1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating functions from LLVM IR into
11 // Machine IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
16 #include "llvm/ADT/PostOrderIterator.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/WinEHFuncInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetFrameLowering.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include "llvm/Target/TargetRegisterInfo.h"
41 #include "llvm/Target/TargetSubtargetInfo.h"
42 #include <algorithm>
43 using namespace llvm;
44
45 #define DEBUG_TYPE "function-lowering-info"
46
47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
48 /// PHI nodes or outside of the basic block that defines it, or used by a
49 /// switch or atomic instruction, which may expand to multiple basic blocks.
isUsedOutsideOfDefiningBlock(const Instruction * I)50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
51 if (I->use_empty()) return false;
52 if (isa<PHINode>(I)) return true;
53 const BasicBlock *BB = I->getParent();
54 for (const User *U : I->users())
55 if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
56 return true;
57
58 return false;
59 }
60
getPreferredExtendForValue(const Value * V)61 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
62 // For the users of the source value being used for compare instruction, if
63 // the number of signed predicate is greater than unsigned predicate, we
64 // prefer to use SIGN_EXTEND.
65 //
66 // With this optimization, we would be able to reduce some redundant sign or
67 // zero extension instruction, and eventually more machine CSE opportunities
68 // can be exposed.
69 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
70 unsigned NumOfSigned = 0, NumOfUnsigned = 0;
71 for (const User *U : V->users()) {
72 if (const auto *CI = dyn_cast<CmpInst>(U)) {
73 NumOfSigned += CI->isSigned();
74 NumOfUnsigned += CI->isUnsigned();
75 }
76 }
77 if (NumOfSigned > NumOfUnsigned)
78 ExtendKind = ISD::SIGN_EXTEND;
79
80 return ExtendKind;
81 }
82
83 namespace {
84 struct WinEHNumbering {
WinEHNumbering__anon3b9abc900111::WinEHNumbering85 WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), NextState(0) {}
86
87 WinEHFuncInfo &FuncInfo;
88 int NextState;
89
90 SmallVector<ActionHandler *, 4> HandlerStack;
91 SmallPtrSet<const Function *, 4> VisitedHandlers;
92
currentEHNumber__anon3b9abc900111::WinEHNumbering93 int currentEHNumber() const {
94 return HandlerStack.empty() ? -1 : HandlerStack.back()->getEHState();
95 }
96
97 void createUnwindMapEntry(int ToState, ActionHandler *AH);
98 void createTryBlockMapEntry(int TryLow, int TryHigh,
99 ArrayRef<CatchHandler *> Handlers);
100 void processCallSite(ArrayRef<ActionHandler *> Actions, ImmutableCallSite CS);
101 void calculateStateNumbers(const Function &F);
102 };
103 }
104
set(const Function & fn,MachineFunction & mf,SelectionDAG * DAG)105 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
106 SelectionDAG *DAG) {
107 Fn = &fn;
108 MF = &mf;
109 TLI = MF->getSubtarget().getTargetLowering();
110 RegInfo = &MF->getRegInfo();
111 MachineModuleInfo &MMI = MF->getMMI();
112
113 // Check whether the function can return without sret-demotion.
114 SmallVector<ISD::OutputArg, 4> Outs;
115 GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
116 CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
117 Fn->isVarArg(), Outs, Fn->getContext());
118
119 // Initialize the mapping of values to registers. This is only set up for
120 // instruction values that are used outside of the block that defines
121 // them.
122 Function::const_iterator BB = Fn->begin(), EB = Fn->end();
123 for (; BB != EB; ++BB)
124 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
125 I != E; ++I) {
126 if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
127 // Static allocas can be folded into the initial stack frame adjustment.
