1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements extra semantic analysis beyond what is enforced
11 //  by the C type system.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/Analysis/Analyses/FormatString.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/SmallBitVector.h"
37 #include "llvm/ADT/SmallString.h"
38 #include "llvm/Support/ConvertUTF.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <limits>
41 using namespace clang;
42 using namespace sema;
43 
getLocationOfStringLiteralByte(const StringLiteral * SL,unsigned ByteNo) const44 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
45                                                     unsigned ByteNo) const {
46   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
47                                Context.getTargetInfo());
48 }
49 
50 /// Checks that a call expression's argument count is the desired number.
51 /// This is useful when doing custom type-checking.  Returns true on error.
checkArgCount(Sema & S,CallExpr * call,unsigned desiredArgCount)52 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
53   unsigned argCount = call->getNumArgs();
54   if (argCount == desiredArgCount) return false;
55 
56   if (argCount < desiredArgCount)
57     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
58         << 0 /*function call*/ << desiredArgCount << argCount
59         << call->getSourceRange();
60 
61   // Highlight all the excess arguments.
62   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
63                     call->getArg(argCount - 1)->getLocEnd());
64 
65   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
66     << 0 /*function call*/ << desiredArgCount << argCount
67     << call->getArg(1)->getSourceRange();
68 }
69 
70 /// Check that the first argument to __builtin_annotation is an integer
71 /// and the second argument is a non-wide string literal.
SemaBuiltinAnnotation(Sema & S,CallExpr * TheCall)72 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
73   if (checkArgCount(S, TheCall, 2))
74     return true;
75 
76   // First argument should be an integer.
77   Expr *ValArg = TheCall->getArg(0);
78   QualType Ty = ValArg->getType();
79   if (!Ty->isIntegerType()) {
80     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
81       << ValArg->getSourceRange();
82     return true;
83   }
84 
85   // Second argument should be a constant string.
86   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
87   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
88   if (!Literal || !Literal->isAscii()) {
89     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
90       << StrArg->getSourceRange();
91     return true;
92   }
93 
94   TheCall->setType(Ty);
95   return false;
96 }
97 
98 /// Check that the argument to __builtin_addressof is a glvalue, and set the
99 /// result type to the corresponding pointer type.
SemaBuiltinAddressof(Sema & S,CallExpr * TheCall)100 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
101   if (checkArgCount(S, TheCall, 1))
102     return true;
103 
104   ExprResult Arg(TheCall->getArg(0));
105   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
106   if (ResultType.isNull())
107     return true;
108 
109   TheCall->setArg(0, Arg.get());
110   TheCall->setType(ResultType);
111   return false;
112 }
113 
SemaBuiltinMemChkCall(Sema & S,FunctionDecl * FDecl,CallExpr * TheCall,unsigned SizeIdx,unsigned DstSizeIdx)114 static void SemaBuiltinMemChkCall(Sema &S, FunctionDecl *FDecl,
115 		                  CallExpr *TheCall, unsigned SizeIdx,
116                                   unsigned DstSizeIdx) {
117   if (TheCall->getNumArgs() <= SizeIdx ||
118       TheCall->getNumArgs() <= DstSizeIdx)
119     return;
120 
121   const Expr *SizeArg = TheCall->getArg(SizeIdx);
122   const Expr *DstSizeArg = TheCall->getArg(DstSizeIdx);
123 
124   llvm::APSInt Size, DstSize;
125 
126   // find out if both sizes are known at compile time
127   if (!SizeArg->EvaluateAsInt(Size, S.Context) ||
128       !DstSizeArg->EvaluateAsInt(DstSize, S.Context))
129     return;
130 
131   if (Size.ule(DstSize))
132     return;
133 
134   // confirmed overflow so generate the diagnostic.
135   IdentifierInfo *FnName = FDecl->getIdentifier();
136   SourceLocation SL = TheCall->getLocStart();
137   SourceRange SR = TheCall->getSourceRange();
138 
139   S.Diag(SL, diag::warn_memcpy_chk_overflow) << SR << FnName;
140 }
141 
SemaBuiltinCallWithStaticChain(Sema & S,CallExpr * BuiltinCall)142 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
143   if (checkArgCount(S, BuiltinCall, 2))
144     return true;
145 
146   SourceLocation BuiltinLoc = BuiltinCall->getLocStart();
147   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
148   Expr *Call = BuiltinCall->getArg(0);
149   Expr *Chain = BuiltinCall->getArg(1);
150 
151   if (Call->getStmtClass() != Stmt::CallExprClass) {
152     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
153         << Call->getSourceRange();
154     return true;
155   }
156 
157   auto CE = cast<CallExpr>(Call);
158   if (CE->getCallee()->getType()->isBlockPointerType()) {
159     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
160         << Call->getSourceRange();
161     return true;
162   }
163 
164   const Decl *TargetDecl = CE->getCalleeDecl();
165   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
166     if (FD->getBuiltinID()) {
167       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
168           << Call->getSourceRange();
169       return true;
170     }
171 
172   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
173     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
174         << Call->getSourceRange();
175     return true;
176   }
177 
178   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
179   if (ChainResult.isInvalid())
180     return true;
181   if (!ChainResult.get()->getType()->isPointerType()) {
182     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
183         << Chain->getSourceRange();
184     return true;
185   }
186 
187   QualType ReturnTy = CE->getCallReturnType(S.Context);
188   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
189   QualType BuiltinTy = S.Context.getFunctionType(
190       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
191   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
192 
193   Builtin =
194       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
195 
196   BuiltinCall->setType(CE->getType());
197   BuiltinCall->setValueKind(CE->getValueKind());
198   BuiltinCall->setObjectKind(CE->getObjectKind());
199   BuiltinCall->setCallee(Builtin);
200   BuiltinCall->setArg(1, ChainResult.get());
201 
202   return false;
203 }
204 
SemaBuiltinSEHScopeCheck(Sema & SemaRef,CallExpr * TheCall,Scope::ScopeFlags NeededScopeFlags,unsigned DiagID)205 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
206                                      Scope::ScopeFlags NeededScopeFlags,
207                                      unsigned DiagID) {
208   // Scopes aren't available during instantiation. Fortunately, builtin
209   // functions cannot be template args so they cannot be formed through template
210   // instantiation. Therefore checking once during the parse is sufficient.
211   if (!SemaRef.ActiveTemplateInstantiations.empty())
212     return false;
213 
214   Scope *S = SemaRef.getCurScope();
215   while (S && !S->isSEHExceptScope())
216     S = S->getParent();
217   if (!S || !(S->getFlags() & NeededScopeFlags)) {
218     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
219     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
220         << DRE->getDecl()->getIdentifier();
221     return true;
222   }
223 
224   return false;
225 }
226 
227 ExprResult
CheckBuiltinFunctionCall(FunctionDecl * FDecl,unsigned BuiltinID,CallExpr * TheCall)228 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
229                                CallExpr *TheCall) {
230   ExprResult TheCallResult(TheCall);
231 
232   // Find out if any arguments are required to be integer constant expressions.
233   unsigned ICEArguments = 0;
234   ASTContext::GetBuiltinTypeError Error;
235   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
236   if (Error != ASTContext::GE_None)
237     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
238 
239   // If any arguments are required to be ICE's, check and diagnose.
240   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
241     // Skip arguments not required to be ICE's.
