1 // weight.h
2 
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // Copyright 2005-2010 Google, Inc.
16 // Author: riley@google.com (Michael Riley)
17 //
18 // \file
19 // General weight set and associated semiring operation definitions.
20 //
21 // A semiring is specified by two binary operations Plus and Times and
22 // two designated elements Zero and One with the following properties:
23 //   Plus: associative, commutative, and has Zero as its identity.
24 //   Times: associative and has identity One, distributes w.r.t. Plus, and
25 //     has Zero as an annihilator:
26 //          Times(Zero(), a) == Times(a, Zero()) = Zero().
27 //
28 //  A left semiring distributes on the left; a right semiring is
29 //  similarly defined.
30 //
31 // A Weight class must have binary functions =Plus= and =Times= and
32 // static member functions =Zero()= and =One()= and these must form
33 // (at least) a left or right semiring.
34 //
35 // In addition, the following should be defined for a Weight:
36 //   Member: predicate on set membership.
37 //   NoWeight: static member function that returns an element that is
38 //      not a set member; used to signal an error.
39 //   >>: reads textual representation of a weight.
40 //   <<: prints textual representation of a weight.
41 //   Read(istream &strm): reads binary representation of a weight.
42 //   Write(ostream &strm): writes binary representation of a weight.
43 //   Hash: maps weight to size_t.
44 //   ApproxEqual: approximate equality (for inexact weights)
45 //   Quantize: quantizes wrt delta (for inexact weights)
46 //   Divide: for all a,b,c s.t. Times(a, b) == c
47 //     --> b' = Divide(c, a, DIVIDE_LEFT) if a left semiring, b'.Member()
48 //      and Times(a, b') == c
49 //     --> a' = Divide(c, b, DIVIDE_RIGHT) if a right semiring, a'.Member()
50 //      and Times(a', b) == c
51 //     --> b' = Divide(c, a) = Divide(c, a, DIVIDE_ANY) =
52 //      Divide(c, a, DIVIDE_LEFT) = Divide(c, a, DIVIDE_RIGHT) if a
53 //      commutative semiring, b'.Member() and Times(a, b') = Times(b', a) = c
54 //   ReverseWeight: the type of the corresponding reverse weight.
55 //     Typically the same type as Weight for a (both left and right) semiring.
56 //     For the left string semiring, it is the right string semiring.
57 //   Reverse: a mapping from Weight to ReverseWeight s.t.
58 //     --> Reverse(Reverse(a)) = a
59 //     --> Reverse(Plus(a, b)) = Plus(Reverse(a), Reverse(b))
60 //     --> Reverse(Times(a, b)) = Times(Reverse(b), Reverse(a))
61 //     Typically the identity mapping in a (both left and right) semiring.
62 //     In the left string semiring, it maps to the reverse string
63 //     in the right string semiring.
64 //   Properties: specifies additional properties that hold:
65 //      LeftSemiring: indicates weights form a left semiring.
66 //      RightSemiring: indicates weights form a right semiring.
67 //      Commutative: for all a,b: Times(a,b) == Times(b,a)
68 //      Idempotent: for all a: Plus(a, a) == a.
69 //      Path: for all a, b: Plus(a, b) == a or Plus(a, b) == b.
70 
71 
72 #ifndef FST_LIB_WEIGHT_H__
73 #define FST_LIB_WEIGHT_H__
74 
75 #include <cmath>
76 #include <cctype>
77 #include <iostream>
78 #include <sstream>
79 
80 #include <fst/compat.h>
81 
82 #include <fst/util.h>
83 
84 
85 namespace fst {
86 
87 //
88 // CONSTANT DEFINITIONS
89 //
90 
91 // A representable float near .001
92 const float kDelta =                   1.0F/1024.0F;
93 
94 // For all a,b,c: Times(c, Plus(a,b)) = Plus(Times(c,a), Times(c, b))
95 const uint64 kLeftSemiring =           0x0000000000000001ULL;
96 
97 // For all a,b,c: Times(Plus(a,b), c) = Plus(Times(a,c), Times(b, c))
98 const uint64 kRightSemiring =          0x0000000000000002ULL;
99 
100 const uint64 kSemiring = kLeftSemiring | kRightSemiring;
101 
102 // For all a,b: Times(a,b) = Times(b,a)
103 const uint64 kCommutative =       0x0000000000000004ULL;
104 
105 // For all a: Plus(a, a) = a
106 const uint64 kIdempotent =             0x0000000000000008ULL;
107 
108 // For all a,b: Plus(a,b) = a or Plus(a,b) = b
109 const uint64 kPath =                   0x0000000000000010ULL;
110 
111 
112 // Determines direction of division.
113 enum DivideType { DIVIDE_LEFT,   // left division
114                   DIVIDE_RIGHT,  // right division
115                   DIVIDE_ANY };  // division in a commutative semiring
116 
117 // NATURAL ORDER
118 //
119 // By definition:
120 //                 a <= b iff a + b = a
121 // The natural order is a negative partial order iff the semiring is
122 // idempotent. It is trivially monotonic for plus. It is left
123 // (resp. right) monotonic for times iff the semiring is left
124 // (resp. right) distributive. It is a total order iff the semiring
125 // has the path property. See Mohri, "Semiring Framework and
126 // Algorithms for Shortest-Distance Problems", Journal of Automata,
127 // Languages and Combinatorics 7(3):321-350, 2002. We define the
128 // strict version of this order below.
129 
130 template <class W>
131 class NaturalLess {
132  public:
133   typedef W Weight;
134 
NaturalLess()135   NaturalLess() {
136     if (!(W::Properties() & kIdempotent)) {
137       FSTERROR() << "NaturalLess: Weight type is not idempotent: "
138                  << W::Type();
139     }
140   }
141 
operator()142   bool operator()(const W &w1, const W &w2) const {
143     return (Plus(w1, w2) == w1) && w1 != w2;
144   }
145 };
146 
147 
148 // Power is the iterated product for arbitrary semirings such that
149 // Power(w, 0) is One() for the semiring, and
150 // Power(w, n) = Times(Power(w, n-1), w)
151 
152 template <class W>
Power(W w,size_t n)153 W Power(W w, size_t n) {
154   W result = W::One();
155   for (size_t i = 0; i < n; ++i) {
156     result = Times(result, w);
157   }
158   return result;
159 }
160 
161 // General weight converter - raises error.
162 template <class W1, class W2>
163 struct WeightConvert {
operatorWeightConvert164   W2 operator()(W1 w1) const {
165     FSTERROR() << "WeightConvert: can't convert weight from \""
166                << W1::Type() << "\" to \"" << W2::Type();
167     return W2::NoWeight();
168   }
169 };
170 
171 // Specialized weight converter to self.
172 template <class W>
173 struct WeightConvert<W, W> {
174   W operator()(W w) const { return w; }
175 };
176 
177 }  // namespace fst
178 
179 #endif  // FST_LIB_WEIGHT_H__
180