1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 // A lightweight X64 Assembler.
36
37 #ifndef V8_X64_ASSEMBLER_X64_H_
38 #define V8_X64_ASSEMBLER_X64_H_
39
40 #include "src/serialize.h"
41
42 namespace v8 {
43 namespace internal {
44
45 // Utility functions
46
47 // CPU Registers.
48 //
49 // 1) We would prefer to use an enum, but enum values are assignment-
50 // compatible with int, which has caused code-generation bugs.
51 //
52 // 2) We would prefer to use a class instead of a struct but we don't like
53 // the register initialization to depend on the particular initialization
54 // order (which appears to be different on OS X, Linux, and Windows for the
55 // installed versions of C++ we tried). Using a struct permits C-style
56 // "initialization". Also, the Register objects cannot be const as this
57 // forces initialization stubs in MSVC, making us dependent on initialization
58 // order.
59 //
60 // 3) By not using an enum, we are possibly preventing the compiler from
61 // doing certain constant folds, which may significantly reduce the
62 // code generated for some assembly instructions (because they boil down
63 // to a few constants). If this is a problem, we could change the code
64 // such that we use an enum in optimized mode, and the struct in debug
65 // mode. This way we get the compile-time error checking in debug mode
66 // and best performance in optimized code.
67 //
68
69 struct Register {
70 // The non-allocatable registers are:
71 // rsp - stack pointer
72 // rbp - frame pointer
73 // r10 - fixed scratch register
74 // r12 - smi constant register
75 // r13 - root register
76 static const int kMaxNumAllocatableRegisters = 11;
NumAllocatableRegistersRegister77 static int NumAllocatableRegisters() {
78 return kMaxNumAllocatableRegisters;
79 }
80 static const int kNumRegisters = 16;
81
ToAllocationIndexRegister82 static int ToAllocationIndex(Register reg) {
83 return kAllocationIndexByRegisterCode[reg.code()];
84 }
85
FromAllocationIndexRegister86 static Register FromAllocationIndex(int index) {
87 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
88 Register result = { kRegisterCodeByAllocationIndex[index] };
89 return result;
90 }
91
AllocationIndexToStringRegister92 static const char* AllocationIndexToString(int index) {
93 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
94 const char* const names[] = {
95 "rax",
96 "rbx",
97 "rdx",
98 "rcx",
99 "rsi",
100 "rdi",
101 "r8",
102 "r9",
103 "r11",
104 "r14",
105 "r15"
106 };
107 return names[index];
108 }
109
from_codeRegister110 static Register from_code(int code) {
111 Register r = { code };
112 return r;
113 }
is_validRegister114 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
isRegister115 bool is(Register reg) const { return code_ == reg.code_; }
116 // rax, rbx, rcx and rdx are byte registers, the rest are not.
is_byte_registerRegister117 bool is_byte_register() const { return code_ <= 3; }
codeRegister118 int code() const {
119 DCHECK(is_valid());
120 return code_;
121 }
bitRegister122 int bit() const {
123 return 1 << code_;
124 }
125
126 // Return the high bit of the register code as a 0 or 1. Used often
127 // when constructing the REX prefix byte.
high_bitRegister128 int high_bit() const {
129 return code_ >> 3;
130 }
131 // Return the 3 low bits of the register code. Used when encoding registers
132 // in modR/M, SIB, and opcode bytes.
low_bitsRegister133 int low_bits() const {
134 return code_ & 0x7;
135 }
136
137 // Unfortunately we can't make this private in a struct when initializing
138 // by assignment.
139 int code_;
140
141 private:
142 static const int kRegisterCodeByAllocationIndex[kMaxNumAllocatableRegisters];
143 static const int kAllocationIndexByRegisterCode[kNumRegisters];
144 };
145
146 const int kRegister_rax_Code = 0;
147 const int kRegister_rcx_Code = 1;
148 const int kRegister_rdx_Code = 2;
149 const int kRegister_rbx_Code = 3;
150 const int kRegister_rsp_Code = 4;
151 const int kRegister_rbp_Code = 5;
152 const int kRegister_rsi_Code = 6;
153 const int kRegister_rdi_Code = 7;
154 const int kRegister_r8_Code = 8;
155 const int kRegister_r9_Code = 9;
156 const int kRegister_r10_Code = 10;
157 const int kRegister_r11_Code = 11;
158 const int kRegister_r12_Code = 12;
159 const int kRegister_r13_Code = 13;
160 const int kRegister_r14_Code = 14;
161 const int kRegister_r15_Code = 15;
162 const int kRegister_no_reg_Code = -1;
163
164 const Register rax = { kRegister_rax_Code };
165 const Register rcx = { kRegister_rcx_Code };
166 const Register rdx = { kRegister_rdx_Code };
167 const Register rbx = { kRegister_rbx_Code };
168 const Register rsp = { kRegister_rsp_Code };
169 const Register rbp = { kRegister_rbp_Code };
170 const Register rsi = { kRegister_rsi_Code };
171 const Register rdi = { kRegister_rdi_Code };
172 const Register r8 = { kRegister_r8_Code };
173 const Register r9 = { kRegister_r9_Code };
174 const Register r10 = { kRegister_r10_Code };
175 const Register r11 = { kRegister_r11_Code };
176 const Register r12 = { kRegister_r12_Code };
177 const Register r13 = { kRegister_r13_Code };
178 const Register r14 = { kRegister_r14_Code };
179 const Register r15 = { kRegister_r15_Code };
180 const Register no_reg = { kRegister_no_reg_Code };
181
182 #ifdef _WIN64
183 // Windows calling convention
184 const Register arg_reg_1 = { kRegister_rcx_Code };
185 const Register arg_reg_2 = { kRegister_rdx_Code };
186 const Register arg_reg_3 = { kRegister_r8_Code };
187 const Register arg_reg_4 = { kRegister_r9_Code };
188 #else
189 // AMD64 calling convention
190 const Register arg_reg_1 = { kRegister_rdi_Code };
191 const Register arg_reg_2 = { kRegister_rsi_Code };
192 const Register arg_reg_3 = { kRegister_rdx_Code };
193 const Register arg_reg_4 = { kRegister_rcx_Code };
194 #endif // _WIN64
195
196 struct XMMRegister {
197 static const int kMaxNumRegisters = 16;
198 static const int kMaxNumAllocatableRegisters = 15;
NumAllocatableRegistersXMMRegister199 static int NumAllocatableRegisters() {
200 return kMaxNumAllocatableRegisters;
201 }
202
ToAllocationIndexXMMRegister203 static int ToAllocationIndex(XMMRegister reg) {
204 DCHECK(reg.code() != 0);
205 return reg.code() - 1;
206 }
207
FromAllocationIndexXMMRegister208 static XMMRegister FromAllocationIndex(int index) {
209 DCHECK(0 <= index && index < kMaxNumAllocatableRegisters);
210 XMMRegister result = { index + 1 };
211 return result;
212 }
213
AllocationIndexToStringXMMRegister214 static const char* AllocationIndexToString(int index) {
215 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
216 const char* const names[] = {
217 "xmm1",
218 "xmm2",
219 "xmm3",
220 "xmm4",
221 "xmm5",
222 "xmm6",
223 "xmm7",
224 "xmm8",
225 "xmm9",
226 "xmm10",
227 "xmm11",
228 "xmm12",
229 "xmm13",
230 "xmm14",
231 "xmm15"
232 };
233 return names[index];
234 }
235
from_codeXMMRegister236 static XMMRegister from_code(int code) {
237 DCHECK(code >= 0);
238 DCHECK(code < kMaxNumRegisters);
239 XMMRegister r = { code };
240 return r;
241 }
is_validXMMRegister242 bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters; }
isXMMRegister243 bool is(XMMRegister reg) const { return code_ == reg.code_; }
codeXMMRegister244 int code() const {
245 DCHECK(is_valid());
246 return code_;
247 }
248
249 // Return the high bit of the register code as a 0 or 1. Used often
250 // when constructing the REX prefix byte.