242     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
243 
244     llvm::APSInt Result;
245     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
246       return true;
247     ICEArguments &= ~(1 << ArgNo);
248   }
249 
250   switch (BuiltinID) {
251   case Builtin::BI__builtin___CFStringMakeConstantString:
252     assert(TheCall->getNumArgs() == 1 &&
253            "Wrong # arguments to builtin CFStringMakeConstantString");
254     if (CheckObjCString(TheCall->getArg(0)))
255       return ExprError();
256     break;
257   case Builtin::BI__builtin_stdarg_start:
258   case Builtin::BI__builtin_va_start:
259     if (SemaBuiltinVAStart(TheCall))
260       return ExprError();
261     break;
262   case Builtin::BI__va_start: {
263     switch (Context.getTargetInfo().getTriple().getArch()) {
264     case llvm::Triple::arm:
265     case llvm::Triple::thumb:
266       if (SemaBuiltinVAStartARM(TheCall))
267         return ExprError();
268       break;
269     default:
270       if (SemaBuiltinVAStart(TheCall))
271         return ExprError();
272       break;
273     }
274     break;
275   }
276   case Builtin::BI__builtin_isgreater:
277   case Builtin::BI__builtin_isgreaterequal:
278   case Builtin::BI__builtin_isless:
279   case Builtin::BI__builtin_islessequal:
280   case Builtin::BI__builtin_islessgreater:
281   case Builtin::BI__builtin_isunordered:
282     if (SemaBuiltinUnorderedCompare(TheCall))
283       return ExprError();
284     break;
285   case Builtin::BI__builtin_fpclassify:
286     if (SemaBuiltinFPClassification(TheCall, 6))
287       return ExprError();
288     break;
289   case Builtin::BI__builtin_isfinite:
290   case Builtin::BI__builtin_isinf:
291   case Builtin::BI__builtin_isinf_sign:
292   case Builtin::BI__builtin_isnan:
293   case Builtin::BI__builtin_isnormal:
294     if (SemaBuiltinFPClassification(TheCall, 1))
295       return ExprError();
296     break;
297   case Builtin::BI__builtin_shufflevector:
298     return SemaBuiltinShuffleVector(TheCall);
299     // TheCall will be freed by the smart pointer here, but that's fine, since
300     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
301   case Builtin::BI__builtin_prefetch:
302     if (SemaBuiltinPrefetch(TheCall))
303       return ExprError();
304     break;
305   case Builtin::BI__assume:
306   case Builtin::BI__builtin_assume:
307     if (SemaBuiltinAssume(TheCall))
308       return ExprError();
309     break;
310   case Builtin::BI__builtin_assume_aligned:
311     if (SemaBuiltinAssumeAligned(TheCall))
312       return ExprError();
313     break;
314   case Builtin::BI__builtin_object_size:
315     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
316       return ExprError();
317     break;
318   case Builtin::BI__builtin_longjmp:
319     if (SemaBuiltinLongjmp(TheCall))
320       return ExprError();
321     break;
322   case Builtin::BI__builtin_setjmp:
323     if (SemaBuiltinSetjmp(TheCall))
324       return ExprError();
325     break;
326   case Builtin::BI_setjmp:
327   case Builtin::BI_setjmpex:
328     if (checkArgCount(*this, TheCall, 1))
329       return true;
330     break;
331 
332   case Builtin::BI__builtin_classify_type:
333     if (checkArgCount(*this, TheCall, 1)) return true;
334     TheCall->setType(Context.IntTy);
335     break;
336   case Builtin::BI__builtin_constant_p:
337     if (checkArgCount(*this, TheCall, 1)) return true;
338     TheCall->setType(Context.IntTy);
339     break;
340   case Builtin::BI__sync_fetch_and_add:
341   case Builtin::BI__sync_fetch_and_add_1:
342   case Builtin::BI__sync_fetch_and_add_2:
343   case Builtin::BI__sync_fetch_and_add_4:
344   case Builtin::BI__sync_fetch_and_add_8:
345   case Builtin::BI__sync_fetch_and_add_16:
346   case Builtin::BI__sync_fetch_and_sub:
347   case Builtin::BI__sync_fetch_and_sub_1:
348   case Builtin::BI__sync_fetch_and_sub_2:
349   case Builtin::BI__sync_fetch_and_sub_4:
350   case Builtin::BI__sync_fetch_and_sub_8:
351   case Builtin::BI__sync_fetch_and_sub_16:
352   case Builtin::BI__sync_fetch_and_or:
353   case Builtin::BI__sync_fetch_and_or_1:
354   case Builtin::BI__sync_fetch_and_or_2:
355   case Builtin::BI__sync_fetch_and_or_4:
356   case Builtin::BI__sync_fetch_and_or_8:
357   case Builtin::BI__sync_fetch_and_or_16:
358   case Builtin::BI__sync_fetch_and_and:
359   case Builtin::BI__sync_fetch_and_and_1:
360   case Builtin::BI__sync_fetch_and_and_2:
361   case Builtin::BI__sync_fetch_and_and_4:
362   case Builtin::BI__sync_fetch_and_and_8:
363   case Builtin::BI__sync_fetch_and_and_16:
364   case Builtin::BI__sync_fetch_and_xor:
365   case Builtin::BI__sync_fetch_and_xor_1:
366   case Builtin::BI__sync_fetch_and_xor_2:
367   case Builtin::BI__sync_fetch_and_xor_4:
368   case Builtin::BI__sync_fetch_and_xor_8:
369   case Builtin::BI__sync_fetch_and_xor_16:
370   case Builtin::BI__sync_fetch_and_nand:
371   case Builtin::BI__sync_fetch_and_nand_1:
372   case Builtin::BI__sync_fetch_and_nand_2:
373   case Builtin::BI__sync_fetch_and_nand_4:
374   case Builtin::BI__sync_fetch_and_nand_8:
375   case Builtin::BI__sync_fetch_and_nand_16:
376   case Builtin::BI__sync_add_and_fetch:
377   case Builtin::BI__sync_add_and_fetch_1:
378   case Builtin::BI__sync_add_and_fetch_2:
379   case Builtin::BI__sync_add_and_fetch_4:
380   case Builtin::BI__sync_add_and_fetch_8:
381   case Builtin::BI__sync_add_and_fetch_16:
382   case Builtin::BI__sync_sub_and_fetch:
383   case Builtin::BI__sync_sub_and_fetch_1:
384   case Builtin::BI__sync_sub_and_fetch_2:
385   case Builtin::BI__sync_sub_and_fetch_4:
386   case Builtin::BI__sync_sub_and_fetch_8:
387   case Builtin::BI__sync_sub_and_fetch_16:
388   case Builtin::BI__sync_and_and_fetch:
389   case Builtin::BI__sync_and_and_fetch_1:
390   case Builtin::BI__sync_and_and_fetch_2:
391   case Builtin::BI__sync_and_and_fetch_4:
392   case Builtin::BI__sync_and_and_fetch_8:
393   case Builtin::BI__sync_and_and_fetch_16:
394   case Builtin::BI__sync_or_and_fetch:
395   case Builtin::BI__sync_or_and_fetch_1:
396   case Builtin::BI__sync_or_and_fetch_2:
397   case Builtin::BI__sync_or_and_fetch_4:
398   case Builtin::BI__sync_or_and_fetch_8:
399   case Builtin::BI__sync_or_and_fetch_16:
400   case Builtin::BI__sync_xor_and_fetch:
401   case Builtin::BI__sync_xor_and_fetch_1:
402   case Builtin::BI__sync_xor_and_fetch_2:
403   case Builtin::BI__sync_xor_and_fetch_4:
404   case Builtin::BI__sync_xor_and_fetch_8:
405   case Builtin::BI__sync_xor_and_fetch_16:
406   case Builtin::BI__sync_nand_and_fetch:
407   case Builtin::BI__sync_nand_and_fetch_1:
408   case Builtin::BI__sync_nand_and_fetch_2:
409   case Builtin::BI__sync_nand_and_fetch_4:
410   case Builtin::BI__sync_nand_and_fetch_8:
411   case Builtin::BI__sync_nand_and_fetch_16:
412   case Builtin::BI__sync_val_compare_and_swap:
413   case Builtin::BI__sync_val_compare_and_swap_1:
414   case Builtin::BI__sync_val_compare_and_swap_2:
415   case Builtin::BI__sync_val_compare_and_swap_4:
416   case Builtin::BI__sync_val_compare_and_swap_8:
417   case Builtin::BI__sync_val_compare_and_swap_16:
418   case Builtin::BI__sync_bool_compare_and_swap:
419   case Builtin::BI__sync_bool_compare_and_swap_1:
420   case Builtin::BI__sync_bool_compare_and_swap_2:
421   case Builtin::BI__sync_bool_compare_and_swap_4:
422   case Builtin::BI__sync_bool_compare_and_swap_8:
423   case Builtin::BI__sync_bool_compare_and_swap_16:
424   case Builtin::BI__sync_lock_test_and_set:
425   case Builtin::BI__sync_lock_test_and_set_1:
426   case Builtin::BI__sync_lock_test_and_set_2:
427   case Builtin::BI__sync_lock_test_and_set_4:
428   case Builtin::BI__sync_lock_test_and_set_8:
429   case Builtin::BI__sync_lock_test_and_set_16:
430   case Builtin::BI__sync_lock_release:
431   case Builtin::BI__sync_lock_release_1:
432   case Builtin::BI__sync_lock_release_2:
433   case Builtin::BI__sync_lock_release_4:
434   case Builtin::BI__sync_lock_release_8:
435   case Builtin::BI__sync_lock_release_16:
436   case Builtin::BI__sync_swap:
437   case Builtin::BI__sync_swap_1:
438   case Builtin::BI__sync_swap_2:
439   case Builtin::BI__sync_swap_4:
440   case Builtin::BI__sync_swap_8:
441   case Builtin::BI__sync_swap_16:
442     return SemaBuiltinAtomicOverloaded(TheCallResult);
443 #define BUILTIN(ID, TYPE, ATTRS)
444 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
445   case Builtin::BI##ID: \
446     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
447 #include "clang/Basic/Builtins.def"
448   case Builtin::BI__builtin_annotation:
449     if (SemaBuiltinAnnotation(*this, TheCall))
450       return ExprError();
451     break;
452   case Builtin::BI__builtin_addressof:
453     if (SemaBuiltinAddressof(*this, TheCall))
454       return ExprError();
455     break;
456   case Builtin::BI__builtin_operator_new:
457   case Builtin::BI__builtin_operator_delete:
458     if (!getLangOpts().CPlusPlus) {
459       Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
460         << (BuiltinID == Builtin::BI__builtin_operator_new
461                 ? "__builtin_operator_new"
462                 : "__builtin_operator_delete")
463         << "C++";
464       return ExprError();
465     }
466     // CodeGen assumes it can find the global new and delete to call,
467     // so ensure that they are declared.
468     DeclareGlobalNewDelete();
469     break;
470 
471   // check secure string manipulation functions where overflows
472   // are detectable at compile time
473   case Builtin::BI__builtin___memcpy_chk:
474   case Builtin::BI__builtin___memmove_chk:
475   case Builtin::BI__builtin___memset_chk:
476   case Builtin::BI__builtin___strlcat_chk:
477   case Builtin::BI__builtin___strlcpy_chk:
478   case Builtin::BI__builtin___strncat_chk:
479   case Builtin::BI__builtin___strncpy_chk:
480   case Builtin::BI__builtin___stpncpy_chk:
481     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 2, 3);
482     break;
483   case Builtin::BI__builtin___memccpy_chk:
484     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 3, 4);
485     break;
486   case Builtin::BI__builtin___snprintf_chk:
487   case Builtin::BI__builtin___vsnprintf_chk:
488     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 1, 3);
489     break;
490 
491   case Builtin::BI__builtin_call_with_static_chain:
492     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
493       return ExprError();
494     break;
495 
496   case Builtin::BI__exception_code:
497   case Builtin::BI_exception_code: {
498     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
499                                  diag::err_seh___except_block))
500       return ExprError();
501     break;
502   }
503   case Builtin::BI__exception_info:
504   case Builtin::BI_exception_info: {
505     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
506                                  diag::err_seh___except_filter))
507       return ExprError();
508     break;
509   }
510 
511   case Builtin::BI__GetExceptionInfo:
512     if (checkArgCount(*this, TheCall, 1))
513       return ExprError();
514 
515     if (CheckCXXThrowOperand(
516             TheCall->getLocStart(),
517             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
518             TheCall))
519       return ExprError();
520 
521     TheCall->setType(Context.VoidPtrTy);
522     break;
523 
524   }
525 
526   // Since the target specific builtins for each arch overlap, only check those
527   // of the arch we are compiling for.
