1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "local_value_numbering.h"
18 #include "dataflow_iterator-inl.h"
19
20 namespace art {
21
22 /*
23 * Main table containing data flow attributes for each bytecode. The
24 * first kNumPackedOpcodes entries are for Dalvik bytecode
25 * instructions, where extended opcode at the MIR level are appended
26 * afterwards.
27 *
28 * TODO - many optimization flags are incomplete - they will only limit the
29 * scope of optimizations but will not cause mis-optimizations.
30 */
31 const uint64_t MIRGraph::oat_data_flow_attributes_[kMirOpLast] = {
32 // 00 NOP
33 DF_NOP,
34
35 // 01 MOVE vA, vB
36 DF_DA | DF_UB | DF_IS_MOVE,
37
38 // 02 MOVE_FROM16 vAA, vBBBB
39 DF_DA | DF_UB | DF_IS_MOVE,
40
41 // 03 MOVE_16 vAAAA, vBBBB
42 DF_DA | DF_UB | DF_IS_MOVE,
43
44 // 04 MOVE_WIDE vA, vB
45 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
46
47 // 05 MOVE_WIDE_FROM16 vAA, vBBBB
48 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
49
50 // 06 MOVE_WIDE_16 vAAAA, vBBBB
51 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
52
53 // 07 MOVE_OBJECT vA, vB
54 DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
55
56 // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
57 DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
58
59 // 09 MOVE_OBJECT_16 vAAAA, vBBBB
60 DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
61
62 // 0A MOVE_RESULT vAA
63 DF_DA,
64
65 // 0B MOVE_RESULT_WIDE vAA
66 DF_DA | DF_A_WIDE,
67
68 // 0C MOVE_RESULT_OBJECT vAA
69 DF_DA | DF_REF_A,
70
71 // 0D MOVE_EXCEPTION vAA
72 DF_DA | DF_REF_A | DF_NON_NULL_DST,
73
74 // 0E RETURN_VOID
75 DF_NOP,
76
77 // 0F RETURN vAA
78 DF_UA,
79
80 // 10 RETURN_WIDE vAA
81 DF_UA | DF_A_WIDE,
82
83 // 11 RETURN_OBJECT vAA
84 DF_UA | DF_REF_A,
85
86 // 12 CONST_4 vA, #+B
87 DF_DA | DF_SETS_CONST,
88
89 // 13 CONST_16 vAA, #+BBBB
90 DF_DA | DF_SETS_CONST,
91
92 // 14 CONST vAA, #+BBBBBBBB
93 DF_DA | DF_SETS_CONST,
94
95 // 15 CONST_HIGH16 VAA, #+BBBB0000
96 DF_DA | DF_SETS_CONST,
97
98 // 16 CONST_WIDE_16 vAA, #+BBBB
99 DF_DA | DF_A_WIDE | DF_SETS_CONST,
100
101 // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
102 DF_DA | DF_A_WIDE | DF_SETS_CONST,
103
104 // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
105 DF_DA | DF_A_WIDE | DF_SETS_CONST,
106
107 // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
108 DF_DA | DF_A_WIDE | DF_SETS_CONST,
109
110 // 1A CONST_STRING vAA, string@BBBB
111 DF_DA | DF_REF_A | DF_NON_NULL_DST,
112
113 // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
114 DF_DA | DF_REF_A | DF_NON_NULL_DST,
115
116 // 1C CONST_CLASS vAA, type@BBBB
117 DF_DA | DF_REF_A | DF_NON_NULL_DST,
118
119 // 1D MONITOR_ENTER vAA
120 DF_UA | DF_NULL_CHK_A | DF_REF_A,
121
122 // 1E MONITOR_EXIT vAA
123 DF_UA | DF_NULL_CHK_A | DF_REF_A,
124
125 // 1F CHK_CAST vAA, type@BBBB
126 DF_UA | DF_REF_A | DF_CHK_CAST | DF_UMS,
127
128 // 20 INSTANCE_OF vA, vB, type@CCCC
129 DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,
130
131 // 21 ARRAY_LENGTH vA, vB
132 DF_DA | DF_UB | DF_NULL_CHK_B | DF_CORE_A | DF_REF_B,
133
134 // 22 NEW_INSTANCE vAA, type@BBBB
135 DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,
136
137 // 23 NEW_ARRAY vA, vB, type@CCCC
138 DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,
139
140 // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
141 DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,
142
143 // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
144 DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,
145
146 // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
147 DF_UA | DF_REF_A | DF_UMS,
148
149 // 27 THROW vAA
150 DF_UA | DF_REF_A | DF_UMS,
151
152 // 28 GOTO
153 DF_NOP,
154
155 // 29 GOTO_16
156 DF_NOP,
157
158 // 2A GOTO_32
159 DF_NOP,
160
161 // 2B PACKED_SWITCH vAA, +BBBBBBBB
162 DF_UA | DF_CORE_A,
163
164 // 2C SPARSE_SWITCH vAA, +BBBBBBBB
165 DF_UA | DF_CORE_A,
166
167 // 2D CMPL_FLOAT vAA, vBB, vCC
168 DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
169
170 // 2E CMPG_FLOAT vAA, vBB, vCC
171 DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
172
173 // 2F CMPL_DOUBLE vAA, vBB, vCC
174 DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
175
176 // 30 CMPG_DOUBLE vAA, vBB, vCC
177 DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
178
179 // 31 CMP_LONG vAA, vBB, vCC
180 DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
181
182 // 32 IF_EQ vA, vB, +CCCC
183 DF_UA | DF_UB | DF_SAME_TYPE_AB,
184
185 // 33 IF_NE vA, vB, +CCCC
186 DF_UA | DF_UB | DF_SAME_TYPE_AB,
187
188 // 34 IF_LT vA, vB, +CCCC
189 DF_UA | DF_UB | DF_SAME_TYPE_AB,
190
191 // 35 IF_GE vA, vB, +CCCC
192 DF_UA | DF_UB | DF_SAME_TYPE_AB,
193
194 // 36 IF_GT vA, vB, +CCCC
195 DF_UA | DF_UB | DF_SAME_TYPE_AB,
196
197 // 37 IF_LE vA, vB, +CCCC
198 DF_UA | DF_UB | DF_SAME_TYPE_AB,
199
200 // 38 IF_EQZ vAA, +BBBB
201 DF_UA,
202
203 // 39 IF_NEZ vAA, +BBBB
204 DF_UA,
205
206 // 3A IF_LTZ vAA, +BBBB
207 DF_UA,
208
209 // 3B IF_GEZ vAA, +BBBB
210 DF_UA,
211
212 // 3C IF_GTZ vAA, +BBBB
213 DF_UA,
214
215 // 3D IF_LEZ vAA, +BBBB
216 DF_UA,
217
218 // 3E UNUSED_3E
219 DF_NOP,
220
221 // 3F UNUSED_3F
222 DF_NOP,
223
224 // 40 UNUSED_40
225 DF_NOP,
226
227 // 41 UNUSED_41
228 DF_NOP,
229
230 // 42 UNUSED_42
231 DF_NOP,
232
233 // 43 UNUSED_43
234 DF_NOP,
235
236 // 44 AGET vAA, vBB, vCC
237 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
238
239 // 45 AGET_WIDE vAA, vBB, vCC
240 DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
241
242 // 46 AGET_OBJECT vAA, vBB, vCC
243 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,
244
245 // 47 AGET_BOOLEAN vAA, vBB, vCC
246 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
247
248 // 48 AGET_BYTE vAA, vBB, vCC
249 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
250
251 // 49 AGET_CHAR vAA, vBB, vCC
252 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
253
254 // 4A AGET_SHORT vAA, vBB, vCC
255 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
256
257 // 4B APUT vAA, vBB, vCC
