const std::string & TypeEncoding,bool lval)1048 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1049 const std::string &TypeEncoding, bool lval) {
1050
1051 SmallVectorImpl<TypedSelector> &Types = SelectorTable[Sel];
1052 llvm::GlobalAlias *SelValue = nullptr;
1053
1054 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
1055 e = Types.end() ; i!=e ; i++) {
1056 if (i->first == TypeEncoding) {
1057 SelValue = i->second;
1058 break;
1059 }
1060 }
1061 if (!SelValue) {
1062 SelValue = llvm::GlobalAlias::create(
1063 SelectorTy->getElementType(), 0, llvm::GlobalValue::PrivateLinkage,
1064 ".objc_selector_" + Sel.getAsString(), &TheModule);
1065 Types.push_back(TypedSelector(TypeEncoding, SelValue));
1066 }
1067
1068 if (lval) {
1069 llvm::Value *tmp = CGF.CreateTempAlloca(SelValue->getType());
1070 CGF.Builder.CreateStore(SelValue, tmp);
1071 return tmp;
1072 }
1073 return SelValue;
1074 }
1075
GetSelector(CodeGenFunction & CGF,Selector Sel,bool lval)1076 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF, Selector Sel,
1077 bool lval) {
1078 return GetSelector(CGF, Sel, std::string(), lval);
1079 }
1080
GetSelector(CodeGenFunction & CGF,const ObjCMethodDecl * Method)1081 llvm::Value *CGObjCGNU::GetSelector(CodeGenFunction &CGF,
1082 const ObjCMethodDecl *Method) {
1083 std::string SelTypes;
1084 CGM.getContext().getObjCEncodingForMethodDecl(Method, SelTypes);
1085 return GetSelector(CGF, Method->getSelector(), SelTypes, false);
1086 }
1087
GetEHType(QualType T)1088 llvm::Constant *CGObjCGNU::GetEHType(QualType T) {
1089 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
1090 // With the old ABI, there was only one kind of catchall, which broke
1091 // foreign exceptions. With the new ABI, we use __objc_id_typeinfo as
1092 // a pointer indicating object catchalls, and NULL to indicate real
1093 // catchalls
1094 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
1095 return MakeConstantString("@id");
1096 } else {
1097 return nullptr;
1098 }
1099 }
1100
1101 // All other types should be Objective-C interface pointer types.
1102 const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>();
1103 assert(OPT && "Invalid @catch type.");
1104 const ObjCInterfaceDecl *IDecl = OPT->getObjectType()->getInterface();
1105 assert(IDecl && "Invalid @catch type.");
1106 return MakeConstantString(IDecl->getIdentifier()->getName());
1107 }
1108
GetEHType(QualType T)1109 llvm::Constant *CGObjCGNUstep::GetEHType(QualType T) {
1110 if (!CGM.getLangOpts().CPlusPlus)
1111 return CGObjCGNU::GetEHType(T);
1112
1113 // For Objective-C++, we want to provide the ability to catch both C++ and
1114 // Objective-C objects in the same function.
1115
1116 // There's a particular fixed type info for 'id'.
1117 if (T->isObjCIdType() ||
1118 T->isObjCQualifiedIdType()) {
1119 llvm::Constant *IDEHType =
1120 CGM.getModule().getGlobalVariable("__objc_id_type_info");
1121 if (!IDEHType)
1122 IDEHType =
1123 new llvm::GlobalVariable(CGM.getModule(), PtrToInt8Ty,
1124 false,
1125 llvm::GlobalValue::ExternalLinkage,
1126 nullptr, "__objc_id_type_info");
1127 return llvm::ConstantExpr::getBitCast(IDEHType, PtrToInt8Ty);
1128 }
1129
1130 const ObjCObjectPointerType *PT =
1131 T->getAs<ObjCObjectPointerType>();
1132 assert(PT && "Invalid @catch type.");
1133 const ObjCInterfaceType *IT = PT->getInterfaceType();
1134 assert(IT && "Invalid @catch type.");
1135 std::string className = IT->getDecl()->getIdentifier()->getName();
1136
1137 std::string typeinfoName = "__objc_eh_typeinfo_" + className;
1138
1139 // Return the existing typeinfo if it exists
1140 llvm::Constant *typeinfo = TheModule.getGlobalVariable(typeinfoName);
1141 if (typeinfo)
1142 return llvm::ConstantExpr::getBitCast(typeinfo, PtrToInt8Ty);
1143
1144 // Otherwise create it.
1145
1146 // vtable for gnustep::libobjc::__objc_class_type_info
1147 // It's quite ugly hard-coding this. Ideally we'd generate it using the host
1148 // platform's name mangling.
1149 const char *vtableName = "_ZTVN7gnustep7libobjc22__objc_class_type_infoE";
1150 auto *Vtable = TheModule.getGlobalVariable(vtableName);
1151 if (!Vtable) {
1152 Vtable = new llvm::GlobalVariable(TheModule, PtrToInt8Ty, true,
1153 llvm::GlobalValue::ExternalLinkage,
1154 nullptr, vtableName);
1155 }
1156 llvm::Constant *Two = llvm::ConstantInt::get(IntTy, 2);
1157 auto *BVtable = llvm::ConstantExpr::getBitCast(
1158 llvm::ConstantExpr::getGetElementPtr(Vtable->getValueType(), Vtable, Two),
1159 PtrToInt8Ty);
1160
1161 llvm::Constant *typeName =
1162 ExportUniqueString(className, "__objc_eh_typename_");
1163
1164 std::vector<llvm::Constant*> fields;
1165 fields.push_back(BVtable);
1166 fields.push_back(typeName);
1167 llvm::Constant *TI =
1168 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1169 nullptr), fields, "__objc_eh_typeinfo_" + className,
1170 llvm::GlobalValue::LinkOnceODRLinkage);
1171 return llvm::ConstantExpr::getBitCast(TI, PtrToInt8Ty);
1172 }
1173
1174 /// Generate an NSConstantString object.
GenerateConstantString(const StringLiteral * SL)1175 llvm::Constant *CGObjCGNU::GenerateConstantString(const StringLiteral *SL) {
1176
1177 std::string Str = SL->getString().str();
1178
1179 // Look for an existing one
1180 llvm::StringMap<llvm::Constant*>::iterator old = ObjCStrings.find(Str);
1181 if (old != ObjCStrings.end())
1182 return old->getValue();
1183
1184 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1185
1186 if (StringClass.empty()) StringClass = "NXConstantString";
1187
1188 std::string Sym = "_OBJC_CLASS_";
1189 Sym += StringClass;
1190
1191 llvm::Constant *isa = TheModule.getNamedGlobal(Sym);
1192
1193 if (!isa)
1194 isa = new llvm::GlobalVariable(TheModule, IdTy, /* isConstant */false,
1195 llvm::GlobalValue::ExternalWeakLinkage, nullptr, Sym);
1196 else if (isa->getType() != PtrToIdTy)
1197 isa = llvm::ConstantExpr::getBitCast(isa, PtrToIdTy);
1198
1199 std::vector<llvm::Constant*> Ivars;
1200 Ivars.push_back(isa);
1201 Ivars.push_back(MakeConstantString(Str));
1202 Ivars.push_back(llvm::ConstantInt::get(IntTy, Str.size()));
1203 llvm::Constant *ObjCStr = MakeGlobal(
1204 llvm::StructType::get(PtrToIdTy, PtrToInt8Ty, IntTy, nullptr),
1205 Ivars, ".objc_str");
1206 ObjCStr = llvm::ConstantExpr::getBitCast(ObjCStr, PtrToInt8Ty);
1207 ObjCStrings[Str] = ObjCStr;
1208 ConstantStrings.push_back(ObjCStr);
1209 return ObjCStr;
1210 }
1211
1212 ///Generates a message send where the super is the receiver. This is a message
1213 ///send to self with special delivery semantics indicating which class's method
1214 ///should be called.
1215 RValue
GenerateMessageSendSuper(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,const ObjCInterfaceDecl * Class,bool isCategoryImpl,llvm::Value * Receiver,bool IsClassMessage,const CallArgList & CallArgs,const ObjCMethodDecl * Method)1216 CGObjCGNU::GenerateMessageSendSuper(CodeGenFunction &CGF,
1217 ReturnValueSlot Return,
1218 QualType ResultType,
1219 Selector Sel,
1220 const ObjCInterfaceDecl *Class,
1221 bool isCategoryImpl,
1222 llvm::Value *Receiver,
1223 bool IsClassMessage,
1224 const CallArgList &CallArgs,
1225 const ObjCMethodDecl *Method) {
1226 CGBuilderTy &Builder = CGF.Builder;
1227 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1228 if (Sel == RetainSel || Sel == AutoreleaseSel) {
1229 return RValue::get(EnforceType(Builder, Receiver,
1230 CGM.getTypes().ConvertType(ResultType)));
1231 }
1232 if (Sel == ReleaseSel) {
1233 return RValue::get(nullptr);
1234 }
1235 }
1236
1237 llvm::Value *cmd = GetSelector(CGF, Sel);
1238
1239
1240 CallArgList ActualArgs;
1241
1242 ActualArgs.add(RValue::get(EnforceType(Builder, Receiver, IdTy)), ASTIdTy);
1243 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1244 ActualArgs.addFrom(CallArgs);
1245
1246 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1247
1248 llvm::Value *ReceiverClass = nullptr;
1249 if (isCategoryImpl) {
1250 llvm::Constant *classLookupFunction = nullptr;
1251 if (IsClassMessage) {
1252 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1253 IdTy, PtrTy, true), "objc_get_meta_class");
1254 } else {
1255 classLookupFunction = CGM.CreateRuntimeFunction(llvm::FunctionType::get(
1256 IdTy, PtrTy, true), "objc_get_class");
1257 }
1258 ReceiverClass = Builder.CreateCall(classLookupFunction,
1259 MakeConstantString(Class->getNameAsString()));
1260 } else {
1261 // Set up global aliases for the metaclass or class pointer if they do not
1262 // already exist. These will are forward-references which will be set to
1263 // pointers to the class and metaclass structure created for the runtime
1264 // load function. To send a message to super, we look up the value of the
1265 // super_class pointer from either the class or metaclass structure.
1266 if (IsClassMessage) {
1267 if (!MetaClassPtrAlias) {
1268 MetaClassPtrAlias = llvm::GlobalAlias::create(
1269 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1270 ".objc_metaclass_ref" + Class->getNameAsString(), &TheModule);
1271 }
1272 ReceiverClass = MetaClassPtrAlias;
1273 } else {
1274 if (!ClassPtrAlias) {
1275 ClassPtrAlias = llvm::GlobalAlias::create(
1276 IdTy->getElementType(), 0, llvm::GlobalValue::InternalLinkage,
1277 ".objc_class_ref" + Class->getNameAsString(), &TheModule);
1278 }
1279 ReceiverClass = ClassPtrAlias;
1280 }
1281 }
1282 // Cast the pointer to a simplified version of the class structure
1283 llvm::Type *CastTy = llvm::StructType::get(IdTy, IdTy, nullptr);
1284 ReceiverClass = Builder.CreateBitCast(ReceiverClass,
1285 llvm::PointerType::getUnqual(CastTy));
1286 // Get the superclass pointer
1287 ReceiverClass = Builder.CreateStructGEP(CastTy, ReceiverClass, 1);
1288 // Load the superclass pointer
1289 ReceiverClass = Builder.CreateLoad(ReceiverClass);
1290 // Construct the structure used to look up the IMP
1291 llvm::StructType *ObjCSuperTy = llvm::StructType::get(
1292 Receiver->getType(), IdTy, nullptr);
1293 llvm::Value *ObjCSuper = Builder.CreateAlloca(ObjCSuperTy);
1294
1295 Builder.CreateStore(Receiver,
1296 Builder.CreateStructGEP(ObjCSuperTy, ObjCSuper, 0));
1297 Builder.CreateStore(ReceiverClass,
1298 Builder.CreateStructGEP(ObjCSuperTy, ObjCSuper, 1));
1299
1300 ObjCSuper = EnforceType(Builder, ObjCSuper, PtrToObjCSuperTy);
1301
1302 // Get the IMP
1303 llvm::Value *imp = LookupIMPSuper(CGF, ObjCSuper, cmd, MSI);
1304 imp = EnforceType(Builder, imp, MSI.MessengerType);
1305
1306 llvm::Metadata *impMD[] = {
1307 llvm::MDString::get(VMContext, Sel.getAsString()),
1308 llvm::MDString::get(VMContext, Class->getSuperClass()->getNameAsString()),
1309 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1310 llvm::Type::getInt1Ty(VMContext), IsClassMessage))};
1311 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1312
1313 llvm::Instruction *call;
1314 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
1315 &call);
1316 call->setMetadata(msgSendMDKind, node);
1317 return msgRet;
1318 }
1319
1320 /// Generate code for a message send expression.