528   if (BuiltinID >= Builtin::FirstTSBuiltin) {
529     switch (Context.getTargetInfo().getTriple().getArch()) {
530       case llvm::Triple::arm:
531       case llvm::Triple::armeb:
532       case llvm::Triple::thumb:
533       case llvm::Triple::thumbeb:
534         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
535           return ExprError();
536         break;
537       case llvm::Triple::aarch64:
538       case llvm::Triple::aarch64_be:
539         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
540           return ExprError();
541         break;
542       case llvm::Triple::mips:
543       case llvm::Triple::mipsel:
544       case llvm::Triple::mips64:
545       case llvm::Triple::mips64el:
546         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
547           return ExprError();
548         break;
549       case llvm::Triple::systemz:
550         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
551           return ExprError();
552         break;
553       case llvm::Triple::x86:
554       case llvm::Triple::x86_64:
555         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
556           return ExprError();
557         break;
558       case llvm::Triple::ppc:
559       case llvm::Triple::ppc64:
560       case llvm::Triple::ppc64le:
561         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
562           return ExprError();
563         break;
564       default:
565         break;
566     }
567   }
568 
569   return TheCallResult;
570 }
571 
572 // Get the valid immediate range for the specified NEON type code.
RFT(unsigned t,bool shift=false,bool ForceQuad=false)573 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
574   NeonTypeFlags Type(t);
575   int IsQuad = ForceQuad ? true : Type.isQuad();
576   switch (Type.getEltType()) {
577   case NeonTypeFlags::Int8:
578   case NeonTypeFlags::Poly8:
579     return shift ? 7 : (8 << IsQuad) - 1;
580   case NeonTypeFlags::Int16:
581   case NeonTypeFlags::Poly16:
582     return shift ? 15 : (4 << IsQuad) - 1;
583   case NeonTypeFlags::Int32:
584     return shift ? 31 : (2 << IsQuad) - 1;
585   case NeonTypeFlags::Int64:
586   case NeonTypeFlags::Poly64:
587     return shift ? 63 : (1 << IsQuad) - 1;
588   case NeonTypeFlags::Poly128:
589     return shift ? 127 : (1 << IsQuad) - 1;
590   case NeonTypeFlags::Float16:
591     assert(!shift && "cannot shift float types!");
592     return (4 << IsQuad) - 1;
593   case NeonTypeFlags::Float32:
594     assert(!shift && "cannot shift float types!");
595     return (2 << IsQuad) - 1;
596   case NeonTypeFlags::Float64:
597     assert(!shift && "cannot shift float types!");
598     return (1 << IsQuad) - 1;
599   }
600   llvm_unreachable("Invalid NeonTypeFlag!");
601 }
602 
603 /// getNeonEltType - Return the QualType corresponding to the elements of
604 /// the vector type specified by the NeonTypeFlags.  This is used to check
605 /// the pointer arguments for Neon load/store intrinsics.
getNeonEltType(NeonTypeFlags Flags,ASTContext & Context,bool IsPolyUnsigned,bool IsInt64Long)606 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
607                                bool IsPolyUnsigned, bool IsInt64Long) {
608   switch (Flags.getEltType()) {
609   case NeonTypeFlags::Int8:
610     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
611   case NeonTypeFlags::Int16:
612     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
613   case NeonTypeFlags::Int32:
614     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
615   case NeonTypeFlags::Int64:
616     if (IsInt64Long)
617       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
618     else
619       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
620                                 : Context.LongLongTy;
621   case NeonTypeFlags::Poly8:
622     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
623   case NeonTypeFlags::Poly16:
624     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
625   case NeonTypeFlags::Poly64:
626     return Context.UnsignedLongTy;
627   case NeonTypeFlags::Poly128:
628     break;
629   case NeonTypeFlags::Float16:
630     return Context.HalfTy;
631   case NeonTypeFlags::Float32:
632     return Context.FloatTy;
633   case NeonTypeFlags::Float64:
634     return Context.DoubleTy;
635   }
636   llvm_unreachable("Invalid NeonTypeFlag!");
637 }
638 
CheckNeonBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)639 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
640   llvm::APSInt Result;
641   uint64_t mask = 0;
642   unsigned TV = 0;
643   int PtrArgNum = -1;
644   bool HasConstPtr = false;
645   switch (BuiltinID) {
646 #define GET_NEON_OVERLOAD_CHECK
647 #include "clang/Basic/arm_neon.inc"
648 #undef GET_NEON_OVERLOAD_CHECK
649   }
650 
651   // For NEON intrinsics which are overloaded on vector element type, validate
652   // the immediate which specifies which variant to emit.
653   unsigned ImmArg = TheCall->getNumArgs()-1;
654   if (mask) {
655     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
656       return true;
657 
658     TV = Result.getLimitedValue(64);
659     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
660       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
661         << TheCall->getArg(ImmArg)->getSourceRange();
662   }
663 
664   if (PtrArgNum >= 0) {
665     // Check that pointer arguments have the specified type.
666     Expr *Arg = TheCall->getArg(PtrArgNum);
667     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
668       Arg = ICE->getSubExpr();
669     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
670     QualType RHSTy = RHS.get()->getType();
671 
672     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
673     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64;
674     bool IsInt64Long =
675         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
676     QualType EltTy =
677         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
678     if (HasConstPtr)
679       EltTy = EltTy.withConst();
680     QualType LHSTy = Context.getPointerType(EltTy);
681     AssignConvertType ConvTy;
682     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
683     if (RHS.isInvalid())
684       return true;
685     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
686                                  RHS.get(), AA_Assigning))
687       return true;
688   }
689 
690   // For NEON intrinsics which take an immediate value as part of the
691   // instruction, range check them here.
692   unsigned i = 0, l = 0, u = 0;
693   switch (BuiltinID) {
694   default:
695     return false;
696 #define GET_NEON_IMMEDIATE_CHECK
697 #include "clang/Basic/arm_neon.inc"
698 #undef GET_NEON_IMMEDIATE_CHECK
699   }
700 
701   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
702 }
703 
CheckARMBuiltinExclusiveCall(unsigned BuiltinID,CallExpr * TheCall,unsigned MaxWidth)704 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
705                                         unsigned MaxWidth) {
706   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
707           BuiltinID == ARM::BI__builtin_arm_ldaex ||
708           BuiltinID == ARM::BI__builtin_arm_strex ||
709           BuiltinID == ARM::BI__builtin_arm_stlex ||
710           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
711           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
712           BuiltinID == AArch64::BI__builtin_arm_strex ||
713           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
714          "unexpected ARM builtin");
715   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
716                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
717                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
718                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
719 
720   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
721 
722   // Ensure that we have the proper number of arguments.
723   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
724     return true;
725 
726   // Inspect the pointer argument of the atomic builtin.  This should always be
727   // a pointer type, whose element is an integral scalar or pointer type.
728   // Because it is a pointer type, we don't have to worry about any implicit
729   // casts here.
730   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
731   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
732   if (PointerArgRes.isInvalid())
733     return true;
734   PointerArg = PointerArgRes.get();
735 
736   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
737   if (!pointerType) {
738     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
739       << PointerArg->getType() << PointerArg->getSourceRange();
740     return true;
741   }
742 
743   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
744   // task is to insert the appropriate casts into the AST. First work out just
745   // what the appropriate type is.
746   QualType ValType = pointerType->getPointeeType();
747   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
748   if (IsLdrex)
749     AddrType.addConst();
750 
751   // Issue a warning if the cast is dodgy.
752   CastKind CastNeeded = CK_NoOp;
753   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
754     CastNeeded = CK_BitCast;
755     Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
756       << PointerArg->getType()
757       << Context.getPointerType(AddrType)
758       << AA_Passing << PointerArg->getSourceRange();
759   }
760 
761   // Finally, do the cast and replace the argument with the corrected version.
762   AddrType = Context.getPointerType(AddrType);
763   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
764   if (PointerArgRes.isInvalid())
765     return true;
766   PointerArg = PointerArgRes.get();
767 
768   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
769 
770   // In general, we allow ints, floats and pointers to be loaded and stored.
771   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
772       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
773     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
774       << PointerArg->getType() << PointerArg->getSourceRange();
775     return true;
776   }
777 
778   // But ARM doesn't have instructions to deal with 128-bit versions.
779   if (Context.getTypeSize(ValType) > MaxWidth) {
780     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
781     Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
782       << PointerArg->getType() << PointerArg->getSourceRange();
783     return true;
784   }
785 
786   switch (ValType.getObjCLifetime()) {
787   case Qualifiers::OCL_None:
788   case Qualifiers::OCL_ExplicitNone:
789     // okay
790     break;
791 
792   case Qualifiers::OCL_Weak:
793   case Qualifiers::OCL_Strong:
794   case Qualifiers::OCL_Autoreleasing:
795     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
796       << ValType << PointerArg->getSourceRange();
797     return true;
798   }
799 
800 
801   if (IsLdrex) {
802     TheCall->setType(ValType);
803     return false;
804   }
805 
806   // Initialize the argument to be stored.
807   ExprResult ValArg = TheCall->getArg(0);
808   InitializedEntity Entity = InitializedEntity::InitializeParameter(
809       Context, ValType, /*consume*/ false);
810   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
811   if (ValArg.isInvalid())
812     return true;
813   TheCall->setArg(0, ValArg.get());
814 
815   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
816   // but the custom checker bypasses all default analysis.