high_bitXMMRegister251 int high_bit() const {
252 return code_ >> 3;
253 }
254 // Return the 3 low bits of the register code. Used when encoding registers
255 // in modR/M, SIB, and opcode bytes.
low_bitsXMMRegister256 int low_bits() const {
257 return code_ & 0x7;
258 }
259
260 int code_;
261 };
262
263 const XMMRegister xmm0 = { 0 };
264 const XMMRegister xmm1 = { 1 };
265 const XMMRegister xmm2 = { 2 };
266 const XMMRegister xmm3 = { 3 };
267 const XMMRegister xmm4 = { 4 };
268 const XMMRegister xmm5 = { 5 };
269 const XMMRegister xmm6 = { 6 };
270 const XMMRegister xmm7 = { 7 };
271 const XMMRegister xmm8 = { 8 };
272 const XMMRegister xmm9 = { 9 };
273 const XMMRegister xmm10 = { 10 };
274 const XMMRegister xmm11 = { 11 };
275 const XMMRegister xmm12 = { 12 };
276 const XMMRegister xmm13 = { 13 };
277 const XMMRegister xmm14 = { 14 };
278 const XMMRegister xmm15 = { 15 };
279
280
281 typedef XMMRegister DoubleRegister;
282
283
284 enum Condition {
285 // any value < 0 is considered no_condition
286 no_condition = -1,
287
288 overflow = 0,
289 no_overflow = 1,
290 below = 2,
291 above_equal = 3,
292 equal = 4,
293 not_equal = 5,
294 below_equal = 6,
295 above = 7,
296 negative = 8,
297 positive = 9,
298 parity_even = 10,
299 parity_odd = 11,
300 less = 12,
301 greater_equal = 13,
302 less_equal = 14,
303 greater = 15,
304
305 // Fake conditions that are handled by the
306 // opcodes using them.
307 always = 16,
308 never = 17,
309 // aliases
310 carry = below,
311 not_carry = above_equal,
312 zero = equal,
313 not_zero = not_equal,
314 sign = negative,
315 not_sign = positive,
316 last_condition = greater
317 };
318
319
320 // Returns the equivalent of !cc.
321 // Negation of the default no_condition (-1) results in a non-default
322 // no_condition value (-2). As long as tests for no_condition check
323 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)324 inline Condition NegateCondition(Condition cc) {
325 return static_cast<Condition>(cc ^ 1);
326 }
327
328
329 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)330 inline Condition CommuteCondition(Condition cc) {
331 switch (cc) {
332 case below:
333 return above;
334 case above:
335 return below;
336 case above_equal:
337 return below_equal;
338 case below_equal:
339 return above_equal;
340 case less:
341 return greater;
342 case greater:
343 return less;
344 case greater_equal:
345 return less_equal;
346 case less_equal:
347 return greater_equal;
348 default:
349 return cc;
350 }
351 }
352
353
354 // -----------------------------------------------------------------------------
355 // Machine instruction Immediates
356
357 class Immediate BASE_EMBEDDED {
358 public:
Immediate(int32_t value)359 explicit Immediate(int32_t value) : value_(value) {}
Immediate(Smi * value)360 explicit Immediate(Smi* value) {
361 DCHECK(SmiValuesAre31Bits()); // Only available for 31-bit SMI.
362 value_ = static_cast<int32_t>(reinterpret_cast<intptr_t>(value));
363 }
364
365 private:
366 int32_t value_;
367
368 friend class Assembler;
369 };
370
371
372 // -----------------------------------------------------------------------------
373 // Machine instruction Operands
374
375 enum ScaleFactor {
376 times_1 = 0,
377 times_2 = 1,
378 times_4 = 2,
379 times_8 = 3,
380 times_int_size = times_4,
381 times_pointer_size = (kPointerSize == 8) ? times_8 : times_4
382 };
383
384
385 class Operand BASE_EMBEDDED {
386 public:
387 // [base + disp/r]
388 Operand(Register base, int32_t disp);
389
390 // [base + index*scale + disp/r]
391 Operand(Register base,
392 Register index,
393 ScaleFactor scale,
394 int32_t disp);
395
396 // [index*scale + disp/r]
397 Operand(Register index,
398 ScaleFactor scale,
399 int32_t disp);
400
401 // Offset from existing memory operand.
402 // Offset is added to existing displacement as 32-bit signed values and
403 // this must not overflow.
404 Operand(const Operand& base, int32_t offset);
405
406 // Checks whether either base or index register is the given register.
407 // Does not check the "reg" part of the Operand.
408 bool AddressUsesRegister(Register reg) const;
409
410 // Queries related to the size of the generated instruction.
411 // Whether the generated instruction will have a REX prefix.
requires_rex()412 bool requires_rex() const { return rex_ != 0; }
413 // Size of the ModR/M, SIB and displacement parts of the generated
414 // instruction.
operand_size()415 int operand_size() const { return len_; }
416
417 private:
418 byte rex_;
419 byte buf_[6];
420 // The number of bytes of buf_ in use.
421 byte len_;
422
423 // Set the ModR/M byte without an encoded 'reg' register. The
424 // register is encoded later as part of the emit_operand operation.
425 // set_modrm can be called before or after set_sib and set_disp*.
426 inline void set_modrm(int mod, Register rm);
427
428 // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
429 inline void set_sib(ScaleFactor scale, Register index, Register base);
430
431 // Adds operand displacement fields (offsets added to the memory address).
432 // Needs to be called after set_sib, not before it.
433 inline void set_disp8(int disp);
434 inline void set_disp32(int disp);
435
436 friend class Assembler;
437 };
438
439
440 #define ASSEMBLER_INSTRUCTION_LIST(V) \
441 V(add) \
442 V(and) \
443 V(cmp) \
444 V(dec) \
445 V(idiv) \
446 V(div) \
447 V(imul) \
448 V(inc) \
449 V(lea) \
450 V(mov) \
451 V(movzxb) \
452 V(movzxw) \
453 V(neg) \
454 V(not) \
455 V(or) \
456 V(repmovs) \
457 V(sbb) \
458 V(sub) \
459 V(test) \
460 V(xchg) \
461 V(xor)
462
463
464 // Shift instructions on operands/registers with kPointerSize, kInt32Size and
465 // kInt64Size.
466 #define SHIFT_INSTRUCTION_LIST(V) \
467 V(rol, 0x0) \
468 V(ror, 0x1) \
469 V(rcl, 0x2) \
470 V(rcr, 0x3) \
471 V(shl, 0x4) \
472 V(shr, 0x5) \
473 V(sar, 0x7) \
474
475
476 class Assembler : public AssemblerBase {
477 private:
478 // We check before assembling an instruction that there is sufficient
479 // space to write an instruction and its relocation information.
480 // The relocation writer's position must be kGap bytes above the end of
481 // the generated instructions. This leaves enough space for the
482 // longest possible x64 instruction, 15 bytes, and the longest possible
483 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
484 // (There is a 15 byte limit on x64 instruction length that rules out some
485 // otherwise valid instructions.)
486 // This allows for a single, fast space check per instruction.