1321 RValue
GenerateMessageSend(CodeGenFunction & CGF,ReturnValueSlot Return,QualType ResultType,Selector Sel,llvm::Value * Receiver,const CallArgList & CallArgs,const ObjCInterfaceDecl * Class,const ObjCMethodDecl * Method)1322 CGObjCGNU::GenerateMessageSend(CodeGenFunction &CGF,
1323 ReturnValueSlot Return,
1324 QualType ResultType,
1325 Selector Sel,
1326 llvm::Value *Receiver,
1327 const CallArgList &CallArgs,
1328 const ObjCInterfaceDecl *Class,
1329 const ObjCMethodDecl *Method) {
1330 CGBuilderTy &Builder = CGF.Builder;
1331
1332 // Strip out message sends to retain / release in GC mode
1333 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
1334 if (Sel == RetainSel || Sel == AutoreleaseSel) {
1335 return RValue::get(EnforceType(Builder, Receiver,
1336 CGM.getTypes().ConvertType(ResultType)));
1337 }
1338 if (Sel == ReleaseSel) {
1339 return RValue::get(nullptr);
1340 }
1341 }
1342
1343 // If the return type is something that goes in an integer register, the
1344 // runtime will handle 0 returns. For other cases, we fill in the 0 value
1345 // ourselves.
1346 //
1347 // The language spec says the result of this kind of message send is
1348 // undefined, but lots of people seem to have forgotten to read that
1349 // paragraph and insist on sending messages to nil that have structure
1350 // returns. With GCC, this generates a random return value (whatever happens
1351 // to be on the stack / in those registers at the time) on most platforms,
1352 // and generates an illegal instruction trap on SPARC. With LLVM it corrupts
1353 // the stack.
1354 bool isPointerSizedReturn = (ResultType->isAnyPointerType() ||
1355 ResultType->isIntegralOrEnumerationType() || ResultType->isVoidType());
1356
1357 llvm::BasicBlock *startBB = nullptr;
1358 llvm::BasicBlock *messageBB = nullptr;
1359 llvm::BasicBlock *continueBB = nullptr;
1360
1361 if (!isPointerSizedReturn) {
1362 startBB = Builder.GetInsertBlock();
1363 messageBB = CGF.createBasicBlock("msgSend");
1364 continueBB = CGF.createBasicBlock("continue");
1365
1366 llvm::Value *isNil = Builder.CreateICmpEQ(Receiver,
1367 llvm::Constant::getNullValue(Receiver->getType()));
1368 Builder.CreateCondBr(isNil, continueBB, messageBB);
1369 CGF.EmitBlock(messageBB);
1370 }
1371
1372 IdTy = cast<llvm::PointerType>(CGM.getTypes().ConvertType(ASTIdTy));
1373 llvm::Value *cmd;
1374 if (Method)
1375 cmd = GetSelector(CGF, Method);
1376 else
1377 cmd = GetSelector(CGF, Sel);
1378 cmd = EnforceType(Builder, cmd, SelectorTy);
1379 Receiver = EnforceType(Builder, Receiver, IdTy);
1380
1381 llvm::Metadata *impMD[] = {
1382 llvm::MDString::get(VMContext, Sel.getAsString()),
1383 llvm::MDString::get(VMContext, Class ? Class->getNameAsString() : ""),
1384 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1385 llvm::Type::getInt1Ty(VMContext), Class != nullptr))};
1386 llvm::MDNode *node = llvm::MDNode::get(VMContext, impMD);
1387
1388 CallArgList ActualArgs;
1389 ActualArgs.add(RValue::get(Receiver), ASTIdTy);
1390 ActualArgs.add(RValue::get(cmd), CGF.getContext().getObjCSelType());
1391 ActualArgs.addFrom(CallArgs);
1392
1393 MessageSendInfo MSI = getMessageSendInfo(Method, ResultType, ActualArgs);
1394
1395 // Get the IMP to call
1396 llvm::Value *imp;
1397
1398 // If we have non-legacy dispatch specified, we try using the objc_msgSend()
1399 // functions. These are not supported on all platforms (or all runtimes on a
1400 // given platform), so we
1401 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
1402 case CodeGenOptions::Legacy:
1403 imp = LookupIMP(CGF, Receiver, cmd, node, MSI);
1404 break;
1405 case CodeGenOptions::Mixed:
1406 case CodeGenOptions::NonLegacy:
1407 if (CGM.ReturnTypeUsesFPRet(ResultType)) {
1408 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1409 "objc_msgSend_fpret");
1410 } else if (CGM.ReturnTypeUsesSRet(MSI.CallInfo)) {
1411 // The actual types here don't matter - we're going to bitcast the
1412 // function anyway
1413 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1414 "objc_msgSend_stret");
1415 } else {
1416 imp = CGM.CreateRuntimeFunction(llvm::FunctionType::get(IdTy, IdTy, true),
1417 "objc_msgSend");
1418 }
1419 }
1420
1421 // Reset the receiver in case the lookup modified it
1422 ActualArgs[0] = CallArg(RValue::get(Receiver), ASTIdTy, false);
1423
1424 imp = EnforceType(Builder, imp, MSI.MessengerType);
1425
1426 llvm::Instruction *call;
1427 RValue msgRet = CGF.EmitCall(MSI.CallInfo, imp, Return, ActualArgs, nullptr,
1428 &call);
1429 call->setMetadata(msgSendMDKind, node);
1430
1431
1432 if (!isPointerSizedReturn) {
1433 messageBB = CGF.Builder.GetInsertBlock();
1434 CGF.Builder.CreateBr(continueBB);
1435 CGF.EmitBlock(continueBB);
1436 if (msgRet.isScalar()) {
1437 llvm::Value *v = msgRet.getScalarVal();
1438 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1439 phi->addIncoming(v, messageBB);
1440 phi->addIncoming(llvm::Constant::getNullValue(v->getType()), startBB);
1441 msgRet = RValue::get(phi);
1442 } else if (msgRet.isAggregate()) {
1443 llvm::Value *v = msgRet.getAggregateAddr();
1444 llvm::PHINode *phi = Builder.CreatePHI(v->getType(), 2);
1445 llvm::PointerType *RetTy = cast<llvm::PointerType>(v->getType());
1446 llvm::AllocaInst *NullVal =
1447 CGF.CreateTempAlloca(RetTy->getElementType(), "null");
1448 CGF.InitTempAlloca(NullVal,
1449 llvm::Constant::getNullValue(RetTy->getElementType()));
1450 phi->addIncoming(v, messageBB);
1451 phi->addIncoming(NullVal, startBB);
1452 msgRet = RValue::getAggregate(phi);
1453 } else /* isComplex() */ {
1454 std::pair<llvm::Value*,llvm::Value*> v = msgRet.getComplexVal();
1455 llvm::PHINode *phi = Builder.CreatePHI(v.first->getType(), 2);
1456 phi->addIncoming(v.first, messageBB);
1457 phi->addIncoming(llvm::Constant::getNullValue(v.first->getType()),
1458 startBB);
1459 llvm::PHINode *phi2 = Builder.CreatePHI(v.second->getType(), 2);
1460 phi2->addIncoming(v.second, messageBB);
1461 phi2->addIncoming(llvm::Constant::getNullValue(v.second->getType()),
1462 startBB);
1463 msgRet = RValue::getComplex(phi, phi2);
1464 }
1465 }
1466 return msgRet;
1467 }
1468
1469 /// Generates a MethodList. Used in construction of a objc_class and
1470 /// objc_category structures.
1471 llvm::Constant *CGObjCGNU::
GenerateMethodList(StringRef ClassName,StringRef CategoryName,ArrayRef<Selector> MethodSels,ArrayRef<llvm::Constant * > MethodTypes,bool isClassMethodList)1472 GenerateMethodList(StringRef ClassName,
1473 StringRef CategoryName,
1474 ArrayRef<Selector> MethodSels,
1475 ArrayRef<llvm::Constant *> MethodTypes,
1476 bool isClassMethodList) {
1477 if (MethodSels.empty())
1478 return NULLPtr;
1479 // Get the method structure type.
1480 llvm::StructType *ObjCMethodTy = llvm::StructType::get(
1481 PtrToInt8Ty, // Really a selector, but the runtime creates it us.
1482 PtrToInt8Ty, // Method types
1483 IMPTy, //Method pointer
1484 nullptr);
1485 std::vector<llvm::Constant*> Methods;
1486 std::vector<llvm::Constant*> Elements;
1487 for (unsigned int i = 0, e = MethodTypes.size(); i < e; ++i) {
1488 Elements.clear();
1489 llvm::Constant *Method =
1490 TheModule.getFunction(SymbolNameForMethod(ClassName, CategoryName,
1491 MethodSels[i],
1492 isClassMethodList));
1493 assert(Method && "Can't generate metadata for method that doesn't exist");
1494 llvm::Constant *C = MakeConstantString(MethodSels[i].getAsString());
1495 Elements.push_back(C);
1496 Elements.push_back(MethodTypes[i]);
1497 Method = llvm::ConstantExpr::getBitCast(Method,
1498 IMPTy);
1499 Elements.push_back(Method);
1500 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodTy, Elements));
1501 }
1502
1503 // Array of method structures
1504 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodTy,
1505 Methods.size());
1506 llvm::Constant *MethodArray = llvm::ConstantArray::get(ObjCMethodArrayTy,
1507 Methods);
1508
1509 // Structure containing list pointer, array and array count
1510 llvm::StructType *ObjCMethodListTy = llvm::StructType::create(VMContext);
1511 llvm::Type *NextPtrTy = llvm::PointerType::getUnqual(ObjCMethodListTy);
1512 ObjCMethodListTy->setBody(
1513 NextPtrTy,
1514 IntTy,
1515 ObjCMethodArrayTy,
1516 nullptr);
1517
1518 Methods.clear();
1519 Methods.push_back(llvm::ConstantPointerNull::get(
1520 llvm::PointerType::getUnqual(ObjCMethodListTy)));
1521 Methods.push_back(llvm::ConstantInt::get(Int32Ty, MethodTypes.size()));
1522 Methods.push_back(MethodArray);
1523
1524 // Create an instance of the structure
1525 return MakeGlobal(ObjCMethodListTy, Methods, ".objc_method_list");
1526 }
1527
1528 /// Generates an IvarList. Used in construction of a objc_class.