258 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
259
260 // 4C APUT_WIDE vAA, vBB, vCC
261 DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
262
263 // 4D APUT_OBJECT vAA, vBB, vCC
264 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,
265
266 // 4E APUT_BOOLEAN vAA, vBB, vCC
267 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
268
269 // 4F APUT_BYTE vAA, vBB, vCC
270 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
271
272 // 50 APUT_CHAR vAA, vBB, vCC
273 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
274
275 // 51 APUT_SHORT vAA, vBB, vCC
276 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
277
278 // 52 IGET vA, vB, field@CCCC
279 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
280
281 // 53 IGET_WIDE vA, vB, field@CCCC
282 DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
283
284 // 54 IGET_OBJECT vA, vB, field@CCCC
285 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
286
287 // 55 IGET_BOOLEAN vA, vB, field@CCCC
288 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
289
290 // 56 IGET_BYTE vA, vB, field@CCCC
291 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
292
293 // 57 IGET_CHAR vA, vB, field@CCCC
294 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
295
296 // 58 IGET_SHORT vA, vB, field@CCCC
297 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
298
299 // 59 IPUT vA, vB, field@CCCC
300 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
301
302 // 5A IPUT_WIDE vA, vB, field@CCCC
303 DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
304
305 // 5B IPUT_OBJECT vA, vB, field@CCCC
306 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
307
308 // 5C IPUT_BOOLEAN vA, vB, field@CCCC
309 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
310
311 // 5D IPUT_BYTE vA, vB, field@CCCC
312 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
313
314 // 5E IPUT_CHAR vA, vB, field@CCCC
315 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
316
317 // 5F IPUT_SHORT vA, vB, field@CCCC
318 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
319
320 // 60 SGET vAA, field@BBBB
321 DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,
322
323 // 61 SGET_WIDE vAA, field@BBBB
324 DF_DA | DF_A_WIDE | DF_SFIELD | DF_CLINIT | DF_UMS,
325
326 // 62 SGET_OBJECT vAA, field@BBBB
327 DF_DA | DF_REF_A | DF_SFIELD | DF_CLINIT | DF_UMS,
328
329 // 63 SGET_BOOLEAN vAA, field@BBBB
330 DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,
331
332 // 64 SGET_BYTE vAA, field@BBBB
333 DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,
334
335 // 65 SGET_CHAR vAA, field@BBBB
336 DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,
337
338 // 66 SGET_SHORT vAA, field@BBBB
339 DF_DA | DF_SFIELD | DF_CLINIT | DF_UMS,
340
341 // 67 SPUT vAA, field@BBBB
342 DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,
343
344 // 68 SPUT_WIDE vAA, field@BBBB
345 DF_UA | DF_A_WIDE | DF_SFIELD | DF_CLINIT | DF_UMS,
346
347 // 69 SPUT_OBJECT vAA, field@BBBB
348 DF_UA | DF_REF_A | DF_SFIELD | DF_CLINIT | DF_UMS,
349
350 // 6A SPUT_BOOLEAN vAA, field@BBBB
351 DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,
352
353 // 6B SPUT_BYTE vAA, field@BBBB
354 DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,
355
356 // 6C SPUT_CHAR vAA, field@BBBB
357 DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,
358
359 // 6D SPUT_SHORT vAA, field@BBBB
360 DF_UA | DF_SFIELD | DF_CLINIT | DF_UMS,
361
362 // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
363 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
364
365 // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
366 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
367
368 // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
369 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
370
371 // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
372 DF_FORMAT_35C | DF_CLINIT | DF_UMS,
373
374 // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
375 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
376
377 // 73 RETURN_VOID_NO_BARRIER
378 DF_NOP,
379
380 // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
381 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
382
383 // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
384 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
385
386 // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
387 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
388
389 // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
390 DF_FORMAT_3RC | DF_CLINIT | DF_UMS,
391
392 // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
393 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
394
395 // 79 UNUSED_79
396 DF_NOP,
397
398 // 7A UNUSED_7A
399 DF_NOP,
400
401 // 7B NEG_INT vA, vB
402 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
403
404 // 7C NOT_INT vA, vB
405 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
406
407 // 7D NEG_LONG vA, vB
408 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
409
410 // 7E NOT_LONG vA, vB
411 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
412
413 // 7F NEG_FLOAT vA, vB
414 DF_DA | DF_UB | DF_FP_A | DF_FP_B,
415
416 // 80 NEG_DOUBLE vA, vB
417 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
418
419 // 81 INT_TO_LONG vA, vB
420 DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,
421
422 // 82 INT_TO_FLOAT vA, vB
423 DF_DA | DF_UB | DF_FP_A | DF_CORE_B,
424
425 // 83 INT_TO_DOUBLE vA, vB
426 DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,
427
428 // 84 LONG_TO_INT vA, vB
429 DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
430
431 // 85 LONG_TO_FLOAT vA, vB
432 DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
433
434 // 86 LONG_TO_DOUBLE vA, vB
435 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
436
437 // 87 FLOAT_TO_INT vA, vB
438 DF_DA | DF_UB | DF_FP_B | DF_CORE_A,
439
440 // 88 FLOAT_TO_LONG vA, vB
441 DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,
442
443 // 89 FLOAT_TO_DOUBLE vA, vB
444 DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,
445