128 if (AI->isStaticAlloca()) {
129 const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
130 Type *Ty = AI->getAllocatedType();
131 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
132 unsigned Align =
133 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
134 AI->getAlignment());
135
136 TySize *= CUI->getZExtValue(); // Get total allocated size.
137 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
138
139 StaticAllocaMap[AI] =
140 MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
141
142 } else {
143 unsigned Align = std::max(
144 (unsigned)TLI->getDataLayout()->getPrefTypeAlignment(
145 AI->getAllocatedType()),
146 AI->getAlignment());
147 unsigned StackAlign =
148 MF->getSubtarget().getFrameLowering()->getStackAlignment();
149 if (Align <= StackAlign)
150 Align = 0;
151 // Inform the Frame Information that we have variable-sized objects.
152 MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
153 }
154 }
155
156 // Look for inline asm that clobbers the SP register.
157 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
158 ImmutableCallSite CS(I);
159 if (isa<InlineAsm>(CS.getCalledValue())) {
160 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
161 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
162 std::vector<TargetLowering::AsmOperandInfo> Ops =
163 TLI->ParseConstraints(TRI, CS);
164 for (size_t I = 0, E = Ops.size(); I != E; ++I) {
165 TargetLowering::AsmOperandInfo &Op = Ops[I];
166 if (Op.Type == InlineAsm::isClobber) {
167 // Clobbers don't have SDValue operands, hence SDValue().
168 TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
169 std::pair<unsigned, const TargetRegisterClass *> PhysReg =
170 TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
171 Op.ConstraintVT);
172 if (PhysReg.first == SP)
173 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true);
174 }
175 }
176 }
177 }
178
179 // Look for calls to the @llvm.va_start intrinsic. We can omit some
180 // prologue boilerplate for variadic functions that don't examine their
181 // arguments.
182 if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
183 if (II->getIntrinsicID() == Intrinsic::vastart)
184 MF->getFrameInfo()->setHasVAStart(true);
185 }
186
187 // If we have a musttail call in a variadic funciton, we need to ensure we
188 // forward implicit register parameters.
189 if (const auto *CI = dyn_cast<CallInst>(I)) {
190 if (CI->isMustTailCall() && Fn->isVarArg())
191 MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
192 }
193
194 // Mark values used outside their block as exported, by allocating
195 // a virtual register for them.
196 if (isUsedOutsideOfDefiningBlock(I))
197 if (!isa<AllocaInst>(I) ||
198 !StaticAllocaMap.count(cast<AllocaInst>(I)))
199 InitializeRegForValue(I);
200
201 // Collect llvm.dbg.declare information. This is done now instead of
202 // during the initial isel pass through the IR so that it is done
203 // in a predictable order.
204 if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
205 DIVariable DIVar = DI->getVariable();
206 if (MMI.hasDebugInfo() && DIVar && DI->getDebugLoc()) {
207 // Don't handle byval struct arguments or VLAs, for example.
208 // Non-byval arguments are handled here (they refer to the stack
209 // temporary alloca at this point).
210 const Value *Address = DI->getAddress();
211 if (Address) {
212 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
213 Address = BCI->getOperand(0);
214 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
215 DenseMap<const AllocaInst *, int>::iterator SI =
216 StaticAllocaMap.find(AI);
217 if (SI != StaticAllocaMap.end()) { // Check for VLAs.
218 int FI = SI->second;
219 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
220 FI, DI->getDebugLoc());
221 }
222 }
223 }
224 }
225 }
226
227 // Decide the preferred extend type for a value.
228 PreferredExtendType[I] = getPreferredExtendForValue(I);
229 }
230
231 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
232 // also creates the initial PHI MachineInstrs, though none of the input
233 // operands are populated.
234 for (BB = Fn->begin(); BB != EB; ++BB) {
235 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
236 MBBMap[BB] = MBB;
237 MF->push_back(MBB);
238
239 // Transfer the address-taken flag. This is necessary because there could
240 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
241 // the first one should be marked.
242 if (BB->hasAddressTaken())
243 MBB->setHasAddressTaken();
244
245 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
246 // appropriate.