487 static const int kGap = 32;
488
489 public:
490 // Create an assembler. Instructions and relocation information are emitted
491 // into a buffer, with the instructions starting from the beginning and the
492 // relocation information starting from the end of the buffer. See CodeDesc
493 // for a detailed comment on the layout (globals.h).
494 //
495 // If the provided buffer is NULL, the assembler allocates and grows its own
496 // buffer, and buffer_size determines the initial buffer size. The buffer is
497 // owned by the assembler and deallocated upon destruction of the assembler.
498 //
499 // If the provided buffer is not NULL, the assembler uses the provided buffer
500 // for code generation and assumes its size to be buffer_size. If the buffer
501 // is too small, a fatal error occurs. No deallocation of the buffer is done
502 // upon destruction of the assembler.
503 Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()504 virtual ~Assembler() { }
505
506 // GetCode emits any pending (non-emitted) code and fills the descriptor
507 // desc. GetCode() is idempotent; it returns the same result if no other
508 // Assembler functions are invoked in between GetCode() calls.
509 void GetCode(CodeDesc* desc);
510
511 // Read/Modify the code target in the relative branch/call instruction at pc.
512 // On the x64 architecture, we use relative jumps with a 32-bit displacement
513 // to jump to other Code objects in the Code space in the heap.
514 // Jumps to C functions are done indirectly through a 64-bit register holding
515 // the absolute address of the target.
516 // These functions convert between absolute Addresses of Code objects and
517 // the relative displacements stored in the code.
518 static inline Address target_address_at(Address pc,
519 ConstantPoolArray* constant_pool);
520 static inline void set_target_address_at(Address pc,
521 ConstantPoolArray* constant_pool,
522 Address target,
523 ICacheFlushMode icache_flush_mode =
524 FLUSH_ICACHE_IF_NEEDED) ;
target_address_at(Address pc,Code * code)525 static inline Address target_address_at(Address pc, Code* code) {
526 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
527 return target_address_at(pc, constant_pool);
528 }
529 static inline void set_target_address_at(Address pc,
530 Code* code,
531 Address target,
532 ICacheFlushMode icache_flush_mode =
533 FLUSH_ICACHE_IF_NEEDED) {
534 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
535 set_target_address_at(pc, constant_pool, target, icache_flush_mode);
536 }
537
538 // Return the code target address at a call site from the return address
539 // of that call in the instruction stream.
540 static inline Address target_address_from_return_address(Address pc);
541
542 // Return the code target address of the patch debug break slot
543 inline static Address break_address_from_return_address(Address pc);
544
545 // This sets the branch destination (which is in the instruction on x64).
546 // This is for calls and branches within generated code.
deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)547 inline static void deserialization_set_special_target_at(
548 Address instruction_payload, Code* code, Address target) {
549 set_target_address_at(instruction_payload, code, target);
550 }
551
RelocInfoNone()552 static inline RelocInfo::Mode RelocInfoNone() {
553 if (kPointerSize == kInt64Size) {
554 return RelocInfo::NONE64;
555 } else {
556 DCHECK(kPointerSize == kInt32Size);
557 return RelocInfo::NONE32;
558 }
559 }
560
561 inline Handle<Object> code_target_object_handle_at(Address pc);
562 inline Address runtime_entry_at(Address pc);
563 // Number of bytes taken up by the branch target in the code.
564 static const int kSpecialTargetSize = 4; // Use 32-bit displacement.
565 // Distance between the address of the code target in the call instruction
566 // and the return address pushed on the stack.
567 static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement.
568 // The length of call(kScratchRegister).
569 static const int kCallScratchRegisterInstructionLength = 3;
570 // The length of call(Immediate32).
571 static const int kShortCallInstructionLength = 5;
572 // The length of movq(kScratchRegister, address).
573 static const int kMoveAddressIntoScratchRegisterInstructionLength =
574 2 + kPointerSize;
575 // The length of movq(kScratchRegister, address) and call(kScratchRegister).
576 static const int kCallSequenceLength =
577 kMoveAddressIntoScratchRegisterInstructionLength +
578 kCallScratchRegisterInstructionLength;
579
580 // The js return and debug break slot must be able to contain an indirect
581 // call sequence, some x64 JS code is padded with int3 to make it large
582 // enough to hold an instruction when the debugger patches it.
583 static const int kJSReturnSequenceLength = kCallSequenceLength;
584 static const int kDebugBreakSlotLength = kCallSequenceLength;
585 static const int kPatchDebugBreakSlotReturnOffset = kCallTargetAddressOffset;
586 // Distance between the start of the JS return sequence and where the
587 // 32-bit displacement of a short call would be. The short call is from
588 // SetDebugBreakAtIC from debug-x64.cc.
589 static const int kPatchReturnSequenceAddressOffset =
590 kJSReturnSequenceLength - kPatchDebugBreakSlotReturnOffset;
591 // Distance between the start of the JS return sequence and where the
592 // 32-bit displacement of a short call would be. The short call is from
593 // SetDebugBreakAtIC from debug-x64.cc.
594 static const int kPatchDebugBreakSlotAddressOffset =
595 kDebugBreakSlotLength - kPatchDebugBreakSlotReturnOffset;
596 static const int kRealPatchReturnSequenceAddressOffset =
597 kMoveAddressIntoScratchRegisterInstructionLength - kPointerSize;
598
599 // One byte opcode for test eax,0xXXXXXXXX.
600 static const byte kTestEaxByte = 0xA9;
601 // One byte opcode for test al, 0xXX.
602 static const byte kTestAlByte = 0xA8;
603 // One byte opcode for nop.
604 static const byte kNopByte = 0x90;
605
606 // One byte prefix for a short conditional jump.
607 static const byte kJccShortPrefix = 0x70;
608 static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
609 static const byte kJcShortOpcode = kJccShortPrefix | carry;
610 static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
611 static const byte kJzShortOpcode = kJccShortPrefix | zero;
612
613
614 // ---------------------------------------------------------------------------
615 // Code generation
616 //
617 // Function names correspond one-to-one to x64 instruction mnemonics.
618 // Unless specified otherwise, instructions operate on 64-bit operands.
619 //
620 // If we need versions of an assembly instruction that operate on different
621 // width arguments, we add a single-letter suffix specifying the width.
622 // This is done for the following instructions: mov, cmp, inc, dec,
623 // add, sub, and test.
624 // There are no versions of these instructions without the suffix.
625 // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
626 // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
627 // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
628 // - Instructions on 64-bit (quadword) operands/registers use 'q'.
629 // - Instructions on operands/registers with pointer size use 'p'.
630
631 STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
632
633 #define DECLARE_INSTRUCTION(instruction) \
634 template<class P1> \
635 void instruction##p(P1 p1) { \
636 emit_##instruction(p1, kPointerSize); \
637 } \
638 \
639 template<class P1> \
640 void instruction##l(P1 p1) { \
641 emit_##instruction(p1, kInt32Size); \
642 } \
643 \
644 template<class P1> \
645 void instruction##q(P1 p1) { \
646 emit_##instruction(p1, kInt64Size); \
647 } \
648 \
649 template<class P1, class P2> \
650 void instruction##p(P1 p1, P2 p2) { \
651 emit_##instruction(p1, p2, kPointerSize); \
652 } \
653 \
654 template<class P1, class P2> \
655 void instruction##l(P1 p1, P2 p2) { \
656 emit_##instruction(p1, p2, kInt32Size); \
657 } \
658 \
659 template<class P1, class P2> \
660 void instruction##q(P1 p1, P2 p2) { \
661 emit_##instruction(p1, p2, kInt64Size); \
662 } \
663 \
664 template<class P1, class P2, class P3> \
665 void instruction##p(P1 p1, P2 p2, P3 p3) { \
666 emit_##instruction(p1, p2, p3, kPointerSize); \
667 } \
668 \
669 template<class P1, class P2, class P3> \
670 void instruction##l(P1 p1, P2 p2, P3 p3) { \
671 emit_##instruction(p1, p2, p3, kInt32Size); \
672 } \
673 \
674 template<class P1, class P2, class P3> \
675 void instruction##q(P1 p1, P2 p2, P3 p3) { \
676 emit_##instruction(p1, p2, p3, kInt64Size); \
677 }
678 ASSEMBLER_INSTRUCTION_LIST(DECLARE_INSTRUCTION)
679 #undef DECLARE_INSTRUCTION
680
681 // Insert the smallest number of nop instructions
682 // possible to align the pc offset to a multiple
683 // of m, where m must be a power of 2.