817   TheCall->setType(Context.IntTy);
818   return false;
819 }
820 
CheckARMBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)821 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
822   llvm::APSInt Result;
823 
824   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
825       BuiltinID == ARM::BI__builtin_arm_ldaex ||
826       BuiltinID == ARM::BI__builtin_arm_strex ||
827       BuiltinID == ARM::BI__builtin_arm_stlex) {
828     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
829   }
830 
831   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
832     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
833       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
834   }
835 
836   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
837     return true;
838 
839   // For intrinsics which take an immediate value as part of the instruction,
840   // range check them here.
841   unsigned i = 0, l = 0, u = 0;
842   switch (BuiltinID) {
843   default: return false;
844   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
845   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
846   case ARM::BI__builtin_arm_vcvtr_f:
847   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
848   case ARM::BI__builtin_arm_dmb:
849   case ARM::BI__builtin_arm_dsb:
850   case ARM::BI__builtin_arm_isb:
851   case ARM::BI__builtin_arm_dbg: l = 0; u = 15; break;
852   }
853 
854   // FIXME: VFP Intrinsics should error if VFP not present.
855   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
856 }
857 
CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)858 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
859                                          CallExpr *TheCall) {
860   llvm::APSInt Result;
861 
862   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
863       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
864       BuiltinID == AArch64::BI__builtin_arm_strex ||
865       BuiltinID == AArch64::BI__builtin_arm_stlex) {
866     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
867   }
868 
869   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
870     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
871       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
872       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
873       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
874   }
875 
876   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
877     return true;
878 
879   // For intrinsics which take an immediate value as part of the instruction,
880   // range check them here.
881   unsigned i = 0, l = 0, u = 0;
882   switch (BuiltinID) {
883   default: return false;
884   case AArch64::BI__builtin_arm_dmb:
885   case AArch64::BI__builtin_arm_dsb:
886   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
887   }
888 
889   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
890 }
891 
CheckMipsBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)892 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
893   unsigned i = 0, l = 0, u = 0;
894   switch (BuiltinID) {
895   default: return false;
896   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
897   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
898   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
899   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
900   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
901   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
902   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
903   }
904 
905   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
906 }
907 
CheckPPCBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)908 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
909   unsigned i = 0, l = 0, u = 0;
910   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
911                       BuiltinID == PPC::BI__builtin_divdeu ||
912                       BuiltinID == PPC::BI__builtin_bpermd;
913   bool IsTarget64Bit = Context.getTargetInfo()
914                               .getTypeWidth(Context
915                                             .getTargetInfo()
916                                             .getIntPtrType()) == 64;
917   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
918                        BuiltinID == PPC::BI__builtin_divweu ||
919                        BuiltinID == PPC::BI__builtin_divde ||
920                        BuiltinID == PPC::BI__builtin_divdeu;
921 
922   if (Is64BitBltin && !IsTarget64Bit)
923       return Diag(TheCall->getLocStart(), diag::err_64_bit_builtin_32_bit_tgt)
924              << TheCall->getSourceRange();
925 
926   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
927       (BuiltinID == PPC::BI__builtin_bpermd &&
928        !Context.getTargetInfo().hasFeature("bpermd")))
929     return Diag(TheCall->getLocStart(), diag::err_ppc_builtin_only_on_pwr7)
930            << TheCall->getSourceRange();
931 
932   switch (BuiltinID) {
933   default: return false;
934   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
935   case PPC::BI__builtin_altivec_crypto_vshasigmad:
936     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
937            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
938   case PPC::BI__builtin_tbegin:
939   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
940   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
941   case PPC::BI__builtin_tabortwc:
942   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
943   case PPC::BI__builtin_tabortwci:
944   case PPC::BI__builtin_tabortdci:
945     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
946            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
947   }
948   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
949 }
950 
CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)951 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
952                                            CallExpr *TheCall) {
953   if (BuiltinID == SystemZ::BI__builtin_tabort) {
954     Expr *Arg = TheCall->getArg(0);
955     llvm::APSInt AbortCode(32);
956     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
957         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
958       return Diag(Arg->getLocStart(), diag::err_systemz_invalid_tabort_code)
959              << Arg->getSourceRange();
960   }
961 
962   return false;
963 }
964 
CheckX86BuiltinFunctionCall(unsigned BuiltinID,CallExpr * TheCall)965 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
966   unsigned i = 0, l = 0, u = 0;
967   switch (BuiltinID) {
968   default: return false;
969   case X86::BI_mm_prefetch: i = 1; l = 0; u = 3; break;
970   case X86::BI__builtin_ia32_sha1rnds4: i = 2, l = 0; u = 3; break;
971   case X86::BI__builtin_ia32_vpermil2pd:
972   case X86::BI__builtin_ia32_vpermil2pd256:
973   case X86::BI__builtin_ia32_vpermil2ps:
974   case X86::BI__builtin_ia32_vpermil2ps256: i = 3, l = 0; u = 3; break;
975   case X86::BI__builtin_ia32_cmpb128_mask:
976   case X86::BI__builtin_ia32_cmpw128_mask:
977   case X86::BI__builtin_ia32_cmpd128_mask:
978   case X86::BI__builtin_ia32_cmpq128_mask:
979   case X86::BI__builtin_ia32_cmpb256_mask:
980   case X86::BI__builtin_ia32_cmpw256_mask:
981   case X86::BI__builtin_ia32_cmpd256_mask:
982   case X86::BI__builtin_ia32_cmpq256_mask:
983   case X86::BI__builtin_ia32_cmpb512_mask:
984   case X86::BI__builtin_ia32_cmpw512_mask:
985   case X86::BI__builtin_ia32_cmpd512_mask:
986   case X86::BI__builtin_ia32_cmpq512_mask:
987   case X86::BI__builtin_ia32_ucmpb128_mask:
988   case X86::BI__builtin_ia32_ucmpw128_mask:
989   case X86::BI__builtin_ia32_ucmpd128_mask:
990   case X86::BI__builtin_ia32_ucmpq128_mask:
991   case X86::BI__builtin_ia32_ucmpb256_mask:
992   case X86::BI__builtin_ia32_ucmpw256_mask:
993   case X86::BI__builtin_ia32_ucmpd256_mask:
994   case X86::BI__builtin_ia32_ucmpq256_mask:
995   case X86::BI__builtin_ia32_ucmpb512_mask:
996   case X86::BI__builtin_ia32_ucmpw512_mask:
997   case X86::BI__builtin_ia32_ucmpd512_mask:
998   case X86::BI__builtin_ia32_ucmpq512_mask: i = 2; l = 0; u = 7; break;
999   case X86::BI__builtin_ia32_roundps:
1000   case X86::BI__builtin_ia32_roundpd:
1001   case X86::BI__builtin_ia32_roundps256:
1002   case X86::BI__builtin_ia32_roundpd256: i = 1, l = 0; u = 15; break;
1003   case X86::BI__builtin_ia32_roundss:
1004   case X86::BI__builtin_ia32_roundsd: i = 2, l = 0; u = 15; break;
1005   case X86::BI__builtin_ia32_cmpps:
1006   case X86::BI__builtin_ia32_cmpss:
1007   case X86::BI__builtin_ia32_cmppd:
1008   case X86::BI__builtin_ia32_cmpsd:
1009   case X86::BI__builtin_ia32_cmpps256:
1010   case X86::BI__builtin_ia32_cmppd256:
1011   case X86::BI__builtin_ia32_cmpps512_mask:
1012   case X86::BI__builtin_ia32_cmppd512_mask: i = 2; l = 0; u = 31; break;
1013   case X86::BI__builtin_ia32_vpcomub:
1014   case X86::BI__builtin_ia32_vpcomuw:
1015   case X86::BI__builtin_ia32_vpcomud:
1016   case X86::BI__builtin_ia32_vpcomuq:
1017   case X86::BI__builtin_ia32_vpcomb:
1018   case X86::BI__builtin_ia32_vpcomw:
1019   case X86::BI__builtin_ia32_vpcomd:
1020   case X86::BI__builtin_ia32_vpcomq: i = 2; l = 0; u = 7; break;
1021   }
1022   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
1023 }
1024 
1025 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
1026 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
1027 /// Returns true when the format fits the function and the FormatStringInfo has
1028 /// been populated.
getFormatStringInfo(const FormatAttr * Format,bool IsCXXMember,FormatStringInfo * FSI)1029 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
1030                                FormatStringInfo *FSI) {
1031   FSI->HasVAListArg = Format->getFirstArg() == 0;
1032   FSI->FormatIdx = Format->getFormatIdx() - 1;
1033   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
1034 
1035   // The way the format attribute works in GCC, the implicit this argument
1036   // of member functions is counted. However, it doesn't appear in our own
1037   // lists, so decrement format_idx in that case.
1038   if (IsCXXMember) {
1039     if(FSI->FormatIdx == 0)
1040       return false;
1041     --FSI->FormatIdx;
1042     if (FSI->FirstDataArg != 0)
1043       --FSI->FirstDataArg;
1044   }
1045   return true;
1046 }
1047 
1048 /// Checks if a the given expression evaluates to null.
1049 ///
1050 /// \brief Returns true if the value evaluates to null.
CheckNonNullExpr(Sema & S,const Expr * Expr)1051 static bool CheckNonNullExpr(Sema &S,
1052                              const Expr *Expr) {
1053   // As a special case, transparent unions initialized with zero are
1054   // considered null for the purposes of the nonnull attribute.