1529 llvm::Constant *CGObjCGNU::
GenerateIvarList(ArrayRef<llvm::Constant * > IvarNames,ArrayRef<llvm::Constant * > IvarTypes,ArrayRef<llvm::Constant * > IvarOffsets)1530 GenerateIvarList(ArrayRef<llvm::Constant *> IvarNames,
1531 ArrayRef<llvm::Constant *> IvarTypes,
1532 ArrayRef<llvm::Constant *> IvarOffsets) {
1533 if (IvarNames.size() == 0)
1534 return NULLPtr;
1535 // Get the method structure type.
1536 llvm::StructType *ObjCIvarTy = llvm::StructType::get(
1537 PtrToInt8Ty,
1538 PtrToInt8Ty,
1539 IntTy,
1540 nullptr);
1541 std::vector<llvm::Constant*> Ivars;
1542 std::vector<llvm::Constant*> Elements;
1543 for (unsigned int i = 0, e = IvarNames.size() ; i < e ; i++) {
1544 Elements.clear();
1545 Elements.push_back(IvarNames[i]);
1546 Elements.push_back(IvarTypes[i]);
1547 Elements.push_back(IvarOffsets[i]);
1548 Ivars.push_back(llvm::ConstantStruct::get(ObjCIvarTy, Elements));
1549 }
1550
1551 // Array of method structures
1552 llvm::ArrayType *ObjCIvarArrayTy = llvm::ArrayType::get(ObjCIvarTy,
1553 IvarNames.size());
1554
1555
1556 Elements.clear();
1557 Elements.push_back(llvm::ConstantInt::get(IntTy, (int)IvarNames.size()));
1558 Elements.push_back(llvm::ConstantArray::get(ObjCIvarArrayTy, Ivars));
1559 // Structure containing array and array count
1560 llvm::StructType *ObjCIvarListTy = llvm::StructType::get(IntTy,
1561 ObjCIvarArrayTy,
1562 nullptr);
1563
1564 // Create an instance of the structure
1565 return MakeGlobal(ObjCIvarListTy, Elements, ".objc_ivar_list");
1566 }
1567
1568 /// Generate a class structure
GenerateClassStructure(llvm::Constant * MetaClass,llvm::Constant * SuperClass,unsigned info,const char * Name,llvm::Constant * Version,llvm::Constant * InstanceSize,llvm::Constant * IVars,llvm::Constant * Methods,llvm::Constant * Protocols,llvm::Constant * IvarOffsets,llvm::Constant * Properties,llvm::Constant * StrongIvarBitmap,llvm::Constant * WeakIvarBitmap,bool isMeta)1569 llvm::Constant *CGObjCGNU::GenerateClassStructure(
1570 llvm::Constant *MetaClass,
1571 llvm::Constant *SuperClass,
1572 unsigned info,
1573 const char *Name,
1574 llvm::Constant *Version,
1575 llvm::Constant *InstanceSize,
1576 llvm::Constant *IVars,
1577 llvm::Constant *Methods,
1578 llvm::Constant *Protocols,
1579 llvm::Constant *IvarOffsets,
1580 llvm::Constant *Properties,
1581 llvm::Constant *StrongIvarBitmap,
1582 llvm::Constant *WeakIvarBitmap,
1583 bool isMeta) {
1584 // Set up the class structure
1585 // Note: Several of these are char*s when they should be ids. This is
1586 // because the runtime performs this translation on load.
1587 //
1588 // Fields marked New ABI are part of the GNUstep runtime. We emit them
1589 // anyway; the classes will still work with the GNU runtime, they will just
1590 // be ignored.
1591 llvm::StructType *ClassTy = llvm::StructType::get(
1592 PtrToInt8Ty, // isa
1593 PtrToInt8Ty, // super_class
1594 PtrToInt8Ty, // name
1595 LongTy, // version
1596 LongTy, // info
1597 LongTy, // instance_size
1598 IVars->getType(), // ivars
1599 Methods->getType(), // methods
1600 // These are all filled in by the runtime, so we pretend
1601 PtrTy, // dtable
1602 PtrTy, // subclass_list
1603 PtrTy, // sibling_class
1604 PtrTy, // protocols
1605 PtrTy, // gc_object_type
1606 // New ABI:
1607 LongTy, // abi_version
1608 IvarOffsets->getType(), // ivar_offsets
1609 Properties->getType(), // properties
1610 IntPtrTy, // strong_pointers
1611 IntPtrTy, // weak_pointers
1612 nullptr);
1613 llvm::Constant *Zero = llvm::ConstantInt::get(LongTy, 0);
1614 // Fill in the structure
1615 std::vector<llvm::Constant*> Elements;
1616 Elements.push_back(llvm::ConstantExpr::getBitCast(MetaClass, PtrToInt8Ty));
1617 Elements.push_back(SuperClass);
1618 Elements.push_back(MakeConstantString(Name, ".class_name"));
1619 Elements.push_back(Zero);
1620 Elements.push_back(llvm::ConstantInt::get(LongTy, info));
1621 if (isMeta) {
1622 llvm::DataLayout td(&TheModule);
1623 Elements.push_back(
1624 llvm::ConstantInt::get(LongTy,
1625 td.getTypeSizeInBits(ClassTy) /
1626 CGM.getContext().getCharWidth()));
1627 } else
1628 Elements.push_back(InstanceSize);
1629 Elements.push_back(IVars);
1630 Elements.push_back(Methods);
1631 Elements.push_back(NULLPtr);
1632 Elements.push_back(NULLPtr);
1633 Elements.push_back(NULLPtr);
1634 Elements.push_back(llvm::ConstantExpr::getBitCast(Protocols, PtrTy));
1635 Elements.push_back(NULLPtr);
1636 Elements.push_back(llvm::ConstantInt::get(LongTy, 1));
1637 Elements.push_back(IvarOffsets);
1638 Elements.push_back(Properties);
1639 Elements.push_back(StrongIvarBitmap);
1640 Elements.push_back(WeakIvarBitmap);
1641 // Create an instance of the structure
1642 // This is now an externally visible symbol, so that we can speed up class
1643 // messages in the next ABI. We may already have some weak references to
1644 // this, so check and fix them properly.
1645 std::string ClassSym((isMeta ? "_OBJC_METACLASS_": "_OBJC_CLASS_") +
1646 std::string(Name));
1647 llvm::GlobalVariable *ClassRef = TheModule.getNamedGlobal(ClassSym);
1648 llvm::Constant *Class = MakeGlobal(ClassTy, Elements, ClassSym,
1649 llvm::GlobalValue::ExternalLinkage);
1650 if (ClassRef) {
1651 ClassRef->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(Class,
1652 ClassRef->getType()));
1653 ClassRef->removeFromParent();
1654 Class->setName(ClassSym);
1655 }
1656 return Class;
1657 }
1658
1659 llvm::Constant *CGObjCGNU::
GenerateProtocolMethodList(ArrayRef<llvm::Constant * > MethodNames,ArrayRef<llvm::Constant * > MethodTypes)1660 GenerateProtocolMethodList(ArrayRef<llvm::Constant *> MethodNames,
1661 ArrayRef<llvm::Constant *> MethodTypes) {
1662 // Get the method structure type.
1663 llvm::StructType *ObjCMethodDescTy = llvm::StructType::get(
1664 PtrToInt8Ty, // Really a selector, but the runtime does the casting for us.
1665 PtrToInt8Ty,
1666 nullptr);
1667 std::vector<llvm::Constant*> Methods;
1668 std::vector<llvm::Constant*> Elements;
1669 for (unsigned int i = 0, e = MethodTypes.size() ; i < e ; i++) {
1670 Elements.clear();
1671 Elements.push_back(MethodNames[i]);
1672 Elements.push_back(MethodTypes[i]);
1673 Methods.push_back(llvm::ConstantStruct::get(ObjCMethodDescTy, Elements));
1674 }
1675 llvm::ArrayType *ObjCMethodArrayTy = llvm::ArrayType::get(ObjCMethodDescTy,
1676 MethodNames.size());
1677 llvm::Constant *Array = llvm::ConstantArray::get(ObjCMethodArrayTy,
1678 Methods);
1679 llvm::StructType *ObjCMethodDescListTy = llvm::StructType::get(
1680 IntTy, ObjCMethodArrayTy, nullptr);
1681 Methods.clear();
1682 Methods.push_back(llvm::ConstantInt::get(IntTy, MethodNames.size()));
1683 Methods.push_back(Array);
1684 return MakeGlobal(ObjCMethodDescListTy, Methods, ".objc_method_list");
1685 }
1686
1687 // Create the protocol list structure used in classes, categories and so on
GenerateProtocolList(ArrayRef<std::string> Protocols)1688 llvm::Constant *CGObjCGNU::GenerateProtocolList(ArrayRef<std::string>Protocols){
1689 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
1690 Protocols.size());
1691 llvm::StructType *ProtocolListTy = llvm::StructType::get(
1692 PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1693 SizeTy,
1694 ProtocolArrayTy,
1695 nullptr);
1696 std::vector<llvm::Constant*> Elements;
1697 for (const std::string *iter = Protocols.begin(), *endIter = Protocols.end();
1698 iter != endIter ; iter++) {
1699 llvm::Constant *protocol = nullptr;
1700 llvm::StringMap<llvm::Constant*>::iterator value =
1701 ExistingProtocols.find(*iter);
1702 if (value == ExistingProtocols.end()) {
1703 protocol = GenerateEmptyProtocol(*iter);
1704 } else {
1705 protocol = value->getValue();
1706 }
1707 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(protocol,
1708 PtrToInt8Ty);
1709 Elements.push_back(Ptr);
1710 }
1711 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1712 Elements);
1713 Elements.clear();
1714 Elements.push_back(NULLPtr);
1715 Elements.push_back(llvm::ConstantInt::get(LongTy, Protocols.size()));
1716 Elements.push_back(ProtocolArray);
1717 return MakeGlobal(ProtocolListTy, Elements, ".objc_protocol_list");
1718 }
1719
GenerateProtocolRef(CodeGenFunction & CGF,const ObjCProtocolDecl * PD)1720 llvm::Value *CGObjCGNU::GenerateProtocolRef(CodeGenFunction &CGF,
1721 const ObjCProtocolDecl *PD) {
1722 llvm::Value *protocol = ExistingProtocols[PD->getNameAsString()];
1723 llvm::Type *T =
1724 CGM.getTypes().ConvertType(CGM.getContext().getObjCProtoType());
1725 return CGF.Builder.CreateBitCast(protocol, llvm::PointerType::getUnqual(T));
1726 }
1727
GenerateEmptyProtocol(const std::string & ProtocolName)1728 llvm::Constant *CGObjCGNU::GenerateEmptyProtocol(
1729 const std::string &ProtocolName) {
1730 SmallVector<std::string, 0> EmptyStringVector;
1731 SmallVector<llvm::Constant*, 0> EmptyConstantVector;
1732
1733 llvm::Constant *ProtocolList = GenerateProtocolList(EmptyStringVector);
1734 llvm::Constant *MethodList =
1735 GenerateProtocolMethodList(EmptyConstantVector, EmptyConstantVector);
1736 // Protocols are objects containing lists of the methods implemented and
1737 // protocols adopted.
1738 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1739 PtrToInt8Ty,
1740 ProtocolList->getType(),
1741 MethodList->getType(),
1742 MethodList->getType(),
1743 MethodList->getType(),
1744 MethodList->getType(),
1745 nullptr);
1746 std::vector<llvm::Constant*> Elements;
1747 // The isa pointer must be set to a magic number so the runtime knows it's
1748 // the correct layout.