684 void Align(int m);
685 void Nop(int bytes = 1);
686 // Aligns code to something that's optimal for a jump target for the platform.
687 void CodeTargetAlign();
688
689 // Stack
690 void pushfq();
691 void popfq();
692
693 void pushq(Immediate value);
694 // Push a 32 bit integer, and guarantee that it is actually pushed as a
695 // 32 bit value, the normal push will optimize the 8 bit case.
696 void pushq_imm32(int32_t imm32);
697 void pushq(Register src);
698 void pushq(const Operand& src);
699
700 void popq(Register dst);
701 void popq(const Operand& dst);
702
703 void enter(Immediate size);
704 void leave();
705
706 // Moves
707 void movb(Register dst, const Operand& src);
708 void movb(Register dst, Immediate imm);
709 void movb(const Operand& dst, Register src);
710 void movb(const Operand& dst, Immediate imm);
711
712 // Move the low 16 bits of a 64-bit register value to a 16-bit
713 // memory location.
714 void movw(Register dst, const Operand& src);
715 void movw(const Operand& dst, Register src);
716 void movw(const Operand& dst, Immediate imm);
717
718 // Move the offset of the label location relative to the current
719 // position (after the move) to the destination.
720 void movl(const Operand& dst, Label* src);
721
722 // Loads a pointer into a register with a relocation mode.
723 void movp(Register dst, void* ptr, RelocInfo::Mode rmode);
724
725 // Loads a 64-bit immediate into a register.
726 void movq(Register dst, int64_t value);
727 void movq(Register dst, uint64_t value);
728
729 void movsxbl(Register dst, const Operand& src);
730 void movsxbq(Register dst, const Operand& src);
731 void movsxwl(Register dst, const Operand& src);
732 void movsxwq(Register dst, const Operand& src);
733 void movsxlq(Register dst, Register src);
734 void movsxlq(Register dst, const Operand& src);
735
736 // Repeated moves.
737
738 void repmovsb();
739 void repmovsw();
repmovsp()740 void repmovsp() { emit_repmovs(kPointerSize); }
repmovsl()741 void repmovsl() { emit_repmovs(kInt32Size); }
repmovsq()742 void repmovsq() { emit_repmovs(kInt64Size); }
743
744 // Instruction to load from an immediate 64-bit pointer into RAX.
745 void load_rax(void* ptr, RelocInfo::Mode rmode);
746 void load_rax(ExternalReference ext);
747
748 // Conditional moves.
749 void cmovq(Condition cc, Register dst, Register src);
750 void cmovq(Condition cc, Register dst, const Operand& src);
751 void cmovl(Condition cc, Register dst, Register src);
752 void cmovl(Condition cc, Register dst, const Operand& src);
753
cmpb(Register dst,Immediate src)754 void cmpb(Register dst, Immediate src) {
755 immediate_arithmetic_op_8(0x7, dst, src);
756 }
757
758 void cmpb_al(Immediate src);
759
cmpb(Register dst,Register src)760 void cmpb(Register dst, Register src) {
761 arithmetic_op_8(0x3A, dst, src);
762 }
763
cmpb(Register dst,const Operand & src)764 void cmpb(Register dst, const Operand& src) {
765 arithmetic_op_8(0x3A, dst, src);
766 }
767
cmpb(const Operand & dst,Register src)768 void cmpb(const Operand& dst, Register src) {
769 arithmetic_op_8(0x38, src, dst);
770 }
771
cmpb(const Operand & dst,Immediate src)772 void cmpb(const Operand& dst, Immediate src) {
773 immediate_arithmetic_op_8(0x7, dst, src);
774 }
775
cmpw(const Operand & dst,Immediate src)776 void cmpw(const Operand& dst, Immediate src) {
777 immediate_arithmetic_op_16(0x7, dst, src);
778 }
779
cmpw(Register dst,Immediate src)780 void cmpw(Register dst, Immediate src) {
781 immediate_arithmetic_op_16(0x7, dst, src);
782 }
783
cmpw(Register dst,const Operand & src)784 void cmpw(Register dst, const Operand& src) {
785 arithmetic_op_16(0x3B, dst, src);
786 }
787
cmpw(Register dst,Register src)788 void cmpw(Register dst, Register src) {
789 arithmetic_op_16(0x3B, dst, src);
790 }
791
cmpw(const Operand & dst,Register src)792 void cmpw(const Operand& dst, Register src) {
793 arithmetic_op_16(0x39, src, dst);
794 }
795
andb(Register dst,Immediate src)796 void andb(Register dst, Immediate src) {
797 immediate_arithmetic_op_8(0x4, dst, src);
798 }
799
800 void decb(Register dst);
801 void decb(const Operand& dst);
802
803 // Sign-extends rax into rdx:rax.
804 void cqo();
805 // Sign-extends eax into edx:eax.
806 void cdq();
807
808 // Multiply rax by src, put the result in rdx:rax.
809 void mul(Register src);
810
811 #define DECLARE_SHIFT_INSTRUCTION(instruction, subcode) \
812 void instruction##p(Register dst, Immediate imm8) { \
813 shift(dst, imm8, subcode, kPointerSize); \
814 } \
815 \
816 void instruction##l(Register dst, Immediate imm8) { \
817 shift(dst, imm8, subcode, kInt32Size); \
818 } \
819 \
820 void instruction##q(Register dst, Immediate imm8) { \
821 shift(dst, imm8, subcode, kInt64Size); \
822 } \
823 \
824 void instruction##p_cl(Register dst) { \
825 shift(dst, subcode, kPointerSize); \
826 } \
827 \
828 void instruction##l_cl(Register dst) { \
829 shift(dst, subcode, kInt32Size); \
830 } \
831 \
832 void instruction##q_cl(Register dst) { \
833 shift(dst, subcode, kInt64Size); \
834 }
835 SHIFT_INSTRUCTION_LIST(DECLARE_SHIFT_INSTRUCTION)
836 #undef DECLARE_SHIFT_INSTRUCTION
837
838 // Shifts dst:src left by cl bits, affecting only dst.
839 void shld(Register dst, Register src);
840
841 // Shifts src:dst right by cl bits, affecting only dst.
842 void shrd(Register dst, Register src);
843
844 void store_rax(void* dst, RelocInfo::Mode mode);
845 void store_rax(ExternalReference ref);
846
subb(Register dst,Immediate src)847 void subb(Register dst, Immediate src) {
848 immediate_arithmetic_op_8(0x5, dst, src);
849 }
850
851 void testb(Register dst, Register src);
852 void testb(Register reg, Immediate mask);
853 void testb(const Operand& op, Immediate mask);
854 void testb(const Operand& op, Register reg);
855
856 // Bit operations.