247 for (BasicBlock::const_iterator I = BB->begin();
248 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
249 if (PN->use_empty()) continue;
250
251 // Skip empty types
252 if (PN->getType()->isEmptyTy())
253 continue;
254
255 DebugLoc DL = PN->getDebugLoc();
256 unsigned PHIReg = ValueMap[PN];
257 assert(PHIReg && "PHI node does not have an assigned virtual register!");
258
259 SmallVector<EVT, 4> ValueVTs;
260 ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
261 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
262 EVT VT = ValueVTs[vti];
263 unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
264 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
265 for (unsigned i = 0; i != NumRegisters; ++i)
266 BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
267 PHIReg += NumRegisters;
268 }
269 }
270 }
271
272 // Mark landing pad blocks.
273 for (BB = Fn->begin(); BB != EB; ++BB)
274 if (const auto *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
275 MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
276
277 // Calculate EH numbers for WinEH.
278 if (fn.hasFnAttribute("wineh-parent")) {
279 const Function *WinEHParentFn = MMI.getWinEHParent(&fn);
280 WinEHFuncInfo &FI = MMI.getWinEHFuncInfo(WinEHParentFn);
281 if (FI.LandingPadStateMap.empty()) {
282 WinEHNumbering Num(FI);
283 Num.calculateStateNumbers(*WinEHParentFn);
284 // Pop everything on the handler stack.
285 Num.processCallSite(None, ImmutableCallSite());
286 }
287 }
288 }
289
createUnwindMapEntry(int ToState,ActionHandler * AH)290 void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
291 WinEHUnwindMapEntry UME;
292 UME.ToState = ToState;
293 if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
294 UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc());
295 else
296 UME.Cleanup = nullptr;
297 FuncInfo.UnwindMap.push_back(UME);
298 }
299
createTryBlockMapEntry(int TryLow,int TryHigh,ArrayRef<CatchHandler * > Handlers)300 void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
301 ArrayRef<CatchHandler *> Handlers) {
302 WinEHTryBlockMapEntry TBME;
303 TBME.TryLow = TryLow;
304 TBME.TryHigh = TryHigh;
305 assert(TBME.TryLow <= TBME.TryHigh);
306 for (CatchHandler *CH : Handlers) {
307 WinEHHandlerType HT;
308 if (CH->getSelector()->isNullValue()) {
309 HT.Adjectives = 0x40;
310 HT.TypeDescriptor = nullptr;
311 } else {
312 auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts());
313 // Selectors are always pointers to GlobalVariables with 'struct' type.
314 // The struct has two fields, adjectives and a type descriptor.
315 auto *CS = cast<ConstantStruct>(GV->getInitializer());
316 HT.Adjectives =
317 cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
318 HT.TypeDescriptor =
319 cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
320 }
321 HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc());
322 HT.CatchObjRecoverIdx = CH->getExceptionVarIndex();
323 TBME.HandlerArray.push_back(HT);
324 }
325 FuncInfo.TryBlockMap.push_back(TBME);
326 }
327
print_name(const Value * V)328 static void print_name(const Value *V) {
329 #ifndef NDEBUG
330 if (!V) {
331 DEBUG(dbgs() << "null");
332 return;
333 }
334
335 if (const auto *F = dyn_cast<Function>(V))
336 DEBUG(dbgs() << F->getName());
337 else
338 DEBUG(V->dump());
339 #endif
340 }
341
processCallSite(ArrayRef<ActionHandler * > Actions,ImmutableCallSite CS)342 void WinEHNumbering::processCallSite(ArrayRef<ActionHandler *> Actions,
343 ImmutableCallSite CS) {
344 int FirstMismatch = 0;
345 for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E;
346 ++FirstMismatch) {
347 if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() !=
348 Actions[FirstMismatch]->getHandlerBlockOrFunc())
349 break;
350 delete Actions[FirstMismatch];
351 }
352
353 bool EnteringScope = (int)Actions.size() > FirstMismatch;
354
355 // Don't recurse while we are looping over the handler stack. Instead, defer
356 // the numbering of the catch handlers until we are done popping.