1055   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
1056     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
1057       if (const CompoundLiteralExpr *CLE =
1058           dyn_cast<CompoundLiteralExpr>(Expr))
1059         if (const InitListExpr *ILE =
1060             dyn_cast<InitListExpr>(CLE->getInitializer()))
1061           Expr = ILE->getInit(0);
1062   }
1063 
1064   bool Result;
1065   return (!Expr->isValueDependent() &&
1066           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
1067           !Result);
1068 }
1069 
CheckNonNullArgument(Sema & S,const Expr * ArgExpr,SourceLocation CallSiteLoc)1070 static void CheckNonNullArgument(Sema &S,
1071                                  const Expr *ArgExpr,
1072                                  SourceLocation CallSiteLoc) {
1073   if (CheckNonNullExpr(S, ArgExpr))
1074     S.Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
1075 }
1076 
GetFormatNSStringIdx(const FormatAttr * Format,unsigned & Idx)1077 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
1078   FormatStringInfo FSI;
1079   if ((GetFormatStringType(Format) == FST_NSString) &&
1080       getFormatStringInfo(Format, false, &FSI)) {
1081     Idx = FSI.FormatIdx;
1082     return true;
1083   }
1084   return false;
1085 }
1086 /// \brief Diagnose use of %s directive in an NSString which is being passed
1087 /// as formatting string to formatting method.
1088 static void
DiagnoseCStringFormatDirectiveInCFAPI(Sema & S,const NamedDecl * FDecl,Expr ** Args,unsigned NumArgs)1089 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
1090                                         const NamedDecl *FDecl,
1091                                         Expr **Args,
1092                                         unsigned NumArgs) {
1093   unsigned Idx = 0;
1094   bool Format = false;
1095   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
1096   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
1097     Idx = 2;
1098     Format = true;
1099   }
1100   else
1101     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
1102       if (S.GetFormatNSStringIdx(I, Idx)) {
1103         Format = true;
1104         break;
1105       }
1106     }
1107   if (!Format || NumArgs <= Idx)
1108     return;
1109   const Expr *FormatExpr = Args[Idx];
1110   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
1111     FormatExpr = CSCE->getSubExpr();
1112   const StringLiteral *FormatString;
1113   if (const ObjCStringLiteral *OSL =
1114       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
1115     FormatString = OSL->getString();
1116   else
1117     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
1118   if (!FormatString)
1119     return;
1120   if (S.FormatStringHasSArg(FormatString)) {
1121     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
1122       << "%s" << 1 << 1;
1123     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
1124       << FDecl->getDeclName();
1125   }
1126 }
1127 
CheckNonNullArguments(Sema & S,const NamedDecl * FDecl,ArrayRef<const Expr * > Args,SourceLocation CallSiteLoc)1128 static void CheckNonNullArguments(Sema &S,
1129                                   const NamedDecl *FDecl,
1130                                   ArrayRef<const Expr *> Args,
1131                                   SourceLocation CallSiteLoc) {
1132   // Check the attributes attached to the method/function itself.
1133   llvm::SmallBitVector NonNullArgs;
1134   for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
1135     if (!NonNull->args_size()) {
1136       // Easy case: all pointer arguments are nonnull.
1137       for (const auto *Arg : Args)
1138         if (S.isValidPointerAttrType(Arg->getType()))
1139           CheckNonNullArgument(S, Arg, CallSiteLoc);
1140       return;
1141     }
1142 
1143     for (unsigned Val : NonNull->args()) {
1144       if (Val >= Args.size())
1145         continue;
1146       if (NonNullArgs.empty())
1147         NonNullArgs.resize(Args.size());
1148       NonNullArgs.set(Val);
1149     }
1150   }
1151 
1152   // Check the attributes on the parameters.
1153   ArrayRef<ParmVarDecl*> parms;
1154   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
1155     parms = FD->parameters();
1156   else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(FDecl))
1157     parms = MD->parameters();
1158 
1159   unsigned ArgIndex = 0;
1160   for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
1161        I != E; ++I, ++ArgIndex) {
1162     const ParmVarDecl *PVD = *I;
1163     if (PVD->hasAttr<NonNullAttr>() ||
1164         (ArgIndex < NonNullArgs.size() && NonNullArgs[ArgIndex]))
1165       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
1166   }
1167 
1168   // In case this is a variadic call, check any remaining arguments.
1169   for (/**/; ArgIndex < NonNullArgs.size(); ++ArgIndex)
1170     if (NonNullArgs[ArgIndex])
1171       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
1172 }
1173 
1174 /// Handles the checks for format strings, non-POD arguments to vararg
1175 /// functions, and NULL arguments passed to non-NULL parameters.
checkCall(NamedDecl * FDecl,ArrayRef<const Expr * > Args,unsigned NumParams,bool IsMemberFunction,SourceLocation Loc,SourceRange Range,VariadicCallType CallType)1176 void Sema::checkCall(NamedDecl *FDecl, ArrayRef<const Expr *> Args,
1177                      unsigned NumParams, bool IsMemberFunction,
1178                      SourceLocation Loc, SourceRange Range,
1179                      VariadicCallType CallType) {
1180   // FIXME: We should check as much as we can in the template definition.
1181   if (CurContext->isDependentContext())
1182     return;
1183 
1184   // Printf and scanf checking.
1185   llvm::SmallBitVector CheckedVarArgs;
1186   if (FDecl) {
1187     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
1188       // Only create vector if there are format attributes.
1189       CheckedVarArgs.resize(Args.size());
1190 
1191       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
1192                            CheckedVarArgs);
1193     }
1194   }
1195 
1196   // Refuse POD arguments that weren't caught by the format string
1197   // checks above.
1198   if (CallType != VariadicDoesNotApply) {
1199     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
1200       // Args[ArgIdx] can be null in malformed code.
1201       if (const Expr *Arg = Args[ArgIdx]) {
1202         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
1203           checkVariadicArgument(Arg, CallType);
1204       }
1205     }
1206   }
1207 
1208   if (FDecl) {
1209     CheckNonNullArguments(*this, FDecl, Args, Loc);
1210 
1211     // Type safety checking.
1212     for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
1213       CheckArgumentWithTypeTag(I, Args.data());
1214   }
1215 }
1216 
1217 /// CheckConstructorCall - Check a constructor call for correctness and safety
1218 /// properties not enforced by the C type system.
CheckConstructorCall(FunctionDecl * FDecl,ArrayRef<const Expr * > Args,const FunctionProtoType * Proto,SourceLocation Loc)1219 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
1220                                 ArrayRef<const Expr *> Args,
1221                                 const FunctionProtoType *Proto,
1222                                 SourceLocation Loc) {
1223   VariadicCallType CallType =
1224     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
1225   checkCall(FDecl, Args, Proto->getNumParams(),
1226             /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
1227 }
1228 
1229 /// CheckFunctionCall - Check a direct function call for various correctness
1230 /// and safety properties not strictly enforced by the C type system.
CheckFunctionCall(FunctionDecl * FDecl,CallExpr * TheCall,const FunctionProtoType * Proto)1231 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
1232                              const FunctionProtoType *Proto) {
1233   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
1234                               isa<CXXMethodDecl>(FDecl);
1235   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
1236                           IsMemberOperatorCall;
1237   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
1238                                                   TheCall->getCallee());
1239   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
1240   Expr** Args = TheCall->getArgs();
1241   unsigned NumArgs = TheCall->getNumArgs();
1242   if (IsMemberOperatorCall) {
1243     // If this is a call to a member operator, hide the first argument
1244     // from checkCall.
1245     // FIXME: Our choice of AST representation here is less than ideal.
1246     ++Args;
1247     --NumArgs;
1248   }
1249   checkCall(FDecl, llvm::makeArrayRef(Args, NumArgs), NumParams,
1250             IsMemberFunction, TheCall->getRParenLoc(),
1251             TheCall->getCallee()->getSourceRange(), CallType);
1252 
1253   IdentifierInfo *FnInfo = FDecl->getIdentifier();
1254   // None of the checks below are needed for functions that don't have
1255   // simple names (e.g., C++ conversion functions).
1256   if (!FnInfo)
1257     return false;
1258 
1259   CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
1260   if (getLangOpts().ObjC1)
1261     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
1262 
1263   unsigned CMId = FDecl->getMemoryFunctionKind();
1264   if (CMId == 0)
1265     return false;
1266 
1267   // Handle memory setting and copying functions.
1268   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
1269     CheckStrlcpycatArguments(TheCall, FnInfo);
1270   else if (CMId == Builtin::BIstrncat)
1271     CheckStrncatArguments(TheCall, FnInfo);
1272   else
1273     CheckMemaccessArguments(TheCall, CMId, FnInfo);
1274 
1275   return false;
1276 }
1277 
CheckObjCMethodCall(ObjCMethodDecl * Method,SourceLocation lbrac,ArrayRef<const Expr * > Args)1278 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
1279                                ArrayRef<const Expr *> Args) {
1280   VariadicCallType CallType =
1281       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
1282 
1283   checkCall(Method, Args, Method->param_size(),
1284             /*IsMemberFunction=*/false,
1285             lbrac, Method->getSourceRange(), CallType);
1286 
1287   return false;
1288 }
1289 
CheckPointerCall(NamedDecl * NDecl,CallExpr * TheCall,const FunctionProtoType * Proto)1290 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
1291                             const FunctionProtoType *Proto) {
1292   const VarDecl *V = dyn_cast<VarDecl>(NDecl);
1293   if (!V)
1294     return false;
1295 
1296   QualType Ty = V->getType();
1297   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
1298     return false;
1299 
1300   VariadicCallType CallType;
1301   if (!Proto || !Proto->isVariadic()) {
1302     CallType = VariadicDoesNotApply;
1303   } else if (Ty->isBlockPointerType()) {
1304     CallType = VariadicBlock;
1305   } else { // Ty->isFunctionPointerType()
1306     CallType = VariadicFunction;
1307   }
1308   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
1309 
1310   checkCall(NDecl, llvm::makeArrayRef(TheCall->getArgs(),
1311                                       TheCall->getNumArgs()),
1312             NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
1313             TheCall->getCallee()->getSourceRange(), CallType);
1314 
1315   return false;
1316 }
1317 
1318 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
1319 /// such as function pointers returned from functions.