857 void bt(const Operand& dst, Register src);
858 void bts(const Operand& dst, Register src);
859 void bsrl(Register dst, Register src);
860
861 // Miscellaneous
862 void clc();
863 void cld();
864 void cpuid();
865 void hlt();
866 void int3();
867 void nop();
868 void ret(int imm16);
869 void setcc(Condition cc, Register reg);
870
871 // Label operations & relative jumps (PPUM Appendix D)
872 //
873 // Takes a branch opcode (cc) and a label (L) and generates
874 // either a backward branch or a forward branch and links it
875 // to the label fixup chain. Usage:
876 //
877 // Label L; // unbound label
878 // j(cc, &L); // forward branch to unbound label
879 // bind(&L); // bind label to the current pc
880 // j(cc, &L); // backward branch to bound label
881 // bind(&L); // illegal: a label may be bound only once
882 //
883 // Note: The same Label can be used for forward and backward branches
884 // but it may be bound only once.
885
886 void bind(Label* L); // binds an unbound label L to the current code position
887
888 // Calls
889 // Call near relative 32-bit displacement, relative to next instruction.
890 void call(Label* L);
891 void call(Address entry, RelocInfo::Mode rmode);
892 void call(Handle<Code> target,
893 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
894 TypeFeedbackId ast_id = TypeFeedbackId::None());
895
896 // Calls directly to the given address using a relative offset.
897 // Should only ever be used in Code objects for calls within the
898 // same Code object. Should not be used when generating new code (use labels),
899 // but only when patching existing code.
900 void call(Address target);
901
902 // Call near absolute indirect, address in register
903 void call(Register adr);
904
905 // Jumps
906 // Jump short or near relative.
907 // Use a 32-bit signed displacement.
908 // Unconditional jump to L
909 void jmp(Label* L, Label::Distance distance = Label::kFar);
910 void jmp(Address entry, RelocInfo::Mode rmode);
911 void jmp(Handle<Code> target, RelocInfo::Mode rmode);
912
913 // Jump near absolute indirect (r64)
914 void jmp(Register adr);
915
916 // Conditional jumps
917 void j(Condition cc,
918 Label* L,
919 Label::Distance distance = Label::kFar);
920 void j(Condition cc, Address entry, RelocInfo::Mode rmode);
921 void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
922
923 // Floating-point operations
924 void fld(int i);
925
926 void fld1();
927 void fldz();
928 void fldpi();
929 void fldln2();
930
931 void fld_s(const Operand& adr);
932 void fld_d(const Operand& adr);
933
934 void fstp_s(const Operand& adr);
935 void fstp_d(const Operand& adr);
936 void fstp(int index);
937
938 void fild_s(const Operand& adr);
939 void fild_d(const Operand& adr);
940
941 void fist_s(const Operand& adr);
942
943 void fistp_s(const Operand& adr);
944 void fistp_d(const Operand& adr);
945
946 void fisttp_s(const Operand& adr);
947 void fisttp_d(const Operand& adr);
948
949 void fabs();
950 void fchs();
951
952 void fadd(int i);
953 void fsub(int i);
954 void fmul(int i);
955 void fdiv(int i);
956
957 void fisub_s(const Operand& adr);
958
959 void faddp(int i = 1);
960 void fsubp(int i = 1);
961 void fsubrp(int i = 1);
962 void fmulp(int i = 1);
963 void fdivp(int i = 1);
964 void fprem();
965 void fprem1();
966
967 void fxch(int i = 1);
968 void fincstp();
969 void ffree(int i = 0);
970
971 void ftst();
972 void fucomp(int i);
973 void fucompp();
974 void fucomi(int i);
975 void fucomip();
976
977 void fcompp();
978 void fnstsw_ax();
979 void fwait();
980 void fnclex();
981
982 void fsin();
983 void fcos();
984 void fptan();
985 void fyl2x();
986 void f2xm1();
987 void fscale();
988 void fninit();
989
990 void frndint();
991
992 void sahf();
993
994 // SSE instructions
995 void movaps(XMMRegister dst, XMMRegister src);
996 void movss(XMMRegister dst, const Operand& src);
997 void movss(const Operand& dst, XMMRegister src);
998 void shufps(XMMRegister dst, XMMRegister src, byte imm8);
999
1000 void cvttss2si(Register dst, const Operand& src);
1001 void cvttss2si(Register dst, XMMRegister src);
1002 void cvtlsi2ss(XMMRegister dst, Register src);
1003
1004 void andps(XMMRegister dst, XMMRegister src);
1005 void andps(XMMRegister dst, const Operand& src);
1006 void orps(XMMRegister dst, XMMRegister src);
1007 void orps(XMMRegister dst, const Operand& src);
1008 void xorps(XMMRegister dst, XMMRegister src);
1009 void xorps(XMMRegister dst, const Operand& src);
1010
1011 void addps(XMMRegister dst, XMMRegister src);
1012 void addps(XMMRegister dst, const Operand& src);
1013 void subps(XMMRegister dst, XMMRegister src);
1014 void subps(XMMRegister dst, const Operand& src);
1015 void mulps(XMMRegister dst, XMMRegister src);
1016 void mulps(XMMRegister dst, const Operand& src);
1017 void divps(XMMRegister dst, XMMRegister src);
1018 void divps(XMMRegister dst, const Operand& src);
1019
1020 void movmskps(Register dst, XMMRegister src);
1021
1022 // SSE2 instructions
1023 void movd(XMMRegister dst, Register src);
1024 void movd(Register dst, XMMRegister src);
1025 void movq(XMMRegister dst, Register src);
1026 void movq(Register dst, XMMRegister src);
1027 void movq(XMMRegister dst, XMMRegister src);
1028
1029 // Don't use this unless it's important to keep the
1030 // top half of the destination register unchanged.
1031 // Used movaps when moving double values and movq for integer
1032 // values in xmm registers.
1033 void movsd(XMMRegister dst, XMMRegister src);
1034
1035 void movsd(const Operand& dst, XMMRegister src);
1036 void movsd(XMMRegister dst, const Operand& src);
1037
1038 void movdqa(const Operand& dst, XMMRegister src);
1039 void movdqa(XMMRegister dst, const Operand& src);
1040
1041 void movdqu(const Operand& dst, XMMRegister src);
1042 void movdqu(XMMRegister dst, const Operand& src);
1043
1044 void movapd(XMMRegister dst, XMMRegister src);
1045
1046 void psllq(XMMRegister reg, byte imm8);
1047
1048 void cvttsd2si(Register dst, const Operand& src);
1049 void cvttsd2si(Register dst, XMMRegister src);
1050 void cvttsd2siq(Register dst, XMMRegister src);
1051 void cvttsd2siq(Register dst, const Operand& src);
1052
1053 void cvtlsi2sd(XMMRegister dst, const Operand& src);
1054 void cvtlsi2sd(XMMRegister dst, Register src);
1055 void cvtqsi2sd(XMMRegister dst, const Operand& src);
1056 void cvtqsi2sd(XMMRegister dst, Register src);
1057
1058
1059 void cvtss2sd(XMMRegister dst, XMMRegister src);
1060 void cvtss2sd(XMMRegister dst, const Operand& src);
1061 void cvtsd2ss(XMMRegister dst, XMMRegister src);
1062
1063 void cvtsd2si(Register dst, XMMRegister src);
1064 void cvtsd2siq(Register dst, XMMRegister src);
1065
1066 void addsd(XMMRegister dst, XMMRegister src);
1067 void addsd(XMMRegister dst, const Operand& src);
1068 void subsd(XMMRegister dst, XMMRegister src);
1069 void mulsd(XMMRegister dst, XMMRegister src);
1070 void mulsd(XMMRegister dst, const Operand& src);
1071 void divsd(XMMRegister dst, XMMRegister src);
1072
1073 void andpd(XMMRegister dst, XMMRegister src);
1074 void orpd(XMMRegister dst, XMMRegister src);
1075 void xorpd(XMMRegister dst, XMMRegister src);
1076 void sqrtsd(XMMRegister dst, XMMRegister src);
1077 void sqrtsd(XMMRegister dst, const Operand& src);
1078
1079 void ucomisd(XMMRegister dst, XMMRegister src);
1080 void ucomisd(XMMRegister dst, const Operand& src);
1081 void cmpltsd(XMMRegister dst, XMMRegister src);
1082
1083 void movmskpd(Register dst, XMMRegister src);
1084
1085 // SSE 4.1 instruction
1086 void extractps(Register dst, XMMRegister src, byte imm8);
1087
1088 enum RoundingMode {
1089 kRoundToNearest = 0x0,
1090 kRoundDown = 0x1,
1091 kRoundUp = 0x2,
1092 kRoundToZero = 0x3
1093 };
1094
1095 void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
1096
1097 // Debugging
1098 void Print();
1099
1100 // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1101 int SizeOfCodeGeneratedSince(Label* label) {
1102 return pc_offset() - label->pos();
1103 }
1104
1105 // Mark address of the ExitJSFrame code.