1749 Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1750 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1751 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1752 Elements.push_back(ProtocolList);
1753 Elements.push_back(MethodList);
1754 Elements.push_back(MethodList);
1755 Elements.push_back(MethodList);
1756 Elements.push_back(MethodList);
1757 return MakeGlobal(ProtocolTy, Elements, ".objc_protocol");
1758 }
1759
GenerateProtocol(const ObjCProtocolDecl * PD)1760 void CGObjCGNU::GenerateProtocol(const ObjCProtocolDecl *PD) {
1761 ASTContext &Context = CGM.getContext();
1762 std::string ProtocolName = PD->getNameAsString();
1763
1764 // Use the protocol definition, if there is one.
1765 if (const ObjCProtocolDecl *Def = PD->getDefinition())
1766 PD = Def;
1767
1768 SmallVector<std::string, 16> Protocols;
1769 for (const auto *PI : PD->protocols())
1770 Protocols.push_back(PI->getNameAsString());
1771 SmallVector<llvm::Constant*, 16> InstanceMethodNames;
1772 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
1773 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodNames;
1774 SmallVector<llvm::Constant*, 16> OptionalInstanceMethodTypes;
1775 for (const auto *I : PD->instance_methods()) {
1776 std::string TypeStr;
1777 Context.getObjCEncodingForMethodDecl(I, TypeStr);
1778 if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1779 OptionalInstanceMethodNames.push_back(
1780 MakeConstantString(I->getSelector().getAsString()));
1781 OptionalInstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1782 } else {
1783 InstanceMethodNames.push_back(
1784 MakeConstantString(I->getSelector().getAsString()));
1785 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
1786 }
1787 }
1788 // Collect information about class methods:
1789 SmallVector<llvm::Constant*, 16> ClassMethodNames;
1790 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
1791 SmallVector<llvm::Constant*, 16> OptionalClassMethodNames;
1792 SmallVector<llvm::Constant*, 16> OptionalClassMethodTypes;
1793 for (const auto *I : PD->class_methods()) {
1794 std::string TypeStr;
1795 Context.getObjCEncodingForMethodDecl(I,TypeStr);
1796 if (I->getImplementationControl() == ObjCMethodDecl::Optional) {
1797 OptionalClassMethodNames.push_back(
1798 MakeConstantString(I->getSelector().getAsString()));
1799 OptionalClassMethodTypes.push_back(MakeConstantString(TypeStr));
1800 } else {
1801 ClassMethodNames.push_back(
1802 MakeConstantString(I->getSelector().getAsString()));
1803 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
1804 }
1805 }
1806
1807 llvm::Constant *ProtocolList = GenerateProtocolList(Protocols);
1808 llvm::Constant *InstanceMethodList =
1809 GenerateProtocolMethodList(InstanceMethodNames, InstanceMethodTypes);
1810 llvm::Constant *ClassMethodList =
1811 GenerateProtocolMethodList(ClassMethodNames, ClassMethodTypes);
1812 llvm::Constant *OptionalInstanceMethodList =
1813 GenerateProtocolMethodList(OptionalInstanceMethodNames,
1814 OptionalInstanceMethodTypes);
1815 llvm::Constant *OptionalClassMethodList =
1816 GenerateProtocolMethodList(OptionalClassMethodNames,
1817 OptionalClassMethodTypes);
1818
1819 // Property metadata: name, attributes, isSynthesized, setter name, setter
1820 // types, getter name, getter types.
1821 // The isSynthesized value is always set to 0 in a protocol. It exists to
1822 // simplify the runtime library by allowing it to use the same data
1823 // structures for protocol metadata everywhere.
1824 llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
1825 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
1826 PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
1827 std::vector<llvm::Constant*> Properties;
1828 std::vector<llvm::Constant*> OptionalProperties;
1829
1830 // Add all of the property methods need adding to the method list and to the
1831 // property metadata list.
1832 for (auto *property : PD->properties()) {
1833 std::vector<llvm::Constant*> Fields;
1834
1835 Fields.push_back(MakePropertyEncodingString(property, nullptr));
1836 PushPropertyAttributes(Fields, property);
1837
1838 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
1839 std::string TypeStr;
1840 Context.getObjCEncodingForMethodDecl(getter,TypeStr);
1841 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1842 InstanceMethodTypes.push_back(TypeEncoding);
1843 Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
1844 Fields.push_back(TypeEncoding);
1845 } else {
1846 Fields.push_back(NULLPtr);
1847 Fields.push_back(NULLPtr);
1848 }
1849 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
1850 std::string TypeStr;
1851 Context.getObjCEncodingForMethodDecl(setter,TypeStr);
1852 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
1853 InstanceMethodTypes.push_back(TypeEncoding);
1854 Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
1855 Fields.push_back(TypeEncoding);
1856 } else {
1857 Fields.push_back(NULLPtr);
1858 Fields.push_back(NULLPtr);
1859 }
1860 if (property->getPropertyImplementation() == ObjCPropertyDecl::Optional) {
1861 OptionalProperties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1862 } else {
1863 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
1864 }
1865 }
1866 llvm::Constant *PropertyArray = llvm::ConstantArray::get(
1867 llvm::ArrayType::get(PropertyMetadataTy, Properties.size()), Properties);
1868 llvm::Constant* PropertyListInitFields[] =
1869 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
1870
1871 llvm::Constant *PropertyListInit =
1872 llvm::ConstantStruct::getAnon(PropertyListInitFields);
1873 llvm::Constant *PropertyList = new llvm::GlobalVariable(TheModule,
1874 PropertyListInit->getType(), false, llvm::GlobalValue::InternalLinkage,
1875 PropertyListInit, ".objc_property_list");
1876
1877 llvm::Constant *OptionalPropertyArray =
1878 llvm::ConstantArray::get(llvm::ArrayType::get(PropertyMetadataTy,
1879 OptionalProperties.size()) , OptionalProperties);
1880 llvm::Constant* OptionalPropertyListInitFields[] = {
1881 llvm::ConstantInt::get(IntTy, OptionalProperties.size()), NULLPtr,
1882 OptionalPropertyArray };
1883
1884 llvm::Constant *OptionalPropertyListInit =
1885 llvm::ConstantStruct::getAnon(OptionalPropertyListInitFields);
1886 llvm::Constant *OptionalPropertyList = new llvm::GlobalVariable(TheModule,
1887 OptionalPropertyListInit->getType(), false,
1888 llvm::GlobalValue::InternalLinkage, OptionalPropertyListInit,
1889 ".objc_property_list");
1890
1891 // Protocols are objects containing lists of the methods implemented and
1892 // protocols adopted.
1893 llvm::StructType *ProtocolTy = llvm::StructType::get(IdTy,
1894 PtrToInt8Ty,
1895 ProtocolList->getType(),
1896 InstanceMethodList->getType(),
1897 ClassMethodList->getType(),
1898 OptionalInstanceMethodList->getType(),
1899 OptionalClassMethodList->getType(),
1900 PropertyList->getType(),
1901 OptionalPropertyList->getType(),
1902 nullptr);
1903 std::vector<llvm::Constant*> Elements;
1904 // The isa pointer must be set to a magic number so the runtime knows it's
1905 // the correct layout.
1906 Elements.push_back(llvm::ConstantExpr::getIntToPtr(
1907 llvm::ConstantInt::get(Int32Ty, ProtocolVersion), IdTy));
1908 Elements.push_back(MakeConstantString(ProtocolName, ".objc_protocol_name"));
1909 Elements.push_back(ProtocolList);
1910 Elements.push_back(InstanceMethodList);
1911 Elements.push_back(ClassMethodList);
1912 Elements.push_back(OptionalInstanceMethodList);
1913 Elements.push_back(OptionalClassMethodList);
1914 Elements.push_back(PropertyList);
1915 Elements.push_back(OptionalPropertyList);
1916 ExistingProtocols[ProtocolName] =
1917 llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolTy, Elements,
1918 ".objc_protocol"), IdTy);
1919 }
GenerateProtocolHolderCategory()1920 void CGObjCGNU::GenerateProtocolHolderCategory() {
1921 // Collect information about instance methods
1922 SmallVector<Selector, 1> MethodSels;
1923 SmallVector<llvm::Constant*, 1> MethodTypes;
1924
1925 std::vector<llvm::Constant*> Elements;
1926 const std::string ClassName = "__ObjC_Protocol_Holder_Ugly_Hack";
1927 const std::string CategoryName = "AnotherHack";
1928 Elements.push_back(MakeConstantString(CategoryName));
1929 Elements.push_back(MakeConstantString(ClassName));
1930 // Instance method list
1931 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1932 ClassName, CategoryName, MethodSels, MethodTypes, false), PtrTy));
1933 // Class method list
1934 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
1935 ClassName, CategoryName, MethodSels, MethodTypes, true), PtrTy));
1936 // Protocol list
1937 llvm::ArrayType *ProtocolArrayTy = llvm::ArrayType::get(PtrTy,
1938 ExistingProtocols.size());
1939 llvm::StructType *ProtocolListTy = llvm::StructType::get(
1940 PtrTy, //Should be a recurisve pointer, but it's always NULL here.
1941 SizeTy,
1942 ProtocolArrayTy,
1943 nullptr);
1944 std::vector<llvm::Constant*> ProtocolElements;
1945 for (llvm::StringMapIterator<llvm::Constant*> iter =
1946 ExistingProtocols.begin(), endIter = ExistingProtocols.end();
1947 iter != endIter ; iter++) {
1948 llvm::Constant *Ptr = llvm::ConstantExpr::getBitCast(iter->getValue(),
1949 PtrTy);
1950 ProtocolElements.push_back(Ptr);
1951 }
1952 llvm::Constant * ProtocolArray = llvm::ConstantArray::get(ProtocolArrayTy,
1953 ProtocolElements);
1954 ProtocolElements.clear();
1955 ProtocolElements.push_back(NULLPtr);
1956 ProtocolElements.push_back(llvm::ConstantInt::get(LongTy,
1957 ExistingProtocols.size()));
1958 ProtocolElements.push_back(ProtocolArray);
1959 Elements.push_back(llvm::ConstantExpr::getBitCast(MakeGlobal(ProtocolListTy,
1960 ProtocolElements, ".objc_protocol_list"), PtrTy));
1961 Categories.push_back(llvm::ConstantExpr::getBitCast(
1962 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
1963 PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
1964 }
1965
1966 /// Libobjc2 uses a bitfield representation where small(ish) bitfields are
1967 /// stored in a 64-bit value with the low bit set to 1 and the remaining 63
1968 /// bits set to their values, LSB first, while larger ones are stored in a
1969 /// structure of this / form:
1970 ///
1971 /// struct { int32_t length; int32_t values[length]; };
1972 ///
1973 /// The values in the array are stored in host-endian format, with the least
1974 /// significant bit being assumed to come first in the bitfield. Therefore, a
1975 /// bitfield with the 64th bit set will be (int64_t)&{ 2, [0, 1<<31] }, while a
1976 /// bitfield / with the 63rd bit set will be 1<<64.