CheckOtherCall(CallExpr * TheCall,const FunctionProtoType * Proto)1320 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
1321   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
1322                                                   TheCall->getCallee());
1323   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
1324 
1325   checkCall(/*FDecl=*/nullptr,
1326             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
1327             NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
1328             TheCall->getCallee()->getSourceRange(), CallType);
1329 
1330   return false;
1331 }
1332 
isValidOrderingForOp(int64_t Ordering,AtomicExpr::AtomicOp Op)1333 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
1334   if (Ordering < AtomicExpr::AO_ABI_memory_order_relaxed ||
1335       Ordering > AtomicExpr::AO_ABI_memory_order_seq_cst)
1336     return false;
1337 
1338   switch (Op) {
1339   case AtomicExpr::AO__c11_atomic_init:
1340     llvm_unreachable("There is no ordering argument for an init");
1341 
1342   case AtomicExpr::AO__c11_atomic_load:
1343   case AtomicExpr::AO__atomic_load_n:
1344   case AtomicExpr::AO__atomic_load:
1345     return Ordering != AtomicExpr::AO_ABI_memory_order_release &&
1346            Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
1347 
1348   case AtomicExpr::AO__c11_atomic_store:
1349   case AtomicExpr::AO__atomic_store:
1350   case AtomicExpr::AO__atomic_store_n:
1351     return Ordering != AtomicExpr::AO_ABI_memory_order_consume &&
1352            Ordering != AtomicExpr::AO_ABI_memory_order_acquire &&
1353            Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
1354 
1355   default:
1356     return true;
1357   }
1358 }
1359 
SemaAtomicOpsOverloaded(ExprResult TheCallResult,AtomicExpr::AtomicOp Op)1360 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
1361                                          AtomicExpr::AtomicOp Op) {
1362   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
1363   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1364 
1365   // All these operations take one of the following forms:
1366   enum {
1367     // C    __c11_atomic_init(A *, C)
1368     Init,
1369     // C    __c11_atomic_load(A *, int)
1370     Load,
1371     // void __atomic_load(A *, CP, int)
1372     Copy,
1373     // C    __c11_atomic_add(A *, M, int)
1374     Arithmetic,
1375     // C    __atomic_exchange_n(A *, CP, int)
1376     Xchg,
1377     // void __atomic_exchange(A *, C *, CP, int)
1378     GNUXchg,
1379     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
1380     C11CmpXchg,
1381     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
1382     GNUCmpXchg
1383   } Form = Init;
1384   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
1385   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
1386   // where:
1387   //   C is an appropriate type,
1388   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
1389   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
1390   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
1391   //   the int parameters are for orderings.
1392 
1393   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
1394                     AtomicExpr::AO__c11_atomic_fetch_xor + 1 ==
1395                         AtomicExpr::AO__atomic_load,
1396                 "need to update code for modified C11 atomics");
1397   bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
1398                Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
1399   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
1400              Op == AtomicExpr::AO__atomic_store_n ||
1401              Op == AtomicExpr::AO__atomic_exchange_n ||
1402              Op == AtomicExpr::AO__atomic_compare_exchange_n;
1403   bool IsAddSub = false;
1404 
1405   switch (Op) {
1406   case AtomicExpr::AO__c11_atomic_init:
1407     Form = Init;
1408     break;
1409 
1410   case AtomicExpr::AO__c11_atomic_load:
1411   case AtomicExpr::AO__atomic_load_n:
1412     Form = Load;
1413     break;
1414 
1415   case AtomicExpr::AO__c11_atomic_store:
1416   case AtomicExpr::AO__atomic_load:
1417   case AtomicExpr::AO__atomic_store:
1418   case AtomicExpr::AO__atomic_store_n:
1419     Form = Copy;
1420     break;
1421 
1422   case AtomicExpr::AO__c11_atomic_fetch_add:
1423   case AtomicExpr::AO__c11_atomic_fetch_sub:
1424   case AtomicExpr::AO__atomic_fetch_add:
1425   case AtomicExpr::AO__atomic_fetch_sub:
1426   case AtomicExpr::AO__atomic_add_fetch:
1427   case AtomicExpr::AO__atomic_sub_fetch:
1428     IsAddSub = true;
1429     // Fall through.
1430   case AtomicExpr::AO__c11_atomic_fetch_and:
1431   case AtomicExpr::AO__c11_atomic_fetch_or:
1432   case AtomicExpr::AO__c11_atomic_fetch_xor:
1433   case AtomicExpr::AO__atomic_fetch_and:
1434   case AtomicExpr::AO__atomic_fetch_or:
1435   case AtomicExpr::AO__atomic_fetch_xor:
1436   case AtomicExpr::AO__atomic_fetch_nand:
1437   case AtomicExpr::AO__atomic_and_fetch:
1438   case AtomicExpr::AO__atomic_or_fetch:
1439   case AtomicExpr::AO__atomic_xor_fetch:
1440   case AtomicExpr::AO__atomic_nand_fetch:
1441     Form = Arithmetic;
1442     break;
1443 
1444   case AtomicExpr::AO__c11_atomic_exchange:
1445   case AtomicExpr::AO__atomic_exchange_n:
1446     Form = Xchg;
1447     break;
1448 
1449   case AtomicExpr::AO__atomic_exchange:
1450     Form = GNUXchg;
1451     break;
1452 
1453   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
1454   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
1455     Form = C11CmpXchg;
1456     break;
1457 
1458   case AtomicExpr::AO__atomic_compare_exchange:
1459   case AtomicExpr::AO__atomic_compare_exchange_n:
1460     Form = GNUCmpXchg;
1461     break;
1462   }
1463 
1464   // Check we have the right number of arguments.
1465   if (TheCall->getNumArgs() < NumArgs[Form]) {
1466     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
1467       << 0 << NumArgs[Form] << TheCall->getNumArgs()
1468       << TheCall->getCallee()->getSourceRange();
1469     return ExprError();
1470   } else if (TheCall->getNumArgs() > NumArgs[Form]) {
1471     Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
1472          diag::err_typecheck_call_too_many_args)
1473       << 0 << NumArgs[Form] << TheCall->getNumArgs()
1474       << TheCall->getCallee()->getSourceRange();
1475     return ExprError();
1476   }
1477 
1478   // Inspect the first argument of the atomic operation.
1479   Expr *Ptr = TheCall->getArg(0);
1480   Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
1481   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
1482   if (!pointerType) {
1483     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1484       << Ptr->getType() << Ptr->getSourceRange();
1485     return ExprError();
1486   }
1487 
1488   // For a __c11 builtin, this should be a pointer to an _Atomic type.
1489   QualType AtomTy = pointerType->getPointeeType(); // 'A'
1490   QualType ValType = AtomTy; // 'C'
1491   if (IsC11) {
1492     if (!AtomTy->isAtomicType()) {
1493       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
1494         << Ptr->getType() << Ptr->getSourceRange();
1495       return ExprError();
1496     }
1497     if (AtomTy.isConstQualified()) {
1498       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
1499         << Ptr->getType() << Ptr->getSourceRange();
1500       return ExprError();
1501     }
1502     ValType = AtomTy->getAs<AtomicType>()->getValueType();
1503   }
1504 
1505   // For an arithmetic operation, the implied arithmetic must be well-formed.
1506   if (Form == Arithmetic) {
1507     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
1508     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
1509       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1510         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1511       return ExprError();
1512     }
1513     if (!IsAddSub && !ValType->isIntegerType()) {
1514       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
1515         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1516       return ExprError();
1517     }
1518     if (IsC11 && ValType->isPointerType() &&
1519         RequireCompleteType(Ptr->getLocStart(), ValType->getPointeeType(),
1520                             diag::err_incomplete_type)) {
1521       return ExprError();
1522     }
1523   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
1524     // For __atomic_*_n operations, the value type must be a scalar integral or
1525     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
1526     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
1527       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
1528     return ExprError();
1529   }
1530 
1531   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
1532       !AtomTy->isScalarType()) {
1533     // For GNU atomics, require a trivially-copyable type. This is not part of
1534     // the GNU atomics specification, but we enforce it for sanity.
1535     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
1536       << Ptr->getType() << Ptr->getSourceRange();
1537     return ExprError();
1538   }
1539 
1540   // FIXME: For any builtin other than a load, the ValType must not be
1541   // const-qualified.
1542 
1543   switch (ValType.getObjCLifetime()) {
1544   case Qualifiers::OCL_None:
1545   case Qualifiers::OCL_ExplicitNone:
1546     // okay
1547     break;
1548 
1549   case Qualifiers::OCL_Weak:
1550   case Qualifiers::OCL_Strong:
1551   case Qualifiers::OCL_Autoreleasing:
1552     // FIXME: Can this happen? By this point, ValType should be known
1553     // to be trivially copyable.
1554     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1555       << ValType << Ptr->getSourceRange();
1556     return ExprError();
1557   }
1558 
1559   QualType ResultType = ValType;
1560   if (Form == Copy || Form == GNUXchg || Form == Init)
1561     ResultType = Context.VoidTy;
1562   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
1563     ResultType = Context.BoolTy;
1564 
1565   // The type of a parameter passed 'by value'. In the GNU atomics, such
1566   // arguments are actually passed as pointers.
1567   QualType ByValType = ValType; // 'CP'
1568   if (!IsC11 && !IsN)
1569     ByValType = Ptr->getType();
1570 
1571   // The first argument --- the pointer --- has a fixed type; we
1572   // deduce the types of the rest of the arguments accordingly.  Walk
1573   // the remaining arguments, converting them to the deduced value type.