446 // 8A DOUBLE_TO_INT vA, vB
447 DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
448
449 // 8B DOUBLE_TO_LONG vA, vB
450 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
451
452 // 8C DOUBLE_TO_FLOAT vA, vB
453 DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
454
455 // 8D INT_TO_BYTE vA, vB
456 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
457
458 // 8E INT_TO_CHAR vA, vB
459 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
460
461 // 8F INT_TO_SHORT vA, vB
462 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
463
464 // 90 ADD_INT vAA, vBB, vCC
465 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
466
467 // 91 SUB_INT vAA, vBB, vCC
468 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
469
470 // 92 MUL_INT vAA, vBB, vCC
471 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
472
473 // 93 DIV_INT vAA, vBB, vCC
474 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
475
476 // 94 REM_INT vAA, vBB, vCC
477 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
478
479 // 95 AND_INT vAA, vBB, vCC
480 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
481
482 // 96 OR_INT vAA, vBB, vCC
483 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
484
485 // 97 XOR_INT vAA, vBB, vCC
486 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
487
488 // 98 SHL_INT vAA, vBB, vCC
489 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
490
491 // 99 SHR_INT vAA, vBB, vCC
492 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
493
494 // 9A USHR_INT vAA, vBB, vCC
495 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
496
497 // 9B ADD_LONG vAA, vBB, vCC
498 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
499
500 // 9C SUB_LONG vAA, vBB, vCC
501 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
502
503 // 9D MUL_LONG vAA, vBB, vCC
504 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
505
506 // 9E DIV_LONG vAA, vBB, vCC
507 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
508
509 // 9F REM_LONG vAA, vBB, vCC
510 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
511
512 // A0 AND_LONG vAA, vBB, vCC
513 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
514
515 // A1 OR_LONG vAA, vBB, vCC
516 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
517
518 // A2 XOR_LONG vAA, vBB, vCC
519 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
520
521 // A3 SHL_LONG vAA, vBB, vCC
522 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
523
524 // A4 SHR_LONG vAA, vBB, vCC
525 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
526
527 // A5 USHR_LONG vAA, vBB, vCC
528 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
529
530 // A6 ADD_FLOAT vAA, vBB, vCC
531 DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
532
533 // A7 SUB_FLOAT vAA, vBB, vCC
534 DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
535
536 // A8 MUL_FLOAT vAA, vBB, vCC
537 DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
538
539 // A9 DIV_FLOAT vAA, vBB, vCC
540 DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
541
542 // AA REM_FLOAT vAA, vBB, vCC
543 DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
544
545 // AB ADD_DOUBLE vAA, vBB, vCC
546 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
547
548 // AC SUB_DOUBLE vAA, vBB, vCC
549 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
550
551 // AD MUL_DOUBLE vAA, vBB, vCC
552 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
553
554 // AE DIV_DOUBLE vAA, vBB, vCC
555 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
556
557 // AF REM_DOUBLE vAA, vBB, vCC
558 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
559
560 // B0 ADD_INT_2ADDR vA, vB
561 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
562
563 // B1 SUB_INT_2ADDR vA, vB
564 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
565
566 // B2 MUL_INT_2ADDR vA, vB
567 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
568
569 // B3 DIV_INT_2ADDR vA, vB
570 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
571
572 // B4 REM_INT_2ADDR vA, vB
573 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
574
575 // B5 AND_INT_2ADDR vA, vB
576 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
577
578 // B6 OR_INT_2ADDR vA, vB
579 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
580
581 // B7 XOR_INT_2ADDR vA, vB
582 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
583
584 // B8 SHL_INT_2ADDR vA, vB
585 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
586
587 // B9 SHR_INT_2ADDR vA, vB
588 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
589
590 // BA USHR_INT_2ADDR vA, vB
591 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
592
593 // BB ADD_LONG_2ADDR vA, vB
594 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
595
596 // BC SUB_LONG_2ADDR vA, vB
597 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
598
599 // BD MUL_LONG_2ADDR vA, vB
600 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
601
602 // BE DIV_LONG_2ADDR vA, vB
603 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
604
605 // BF REM_LONG_2ADDR vA, vB
606 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
607
608 // C0 AND_LONG_2ADDR vA, vB
609 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
610
611 // C1 OR_LONG_2ADDR vA, vB
612 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
613
614 // C2 XOR_LONG_2ADDR vA, vB
615 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
616
617 // C3 SHL_LONG_2ADDR vA, vB
618 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
619
620 // C4 SHR_LONG_2ADDR vA, vB
621 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
622
623 // C5 USHR_LONG_2ADDR vA, vB
624 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
625
626 // C6 ADD_FLOAT_2ADDR vA, vB
627 DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
628
629 // C7 SUB_FLOAT_2ADDR vA, vB
630 DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
631
632 // C8 MUL_FLOAT_2ADDR vA, vB
633 DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
634
635 // C9 DIV_FLOAT_2ADDR vA, vB
636 DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
637