357 SmallVector<CatchHandler *, 4> PoppedCatches;
358 for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) {
359 if (auto *CH = dyn_cast<CatchHandler>(HandlerStack.back())) {
360 PoppedCatches.push_back(CH);
361 } else {
362 // Delete cleanup handlers
363 delete HandlerStack.back();
364 }
365 HandlerStack.pop_back();
366 }
367
368 // We need to create a new state number if we are exiting a try scope and we
369 // will not push any more actions.
370 int TryHigh = NextState - 1;
371 if (!EnteringScope && !PoppedCatches.empty()) {
372 createUnwindMapEntry(currentEHNumber(), nullptr);
373 ++NextState;
374 }
375
376 int LastTryLowIdx = 0;
377 for (int I = 0, E = PoppedCatches.size(); I != E; ++I) {
378 CatchHandler *CH = PoppedCatches[I];
379 if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) {
380 int TryLow = CH->getEHState();
381 auto Handlers =
382 makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1);
383 createTryBlockMapEntry(TryLow, TryHigh, Handlers);
384 LastTryLowIdx = I + 1;
385 }
386 }
387
388 for (CatchHandler *CH : PoppedCatches) {
389 if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc()))
390 calculateStateNumbers(*F);
391 delete CH;
392 }
393
394 bool LastActionWasCatch = false;
395 for (size_t I = FirstMismatch; I != Actions.size(); ++I) {
396 // We can reuse eh states when pushing two catches for the same invoke.
397 bool CurrActionIsCatch = isa<CatchHandler>(Actions[I]);
398 // FIXME: Reenable this optimization!
399 if (CurrActionIsCatch && LastActionWasCatch && false) {
400 Actions[I]->setEHState(currentEHNumber());
401 } else {
402 createUnwindMapEntry(currentEHNumber(), Actions[I]);
403 Actions[I]->setEHState(NextState);
404 NextState++;
405 DEBUG(dbgs() << "Creating unwind map entry for: (");
406 print_name(Actions[I]->getHandlerBlockOrFunc());
407 DEBUG(dbgs() << ", " << currentEHNumber() << ")\n");
408 }
409 HandlerStack.push_back(Actions[I]);
410 LastActionWasCatch = CurrActionIsCatch;
411 }
412
413 DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: ");
414 print_name(CS ? CS.getCalledValue() : nullptr);
415 DEBUG(dbgs() << '\n');
416 }
417
calculateStateNumbers(const Function & F)418 void WinEHNumbering::calculateStateNumbers(const Function &F) {
419 auto I = VisitedHandlers.insert(&F);
420 if (!I.second)
421 return; // We've already visited this handler, don't renumber it.
422
423 DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n');
424 SmallVector<ActionHandler *, 4> ActionList;
425 for (const BasicBlock &BB : F) {
426 for (const Instruction &I : BB) {
427 const auto *CI = dyn_cast<CallInst>(&I);
428 if (!CI || CI->doesNotThrow())
429 continue;
430 processCallSite(None, CI);
431 }
432 const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
433 if (!II)
434 continue;
435 const LandingPadInst *LPI = II->getLandingPadInst();
436 auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
437 if (!ActionsCall)
438 continue;
439 assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
440 parseEHActions(ActionsCall, ActionList);
441 processCallSite(ActionList, II);
442 ActionList.clear();
443 FuncInfo.LandingPadStateMap[LPI] = currentEHNumber();
444 }
445
446 FuncInfo.CatchHandlerMaxState[&F] = NextState - 1;
447 }
448
449 /// clear - Clear out all the function-specific state. This returns this
450 /// FunctionLoweringInfo to an empty state, ready to be used for a
451 /// different function.