1574   for (unsigned i = 1; i != NumArgs[Form]; ++i) {
1575     QualType Ty;
1576     if (i < NumVals[Form] + 1) {
1577       switch (i) {
1578       case 1:
1579         // The second argument is the non-atomic operand. For arithmetic, this
1580         // is always passed by value, and for a compare_exchange it is always
1581         // passed by address. For the rest, GNU uses by-address and C11 uses
1582         // by-value.
1583         assert(Form != Load);
1584         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
1585           Ty = ValType;
1586         else if (Form == Copy || Form == Xchg)
1587           Ty = ByValType;
1588         else if (Form == Arithmetic)
1589           Ty = Context.getPointerDiffType();
1590         else
1591           Ty = Context.getPointerType(ValType.getUnqualifiedType());
1592         break;
1593       case 2:
1594         // The third argument to compare_exchange / GNU exchange is a
1595         // (pointer to a) desired value.
1596         Ty = ByValType;
1597         break;
1598       case 3:
1599         // The fourth argument to GNU compare_exchange is a 'weak' flag.
1600         Ty = Context.BoolTy;
1601         break;
1602       }
1603     } else {
1604       // The order(s) are always converted to int.
1605       Ty = Context.IntTy;
1606     }
1607 
1608     InitializedEntity Entity =
1609         InitializedEntity::InitializeParameter(Context, Ty, false);
1610     ExprResult Arg = TheCall->getArg(i);
1611     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
1612     if (Arg.isInvalid())
1613       return true;
1614     TheCall->setArg(i, Arg.get());
1615   }
1616 
1617   // Permute the arguments into a 'consistent' order.
1618   SmallVector<Expr*, 5> SubExprs;
1619   SubExprs.push_back(Ptr);
1620   switch (Form) {
1621   case Init:
1622     // Note, AtomicExpr::getVal1() has a special case for this atomic.
1623     SubExprs.push_back(TheCall->getArg(1)); // Val1
1624     break;
1625   case Load:
1626     SubExprs.push_back(TheCall->getArg(1)); // Order
1627     break;
1628   case Copy:
1629   case Arithmetic:
1630   case Xchg:
1631     SubExprs.push_back(TheCall->getArg(2)); // Order
1632     SubExprs.push_back(TheCall->getArg(1)); // Val1
1633     break;
1634   case GNUXchg:
1635     // Note, AtomicExpr::getVal2() has a special case for this atomic.
1636     SubExprs.push_back(TheCall->getArg(3)); // Order
1637     SubExprs.push_back(TheCall->getArg(1)); // Val1
1638     SubExprs.push_back(TheCall->getArg(2)); // Val2
1639     break;
1640   case C11CmpXchg:
1641     SubExprs.push_back(TheCall->getArg(3)); // Order
1642     SubExprs.push_back(TheCall->getArg(1)); // Val1
1643     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
1644     SubExprs.push_back(TheCall->getArg(2)); // Val2
1645     break;
1646   case GNUCmpXchg:
1647     SubExprs.push_back(TheCall->getArg(4)); // Order
1648     SubExprs.push_back(TheCall->getArg(1)); // Val1
1649     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
1650     SubExprs.push_back(TheCall->getArg(2)); // Val2
1651     SubExprs.push_back(TheCall->getArg(3)); // Weak
1652     break;
1653   }
1654 
1655   if (SubExprs.size() >= 2 && Form != Init) {
1656     llvm::APSInt Result(32);
1657     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
1658         !isValidOrderingForOp(Result.getSExtValue(), Op))
1659       Diag(SubExprs[1]->getLocStart(),
1660            diag::warn_atomic_op_has_invalid_memory_order)
1661           << SubExprs[1]->getSourceRange();
1662   }
1663 
1664   AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
1665                                             SubExprs, ResultType, Op,
1666                                             TheCall->getRParenLoc());
1667 
1668   if ((Op == AtomicExpr::AO__c11_atomic_load ||
1669        (Op == AtomicExpr::AO__c11_atomic_store)) &&
1670       Context.AtomicUsesUnsupportedLibcall(AE))
1671     Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
1672     ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
1673 
1674   return AE;
1675 }
1676 
1677 
1678 /// checkBuiltinArgument - Given a call to a builtin function, perform
1679 /// normal type-checking on the given argument, updating the call in
1680 /// place.  This is useful when a builtin function requires custom
1681 /// type-checking for some of its arguments but not necessarily all of
1682 /// them.
1683 ///
1684 /// Returns true on error.
checkBuiltinArgument(Sema & S,CallExpr * E,unsigned ArgIndex)1685 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
1686   FunctionDecl *Fn = E->getDirectCallee();
1687   assert(Fn && "builtin call without direct callee!");
1688 
1689   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
1690   InitializedEntity Entity =
1691     InitializedEntity::InitializeParameter(S.Context, Param);
1692 
1693   ExprResult Arg = E->getArg(0);
1694   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
1695   if (Arg.isInvalid())
1696     return true;
1697 
1698   E->setArg(ArgIndex, Arg.get());
1699   return false;
1700 }
1701 
1702 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
1703 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
1704 /// type of its first argument.  The main ActOnCallExpr routines have already
1705 /// promoted the types of arguments because all of these calls are prototyped as
1706 /// void(...).
1707 ///
1708 /// This function goes through and does final semantic checking for these
1709 /// builtins,
1710 ExprResult
SemaBuiltinAtomicOverloaded(ExprResult TheCallResult)1711 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
1712   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
1713   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1714   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
1715 
1716   // Ensure that we have at least one argument to do type inference from.
1717   if (TheCall->getNumArgs() < 1) {
1718     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1719       << 0 << 1 << TheCall->getNumArgs()
1720       << TheCall->getCallee()->getSourceRange();
1721     return ExprError();
1722   }
1723 
1724   // Inspect the first argument of the atomic builtin.  This should always be
1725   // a pointer type, whose element is an integral scalar or pointer type.
1726   // Because it is a pointer type, we don't have to worry about any implicit
1727   // casts here.
1728   // FIXME: We don't allow floating point scalars as input.
1729   Expr *FirstArg = TheCall->getArg(0);
1730   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
1731   if (FirstArgResult.isInvalid())
1732     return ExprError();
1733   FirstArg = FirstArgResult.get();
1734   TheCall->setArg(0, FirstArg);
1735 
1736   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
1737   if (!pointerType) {
1738     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
1739       << FirstArg->getType() << FirstArg->getSourceRange();
1740     return ExprError();
1741   }
1742 
1743   QualType ValType = pointerType->getPointeeType();
1744   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
1745       !ValType->isBlockPointerType()) {
1746     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
1747       << FirstArg->getType() << FirstArg->getSourceRange();
1748     return ExprError();
1749   }
1750 
1751   switch (ValType.getObjCLifetime()) {
1752   case Qualifiers::OCL_None:
1753   case Qualifiers::OCL_ExplicitNone:
1754     // okay
1755     break;
1756 
1757   case Qualifiers::OCL_Weak:
1758   case Qualifiers::OCL_Strong:
1759   case Qualifiers::OCL_Autoreleasing:
1760     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
1761       << ValType << FirstArg->getSourceRange();
1762     return ExprError();
1763   }
1764 
1765   // Strip any qualifiers off ValType.
1766   ValType = ValType.getUnqualifiedType();
1767 
1768   // The majority of builtins return a value, but a few have special return
1769   // types, so allow them to override appropriately below.
1770   QualType ResultType = ValType;
1771 
1772   // We need to figure out which concrete builtin this maps onto.  For example,
1773   // __sync_fetch_and_add with a 2 byte object turns into
1774   // __sync_fetch_and_add_2.
1775 #define BUILTIN_ROW(x) \
1776   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
1777     Builtin::BI##x##_8, Builtin::BI##x##_16 }
1778 
1779   static const unsigned BuiltinIndices[][5] = {
1780     BUILTIN_ROW(__sync_fetch_and_add),
1781     BUILTIN_ROW(__sync_fetch_and_sub),
1782     BUILTIN_ROW(__sync_fetch_and_or),
1783     BUILTIN_ROW(__sync_fetch_and_and),
1784     BUILTIN_ROW(__sync_fetch_and_xor),
1785     BUILTIN_ROW(__sync_fetch_and_nand),
1786 
1787     BUILTIN_ROW(__sync_add_and_fetch),
1788     BUILTIN_ROW(__sync_sub_and_fetch),
1789     BUILTIN_ROW(__sync_and_and_fetch),
1790     BUILTIN_ROW(__sync_or_and_fetch),
1791     BUILTIN_ROW(__sync_xor_and_fetch),
1792     BUILTIN_ROW(__sync_nand_and_fetch),
1793 
1794     BUILTIN_ROW(__sync_val_compare_and_swap),
1795     BUILTIN_ROW(__sync_bool_compare_and_swap),
1796     BUILTIN_ROW(__sync_lock_test_and_set),
1797     BUILTIN_ROW(__sync_lock_release),
1798     BUILTIN_ROW(__sync_swap)
1799   };
1800 #undef BUILTIN_ROW
1801 
1802   // Determine the index of the size.
1803   unsigned SizeIndex;
1804   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
1805   case 1: SizeIndex = 0; break;
1806   case 2: SizeIndex = 1; break;
1807   case 4: SizeIndex = 2; break;
1808   case 8: SizeIndex = 3; break;
1809   case 16: SizeIndex = 4; break;
1810   default:
1811     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
1812       << FirstArg->getType() << FirstArg->getSourceRange();
1813     return ExprError();
1814   }
1815 
1816   // Each of these builtins has one pointer argument, followed by some number of
1817   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
1818   // that we ignore.  Find out which row of BuiltinIndices to read from as well
1819   // as the number of fixed args.