638 // CA REM_FLOAT_2ADDR vA, vB
639 DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
640
641 // CB ADD_DOUBLE_2ADDR vA, vB
642 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
643
644 // CC SUB_DOUBLE_2ADDR vA, vB
645 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
646
647 // CD MUL_DOUBLE_2ADDR vA, vB
648 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
649
650 // CE DIV_DOUBLE_2ADDR vA, vB
651 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
652
653 // CF REM_DOUBLE_2ADDR vA, vB
654 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
655
656 // D0 ADD_INT_LIT16 vA, vB, #+CCCC
657 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
658
659 // D1 RSUB_INT vA, vB, #+CCCC
660 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
661
662 // D2 MUL_INT_LIT16 vA, vB, #+CCCC
663 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
664
665 // D3 DIV_INT_LIT16 vA, vB, #+CCCC
666 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
667
668 // D4 REM_INT_LIT16 vA, vB, #+CCCC
669 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
670
671 // D5 AND_INT_LIT16 vA, vB, #+CCCC
672 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
673
674 // D6 OR_INT_LIT16 vA, vB, #+CCCC
675 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
676
677 // D7 XOR_INT_LIT16 vA, vB, #+CCCC
678 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
679
680 // D8 ADD_INT_LIT8 vAA, vBB, #+CC
681 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
682
683 // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
684 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
685
686 // DA MUL_INT_LIT8 vAA, vBB, #+CC
687 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
688
689 // DB DIV_INT_LIT8 vAA, vBB, #+CC
690 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
691
692 // DC REM_INT_LIT8 vAA, vBB, #+CC
693 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
694
695 // DD AND_INT_LIT8 vAA, vBB, #+CC
696 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
697
698 // DE OR_INT_LIT8 vAA, vBB, #+CC
699 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
700
701 // DF XOR_INT_LIT8 vAA, vBB, #+CC
702 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
703
704 // E0 SHL_INT_LIT8 vAA, vBB, #+CC
705 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
706
707 // E1 SHR_INT_LIT8 vAA, vBB, #+CC
708 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
709
710 // E2 USHR_INT_LIT8 vAA, vBB, #+CC
711 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
712
713 // E3 IGET_QUICK
714 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
715
716 // E4 IGET_WIDE_QUICK
717 DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
718
719 // E5 IGET_OBJECT_QUICK
720 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
721
722 // E6 IPUT_QUICK
723 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
724
725 // E7 IPUT_WIDE_QUICK
726 DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
727
728 // E8 IPUT_OBJECT_QUICK
729 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
730
731 // E9 INVOKE_VIRTUAL_QUICK
732 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
733
734 // EA INVOKE_VIRTUAL_RANGE_QUICK
735 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
736
737 // EB IPUT_BOOLEAN_QUICK vA, vB, index
738 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
739
740 // EC IPUT_BYTE_QUICK vA, vB, index
741 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
742
743 // ED IPUT_CHAR_QUICK vA, vB, index
744 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
745
746 // EE IPUT_SHORT_QUICK vA, vB, index
747 DF_UA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
748
749 // EF IGET_BOOLEAN_QUICK vA, vB, index
750 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
751
752 // F0 IGET_BYTE_QUICK vA, vB, index
753 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
754
755 // F1 IGET_CHAR_QUICK vA, vB, index
756 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
757
758 // F2 IGET_SHORT_QUICK vA, vB, index
759 DF_DA | DF_UB | DF_NULL_CHK_B | DF_REF_B | DF_IFIELD | DF_LVN,
760
761 // F3 UNUSED_F3
762 DF_NOP,
763
764 // F4 UNUSED_F4
765 DF_NOP,
766
767 // F5 UNUSED_F5
768 DF_NOP,
769
770 // F6 UNUSED_F6
771 DF_NOP,
772
773 // F7 UNUSED_F7
774 DF_NOP,
775
776 // F8 UNUSED_F8
777 DF_NOP,
778
779 // F9 UNUSED_F9
780 DF_NOP,
781
782 // FA UNUSED_FA
783 DF_NOP,
784
785 // FB UNUSED_FB
786 DF_NOP,
787
788 // FC UNUSED_FC
789 DF_NOP,
790
791 // FD UNUSED_FD
792 DF_NOP,
793
794 // FE UNUSED_FE
795 DF_NOP,
796
797 // FF UNUSED_FF
798 DF_NOP,
799
800 // Beginning of extended MIR opcodes
801 // 100 MIR_PHI
802 DF_DA | DF_NULL_TRANSFER_N,
803
804 // 101 MIR_COPY
805 DF_DA | DF_UB | DF_IS_MOVE,
806
807 // 102 MIR_FUSED_CMPL_FLOAT
808 DF_UA | DF_UB | DF_FP_A | DF_FP_B,
809
810 // 103 MIR_FUSED_CMPG_FLOAT
811 DF_UA | DF_UB | DF_FP_A | DF_FP_B,
812
813 // 104 MIR_FUSED_CMPL_DOUBLE
814 DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
815
816 // 105 MIR_FUSED_CMPG_DOUBLE
817 DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
818
819 // 106 MIR_FUSED_CMP_LONG
820 DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
821
822 // 107 MIR_NOP
823 DF_NOP,
824
825 // 108 MIR_NULL_CHECK
826 DF_UA | DF_REF_A | DF_NULL_CHK_A | DF_LVN,
827
828 // 109 MIR_RANGE_CHECK
829 0,
830
831 // 10A MIR_DIV_ZERO_CHECK
832 0,
833
834 // 10B MIR_CHECK
835 0,
836
837 // 10D MIR_SELECT
838 DF_DA | DF_UB,
839
840 // 10E MirOpConstVector
841 0,
842
843 // 10F MirOpMoveVector
844 0,
845
846 // 110 MirOpPackedMultiply
847 0,
848
849 // 111 MirOpPackedAddition
850 0,
851
852 // 112 MirOpPackedSubtract
853 0,
854
855 // 113 MirOpPackedShiftLeft
856 0,
857
858 // 114 MirOpPackedSignedShiftRight
859 0,
860
861 // 115 MirOpPackedUnsignedShiftRight
862 0,
863
864 // 116 MirOpPackedAnd
865 0,
866
867 // 117 MirOpPackedOr
868 0,
869
870 // 118 MirOpPackedXor
871 0,
872
873 // 119 MirOpPackedAddReduce
874 DF_FORMAT_EXTENDED,
875
876 // 11A MirOpPackedReduce
877 DF_FORMAT_EXTENDED,
878
879 // 11B MirOpPackedSet
880 DF_FORMAT_EXTENDED,
881
882 // 11C MirOpReserveVectorRegisters