MakeBitField(ArrayRef<bool> bits)1977 llvm::Constant *CGObjCGNU::MakeBitField(ArrayRef<bool> bits) {
1978 int bitCount = bits.size();
1979 int ptrBits = CGM.getDataLayout().getPointerSizeInBits();
1980 if (bitCount < ptrBits) {
1981 uint64_t val = 1;
1982 for (int i=0 ; i<bitCount ; ++i) {
1983 if (bits[i]) val |= 1ULL<<(i+1);
1984 }
1985 return llvm::ConstantInt::get(IntPtrTy, val);
1986 }
1987 SmallVector<llvm::Constant *, 8> values;
1988 int v=0;
1989 while (v < bitCount) {
1990 int32_t word = 0;
1991 for (int i=0 ; (i<32) && (v<bitCount) ; ++i) {
1992 if (bits[v]) word |= 1<<i;
1993 v++;
1994 }
1995 values.push_back(llvm::ConstantInt::get(Int32Ty, word));
1996 }
1997 llvm::ArrayType *arrayTy = llvm::ArrayType::get(Int32Ty, values.size());
1998 llvm::Constant *array = llvm::ConstantArray::get(arrayTy, values);
1999 llvm::Constant *fields[2] = {
2000 llvm::ConstantInt::get(Int32Ty, values.size()),
2001 array };
2002 llvm::Constant *GS = MakeGlobal(llvm::StructType::get(Int32Ty, arrayTy,
2003 nullptr), fields);
2004 llvm::Constant *ptr = llvm::ConstantExpr::getPtrToInt(GS, IntPtrTy);
2005 return ptr;
2006 }
2007
GenerateCategory(const ObjCCategoryImplDecl * OCD)2008 void CGObjCGNU::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
2009 std::string ClassName = OCD->getClassInterface()->getNameAsString();
2010 std::string CategoryName = OCD->getNameAsString();
2011 // Collect information about instance methods
2012 SmallVector<Selector, 16> InstanceMethodSels;
2013 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2014 for (const auto *I : OCD->instance_methods()) {
2015 InstanceMethodSels.push_back(I->getSelector());
2016 std::string TypeStr;
2017 CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2018 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2019 }
2020
2021 // Collect information about class methods
2022 SmallVector<Selector, 16> ClassMethodSels;
2023 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2024 for (const auto *I : OCD->class_methods()) {
2025 ClassMethodSels.push_back(I->getSelector());
2026 std::string TypeStr;
2027 CGM.getContext().getObjCEncodingForMethodDecl(I,TypeStr);
2028 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2029 }
2030
2031 // Collect the names of referenced protocols
2032 SmallVector<std::string, 16> Protocols;
2033 const ObjCCategoryDecl *CatDecl = OCD->getCategoryDecl();
2034 const ObjCList<ObjCProtocolDecl> &Protos = CatDecl->getReferencedProtocols();
2035 for (ObjCList<ObjCProtocolDecl>::iterator I = Protos.begin(),
2036 E = Protos.end(); I != E; ++I)
2037 Protocols.push_back((*I)->getNameAsString());
2038
2039 std::vector<llvm::Constant*> Elements;
2040 Elements.push_back(MakeConstantString(CategoryName));
2041 Elements.push_back(MakeConstantString(ClassName));
2042 // Instance method list
2043 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2044 ClassName, CategoryName, InstanceMethodSels, InstanceMethodTypes,
2045 false), PtrTy));
2046 // Class method list
2047 Elements.push_back(llvm::ConstantExpr::getBitCast(GenerateMethodList(
2048 ClassName, CategoryName, ClassMethodSels, ClassMethodTypes, true),
2049 PtrTy));
2050 // Protocol list
2051 Elements.push_back(llvm::ConstantExpr::getBitCast(
2052 GenerateProtocolList(Protocols), PtrTy));
2053 Categories.push_back(llvm::ConstantExpr::getBitCast(
2054 MakeGlobal(llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty,
2055 PtrTy, PtrTy, PtrTy, nullptr), Elements), PtrTy));
2056 }
2057
GeneratePropertyList(const ObjCImplementationDecl * OID,SmallVectorImpl<Selector> & InstanceMethodSels,SmallVectorImpl<llvm::Constant * > & InstanceMethodTypes)2058 llvm::Constant *CGObjCGNU::GeneratePropertyList(const ObjCImplementationDecl *OID,
2059 SmallVectorImpl<Selector> &InstanceMethodSels,
2060 SmallVectorImpl<llvm::Constant*> &InstanceMethodTypes) {
2061 ASTContext &Context = CGM.getContext();
2062 // Property metadata: name, attributes, attributes2, padding1, padding2,
2063 // setter name, setter types, getter name, getter types.
2064 llvm::StructType *PropertyMetadataTy = llvm::StructType::get(
2065 PtrToInt8Ty, Int8Ty, Int8Ty, Int8Ty, Int8Ty, PtrToInt8Ty,
2066 PtrToInt8Ty, PtrToInt8Ty, PtrToInt8Ty, nullptr);
2067 std::vector<llvm::Constant*> Properties;
2068
2069 // Add all of the property methods need adding to the method list and to the
2070 // property metadata list.
2071 for (auto *propertyImpl : OID->property_impls()) {
2072 std::vector<llvm::Constant*> Fields;
2073 ObjCPropertyDecl *property = propertyImpl->getPropertyDecl();
2074 bool isSynthesized = (propertyImpl->getPropertyImplementation() ==
2075 ObjCPropertyImplDecl::Synthesize);
2076 bool isDynamic = (propertyImpl->getPropertyImplementation() ==
2077 ObjCPropertyImplDecl::Dynamic);
2078
2079 Fields.push_back(MakePropertyEncodingString(property, OID));
2080 PushPropertyAttributes(Fields, property, isSynthesized, isDynamic);
2081 if (ObjCMethodDecl *getter = property->getGetterMethodDecl()) {
2082 std::string TypeStr;
2083 Context.getObjCEncodingForMethodDecl(getter,TypeStr);
2084 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2085 if (isSynthesized) {
2086 InstanceMethodTypes.push_back(TypeEncoding);
2087 InstanceMethodSels.push_back(getter->getSelector());
2088 }
2089 Fields.push_back(MakeConstantString(getter->getSelector().getAsString()));
2090 Fields.push_back(TypeEncoding);
2091 } else {
2092 Fields.push_back(NULLPtr);
2093 Fields.push_back(NULLPtr);
2094 }
2095 if (ObjCMethodDecl *setter = property->getSetterMethodDecl()) {
2096 std::string TypeStr;
2097 Context.getObjCEncodingForMethodDecl(setter,TypeStr);
2098 llvm::Constant *TypeEncoding = MakeConstantString(TypeStr);
2099 if (isSynthesized) {
2100 InstanceMethodTypes.push_back(TypeEncoding);
2101 InstanceMethodSels.push_back(setter->getSelector());
2102 }
2103 Fields.push_back(MakeConstantString(setter->getSelector().getAsString()));
2104 Fields.push_back(TypeEncoding);
2105 } else {
2106 Fields.push_back(NULLPtr);
2107 Fields.push_back(NULLPtr);
2108 }
2109 Properties.push_back(llvm::ConstantStruct::get(PropertyMetadataTy, Fields));
2110 }
2111 llvm::ArrayType *PropertyArrayTy =
2112 llvm::ArrayType::get(PropertyMetadataTy, Properties.size());
2113 llvm::Constant *PropertyArray = llvm::ConstantArray::get(PropertyArrayTy,
2114 Properties);
2115 llvm::Constant* PropertyListInitFields[] =
2116 {llvm::ConstantInt::get(IntTy, Properties.size()), NULLPtr, PropertyArray};
2117
2118 llvm::Constant *PropertyListInit =
2119 llvm::ConstantStruct::getAnon(PropertyListInitFields);
2120 return new llvm::GlobalVariable(TheModule, PropertyListInit->getType(), false,
2121 llvm::GlobalValue::InternalLinkage, PropertyListInit,
2122 ".objc_property_list");
2123 }
2124
RegisterAlias(const ObjCCompatibleAliasDecl * OAD)2125 void CGObjCGNU::RegisterAlias(const ObjCCompatibleAliasDecl *OAD) {
2126 // Get the class declaration for which the alias is specified.
2127 ObjCInterfaceDecl *ClassDecl =
2128 const_cast<ObjCInterfaceDecl *>(OAD->getClassInterface());
2129 std::string ClassName = ClassDecl->getNameAsString();
2130 std::string AliasName = OAD->getNameAsString();
2131 ClassAliases.push_back(ClassAliasPair(ClassName,AliasName));
2132 }
2133
GenerateClass(const ObjCImplementationDecl * OID)2134 void CGObjCGNU::GenerateClass(const ObjCImplementationDecl *OID) {
2135 ASTContext &Context = CGM.getContext();
2136
2137 // Get the superclass name.
2138 const ObjCInterfaceDecl * SuperClassDecl =
2139 OID->getClassInterface()->getSuperClass();
2140 std::string SuperClassName;
2141 if (SuperClassDecl) {
2142 SuperClassName = SuperClassDecl->getNameAsString();
2143 EmitClassRef(SuperClassName);
2144 }
2145
2146 // Get the class name
2147 ObjCInterfaceDecl *ClassDecl =
2148 const_cast<ObjCInterfaceDecl *>(OID->getClassInterface());
2149 std::string ClassName = ClassDecl->getNameAsString();
2150 // Emit the symbol that is used to generate linker errors if this class is
2151 // referenced in other modules but not declared.
2152 std::string classSymbolName = "__objc_class_name_" + ClassName;
2153 if (llvm::GlobalVariable *symbol =
2154 TheModule.getGlobalVariable(classSymbolName)) {
2155 symbol->setInitializer(llvm::ConstantInt::get(LongTy, 0));
2156 } else {
2157 new llvm::GlobalVariable(TheModule, LongTy, false,
2158 llvm::GlobalValue::ExternalLinkage, llvm::ConstantInt::get(LongTy, 0),
2159 classSymbolName);
2160 }
2161
2162 // Get the size of instances.
2163 int instanceSize =
2164 Context.getASTObjCImplementationLayout(OID).getSize().getQuantity();
2165
2166 // Collect information about instance variables.
2167 SmallVector<llvm::Constant*, 16> IvarNames;
2168 SmallVector<llvm::Constant*, 16> IvarTypes;
2169 SmallVector<llvm::Constant*, 16> IvarOffsets;
2170
2171 std::vector<llvm::Constant*> IvarOffsetValues;
2172 SmallVector<bool, 16> WeakIvars;
2173 SmallVector<bool, 16> StrongIvars;
2174
2175 int superInstanceSize = !SuperClassDecl ? 0 :
2176 Context.getASTObjCInterfaceLayout(SuperClassDecl).getSize().getQuantity();
2177 // For non-fragile ivars, set the instance size to 0 - {the size of just this
2178 // class}. The runtime will then set this to the correct value on load.
2179 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2180 instanceSize = 0 - (instanceSize - superInstanceSize);
2181 }
2182
2183 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2184 IVD = IVD->getNextIvar()) {
2185 // Store the name
2186 IvarNames.push_back(MakeConstantString(IVD->getNameAsString()));
2187 // Get the type encoding for this ivar
2188 std::string TypeStr;
2189 Context.getObjCEncodingForType(IVD->getType(), TypeStr);
2190 IvarTypes.push_back(MakeConstantString(TypeStr));
2191 // Get the offset
2192 uint64_t BaseOffset = ComputeIvarBaseOffset(CGM, OID, IVD);
2193 uint64_t Offset = BaseOffset;
2194 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2195 Offset = BaseOffset - superInstanceSize;
2196 }
2197 llvm::Constant *OffsetValue = llvm::ConstantInt::get(IntTy, Offset);
2198 // Create the direct offset value
2199 std::string OffsetName = "__objc_ivar_offset_value_" + ClassName +"." +
2200 IVD->getNameAsString();
2201 llvm::GlobalVariable *OffsetVar = TheModule.getGlobalVariable(OffsetName);
2202 if (OffsetVar) {
2203 OffsetVar->setInitializer(OffsetValue);
2204 // If this is the real definition, change its linkage type so that
2205 // different modules will use this one, rather than their private
2206 // copy.