clear()452 void FunctionLoweringInfo::clear() {
453 assert(CatchInfoFound.size() == CatchInfoLost.size() &&
454 "Not all catch info was assigned to a landing pad!");
455
456 MBBMap.clear();
457 ValueMap.clear();
458 StaticAllocaMap.clear();
459 #ifndef NDEBUG
460 CatchInfoLost.clear();
461 CatchInfoFound.clear();
462 #endif
463 LiveOutRegInfo.clear();
464 VisitedBBs.clear();
465 ArgDbgValues.clear();
466 ByValArgFrameIndexMap.clear();
467 RegFixups.clear();
468 StatepointStackSlots.clear();
469 PreferredExtendType.clear();
470 }
471
472 /// CreateReg - Allocate a single virtual register for the given type.
CreateReg(MVT VT)473 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
474 return RegInfo->createVirtualRegister(
475 MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
476 }
477
478 /// CreateRegs - Allocate the appropriate number of virtual registers of
479 /// the correctly promoted or expanded types. Assign these registers
480 /// consecutive vreg numbers and return the first assigned number.
481 ///
482 /// In the case that the given value has struct or array type, this function
483 /// will assign registers for each member or element.
484 ///
CreateRegs(Type * Ty)485 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
486 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
487
488 SmallVector<EVT, 4> ValueVTs;
489 ComputeValueVTs(*TLI, Ty, ValueVTs);
490
491 unsigned FirstReg = 0;
492 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
493 EVT ValueVT = ValueVTs[Value];
494 MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
495
496 unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
497 for (unsigned i = 0; i != NumRegs; ++i) {
498 unsigned R = CreateReg(RegisterVT);
499 if (!FirstReg) FirstReg = R;
500 }
501 }
502 return FirstReg;
503 }
504
505 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
506 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
507 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
508 /// the larger bit width by zero extension. The bit width must be no smaller
509 /// than the LiveOutInfo's existing bit width.
510 const FunctionLoweringInfo::LiveOutInfo *
GetLiveOutRegInfo(unsigned Reg,unsigned BitWidth)511 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
512 if (!LiveOutRegInfo.inBounds(Reg))
513 return nullptr;
514
515 LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
516 if (!LOI->IsValid)
517 return nullptr;
518
519 if (BitWidth > LOI->KnownZero.getBitWidth()) {
520 LOI->NumSignBits = 1;
521 LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
522 LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
523 }
524
525 return LOI;
526 }
527
528 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
529 /// register based on the LiveOutInfo of its operands.
ComputePHILiveOutRegInfo(const PHINode * PN)530 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
531 Type *Ty = PN->getType();
532 if (!Ty->isIntegerTy() || Ty->isVectorTy())
533 return;
534
535 SmallVector<EVT, 1> ValueVTs;
536 ComputeValueVTs(*TLI, Ty, ValueVTs);
537 assert(ValueVTs.size() == 1 &&
538 "PHIs with non-vector integer types should have a single VT.");
539 EVT IntVT = ValueVTs[0];
540
541 if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
542 return;
543 IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
544 unsigned BitWidth = IntVT.getSizeInBits();
545
546 unsigned DestReg = ValueMap[PN];
547 if (!TargetRegisterInfo::isVirtualRegister(DestReg))
548 return;
549 LiveOutRegInfo.grow(DestReg);
550 LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
551
552 Value *V = PN->getIncomingValue(0);
553 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
554 DestLOI.NumSignBits = 1;
555 APInt Zero(BitWidth, 0);
556 DestLOI.KnownZero = Zero;
557 DestLOI.KnownOne = Zero;
558 return;
559 }
560
561 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
562 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
563 DestLOI.NumSignBits = Val.getNumSignBits();
564 DestLOI.KnownZero = ~Val;
565 DestLOI.KnownOne = Val;
566 } else {
567 assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
568 "CopyToReg node was created.");
569 unsigned SrcReg = ValueMap[V];
570 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
571 DestLOI.IsValid = false;
572 return;
573 }