883 0,
884
885 // 11D MirOpReturnVectorRegisters
886 0,
887
888 // 11E MirOpMemBarrier
889 0,
890
891 // 11F MirOpPackedArrayGet
892 DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
893
894 // 120 MirOpPackedArrayPut
895 DF_UB | DF_UC | DF_NULL_CHK_B | DF_RANGE_CHK_C | DF_REF_B | DF_CORE_C | DF_LVN,
896
897 // 121 MirOpMaddInt
898 DF_FORMAT_EXTENDED,
899
900 // 122 MirOpMsubInt
901 DF_FORMAT_EXTENDED,
902
903 // 123 MirOpMaddLong
904 DF_FORMAT_EXTENDED,
905
906 // 124 MirOpMsubLong
907 DF_FORMAT_EXTENDED,
908 };
909
910 /* Any register that is used before being defined is considered live-in */
HandleLiveInUse(ArenaBitVector * use_v,ArenaBitVector * def_v,ArenaBitVector * live_in_v,int dalvik_reg_id)911 void MIRGraph::HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
912 ArenaBitVector* live_in_v, int dalvik_reg_id) {
913 use_v->SetBit(dalvik_reg_id);
914 if (!def_v->IsBitSet(dalvik_reg_id)) {
915 live_in_v->SetBit(dalvik_reg_id);
916 }
917 }
918
919 /* Mark a reg as being defined */
HandleDef(ArenaBitVector * def_v,int dalvik_reg_id)920 void MIRGraph::HandleDef(ArenaBitVector* def_v, int dalvik_reg_id) {
921 def_v->SetBit(dalvik_reg_id);
922 }
923
HandleExtended(ArenaBitVector * use_v,ArenaBitVector * def_v,ArenaBitVector * live_in_v,const MIR::DecodedInstruction & d_insn)924 void MIRGraph::HandleExtended(ArenaBitVector* use_v, ArenaBitVector* def_v,
925 ArenaBitVector* live_in_v,
926 const MIR::DecodedInstruction& d_insn) {
927 // For vector MIRs, vC contains type information
928 bool is_vector_type_wide = false;
929 int type_size = d_insn.vC >> 16;
930 if (type_size == k64 || type_size == kDouble) {
931 is_vector_type_wide = true;
932 }
933
934 switch (static_cast<int>(d_insn.opcode)) {
935 case kMirOpPackedAddReduce:
936 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vA);
937 if (is_vector_type_wide == true) {
938 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vA + 1);
939 }
940 HandleDef(def_v, d_insn.vA);
941 if (is_vector_type_wide == true) {
942 HandleDef(def_v, d_insn.vA + 1);
943 }
944 break;
945 case kMirOpPackedReduce:
946 HandleDef(def_v, d_insn.vA);
947 if (is_vector_type_wide == true) {
948 HandleDef(def_v, d_insn.vA + 1);
949 }
950 break;
951 case kMirOpPackedSet:
952 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vB);
953 if (is_vector_type_wide == true) {
954 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vB + 1);
955 }
956 break;
957 case kMirOpMaddInt:
958 case kMirOpMsubInt:
959 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vB);
960 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vC);
961 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.arg[0]);
962 HandleDef(def_v, d_insn.vA);
963 break;
964 case kMirOpMaddLong:
965 case kMirOpMsubLong:
966 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vB);
967 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vB + 1);
968 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vC);
969 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.vC + 1);
970 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.arg[0]);
971 HandleLiveInUse(use_v, def_v, live_in_v, d_insn.arg[0] + 1);
972 HandleDef(def_v, d_insn.vA);
973 HandleDef(def_v, d_insn.vA + 1);
974 break;
975 default:
976 LOG(ERROR) << "Unexpected Extended Opcode " << d_insn.opcode;
977 break;
978 }
979 }
980
981 /*
982 * Find out live-in variables for natural loops. Variables that are live-in in
983 * the main loop body are considered to be defined in the entry block.
984 */
FindLocalLiveIn(BasicBlock * bb)985 bool MIRGraph::FindLocalLiveIn(BasicBlock* bb) {
986 MIR* mir;
987 ArenaBitVector *use_v, *def_v, *live_in_v;
988
989 if (bb->data_flow_info == nullptr) return false;
990
991 use_v = bb->data_flow_info->use_v =
992 new (arena_) ArenaBitVector(arena_, GetNumOfCodeAndTempVRs(), false, kBitMapUse);
993 def_v = bb->data_flow_info->def_v =
994 new (arena_) ArenaBitVector(arena_, GetNumOfCodeAndTempVRs(), false, kBitMapDef);
995 live_in_v = bb->data_flow_info->live_in_v =
996 new (arena_) ArenaBitVector(arena_, GetNumOfCodeAndTempVRs(), false, kBitMapLiveIn);
997
998 for (mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
999 uint64_t df_attributes = GetDataFlowAttributes(mir);
1000 MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
1001
1002 if (df_attributes & DF_HAS_USES) {
1003 if (df_attributes & DF_UA) {
1004 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA);
1005 if (df_attributes & DF_A_WIDE) {
1006 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA+1);
1007 }
1008 }
1009 if (df_attributes & DF_UB) {
1010 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB);
1011 if (df_attributes & DF_B_WIDE) {
1012 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB+1);
1013 }
1014 }
1015 if (df_attributes & DF_UC) {
1016 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC);
1017 if (df_attributes & DF_C_WIDE) {
1018 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+1);
1019 }
1020 }
1021 }
1022 if (df_attributes & DF_FORMAT_35C) {
1023 for (unsigned int i = 0; i < d_insn->vA; i++) {
1024 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->arg[i]);
1025 }
1026 }
1027 if (df_attributes & DF_FORMAT_3RC) {
1028 for (unsigned int i = 0; i < d_insn->vA; i++) {
1029 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+i);
1030 }
1031 }
1032 if (df_attributes & DF_HAS_DEFS) {
1033 HandleDef(def_v, d_insn->vA);
1034 if (df_attributes & DF_A_WIDE) {
1035 HandleDef(def_v, d_insn->vA+1);
1036 }
1037 }
1038 if (df_attributes & DF_FORMAT_EXTENDED) {
1039 HandleExtended(use_v, def_v, live_in_v, mir->dalvikInsn);
1040 }
1041 }
1042 return true;
1043 }
1044
AddNewSReg(int v_reg)1045 int MIRGraph::AddNewSReg(int v_reg) {
1046 int subscript = ++ssa_last_defs_[v_reg];
1047 uint32_t ssa_reg = GetNumSSARegs();
1048 SetNumSSARegs(ssa_reg + 1);
1049 ssa_base_vregs_.push_back(v_reg);
1050 ssa_subscripts_.push_back(subscript);
1051 DCHECK_EQ(ssa_base_vregs_.size(), ssa_subscripts_.size());
1052 // If we are expanding very late, update use counts too.