2207 OffsetVar->setLinkage(llvm::GlobalValue::ExternalLinkage);
2208 } else
2209 OffsetVar = new llvm::GlobalVariable(TheModule, IntTy,
2210 false, llvm::GlobalValue::ExternalLinkage,
2211 OffsetValue,
2212 "__objc_ivar_offset_value_" + ClassName +"." +
2213 IVD->getNameAsString());
2214 IvarOffsets.push_back(OffsetValue);
2215 IvarOffsetValues.push_back(OffsetVar);
2216 Qualifiers::ObjCLifetime lt = IVD->getType().getQualifiers().getObjCLifetime();
2217 switch (lt) {
2218 case Qualifiers::OCL_Strong:
2219 StrongIvars.push_back(true);
2220 WeakIvars.push_back(false);
2221 break;
2222 case Qualifiers::OCL_Weak:
2223 StrongIvars.push_back(false);
2224 WeakIvars.push_back(true);
2225 break;
2226 default:
2227 StrongIvars.push_back(false);
2228 WeakIvars.push_back(false);
2229 }
2230 }
2231 llvm::Constant *StrongIvarBitmap = MakeBitField(StrongIvars);
2232 llvm::Constant *WeakIvarBitmap = MakeBitField(WeakIvars);
2233 llvm::GlobalVariable *IvarOffsetArray =
2234 MakeGlobalArray(PtrToIntTy, IvarOffsetValues, ".ivar.offsets");
2235
2236
2237 // Collect information about instance methods
2238 SmallVector<Selector, 16> InstanceMethodSels;
2239 SmallVector<llvm::Constant*, 16> InstanceMethodTypes;
2240 for (const auto *I : OID->instance_methods()) {
2241 InstanceMethodSels.push_back(I->getSelector());
2242 std::string TypeStr;
2243 Context.getObjCEncodingForMethodDecl(I,TypeStr);
2244 InstanceMethodTypes.push_back(MakeConstantString(TypeStr));
2245 }
2246
2247 llvm::Constant *Properties = GeneratePropertyList(OID, InstanceMethodSels,
2248 InstanceMethodTypes);
2249
2250
2251 // Collect information about class methods
2252 SmallVector<Selector, 16> ClassMethodSels;
2253 SmallVector<llvm::Constant*, 16> ClassMethodTypes;
2254 for (const auto *I : OID->class_methods()) {
2255 ClassMethodSels.push_back(I->getSelector());
2256 std::string TypeStr;
2257 Context.getObjCEncodingForMethodDecl(I,TypeStr);
2258 ClassMethodTypes.push_back(MakeConstantString(TypeStr));
2259 }
2260 // Collect the names of referenced protocols
2261 SmallVector<std::string, 16> Protocols;
2262 for (const auto *I : ClassDecl->protocols())
2263 Protocols.push_back(I->getNameAsString());
2264
2265 // Get the superclass pointer.
2266 llvm::Constant *SuperClass;
2267 if (!SuperClassName.empty()) {
2268 SuperClass = MakeConstantString(SuperClassName, ".super_class_name");
2269 } else {
2270 SuperClass = llvm::ConstantPointerNull::get(PtrToInt8Ty);
2271 }
2272 // Empty vector used to construct empty method lists
2273 SmallVector<llvm::Constant*, 1> empty;
2274 // Generate the method and instance variable lists
2275 llvm::Constant *MethodList = GenerateMethodList(ClassName, "",
2276 InstanceMethodSels, InstanceMethodTypes, false);
2277 llvm::Constant *ClassMethodList = GenerateMethodList(ClassName, "",
2278 ClassMethodSels, ClassMethodTypes, true);
2279 llvm::Constant *IvarList = GenerateIvarList(IvarNames, IvarTypes,
2280 IvarOffsets);
2281 // Irrespective of whether we are compiling for a fragile or non-fragile ABI,
2282 // we emit a symbol containing the offset for each ivar in the class. This
2283 // allows code compiled for the non-Fragile ABI to inherit from code compiled
2284 // for the legacy ABI, without causing problems. The converse is also
2285 // possible, but causes all ivar accesses to be fragile.
2286
2287 // Offset pointer for getting at the correct field in the ivar list when
2288 // setting up the alias. These are: The base address for the global, the
2289 // ivar array (second field), the ivar in this list (set for each ivar), and
2290 // the offset (third field in ivar structure)
2291 llvm::Type *IndexTy = Int32Ty;
2292 llvm::Constant *offsetPointerIndexes[] = {Zeros[0],
2293 llvm::ConstantInt::get(IndexTy, 1), nullptr,
2294 llvm::ConstantInt::get(IndexTy, 2) };
2295
2296 unsigned ivarIndex = 0;
2297 for (const ObjCIvarDecl *IVD = ClassDecl->all_declared_ivar_begin(); IVD;
2298 IVD = IVD->getNextIvar()) {
2299 const std::string Name = "__objc_ivar_offset_" + ClassName + '.'
2300 + IVD->getNameAsString();
2301 offsetPointerIndexes[2] = llvm::ConstantInt::get(IndexTy, ivarIndex);
2302 // Get the correct ivar field
2303 llvm::Constant *offsetValue = llvm::ConstantExpr::getGetElementPtr(
2304 cast<llvm::GlobalVariable>(IvarList)->getValueType(), IvarList,
2305 offsetPointerIndexes);
2306 // Get the existing variable, if one exists.
2307 llvm::GlobalVariable *offset = TheModule.getNamedGlobal(Name);
2308 if (offset) {
2309 offset->setInitializer(offsetValue);
2310 // If this is the real definition, change its linkage type so that
2311 // different modules will use this one, rather than their private
2312 // copy.
2313 offset->setLinkage(llvm::GlobalValue::ExternalLinkage);
2314 } else {
2315 // Add a new alias if there isn't one already.
2316 offset = new llvm::GlobalVariable(TheModule, offsetValue->getType(),
2317 false, llvm::GlobalValue::ExternalLinkage, offsetValue, Name);
2318 (void) offset; // Silence dead store warning.
2319 }
2320 ++ivarIndex;
2321 }
2322 llvm::Constant *ZeroPtr = llvm::ConstantInt::get(IntPtrTy, 0);
2323 //Generate metaclass for class methods
2324 llvm::Constant *MetaClassStruct = GenerateClassStructure(NULLPtr,
2325 NULLPtr, 0x12L, ClassName.c_str(), nullptr, Zeros[0], GenerateIvarList(
2326 empty, empty, empty), ClassMethodList, NULLPtr,
2327 NULLPtr, NULLPtr, ZeroPtr, ZeroPtr, true);
2328
2329 // Generate the class structure
2330 llvm::Constant *ClassStruct =
2331 GenerateClassStructure(MetaClassStruct, SuperClass, 0x11L,
2332 ClassName.c_str(), nullptr,
2333 llvm::ConstantInt::get(LongTy, instanceSize), IvarList,
2334 MethodList, GenerateProtocolList(Protocols), IvarOffsetArray,
2335 Properties, StrongIvarBitmap, WeakIvarBitmap);
2336
2337 // Resolve the class aliases, if they exist.
2338 if (ClassPtrAlias) {
2339 ClassPtrAlias->replaceAllUsesWith(
2340 llvm::ConstantExpr::getBitCast(ClassStruct, IdTy));
2341 ClassPtrAlias->eraseFromParent();
2342 ClassPtrAlias = nullptr;
2343 }
2344 if (MetaClassPtrAlias) {
2345 MetaClassPtrAlias->replaceAllUsesWith(
2346 llvm::ConstantExpr::getBitCast(MetaClassStruct, IdTy));
2347 MetaClassPtrAlias->eraseFromParent();
2348 MetaClassPtrAlias = nullptr;
2349 }
2350
2351 // Add class structure to list to be added to the symtab later
2352 ClassStruct = llvm::ConstantExpr::getBitCast(ClassStruct, PtrToInt8Ty);
2353 Classes.push_back(ClassStruct);
2354 }
2355
2356
ModuleInitFunction()2357 llvm::Function *CGObjCGNU::ModuleInitFunction() {
2358 // Only emit an ObjC load function if no Objective-C stuff has been called
2359 if (Classes.empty() && Categories.empty() && ConstantStrings.empty() &&
2360 ExistingProtocols.empty() && SelectorTable.empty())
2361 return nullptr;
2362
2363 // Add all referenced protocols to a category.
2364 GenerateProtocolHolderCategory();
2365
2366 llvm::StructType *SelStructTy = dyn_cast<llvm::StructType>(
2367 SelectorTy->getElementType());
2368 llvm::Type *SelStructPtrTy = SelectorTy;
2369 if (!SelStructTy) {
2370 SelStructTy = llvm::StructType::get(PtrToInt8Ty, PtrToInt8Ty, nullptr);
2371 SelStructPtrTy = llvm::PointerType::getUnqual(SelStructTy);
2372 }
2373
2374 std::vector<llvm::Constant*> Elements;
2375 llvm::Constant *Statics = NULLPtr;
2376 // Generate statics list:
2377 if (!ConstantStrings.empty()) {
2378 llvm::ArrayType *StaticsArrayTy = llvm::ArrayType::get(PtrToInt8Ty,
2379 ConstantStrings.size() + 1);
2380 ConstantStrings.push_back(NULLPtr);
2381
2382 StringRef StringClass = CGM.getLangOpts().ObjCConstantStringClass;
2383
2384 if (StringClass.empty()) StringClass = "NXConstantString";
2385
2386 Elements.push_back(MakeConstantString(StringClass,
2387 ".objc_static_class_name"));
2388 Elements.push_back(llvm::ConstantArray::get(StaticsArrayTy,
2389 ConstantStrings));
2390 llvm::StructType *StaticsListTy =
2391 llvm::StructType::get(PtrToInt8Ty, StaticsArrayTy, nullptr);
2392 llvm::Type *StaticsListPtrTy =
2393 llvm::PointerType::getUnqual(StaticsListTy);
2394 Statics = MakeGlobal(StaticsListTy, Elements, ".objc_statics");
2395 llvm::ArrayType *StaticsListArrayTy =
2396 llvm::ArrayType::get(StaticsListPtrTy, 2);
2397 Elements.clear();
2398 Elements.push_back(Statics);
2399 Elements.push_back(llvm::Constant::getNullValue(StaticsListPtrTy));
2400 Statics = MakeGlobal(StaticsListArrayTy, Elements, ".objc_statics_ptr");
2401 Statics = llvm::ConstantExpr::getBitCast(Statics, PtrTy);
2402 }
2403 // Array of classes, categories, and constant objects
2404 llvm::ArrayType *ClassListTy = llvm::ArrayType::get(PtrToInt8Ty,
2405 Classes.size() + Categories.size() + 2);
2406 llvm::StructType *SymTabTy = llvm::StructType::get(LongTy, SelStructPtrTy,
2407 llvm::Type::getInt16Ty(VMContext),
2408 llvm::Type::getInt16Ty(VMContext),
2409 ClassListTy, nullptr);
2410
2411 Elements.clear();
2412 // Pointer to an array of selectors used in this module.