574 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
575 if (!SrcLOI) {
576 DestLOI.IsValid = false;
577 return;
578 }
579 DestLOI = *SrcLOI;
580 }
581
582 assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
583 DestLOI.KnownOne.getBitWidth() == BitWidth &&
584 "Masks should have the same bit width as the type.");
585
586 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
587 Value *V = PN->getIncomingValue(i);
588 if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
589 DestLOI.NumSignBits = 1;
590 APInt Zero(BitWidth, 0);
591 DestLOI.KnownZero = Zero;
592 DestLOI.KnownOne = Zero;
593 return;
594 }
595
596 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
597 APInt Val = CI->getValue().zextOrTrunc(BitWidth);
598 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
599 DestLOI.KnownZero &= ~Val;
600 DestLOI.KnownOne &= Val;
601 continue;
602 }
603
604 assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
605 "its CopyToReg node was created.");
606 unsigned SrcReg = ValueMap[V];
607 if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
608 DestLOI.IsValid = false;
609 return;
610 }
611 const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
612 if (!SrcLOI) {
613 DestLOI.IsValid = false;
614 return;
615 }
616 DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
617 DestLOI.KnownZero &= SrcLOI->KnownZero;
618 DestLOI.KnownOne &= SrcLOI->KnownOne;
619 }
620 }
621
622 /// setArgumentFrameIndex - Record frame index for the byval
623 /// argument. This overrides previous frame index entry for this argument,
624 /// if any.
setArgumentFrameIndex(const Argument * A,int FI)625 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
626 int FI) {
627 ByValArgFrameIndexMap[A] = FI;
628 }
629
630 /// getArgumentFrameIndex - Get frame index for the byval argument.
631 /// If the argument does not have any assigned frame index then 0 is
632 /// returned.
getArgumentFrameIndex(const Argument * A)633 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
634 DenseMap<const Argument *, int>::iterator I =
635 ByValArgFrameIndexMap.find(A);
636 if (I != ByValArgFrameIndexMap.end())
637 return I->second;
638 DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
639 return 0;
640 }
641
642 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
643 /// being passed to this variadic function, and set the MachineModuleInfo's
644 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
645 /// reference to _fltused on Windows, which will link in MSVCRT's
646 /// floating-point support.
ComputeUsesVAFloatArgument(const CallInst & I,MachineModuleInfo * MMI)647 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
648 MachineModuleInfo *MMI)
649 {
650 FunctionType *FT = cast<FunctionType>(
651 I.getCalledValue()->getType()->getContainedType(0));
652 if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
653 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
654 Type* T = I.getArgOperand(i)->getType();
655 for (auto i : post_order(T)) {
656 if (i->isFloatingPointTy()) {
657 MMI->setUsesVAFloatArgument(true);
658 return;
659 }
660 }
661 }
662 }
663 }
664
665 /// AddLandingPadInfo - Extract the exception handling information from the
666 /// landingpad instruction and add them to the specified machine module info.
AddLandingPadInfo(const LandingPadInst & I,MachineModuleInfo & MMI,MachineBasicBlock * MBB)667 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
668 MachineBasicBlock *MBB) {
669 MMI.addPersonality(MBB,
670 cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
671
672 if (I.isCleanup())
673 MMI.addCleanup(MBB);
674
675 // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
676 // but we need to do it this way because of how the DWARF EH emitter
677 // processes the clauses.
678 for (unsigned i = I.getNumClauses(); i != 0; --i) {
679 Value *Val = I.getClause(i - 1);
680 if (I.isCatch(i - 1)) {
681 MMI.addCatchTypeInfo(MBB,
682 dyn_cast<GlobalValue>(Val->stripPointerCasts()));
683 } else {
684 // Add filters in a list.
685 Constant *CVal = cast<Constant>(Val);
686 SmallVector<const GlobalValue*, 4> FilterList;
687 for (User::op_iterator
688 II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
689 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
690
691 MMI.addFilterTypeInfo(MBB, FilterList);
692 }
693 }
694 }
695