1053 if (ssa_reg > 0 && use_counts_.size() == ssa_reg) {
1054 // Need to expand the counts.
1055 use_counts_.push_back(0);
1056 raw_use_counts_.push_back(0);
1057 }
1058 return ssa_reg;
1059 }
1060
1061 /* Find out the latest SSA register for a given Dalvik register */
HandleSSAUse(int * uses,int dalvik_reg,int reg_index)1062 void MIRGraph::HandleSSAUse(int* uses, int dalvik_reg, int reg_index) {
1063 DCHECK((dalvik_reg >= 0) && (dalvik_reg < static_cast<int>(GetNumOfCodeAndTempVRs())));
1064 uses[reg_index] = vreg_to_ssa_map_[dalvik_reg];
1065 }
1066
1067 /* Setup a new SSA register for a given Dalvik register */
HandleSSADef(int * defs,int dalvik_reg,int reg_index)1068 void MIRGraph::HandleSSADef(int* defs, int dalvik_reg, int reg_index) {
1069 DCHECK((dalvik_reg >= 0) && (dalvik_reg < static_cast<int>(GetNumOfCodeAndTempVRs())));
1070 int ssa_reg = AddNewSReg(dalvik_reg);
1071 vreg_to_ssa_map_[dalvik_reg] = ssa_reg;
1072 defs[reg_index] = ssa_reg;
1073 }
1074
AllocateSSAUseData(MIR * mir,int num_uses)1075 void MIRGraph::AllocateSSAUseData(MIR *mir, int num_uses) {
1076 mir->ssa_rep->num_uses = num_uses;
1077
1078 if (mir->ssa_rep->num_uses_allocated < num_uses) {
1079 mir->ssa_rep->uses = arena_->AllocArray<int32_t>(num_uses, kArenaAllocDFInfo);
1080 }
1081 }
1082
AllocateSSADefData(MIR * mir,int num_defs)1083 void MIRGraph::AllocateSSADefData(MIR *mir, int num_defs) {
1084 mir->ssa_rep->num_defs = num_defs;
1085
1086 if (mir->ssa_rep->num_defs_allocated < num_defs) {
1087 mir->ssa_rep->defs = arena_->AllocArray<int32_t>(num_defs, kArenaAllocDFInfo);
1088 }
1089 }
1090
1091 /* Look up new SSA names for format_35c instructions */
DataFlowSSAFormat35C(MIR * mir)1092 void MIRGraph::DataFlowSSAFormat35C(MIR* mir) {
1093 MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
1094 int num_uses = d_insn->vA;
1095 int i;
1096
1097 AllocateSSAUseData(mir, num_uses);
1098
1099 for (i = 0; i < num_uses; i++) {
1100 HandleSSAUse(mir->ssa_rep->uses, d_insn->arg[i], i);
1101 }
1102 }
1103
1104 /* Look up new SSA names for format_3rc instructions */
DataFlowSSAFormat3RC(MIR * mir)1105 void MIRGraph::DataFlowSSAFormat3RC(MIR* mir) {
1106 MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
1107 int num_uses = d_insn->vA;
1108 int i;
1109
1110 AllocateSSAUseData(mir, num_uses);
1111
1112 for (i = 0; i < num_uses; i++) {
1113 HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+i, i);
1114 }
1115 }
1116
DataFlowSSAFormatExtended(MIR * mir)1117 void MIRGraph::DataFlowSSAFormatExtended(MIR* mir) {
1118 const MIR::DecodedInstruction& d_insn = mir->dalvikInsn;
1119 // For vector MIRs, vC contains type information
1120 bool is_vector_type_wide = false;
1121 int type_size = d_insn.vC >> 16;
1122 if (type_size == k64 || type_size == kDouble) {
1123 is_vector_type_wide = true;
1124 }
1125
1126 switch (static_cast<int>(mir->dalvikInsn.opcode)) {
1127 case kMirOpPackedAddReduce:
1128 // We have one use, plus one more for wide
1129 AllocateSSAUseData(mir, is_vector_type_wide ? 2 : 1);
1130 HandleSSAUse(mir->ssa_rep->uses, d_insn.vA, 0);
1131 if (is_vector_type_wide == true) {
1132 HandleSSAUse(mir->ssa_rep->uses, d_insn.vA + 1, 1);
1133 }
1134
1135 // We have a def, plus one more for wide
1136 AllocateSSADefData(mir, is_vector_type_wide ? 2 : 1);
1137 HandleSSADef(mir->ssa_rep->defs, d_insn.vA, 0);
1138 if (is_vector_type_wide == true) {
1139 HandleSSADef(mir->ssa_rep->defs, d_insn.vA + 1, 1);
1140 }
1141 break;
1142 case kMirOpPackedReduce:
1143 // We have a def, plus one more for wide
1144 AllocateSSADefData(mir, is_vector_type_wide ? 2 : 1);
1145 HandleSSADef(mir->ssa_rep->defs, d_insn.vA, 0);
1146 if (is_vector_type_wide == true) {
1147 HandleSSADef(mir->ssa_rep->defs, d_insn.vA + 1, 1);
1148 }
1149 break;
1150 case kMirOpPackedSet:
1151 // We have one use, plus one more for wide
1152 AllocateSSAUseData(mir, is_vector_type_wide ? 2 : 1);
1153 HandleSSAUse(mir->ssa_rep->uses, d_insn.vB, 0);
1154 if (is_vector_type_wide == true) {
1155 HandleSSAUse(mir->ssa_rep->uses, d_insn.vB + 1, 1);
1156 }
1157 break;
1158 case kMirOpMaddInt:
1159 case kMirOpMsubInt:
1160 AllocateSSAUseData(mir, 3);
1161 HandleSSAUse(mir->ssa_rep->uses, d_insn.vB, 0);
1162 HandleSSAUse(mir->ssa_rep->uses, d_insn.vC, 1);
1163 HandleSSAUse(mir->ssa_rep->uses, d_insn.arg[0], 2);
1164 AllocateSSADefData(mir, 1);
1165 HandleSSADef(mir->ssa_rep->defs, d_insn.vA, 0);
1166 break;
1167 case kMirOpMaddLong:
1168 case kMirOpMsubLong:
1169 AllocateSSAUseData(mir, 6);
1170 HandleSSAUse(mir->ssa_rep->uses, d_insn.vB, 0);
1171 HandleSSAUse(mir->ssa_rep->uses, d_insn.vB + 1, 1);
1172 HandleSSAUse(mir->ssa_rep->uses, d_insn.vC, 2);
1173 HandleSSAUse(mir->ssa_rep->uses, d_insn.vC + 1, 3);
1174 HandleSSAUse(mir->ssa_rep->uses, d_insn.arg[0], 4);
1175 HandleSSAUse(mir->ssa_rep->uses, d_insn.arg[0] + 1, 5);
1176 AllocateSSADefData(mir, 2);
1177 HandleSSADef(mir->ssa_rep->defs, d_insn.vA, 0);
1178 HandleSSADef(mir->ssa_rep->defs, d_insn.vA + 1, 1);
1179 break;
1180 default:
1181 LOG(ERROR) << "Missing case for extended MIR: " << mir->dalvikInsn.opcode;
1182 break;
1183 }
1184 }
1185
1186 /* Entry function to convert a block into SSA representation */
DoSSAConversion(BasicBlock * bb)1187 bool MIRGraph::DoSSAConversion(BasicBlock* bb) {
1188 if (bb->data_flow_info == nullptr) return false;
1189
1190 /*
1191 * Pruned SSA form: Insert phi nodes for each dalvik register marked in phi_node_blocks
1192 * only if the dalvik register is in the live-in set.