2413 std::vector<llvm::Constant*> Selectors;
2414 std::vector<llvm::GlobalAlias*> SelectorAliases;
2415 for (SelectorMap::iterator iter = SelectorTable.begin(),
2416 iterEnd = SelectorTable.end(); iter != iterEnd ; ++iter) {
2417
2418 std::string SelNameStr = iter->first.getAsString();
2419 llvm::Constant *SelName = ExportUniqueString(SelNameStr, ".objc_sel_name");
2420
2421 SmallVectorImpl<TypedSelector> &Types = iter->second;
2422 for (SmallVectorImpl<TypedSelector>::iterator i = Types.begin(),
2423 e = Types.end() ; i!=e ; i++) {
2424
2425 llvm::Constant *SelectorTypeEncoding = NULLPtr;
2426 if (!i->first.empty())
2427 SelectorTypeEncoding = MakeConstantString(i->first, ".objc_sel_types");
2428
2429 Elements.push_back(SelName);
2430 Elements.push_back(SelectorTypeEncoding);
2431 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2432 Elements.clear();
2433
2434 // Store the selector alias for later replacement
2435 SelectorAliases.push_back(i->second);
2436 }
2437 }
2438 unsigned SelectorCount = Selectors.size();
2439 // NULL-terminate the selector list. This should not actually be required,
2440 // because the selector list has a length field. Unfortunately, the GCC
2441 // runtime decides to ignore the length field and expects a NULL terminator,
2442 // and GCC cooperates with this by always setting the length to 0.
2443 Elements.push_back(NULLPtr);
2444 Elements.push_back(NULLPtr);
2445 Selectors.push_back(llvm::ConstantStruct::get(SelStructTy, Elements));
2446 Elements.clear();
2447
2448 // Number of static selectors
2449 Elements.push_back(llvm::ConstantInt::get(LongTy, SelectorCount));
2450 llvm::GlobalVariable *SelectorList =
2451 MakeGlobalArray(SelStructTy, Selectors, ".objc_selector_list");
2452 Elements.push_back(llvm::ConstantExpr::getBitCast(SelectorList,
2453 SelStructPtrTy));
2454
2455 // Now that all of the static selectors exist, create pointers to them.
2456 for (unsigned int i=0 ; i<SelectorCount ; i++) {
2457
2458 llvm::Constant *Idxs[] = {Zeros[0],
2459 llvm::ConstantInt::get(Int32Ty, i), Zeros[0]};
2460 // FIXME: We're generating redundant loads and stores here!
2461 llvm::Constant *SelPtr = llvm::ConstantExpr::getGetElementPtr(
2462 SelectorList->getValueType(), SelectorList, makeArrayRef(Idxs, 2));
2463 // If selectors are defined as an opaque type, cast the pointer to this
2464 // type.
2465 SelPtr = llvm::ConstantExpr::getBitCast(SelPtr, SelectorTy);
2466 SelectorAliases[i]->replaceAllUsesWith(SelPtr);
2467 SelectorAliases[i]->eraseFromParent();
2468 }
2469
2470 // Number of classes defined.
2471 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2472 Classes.size()));
2473 // Number of categories defined
2474 Elements.push_back(llvm::ConstantInt::get(llvm::Type::getInt16Ty(VMContext),
2475 Categories.size()));
2476 // Create an array of classes, then categories, then static object instances
2477 Classes.insert(Classes.end(), Categories.begin(), Categories.end());
2478 // NULL-terminated list of static object instances (mainly constant strings)
2479 Classes.push_back(Statics);
2480 Classes.push_back(NULLPtr);
2481 llvm::Constant *ClassList = llvm::ConstantArray::get(ClassListTy, Classes);
2482 Elements.push_back(ClassList);
2483 // Construct the symbol table
2484 llvm::Constant *SymTab= MakeGlobal(SymTabTy, Elements);
2485
2486 // The symbol table is contained in a module which has some version-checking
2487 // constants
2488 llvm::StructType * ModuleTy = llvm::StructType::get(LongTy, LongTy,
2489 PtrToInt8Ty, llvm::PointerType::getUnqual(SymTabTy),
2490 (RuntimeVersion >= 10) ? IntTy : nullptr, nullptr);
2491 Elements.clear();
2492 // Runtime version, used for ABI compatibility checking.
2493 Elements.push_back(llvm::ConstantInt::get(LongTy, RuntimeVersion));
2494 // sizeof(ModuleTy)
2495 llvm::DataLayout td(&TheModule);
2496 Elements.push_back(
2497 llvm::ConstantInt::get(LongTy,
2498 td.getTypeSizeInBits(ModuleTy) /
2499 CGM.getContext().getCharWidth()));
2500
2501 // The path to the source file where this module was declared
2502 SourceManager &SM = CGM.getContext().getSourceManager();
2503 const FileEntry *mainFile = SM.getFileEntryForID(SM.getMainFileID());
2504 std::string path =
2505 std::string(mainFile->getDir()->getName()) + '/' + mainFile->getName();
2506 Elements.push_back(MakeConstantString(path, ".objc_source_file_name"));
2507 Elements.push_back(SymTab);
2508
2509 if (RuntimeVersion >= 10)
2510 switch (CGM.getLangOpts().getGC()) {
2511 case LangOptions::GCOnly:
2512 Elements.push_back(llvm::ConstantInt::get(IntTy, 2));
2513 break;
2514 case LangOptions::NonGC:
2515 if (CGM.getLangOpts().ObjCAutoRefCount)
2516 Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2517 else
2518 Elements.push_back(llvm::ConstantInt::get(IntTy, 0));
2519 break;
2520 case LangOptions::HybridGC:
2521 Elements.push_back(llvm::ConstantInt::get(IntTy, 1));
2522 break;
2523 }
2524
2525 llvm::Value *Module = MakeGlobal(ModuleTy, Elements);
2526
2527 // Create the load function calling the runtime entry point with the module
2528 // structure
2529 llvm::Function * LoadFunction = llvm::Function::Create(
2530 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false),
2531 llvm::GlobalValue::InternalLinkage, ".objc_load_function",
2532 &TheModule);
2533 llvm::BasicBlock *EntryBB =
2534 llvm::BasicBlock::Create(VMContext, "entry", LoadFunction);
2535 CGBuilderTy Builder(VMContext);
2536 Builder.SetInsertPoint(EntryBB);
2537
2538 llvm::FunctionType *FT =
2539 llvm::FunctionType::get(Builder.getVoidTy(),
2540 llvm::PointerType::getUnqual(ModuleTy), true);
2541 llvm::Value *Register = CGM.CreateRuntimeFunction(FT, "__objc_exec_class");
2542 Builder.CreateCall(Register, Module);
2543
2544 if (!ClassAliases.empty()) {
2545 llvm::Type *ArgTypes[2] = {PtrTy, PtrToInt8Ty};
2546 llvm::FunctionType *RegisterAliasTy =
2547 llvm::FunctionType::get(Builder.getVoidTy(),
2548 ArgTypes, false);
2549 llvm::Function *RegisterAlias = llvm::Function::Create(
2550 RegisterAliasTy,
2551 llvm::GlobalValue::ExternalWeakLinkage, "class_registerAlias_np",
2552 &TheModule);
2553 llvm::BasicBlock *AliasBB =
2554 llvm::BasicBlock::Create(VMContext, "alias", LoadFunction);
2555 llvm::BasicBlock *NoAliasBB =
2556 llvm::BasicBlock::Create(VMContext, "no_alias", LoadFunction);
2557
2558 // Branch based on whether the runtime provided class_registerAlias_np()
2559 llvm::Value *HasRegisterAlias = Builder.CreateICmpNE(RegisterAlias,
2560 llvm::Constant::getNullValue(RegisterAlias->getType()));
2561 Builder.CreateCondBr(HasRegisterAlias, AliasBB, NoAliasBB);
2562
2563 // The true branch (has alias registration function):
2564 Builder.SetInsertPoint(AliasBB);
2565 // Emit alias registration calls:
2566 for (std::vector<ClassAliasPair>::iterator iter = ClassAliases.begin();
2567 iter != ClassAliases.end(); ++iter) {
2568 llvm::Constant *TheClass =
2569 TheModule.getGlobalVariable(("_OBJC_CLASS_" + iter->first).c_str(),
2570 true);
2571 if (TheClass) {
2572 TheClass = llvm::ConstantExpr::getBitCast(TheClass, PtrTy);
2573 Builder.CreateCall2(RegisterAlias, TheClass,
2574 MakeConstantString(iter->second));
2575 }
2576 }
2577 // Jump to end:
2578 Builder.CreateBr(NoAliasBB);
2579
2580 // Missing alias registration function, just return from the function:
2581 Builder.SetInsertPoint(NoAliasBB);
2582 }
2583 Builder.CreateRetVoid();
2584
2585 return LoadFunction;
2586 }
2587
GenerateMethod(const ObjCMethodDecl * OMD,const ObjCContainerDecl * CD)2588 llvm::Function *CGObjCGNU::GenerateMethod(const ObjCMethodDecl *OMD,
2589 const ObjCContainerDecl *CD) {
2590 const ObjCCategoryImplDecl *OCD =
2591 dyn_cast<ObjCCategoryImplDecl>(OMD->getDeclContext());
2592 StringRef CategoryName = OCD ? OCD->getName() : "";
2593 StringRef ClassName = CD->getName();
2594 Selector MethodName = OMD->getSelector();
2595 bool isClassMethod = !OMD->isInstanceMethod();
2596
2597 CodeGenTypes &Types = CGM.getTypes();
2598 llvm::FunctionType *MethodTy =
2599 Types.GetFunctionType(Types.arrangeObjCMethodDeclaration(OMD));
2600 std::string FunctionName = SymbolNameForMethod(ClassName, CategoryName,
2601 MethodName, isClassMethod);
2602
2603 llvm::Function *Method
2604 = llvm::Function::Create(MethodTy,
2605 llvm::GlobalValue::InternalLinkage,
2606 FunctionName,
2607 &TheModule);
2608 return Method;
2609 }
2610
GetPropertyGetFunction()2611 llvm::Constant *CGObjCGNU::GetPropertyGetFunction() {
2612 return GetPropertyFn;
2613 }
2614
GetPropertySetFunction()2615 llvm::Constant *CGObjCGNU::GetPropertySetFunction() {
2616 return SetPropertyFn;
2617 }
2618
GetOptimizedPropertySetFunction(bool atomic,bool copy)2619 llvm::Constant *CGObjCGNU::GetOptimizedPropertySetFunction(bool atomic,
2620 bool copy) {
2621 return nullptr;
2622 }
2623
GetGetStructFunction()2624 llvm::Constant *CGObjCGNU::GetGetStructFunction() {
2625 return GetStructPropertyFn;
2626 }
GetSetStructFunction()2627 llvm::Constant *CGObjCGNU::GetSetStructFunction() {
2628 return SetStructPropertyFn;
2629 }
GetCppAtomicObjectGetFunction()2630 llvm::Constant *CGObjCGNU::GetCppAtomicObjectGetFunction() {
2631 return nullptr;
2632 }
GetCppAtomicObjectSetFunction()2633 llvm::Constant *CGObjCGNU::GetCppAtomicObjectSetFunction() {
2634 return nullptr;
2635 }
2636
EnumerationMutationFunction()2637 llvm::Constant *CGObjCGNU::EnumerationMutationFunction() {
2638 return EnumerationMutationFn;
2639 }
2640
EmitSynchronizedStmt(CodeGenFunction & CGF,const ObjCAtSynchronizedStmt & S)2641 void CGObjCGNU::EmitSynchronizedStmt(CodeGenFunction &CGF,
2642 const ObjCAtSynchronizedStmt &S) {
2643 EmitAtSynchronizedStmt(CGF, S, SyncEnterFn, SyncExitFn);
2644 }
2645
2646
EmitTryStmt(CodeGenFunction & CGF,const ObjCAtTryStmt & S)2647 void CGObjCGNU::EmitTryStmt(CodeGenFunction &CGF,
2648 const ObjCAtTryStmt &S) {
2649 // Unlike the Apple non-fragile runtimes, which also uses
2650 // unwind-based zero cost exceptions, the GNU Objective C runtime's
2651 // EH support isn't a veneer over C++ EH. Instead, exception
2652 // objects are created by objc_exception_throw and destroyed by
2653 // the personality function; this avoids the need for bracketing
2654 // catch handlers with calls to __blah_begin_catch/__blah_end_catch
2655 // (or even _Unwind_DeleteException), but probably doesn't
2656 // interoperate very well with foreign exceptions.