1106 void RecordJSReturn();
1107
1108 // Mark address of a debug break slot.
1109 void RecordDebugBreakSlot();
1110
1111 // Record a comment relocation entry that can be used by a disassembler.
1112 // Use --code-comments to enable.
1113 void RecordComment(const char* msg, bool force = false);
1114
1115 // Allocate a constant pool of the correct size for the generated code.
1116 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1117
1118 // Generate the constant pool for the generated code.
1119 void PopulateConstantPool(ConstantPoolArray* constant_pool);
1120
1121 // Writes a single word of data in the code stream.
1122 // Used for inline tables, e.g., jump-tables.
1123 void db(uint8_t data);
1124 void dd(uint32_t data);
1125
positions_recorder()1126 PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1127
1128 // Check if there is less than kGap bytes available in the buffer.
1129 // If this is the case, we need to grow the buffer before emitting
1130 // an instruction or relocation information.
buffer_overflow()1131 inline bool buffer_overflow() const {
1132 return pc_ >= reloc_info_writer.pos() - kGap;
1133 }
1134
1135 // Get the number of bytes available in the buffer.
available_space()1136 inline int available_space() const {
1137 return static_cast<int>(reloc_info_writer.pos() - pc_);
1138 }
1139
1140 static bool IsNop(Address addr);
1141
1142 // Avoid overflows for displacements etc.
1143 static const int kMaximalBufferSize = 512*MB;
1144
byte_at(int pos)1145 byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)1146 void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1147
1148 protected:
1149 // Call near indirect
1150 void call(const Operand& operand);
1151
1152 // Jump near absolute indirect (m64)
1153 void jmp(const Operand& src);
1154
1155 private:
addr_at(int pos)1156 byte* addr_at(int pos) { return buffer_ + pos; }
long_at(int pos)1157 uint32_t long_at(int pos) {
1158 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1159 }
long_at_put(int pos,uint32_t x)1160 void long_at_put(int pos, uint32_t x) {
1161 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1162 }
1163
1164 // code emission
1165 void GrowBuffer();
1166
emit(byte x)1167 void emit(byte x) { *pc_++ = x; }
1168 inline void emitl(uint32_t x);
1169 inline void emitp(void* x, RelocInfo::Mode rmode);
1170 inline void emitq(uint64_t x);
1171 inline void emitw(uint16_t x);
1172 inline void emit_code_target(Handle<Code> target,
1173 RelocInfo::Mode rmode,
1174 TypeFeedbackId ast_id = TypeFeedbackId::None());
1175 inline void emit_runtime_entry(Address entry, RelocInfo::Mode rmode);
emit(Immediate x)1176 void emit(Immediate x) { emitl(x.value_); }
1177
1178 // Emits a REX prefix that encodes a 64-bit operand size and
1179 // the top bit of both register codes.
1180 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1181 // REX.W is set.
1182 inline void emit_rex_64(XMMRegister reg, Register rm_reg);
1183 inline void emit_rex_64(Register reg, XMMRegister rm_reg);
1184 inline void emit_rex_64(Register reg, Register rm_reg);
1185
1186 // Emits a REX prefix that encodes a 64-bit operand size and
1187 // the top bit of the destination, index, and base register codes.
1188 // The high bit of reg is used for REX.R, the high bit of op's base
1189 // register is used for REX.B, and the high bit of op's index register
1190 // is used for REX.X. REX.W is set.
1191 inline void emit_rex_64(Register reg, const Operand& op);
1192 inline void emit_rex_64(XMMRegister reg, const Operand& op);
1193
1194 // Emits a REX prefix that encodes a 64-bit operand size and
1195 // the top bit of the register code.
1196 // The high bit of register is used for REX.B.
1197 // REX.W is set and REX.R and REX.X are clear.
1198 inline void emit_rex_64(Register rm_reg);
1199
1200 // Emits a REX prefix that encodes a 64-bit operand size and
1201 // the top bit of the index and base register codes.
1202 // The high bit of op's base register is used for REX.B, and the high
1203 // bit of op's index register is used for REX.X.
1204 // REX.W is set and REX.R clear.
1205 inline void emit_rex_64(const Operand& op);
1206
1207 // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
emit_rex_64()1208 void emit_rex_64() { emit(0x48); }
1209
1210 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1211 // REX.W is clear.
1212 inline void emit_rex_32(Register reg, Register rm_reg);
1213
1214 // The high bit of reg is used for REX.R, the high bit of op's base
1215 // register is used for REX.B, and the high bit of op's index register
1216 // is used for REX.X. REX.W is cleared.
1217 inline void emit_rex_32(Register reg, const Operand& op);
1218
1219 // High bit of rm_reg goes to REX.B.
1220 // REX.W, REX.R and REX.X are clear.
1221 inline void emit_rex_32(Register rm_reg);
1222
1223 // High bit of base goes to REX.B and high bit of index to REX.X.
1224 // REX.W and REX.R are clear.
1225 inline void emit_rex_32(const Operand& op);
1226
1227 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1228 // REX.W is cleared. If no REX bits are set, no byte is emitted.
1229 inline void emit_optional_rex_32(Register reg, Register rm_reg);
1230
1231 // The high bit of reg is used for REX.R, the high bit of op's base
1232 // register is used for REX.B, and the high bit of op's index register
1233 // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing
1234 // is emitted.
1235 inline void emit_optional_rex_32(Register reg, const Operand& op);
1236
1237 // As for emit_optional_rex_32(Register, Register), except that
1238 // the registers are XMM registers.
1239 inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1240
1241 // As for emit_optional_rex_32(Register, Register), except that
1242 // one of the registers is an XMM registers.
1243 inline void emit_optional_rex_32(XMMRegister reg, Register base);
1244
1245 // As for emit_optional_rex_32(Register, Register), except that
1246 // one of the registers is an XMM registers.
1247 inline void emit_optional_rex_32(Register reg, XMMRegister base);
1248
1249 // As for emit_optional_rex_32(Register, const Operand&), except that
1250 // the register is an XMM register.