1193 */
1194 BasicBlockId bb_id = bb->id;
1195 for (int dalvik_reg = GetNumOfCodeAndTempVRs() - 1; dalvik_reg >= 0; dalvik_reg--) {
1196 if (temp_.ssa.phi_node_blocks[dalvik_reg]->IsBitSet(bb_id)) {
1197 if (!bb->data_flow_info->live_in_v->IsBitSet(dalvik_reg)) {
1198 /* Variable will be clobbered before being used - no need for phi */
1199 vreg_to_ssa_map_[dalvik_reg] = INVALID_SREG;
1200 continue;
1201 }
1202 MIR *phi = NewMIR();
1203 phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpPhi);
1204 phi->dalvikInsn.vA = dalvik_reg;
1205 phi->offset = bb->start_offset;
1206 phi->m_unit_index = 0; // Arbitrarily assign all Phi nodes to outermost method.
1207 bb->PrependMIR(phi);
1208 }
1209 }
1210
1211 for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1212 mir->ssa_rep =
1213 static_cast<struct SSARepresentation *>(arena_->Alloc(sizeof(SSARepresentation),
1214 kArenaAllocDFInfo));
1215 memset(mir->ssa_rep, 0, sizeof(*mir->ssa_rep));
1216
1217 uint64_t df_attributes = GetDataFlowAttributes(mir);
1218
1219 // If not a pseudo-op, note non-leaf or can throw
1220 if (!MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
1221 int flags = mir->dalvikInsn.FlagsOf();
1222
1223 if ((flags & Instruction::kInvoke) != 0) {
1224 attributes_ &= ~METHOD_IS_LEAF;
1225 }
1226 }
1227
1228 int num_uses = 0;
1229
1230 if (df_attributes & DF_FORMAT_35C) {
1231 DataFlowSSAFormat35C(mir);
1232 continue;
1233 }
1234
1235 if (df_attributes & DF_FORMAT_3RC) {
1236 DataFlowSSAFormat3RC(mir);
1237 continue;
1238 }
1239
1240 if (df_attributes & DF_FORMAT_EXTENDED) {
1241 DataFlowSSAFormatExtended(mir);
1242 continue;
1243 }
1244
1245 if (df_attributes & DF_HAS_USES) {
1246 if (df_attributes & DF_UA) {
1247 num_uses++;
1248 if (df_attributes & DF_A_WIDE) {
1249 num_uses++;
1250 }
1251 }
1252 if (df_attributes & DF_UB) {
1253 num_uses++;
1254 if (df_attributes & DF_B_WIDE) {
1255 num_uses++;
1256 }
1257 }
1258 if (df_attributes & DF_UC) {
1259 num_uses++;
1260 if (df_attributes & DF_C_WIDE) {
1261 num_uses++;
1262 }
1263 }
1264 }
1265
1266 AllocateSSAUseData(mir, num_uses);
1267
1268 int num_defs = 0;
1269
1270 if (df_attributes & DF_HAS_DEFS) {
1271 num_defs++;
1272 if (df_attributes & DF_A_WIDE) {
1273 num_defs++;
1274 }
1275 }
1276
1277 AllocateSSADefData(mir, num_defs);
1278
1279 MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
1280
1281 if (df_attributes & DF_HAS_USES) {
1282 num_uses = 0;
1283 if (df_attributes & DF_UA) {
1284 HandleSSAUse(mir->ssa_rep->uses, d_insn->vA, num_uses++);
1285 if (df_attributes & DF_A_WIDE) {
1286 HandleSSAUse(mir->ssa_rep->uses, d_insn->vA+1, num_uses++);
1287 }
1288 }
1289 if (df_attributes & DF_UB) {
1290 HandleSSAUse(mir->ssa_rep->uses, d_insn->vB, num_uses++);
1291 if (df_attributes & DF_B_WIDE) {
1292 HandleSSAUse(mir->ssa_rep->uses, d_insn->vB+1, num_uses++);
1293 }
1294 }
1295 if (df_attributes & DF_UC) {
1296 HandleSSAUse(mir->ssa_rep->uses, d_insn->vC, num_uses++);
1297 if (df_attributes & DF_C_WIDE) {
1298 HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+1, num_uses++);
1299 }
1300 }
1301 }
1302 if (df_attributes & DF_HAS_DEFS) {
1303 HandleSSADef(mir->ssa_rep->defs, d_insn->vA, 0);
1304 if (df_attributes & DF_A_WIDE) {
1305 HandleSSADef(mir->ssa_rep->defs, d_insn->vA+1, 1);
1306 }
1307 }
1308 }
1309
1310 /*
1311 * Take a snapshot of Dalvik->SSA mapping at the end of each block. The
1312 * input to PHI nodes can be derived from the snapshot of all
1313 * predecessor blocks.