2657 //
2658 // In Objective-C++ mode, we actually emit something equivalent to the C++
2659 // exception handler.
2660 EmitTryCatchStmt(CGF, S, EnterCatchFn, ExitCatchFn, ExceptionReThrowFn);
2661 return ;
2662 }
2663
EmitThrowStmt(CodeGenFunction & CGF,const ObjCAtThrowStmt & S,bool ClearInsertionPoint)2664 void CGObjCGNU::EmitThrowStmt(CodeGenFunction &CGF,
2665 const ObjCAtThrowStmt &S,
2666 bool ClearInsertionPoint) {
2667 llvm::Value *ExceptionAsObject;
2668
2669 if (const Expr *ThrowExpr = S.getThrowExpr()) {
2670 llvm::Value *Exception = CGF.EmitObjCThrowOperand(ThrowExpr);
2671 ExceptionAsObject = Exception;
2672 } else {
2673 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
2674 "Unexpected rethrow outside @catch block.");
2675 ExceptionAsObject = CGF.ObjCEHValueStack.back();
2676 }
2677 ExceptionAsObject = CGF.Builder.CreateBitCast(ExceptionAsObject, IdTy);
2678 llvm::CallSite Throw =
2679 CGF.EmitRuntimeCallOrInvoke(ExceptionThrowFn, ExceptionAsObject);
2680 Throw.setDoesNotReturn();
2681 CGF.Builder.CreateUnreachable();
2682 if (ClearInsertionPoint)
2683 CGF.Builder.ClearInsertionPoint();
2684 }
2685
EmitObjCWeakRead(CodeGenFunction & CGF,llvm::Value * AddrWeakObj)2686 llvm::Value * CGObjCGNU::EmitObjCWeakRead(CodeGenFunction &CGF,
2687 llvm::Value *AddrWeakObj) {
2688 CGBuilderTy &B = CGF.Builder;
2689 AddrWeakObj = EnforceType(B, AddrWeakObj, PtrToIdTy);
2690 return B.CreateCall(WeakReadFn, AddrWeakObj);
2691 }
2692
EmitObjCWeakAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst)2693 void CGObjCGNU::EmitObjCWeakAssign(CodeGenFunction &CGF,
2694 llvm::Value *src, llvm::Value *dst) {
2695 CGBuilderTy &B = CGF.Builder;
2696 src = EnforceType(B, src, IdTy);
2697 dst = EnforceType(B, dst, PtrToIdTy);
2698 B.CreateCall2(WeakAssignFn, src, dst);
2699 }
2700
EmitObjCGlobalAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst,bool threadlocal)2701 void CGObjCGNU::EmitObjCGlobalAssign(CodeGenFunction &CGF,
2702 llvm::Value *src, llvm::Value *dst,
2703 bool threadlocal) {
2704 CGBuilderTy &B = CGF.Builder;
2705 src = EnforceType(B, src, IdTy);
2706 dst = EnforceType(B, dst, PtrToIdTy);
2707 if (!threadlocal)
2708 B.CreateCall2(GlobalAssignFn, src, dst);
2709 else
2710 // FIXME. Add threadloca assign API
2711 llvm_unreachable("EmitObjCGlobalAssign - Threal Local API NYI");
2712 }
2713
EmitObjCIvarAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst,llvm::Value * ivarOffset)2714 void CGObjCGNU::EmitObjCIvarAssign(CodeGenFunction &CGF,
2715 llvm::Value *src, llvm::Value *dst,
2716 llvm::Value *ivarOffset) {
2717 CGBuilderTy &B = CGF.Builder;
2718 src = EnforceType(B, src, IdTy);
2719 dst = EnforceType(B, dst, IdTy);
2720 B.CreateCall3(IvarAssignFn, src, dst, ivarOffset);
2721 }
2722
EmitObjCStrongCastAssign(CodeGenFunction & CGF,llvm::Value * src,llvm::Value * dst)2723 void CGObjCGNU::EmitObjCStrongCastAssign(CodeGenFunction &CGF,
2724 llvm::Value *src, llvm::Value *dst) {
2725 CGBuilderTy &B = CGF.Builder;
2726 src = EnforceType(B, src, IdTy);
2727 dst = EnforceType(B, dst, PtrToIdTy);
2728 B.CreateCall2(StrongCastAssignFn, src, dst);
2729 }
2730
EmitGCMemmoveCollectable(CodeGenFunction & CGF,llvm::Value * DestPtr,llvm::Value * SrcPtr,llvm::Value * Size)2731 void CGObjCGNU::EmitGCMemmoveCollectable(CodeGenFunction &CGF,
2732 llvm::Value *DestPtr,
2733 llvm::Value *SrcPtr,
2734 llvm::Value *Size) {
2735 CGBuilderTy &B = CGF.Builder;
2736 DestPtr = EnforceType(B, DestPtr, PtrTy);
2737 SrcPtr = EnforceType(B, SrcPtr, PtrTy);
2738
2739 B.CreateCall3(MemMoveFn, DestPtr, SrcPtr, Size);
2740 }
2741
ObjCIvarOffsetVariable(const ObjCInterfaceDecl * ID,const ObjCIvarDecl * Ivar)2742 llvm::GlobalVariable *CGObjCGNU::ObjCIvarOffsetVariable(
2743 const ObjCInterfaceDecl *ID,
2744 const ObjCIvarDecl *Ivar) {
2745 const std::string Name = "__objc_ivar_offset_" + ID->getNameAsString()
2746 + '.' + Ivar->getNameAsString();
2747 // Emit the variable and initialize it with what we think the correct value
2748 // is. This allows code compiled with non-fragile ivars to work correctly
2749 // when linked against code which isn't (most of the time).
2750 llvm::GlobalVariable *IvarOffsetPointer = TheModule.getNamedGlobal(Name);
2751 if (!IvarOffsetPointer) {
2752 // This will cause a run-time crash if we accidentally use it. A value of
2753 // 0 would seem more sensible, but will silently overwrite the isa pointer
2754 // causing a great deal of confusion.
2755 uint64_t Offset = -1;
2756 // We can't call ComputeIvarBaseOffset() here if we have the
2757 // implementation, because it will create an invalid ASTRecordLayout object
2758 // that we are then stuck with forever, so we only initialize the ivar
2759 // offset variable with a guess if we only have the interface. The
2760 // initializer will be reset later anyway, when we are generating the class
2761 // description.
2762 if (!CGM.getContext().getObjCImplementation(
2763 const_cast<ObjCInterfaceDecl *>(ID)))
2764 Offset = ComputeIvarBaseOffset(CGM, ID, Ivar);
2765
2766 llvm::ConstantInt *OffsetGuess = llvm::ConstantInt::get(Int32Ty, Offset,
2767 /*isSigned*/true);
2768 // Don't emit the guess in non-PIC code because the linker will not be able
2769 // to replace it with the real version for a library. In non-PIC code you
2770 // must compile with the fragile ABI if you want to use ivars from a
2771 // GCC-compiled class.
2772 if (CGM.getLangOpts().PICLevel || CGM.getLangOpts().PIELevel) {
2773 llvm::GlobalVariable *IvarOffsetGV = new llvm::GlobalVariable(TheModule,
2774 Int32Ty, false,
2775 llvm::GlobalValue::PrivateLinkage, OffsetGuess, Name+".guess");
2776 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2777 IvarOffsetGV->getType(), false, llvm::GlobalValue::LinkOnceAnyLinkage,
2778 IvarOffsetGV, Name);
2779 } else {
2780 IvarOffsetPointer = new llvm::GlobalVariable(TheModule,
2781 llvm::Type::getInt32PtrTy(VMContext), false,
2782 llvm::GlobalValue::ExternalLinkage, nullptr, Name);
2783 }
2784 }
2785 return IvarOffsetPointer;
2786 }
2787
EmitObjCValueForIvar(CodeGenFunction & CGF,QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)2788 LValue CGObjCGNU::EmitObjCValueForIvar(CodeGenFunction &CGF,
2789 QualType ObjectTy,
2790 llvm::Value *BaseValue,
2791 const ObjCIvarDecl *Ivar,
2792 unsigned CVRQualifiers) {
2793 const ObjCInterfaceDecl *ID =
2794 ObjectTy->getAs<ObjCObjectType>()->getInterface();
2795 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
2796 EmitIvarOffset(CGF, ID, Ivar));
2797 }
2798
FindIvarInterface(ASTContext & Context,const ObjCInterfaceDecl * OID,const ObjCIvarDecl * OIVD)2799 static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
2800 const ObjCInterfaceDecl *OID,
2801 const ObjCIvarDecl *OIVD) {
2802 for (const ObjCIvarDecl *next = OID->all_declared_ivar_begin(); next;
2803 next = next->getNextIvar()) {
2804 if (OIVD == next)
2805 return OID;
2806 }
2807
2808 // Otherwise check in the super class.
2809 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
2810 return FindIvarInterface(Context, Super, OIVD);
2811
2812 return nullptr;
2813 }
2814
EmitIvarOffset(CodeGenFunction & CGF,const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)2815 llvm::Value *CGObjCGNU::EmitIvarOffset(CodeGenFunction &CGF,
2816 const ObjCInterfaceDecl *Interface,
2817 const ObjCIvarDecl *Ivar) {
2818 if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
2819 Interface = FindIvarInterface(CGM.getContext(), Interface, Ivar);
2820 if (RuntimeVersion < 10)
2821 return CGF.Builder.CreateZExtOrBitCast(
2822 CGF.Builder.CreateLoad(CGF.Builder.CreateLoad(
2823 ObjCIvarOffsetVariable(Interface, Ivar), false, "ivar")),
2824 PtrDiffTy);
2825 std::string name = "__objc_ivar_offset_value_" +
2826 Interface->getNameAsString() +"." + Ivar->getNameAsString();
2827 llvm::Value *Offset = TheModule.getGlobalVariable(name);
2828 if (!Offset)
2829 Offset = new llvm::GlobalVariable(TheModule, IntTy,
2830 false, llvm::GlobalValue::LinkOnceAnyLinkage,
2831 llvm::Constant::getNullValue(IntTy), name);
2832 Offset = CGF.Builder.CreateLoad(Offset);
2833 if (Offset->getType() != PtrDiffTy)
2834 Offset = CGF.Builder.CreateZExtOrBitCast(Offset, PtrDiffTy);
2835 return Offset;
2836 }
2837 uint64_t Offset = ComputeIvarBaseOffset(CGF.CGM, Interface, Ivar);
2838 return llvm::ConstantInt::get(PtrDiffTy, Offset, /*isSigned*/true);
2839 }
2840
2841 CGObjCRuntime *
CreateGNUObjCRuntime(CodeGenModule & CGM)2842 clang::CodeGen::CreateGNUObjCRuntime(CodeGenModule &CGM) {
2843 switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
2844 case ObjCRuntime::GNUstep:
2845 return new CGObjCGNUstep(CGM);
2846
2847 case ObjCRuntime::GCC:
2848 return new CGObjCGCC(CGM);
2849
2850 case ObjCRuntime::ObjFW:
2851 return new CGObjCObjFW(CGM);
2852
2853 case ObjCRuntime::FragileMacOSX:
2854 case ObjCRuntime::MacOSX:
2855 case ObjCRuntime::iOS:
2856 llvm_unreachable("these runtimes are not GNU runtimes");
2857 }
2858 llvm_unreachable("bad runtime");
2859 }
2860