1251 inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1252
1253 // Optionally do as emit_rex_32(Register) if the register number has
1254 // the high bit set.
1255 inline void emit_optional_rex_32(Register rm_reg);
1256
1257 // Optionally do as emit_rex_32(const Operand&) if the operand register
1258 // numbers have a high bit set.
1259 inline void emit_optional_rex_32(const Operand& op);
1260
emit_rex(int size)1261 void emit_rex(int size) {
1262 if (size == kInt64Size) {
1263 emit_rex_64();
1264 } else {
1265 DCHECK(size == kInt32Size);
1266 }
1267 }
1268
1269 template<class P1>
emit_rex(P1 p1,int size)1270 void emit_rex(P1 p1, int size) {
1271 if (size == kInt64Size) {
1272 emit_rex_64(p1);
1273 } else {
1274 DCHECK(size == kInt32Size);
1275 emit_optional_rex_32(p1);
1276 }
1277 }
1278
1279 template<class P1, class P2>
emit_rex(P1 p1,P2 p2,int size)1280 void emit_rex(P1 p1, P2 p2, int size) {
1281 if (size == kInt64Size) {
1282 emit_rex_64(p1, p2);
1283 } else {
1284 DCHECK(size == kInt32Size);
1285 emit_optional_rex_32(p1, p2);
1286 }
1287 }
1288
1289 // Emit the ModR/M byte, and optionally the SIB byte and
1290 // 1- or 4-byte offset for a memory operand. Also encodes
1291 // the second operand of the operation, a register or operation
1292 // subcode, into the reg field of the ModR/M byte.
emit_operand(Register reg,const Operand & adr)1293 void emit_operand(Register reg, const Operand& adr) {
1294 emit_operand(reg.low_bits(), adr);
1295 }
1296
1297 // Emit the ModR/M byte, and optionally the SIB byte and
1298 // 1- or 4-byte offset for a memory operand. Also used to encode
1299 // a three-bit opcode extension into the ModR/M byte.
1300 void emit_operand(int rm, const Operand& adr);
1301
1302 // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
emit_modrm(Register reg,Register rm_reg)1303 void emit_modrm(Register reg, Register rm_reg) {
1304 emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1305 }
1306
1307 // Emit a ModR/M byte with an operation subcode in the reg field and
1308 // a register in the rm_reg field.
emit_modrm(int code,Register rm_reg)1309 void emit_modrm(int code, Register rm_reg) {
1310 DCHECK(is_uint3(code));
1311 emit(0xC0 | code << 3 | rm_reg.low_bits());
1312 }
1313
1314 // Emit the code-object-relative offset of the label's position
1315 inline void emit_code_relative_offset(Label* label);
1316
1317 // The first argument is the reg field, the second argument is the r/m field.
1318 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1319 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1320 void emit_sse_operand(Register reg, const Operand& adr);
1321 void emit_sse_operand(XMMRegister dst, Register src);
1322 void emit_sse_operand(Register dst, XMMRegister src);
1323
1324 // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1325 // AND, OR, XOR, or CMP. The encodings of these operations are all
1326 // similar, differing just in the opcode or in the reg field of the
1327 // ModR/M byte.
1328 void arithmetic_op_8(byte opcode, Register reg, Register rm_reg);
1329 void arithmetic_op_8(byte opcode, Register reg, const Operand& rm_reg);
1330 void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1331 void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1332 // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
1333 void arithmetic_op(byte opcode, Register reg, Register rm_reg, int size);
1334 void arithmetic_op(byte opcode,
1335 Register reg,
1336 const Operand& rm_reg,
1337 int size);
1338 // Operate on a byte in memory or register.
1339 void immediate_arithmetic_op_8(byte subcode,
1340 Register dst,
1341 Immediate src);
1342 void immediate_arithmetic_op_8(byte subcode,
1343 const Operand& dst,
1344 Immediate src);
1345 // Operate on a word in memory or register.
1346 void immediate_arithmetic_op_16(byte subcode,
1347 Register dst,
1348 Immediate src);
1349 void immediate_arithmetic_op_16(byte subcode,
1350 const Operand& dst,
1351 Immediate src);
1352 // Operate on operands/registers with pointer size, 32-bit or 64-bit size.
1353 void immediate_arithmetic_op(byte subcode,
1354 Register dst,
1355 Immediate src,
1356 int size);
1357 void immediate_arithmetic_op(byte subcode,
1358 const Operand& dst,
1359 Immediate src,
1360 int size);
1361
1362 // Emit machine code for a shift operation.
1363 void shift(Register dst, Immediate shift_amount, int subcode, int size);
1364 // Shift dst by cl % 64 bits.
1365 void shift(Register dst, int subcode, int size);
1366
1367 void emit_farith(int b1, int b2, int i);
1368
1369 // labels
1370 // void print(Label* L);
1371 void bind_to(Label* L, int pos);
1372
1373 // record reloc info for current pc_
1374 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1375
1376 // Arithmetics
emit_add(Register dst,Register src,int size)1377 void emit_add(Register dst, Register src, int size) {
1378 arithmetic_op(0x03, dst, src, size);
1379 }
1380
emit_add(Register dst,Immediate src,int size)1381 void emit_add(Register dst, Immediate src, int size) {
1382 immediate_arithmetic_op(0x0, dst, src, size);
1383 }
1384
emit_add(Register dst,const Operand & src,int size)1385 void emit_add(Register dst, const Operand& src, int size) {
1386 arithmetic_op(0x03, dst, src, size);
1387 }
1388
emit_add(const Operand & dst,Register src,int size)1389 void emit_add(const Operand& dst, Register src, int size) {
1390 arithmetic_op(0x1, src, dst, size);
1391 }
1392
emit_add(const Operand & dst,Immediate src,int size)1393 void emit_add(const Operand& dst, Immediate src, int size) {
1394 immediate_arithmetic_op(0x0, dst, src, size);
1395 }
1396
emit_and(Register dst,Register src,int size)1397 void emit_and(Register dst, Register src, int size) {
1398 arithmetic_op(0x23, dst, src, size);
1399 }
1400
emit_and(Register dst,const Operand & src,int size)1401 void emit_and(Register dst, const Operand& src, int size) {
1402 arithmetic_op(0x23, dst, src, size);
1403 }
1404
emit_and(const Operand & dst,Register src,int size)1405 void emit_and(const Operand& dst, Register src, int size) {
1406 arithmetic_op(0x21, src, dst, size);
1407 }
1408
emit_and(Register dst,Immediate src,int size)1409 void emit_and(Register dst, Immediate src, int size) {
1410 immediate_arithmetic_op(0x4, dst, src, size);
1411 }
1412
emit_and(const Operand & dst,Immediate src,int size)1413 void emit_and(const Operand& dst, Immediate src, int size) {
1414 immediate_arithmetic_op(0x4, dst, src, size);
1415 }
1416
emit_cmp(Register dst,Register src,int size)1417 void emit_cmp(Register dst, Register src, int size) {
1418 arithmetic_op(0x3B, dst, src, size);
1419 }
1420
emit_cmp(Register dst,const Operand & src,int size)1421 void emit_cmp(Register dst, const Operand& src, int size) {
1422 arithmetic_op(0x3B, dst, src, size);
1423 }
1424
emit_cmp(const Operand & dst,Register src,int size)1425 void emit_cmp(const Operand& dst, Register src, int size) {
1426 arithmetic_op(0x39, src, dst, size);
1427 }
1428
emit_cmp(Register dst,Immediate src,int size)1429 void emit_cmp(Register dst, Immediate src, int size) {
1430 immediate_arithmetic_op(0x7, dst, src, size);
1431 }
1432
emit_cmp(const Operand & dst,Immediate src,int size)1433 void emit_cmp(const Operand& dst, Immediate src, int size) {
1434 immediate_arithmetic_op(0x7, dst, src, size);
1435 }
1436
1437 void emit_dec(Register dst, int size);
1438 void emit_dec(const Operand& dst, int size);
1439
1440 // Divide rdx:rax by src. Quotient in rax, remainder in rdx when size is 64.