1314 */
1315 bb->data_flow_info->vreg_to_ssa_map_exit =
1316 arena_->AllocArray<int32_t>(GetNumOfCodeAndTempVRs(), kArenaAllocDFInfo);
1317
1318 memcpy(bb->data_flow_info->vreg_to_ssa_map_exit, vreg_to_ssa_map_,
1319 sizeof(int) * GetNumOfCodeAndTempVRs());
1320 return true;
1321 }
1322
InitializeBasicBlockDataFlow()1323 void MIRGraph::InitializeBasicBlockDataFlow() {
1324 /*
1325 * Allocate the BasicBlockDataFlow structure for the entry and code blocks.
1326 */
1327 for (BasicBlock* bb : block_list_) {
1328 if (bb->hidden == true) continue;
1329 if (bb->block_type == kDalvikByteCode ||
1330 bb->block_type == kEntryBlock ||
1331 bb->block_type == kExitBlock) {
1332 bb->data_flow_info =
1333 static_cast<BasicBlockDataFlow*>(arena_->Alloc(sizeof(BasicBlockDataFlow),
1334 kArenaAllocDFInfo));
1335 }
1336 }
1337 }
1338
1339 /* Setup the basic data structures for SSA conversion */
CompilerInitializeSSAConversion()1340 void MIRGraph::CompilerInitializeSSAConversion() {
1341 size_t num_reg = GetNumOfCodeAndTempVRs();
1342
1343 ssa_base_vregs_.clear();
1344 ssa_base_vregs_.reserve(num_reg + GetDefCount() + 128);
1345 ssa_subscripts_.clear();
1346 ssa_subscripts_.reserve(num_reg + GetDefCount() + 128);
1347
1348 /*
1349 * Initial number of SSA registers is equal to the number of Dalvik
1350 * registers.
1351 */
1352 SetNumSSARegs(num_reg);
1353
1354 /*
1355 * Initialize the SSA2Dalvik map list. For the first num_reg elements,
1356 * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
1357 * into "(0 << 16) | i"
1358 */
1359 for (unsigned int i = 0; i < num_reg; i++) {
1360 ssa_base_vregs_.push_back(i);
1361 ssa_subscripts_.push_back(0);
1362 }
1363
1364 /*
1365 * Initialize the DalvikToSSAMap map. There is one entry for each
1366 * Dalvik register, and the SSA names for those are the same.
1367 */
1368 vreg_to_ssa_map_ = arena_->AllocArray<int32_t>(num_reg, kArenaAllocDFInfo);
1369 /* Keep track of the higest def for each dalvik reg */
1370 ssa_last_defs_ = arena_->AllocArray<int>(num_reg, kArenaAllocDFInfo);
1371
1372 for (unsigned int i = 0; i < num_reg; i++) {
1373 vreg_to_ssa_map_[i] = i;
1374 ssa_last_defs_[i] = 0;
1375 }
1376
1377 // Create a compiler temporary for Method*. This is done after SSA initialization.
1378 CompilerTemp* method_temp = GetNewCompilerTemp(kCompilerTempSpecialMethodPtr, false);
1379 // The MIR graph keeps track of the sreg for method pointer specially, so record that now.
1380 method_sreg_ = method_temp->s_reg_low;
1381
1382 InitializeBasicBlockDataFlow();
1383 }
1384
GetUseCountWeight(BasicBlock * bb) const1385 uint32_t MIRGraph::GetUseCountWeight(BasicBlock* bb) const {
1386 // Each level of nesting adds *100 to count, up to 3 levels deep.
1387 uint32_t depth = std::min(3U, static_cast<uint32_t>(bb->nesting_depth));
1388 uint32_t weight = std::max(1U, depth * 100);
1389 return weight;
1390 }
1391
1392 /*
1393 * Count uses, weighting by loop nesting depth. This code only
1394 * counts explicitly used s_regs. A later phase will add implicit
1395 * counts for things such as Method*, null-checked references, etc.
1396 */
CountUses(BasicBlock * bb)1397 void MIRGraph::CountUses(BasicBlock* bb) {
1398 if (bb->block_type != kDalvikByteCode) {
1399 return;
1400 }
1401 uint32_t weight = GetUseCountWeight(bb);
1402 for (MIR* mir = bb->first_mir_insn; (mir != nullptr); mir = mir->next) {
1403 if (mir->ssa_rep == nullptr) {
1404 continue;
1405 }
1406 for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
1407 int s_reg = mir->ssa_rep->uses[i];
1408 raw_use_counts_[s_reg] += 1u;
1409 use_counts_[s_reg] += weight;
1410 }
1411 }
1412 }
1413
1414 /* Verify if all the successor is connected with all the claimed predecessors */
VerifyPredInfo(BasicBlock * bb)1415 bool MIRGraph::VerifyPredInfo(BasicBlock* bb) {
1416 for (BasicBlockId pred_id : bb->predecessors) {
1417 BasicBlock* pred_bb = GetBasicBlock(pred_id);
1418 DCHECK(pred_bb != nullptr);
1419 bool found = false;
1420 if (pred_bb->taken == bb->id) {
1421 found = true;
1422 } else if (pred_bb->fall_through == bb->id) {
1423 found = true;
1424 } else if (pred_bb->successor_block_list_type != kNotUsed) {
1425 for (SuccessorBlockInfo* successor_block_info : pred_bb->successor_blocks) {
1426 BasicBlockId succ_bb = successor_block_info->block;
1427 if (succ_bb == bb->id) {
1428 found = true;
1429 break;
1430 }
1431 }
1432 }
1433 if (found == false) {
1434 char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
1435 GetBlockName(bb, block_name1);
1436 GetBlockName(pred_bb, block_name2);
1437 DumpCFG("/sdcard/cfg/", false);
1438 LOG(FATAL) << "Successor " << block_name1 << " not found from "
1439 << block_name2;
1440 }
1441 }
1442 return true;
1443 }
1444
VerifyDataflow()1445 void MIRGraph::VerifyDataflow() {
1446 /* Verify if all blocks are connected as claimed */
1447 AllNodesIterator iter(this);
1448 for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1449 VerifyPredInfo(bb);
1450 }
1451 }
1452
1453 } // namespace art
1454