1441 // Divide edx:eax by lower 32 bits of src. Quotient in eax, remainder in edx
1442 // when size is 32.
1443 void emit_idiv(Register src, int size);
1444 void emit_div(Register src, int size);
1445
1446 // Signed multiply instructions.
1447 // rdx:rax = rax * src when size is 64 or edx:eax = eax * src when size is 32.
1448 void emit_imul(Register src, int size);
1449 void emit_imul(Register dst, Register src, int size);
1450 void emit_imul(Register dst, const Operand& src, int size);
1451 void emit_imul(Register dst, Register src, Immediate imm, int size);
1452
1453 void emit_inc(Register dst, int size);
1454 void emit_inc(const Operand& dst, int size);
1455
1456 void emit_lea(Register dst, const Operand& src, int size);
1457
1458 void emit_mov(Register dst, const Operand& src, int size);
1459 void emit_mov(Register dst, Register src, int size);
1460 void emit_mov(const Operand& dst, Register src, int size);
1461 void emit_mov(Register dst, Immediate value, int size);
1462 void emit_mov(const Operand& dst, Immediate value, int size);
1463
1464 void emit_movzxb(Register dst, const Operand& src, int size);
1465 void emit_movzxb(Register dst, Register src, int size);
1466 void emit_movzxw(Register dst, const Operand& src, int size);
1467 void emit_movzxw(Register dst, Register src, int size);
1468
1469 void emit_neg(Register dst, int size);
1470 void emit_neg(const Operand& dst, int size);
1471
1472 void emit_not(Register dst, int size);
1473 void emit_not(const Operand& dst, int size);
1474
emit_or(Register dst,Register src,int size)1475 void emit_or(Register dst, Register src, int size) {
1476 arithmetic_op(0x0B, dst, src, size);
1477 }
1478
emit_or(Register dst,const Operand & src,int size)1479 void emit_or(Register dst, const Operand& src, int size) {
1480 arithmetic_op(0x0B, dst, src, size);
1481 }
1482
emit_or(const Operand & dst,Register src,int size)1483 void emit_or(const Operand& dst, Register src, int size) {
1484 arithmetic_op(0x9, src, dst, size);
1485 }
1486
emit_or(Register dst,Immediate src,int size)1487 void emit_or(Register dst, Immediate src, int size) {
1488 immediate_arithmetic_op(0x1, dst, src, size);
1489 }
1490
emit_or(const Operand & dst,Immediate src,int size)1491 void emit_or(const Operand& dst, Immediate src, int size) {
1492 immediate_arithmetic_op(0x1, dst, src, size);
1493 }
1494
1495 void emit_repmovs(int size);
1496
emit_sbb(Register dst,Register src,int size)1497 void emit_sbb(Register dst, Register src, int size) {
1498 arithmetic_op(0x1b, dst, src, size);
1499 }
1500
emit_sub(Register dst,Register src,int size)1501 void emit_sub(Register dst, Register src, int size) {
1502 arithmetic_op(0x2B, dst, src, size);
1503 }
1504
emit_sub(Register dst,Immediate src,int size)1505 void emit_sub(Register dst, Immediate src, int size) {
1506 immediate_arithmetic_op(0x5, dst, src, size);
1507 }
1508
emit_sub(Register dst,const Operand & src,int size)1509 void emit_sub(Register dst, const Operand& src, int size) {
1510 arithmetic_op(0x2B, dst, src, size);
1511 }
1512
emit_sub(const Operand & dst,Register src,int size)1513 void emit_sub(const Operand& dst, Register src, int size) {
1514 arithmetic_op(0x29, src, dst, size);
1515 }
1516
emit_sub(const Operand & dst,Immediate src,int size)1517 void emit_sub(const Operand& dst, Immediate src, int size) {
1518 immediate_arithmetic_op(0x5, dst, src, size);
1519 }
1520
1521 void emit_test(Register dst, Register src, int size);
1522 void emit_test(Register reg, Immediate mask, int size);
1523 void emit_test(const Operand& op, Register reg, int size);
1524 void emit_test(const Operand& op, Immediate mask, int size);
emit_test(Register reg,const Operand & op,int size)1525 void emit_test(Register reg, const Operand& op, int size) {
1526 return emit_test(op, reg, size);
1527 }
1528
1529 void emit_xchg(Register dst, Register src, int size);
1530 void emit_xchg(Register dst, const Operand& src, int size);
1531
emit_xor(Register dst,Register src,int size)1532 void emit_xor(Register dst, Register src, int size) {
1533 if (size == kInt64Size && dst.code() == src.code()) {
1534 // 32 bit operations zero the top 32 bits of 64 bit registers. Therefore
1535 // there is no need to make this a 64 bit operation.
1536 arithmetic_op(0x33, dst, src, kInt32Size);
1537 } else {
1538 arithmetic_op(0x33, dst, src, size);
1539 }
1540 }
1541
emit_xor(Register dst,const Operand & src,int size)1542 void emit_xor(Register dst, const Operand& src, int size) {
1543 arithmetic_op(0x33, dst, src, size);
1544 }
1545
emit_xor(Register dst,Immediate src,int size)1546 void emit_xor(Register dst, Immediate src, int size) {
1547 immediate_arithmetic_op(0x6, dst, src, size);
1548 }
1549
emit_xor(const Operand & dst,Immediate src,int size)1550 void emit_xor(const Operand& dst, Immediate src, int size) {
1551 immediate_arithmetic_op(0x6, dst, src, size);
1552 }
1553
emit_xor(const Operand & dst,Register src,int size)1554 void emit_xor(const Operand& dst, Register src, int size) {
1555 arithmetic_op(0x31, src, dst, size);
1556 }
1557
1558 friend class CodePatcher;
1559 friend class EnsureSpace;
1560 friend class RegExpMacroAssemblerX64;
1561
1562 // code generation
1563 RelocInfoWriter reloc_info_writer;
1564
1565 List< Handle<Code> > code_targets_;
1566
1567 PositionsRecorder positions_recorder_;
1568 friend class PositionsRecorder;
1569 };
1570
1571
1572 // Helper class that ensures that there is enough space for generating
1573 // instructions and relocation information. The constructor makes
1574 // sure that there is enough space and (in debug mode) the destructor
1575 // checks that we did not generate too much.
1576 class EnsureSpace BASE_EMBEDDED {
1577 public:
EnsureSpace(Assembler * assembler)1578 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1579 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1580 #ifdef DEBUG
1581 space_before_ = assembler_->available_space();
1582 #endif
1583 }
1584
1585 #ifdef DEBUG
~EnsureSpace()1586 ~EnsureSpace() {
1587 int bytes_generated = space_before_ - assembler_->available_space();
1588 DCHECK(bytes_generated < assembler_->kGap);
1589 }
1590 #endif
1591
1592 private:
1593 Assembler* assembler_;
1594 #ifdef DEBUG
1595 int space_before_;
1596 #endif
1597 };
1598
1599 } } // namespace v8::internal
1600
1601 #endif // V8_X64_ASSEMBLER_X64_H_
1602