1820   unsigned BuiltinID = FDecl->getBuiltinID();
1821   unsigned BuiltinIndex, NumFixed = 1;
1822   bool WarnAboutSemanticsChange = false;
1823   switch (BuiltinID) {
1824   default: llvm_unreachable("Unknown overloaded atomic builtin!");
1825   case Builtin::BI__sync_fetch_and_add:
1826   case Builtin::BI__sync_fetch_and_add_1:
1827   case Builtin::BI__sync_fetch_and_add_2:
1828   case Builtin::BI__sync_fetch_and_add_4:
1829   case Builtin::BI__sync_fetch_and_add_8:
1830   case Builtin::BI__sync_fetch_and_add_16:
1831     BuiltinIndex = 0;
1832     break;
1833 
1834   case Builtin::BI__sync_fetch_and_sub:
1835   case Builtin::BI__sync_fetch_and_sub_1:
1836   case Builtin::BI__sync_fetch_and_sub_2:
1837   case Builtin::BI__sync_fetch_and_sub_4:
1838   case Builtin::BI__sync_fetch_and_sub_8:
1839   case Builtin::BI__sync_fetch_and_sub_16:
1840     BuiltinIndex = 1;
1841     break;
1842 
1843   case Builtin::BI__sync_fetch_and_or:
1844   case Builtin::BI__sync_fetch_and_or_1:
1845   case Builtin::BI__sync_fetch_and_or_2:
1846   case Builtin::BI__sync_fetch_and_or_4:
1847   case Builtin::BI__sync_fetch_and_or_8:
1848   case Builtin::BI__sync_fetch_and_or_16:
1849     BuiltinIndex = 2;
1850     break;
1851 
1852   case Builtin::BI__sync_fetch_and_and:
1853   case Builtin::BI__sync_fetch_and_and_1:
1854   case Builtin::BI__sync_fetch_and_and_2:
1855   case Builtin::BI__sync_fetch_and_and_4:
1856   case Builtin::BI__sync_fetch_and_and_8:
1857   case Builtin::BI__sync_fetch_and_and_16:
1858     BuiltinIndex = 3;
1859     break;
1860 
1861   case Builtin::BI__sync_fetch_and_xor:
1862   case Builtin::BI__sync_fetch_and_xor_1:
1863   case Builtin::BI__sync_fetch_and_xor_2:
1864   case Builtin::BI__sync_fetch_and_xor_4:
1865   case Builtin::BI__sync_fetch_and_xor_8:
1866   case Builtin::BI__sync_fetch_and_xor_16:
1867     BuiltinIndex = 4;
1868     break;
1869 
1870   case Builtin::BI__sync_fetch_and_nand:
1871   case Builtin::BI__sync_fetch_and_nand_1:
1872   case Builtin::BI__sync_fetch_and_nand_2:
1873   case Builtin::BI__sync_fetch_and_nand_4:
1874   case Builtin::BI__sync_fetch_and_nand_8:
1875   case Builtin::BI__sync_fetch_and_nand_16:
1876     BuiltinIndex = 5;
1877     WarnAboutSemanticsChange = true;
1878     break;
1879 
1880   case Builtin::BI__sync_add_and_fetch:
1881   case Builtin::BI__sync_add_and_fetch_1:
1882   case Builtin::BI__sync_add_and_fetch_2:
1883   case Builtin::BI__sync_add_and_fetch_4:
1884   case Builtin::BI__sync_add_and_fetch_8:
1885   case Builtin::BI__sync_add_and_fetch_16:
1886     BuiltinIndex = 6;
1887     break;
1888 
1889   case Builtin::BI__sync_sub_and_fetch:
1890   case Builtin::BI__sync_sub_and_fetch_1:
1891   case Builtin::BI__sync_sub_and_fetch_2:
1892   case Builtin::BI__sync_sub_and_fetch_4:
1893   case Builtin::BI__sync_sub_and_fetch_8:
1894   case Builtin::BI__sync_sub_and_fetch_16:
1895     BuiltinIndex = 7;
1896     break;
1897 
1898   case Builtin::BI__sync_and_and_fetch:
1899   case Builtin::BI__sync_and_and_fetch_1:
1900   case Builtin::BI__sync_and_and_fetch_2:
1901   case Builtin::BI__sync_and_and_fetch_4:
1902   case Builtin::BI__sync_and_and_fetch_8:
1903   case Builtin::BI__sync_and_and_fetch_16:
1904     BuiltinIndex = 8;
1905     break;
1906 
1907   case Builtin::BI__sync_or_and_fetch:
1908   case Builtin::BI__sync_or_and_fetch_1:
1909   case Builtin::BI__sync_or_and_fetch_2:
1910   case Builtin::BI__sync_or_and_fetch_4:
1911   case Builtin::BI__sync_or_and_fetch_8:
1912   case Builtin::BI__sync_or_and_fetch_16:
1913     BuiltinIndex = 9;
1914     break;
1915 
1916   case Builtin::BI__sync_xor_and_fetch:
1917   case Builtin::BI__sync_xor_and_fetch_1:
1918   case Builtin::BI__sync_xor_and_fetch_2:
1919   case Builtin::BI__sync_xor_and_fetch_4:
1920   case Builtin::BI__sync_xor_and_fetch_8:
1921   case Builtin::BI__sync_xor_and_fetch_16:
1922     BuiltinIndex = 10;
1923     break;
1924 
1925   case Builtin::BI__sync_nand_and_fetch:
1926   case Builtin::BI__sync_nand_and_fetch_1:
1927   case Builtin::BI__sync_nand_and_fetch_2:
1928   case Builtin::BI__sync_nand_and_fetch_4:
1929   case Builtin::BI__sync_nand_and_fetch_8:
1930   case Builtin::BI__sync_nand_and_fetch_16:
1931     BuiltinIndex = 11;
1932     WarnAboutSemanticsChange = true;
1933     break;
1934 
1935   case Builtin::BI__sync_val_compare_and_swap:
1936   case Builtin::BI__sync_val_compare_and_swap_1:
1937   case Builtin::BI__sync_val_compare_and_swap_2:
1938   case Builtin::BI__sync_val_compare_and_swap_4:
1939   case Builtin::BI__sync_val_compare_and_swap_8:
1940   case Builtin::BI__sync_val_compare_and_swap_16:
1941     BuiltinIndex = 12;
1942     NumFixed = 2;
1943     break;
1944 
1945   case Builtin::BI__sync_bool_compare_and_swap:
1946   case Builtin::BI__sync_bool_compare_and_swap_1:
1947   case Builtin::BI__sync_bool_compare_and_swap_2:
1948   case Builtin::BI__sync_bool_compare_and_swap_4:
1949   case Builtin::BI__sync_bool_compare_and_swap_8:
1950   case Builtin::BI__sync_bool_compare_and_swap_16:
1951     BuiltinIndex = 13;
1952     NumFixed = 2;
1953     ResultType = Context.BoolTy;
1954     break;
1955 
1956   case Builtin::BI__sync_lock_test_and_set:
1957   case Builtin::BI__sync_lock_test_and_set_1:
1958   case Builtin::BI__sync_lock_test_and_set_2:
1959   case Builtin::BI__sync_lock_test_and_set_4:
1960   case Builtin::BI__sync_lock_test_and_set_8:
1961   case Builtin::BI__sync_lock_test_and_set_16:
1962     BuiltinIndex = 14;
1963     break;
1964 
1965   case Builtin::BI__sync_lock_release:
1966   case Builtin::BI__sync_lock_release_1:
1967   case Builtin::BI__sync_lock_release_2:
1968   case Builtin::BI__sync_lock_release_4:
1969   case Builtin::BI__sync_lock_release_8:
1970   case Builtin::BI__sync_lock_release_16:
1971     BuiltinIndex = 15;
1972     NumFixed = 0;
1973     ResultType = Context.VoidTy;
1974     break;
1975 
1976   case Builtin::BI__sync_swap:
1977   case Builtin::BI__sync_swap_1:
1978   case Builtin::BI__sync_swap_2:
1979   case Builtin::BI__sync_swap_4:
1980   case Builtin::BI__sync_swap_8:
1981   case Builtin::BI__sync_swap_16:
1982     BuiltinIndex = 16;
1983     break;
1984   }
1985 
1986   // Now that we know how many fixed arguments we expect, first check that we
1987   // have at least that many.
1988   if (TheCall->getNumArgs() < 1+NumFixed) {
1989     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
1990       << 0 << 1+NumFixed << TheCall->getNumArgs()
1991       << TheCall->getCallee()->getSourceRange();
1992     return ExprError();
1993   }
1994 
1995   if (WarnAboutSemanticsChange) {
1996     Diag(TheCall->getLocEnd(), diag::warn_sync_fetch_and_nand_semantics_change)
1997       << TheCall->getCallee()->getSourceRange();
1998   }
1999 
2000   // Get the decl for the concrete builtin from this, we can tell what the
2001   // concrete integer type we should convert to is.
2002   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
2003   const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
2004   FunctionDecl *NewBuiltinDecl;
2005   if (NewBuiltinID == BuiltinID)
2006     NewBuiltinDecl = FDecl;
2007   else {
2008     // Perform builtin lookup to avoid redeclaring it.
2009     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
2010     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
2011     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
2012     assert(Res.getFoundDecl());
2013     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
2014     if (!NewBuiltinDecl)
2015       return ExprError();
2016   }
2017 
2018   // The first argument --- the pointer --- has a fixed type; we
2019   // deduce the types of the rest of the arguments accordingly.  Walk
2020   // the remaining arguments, converting them to the deduced value type.
2021   for (unsigned i = 0; i != NumFixed; ++i) {
2022     ExprResult Arg = TheCall->getArg(i+1);
2023 
2024     // GCC does an implicit conversion to the pointer or integer ValType.  This
2025     // can fail in some cases (1i -> int**), check for this error case now.
2026     // Initialize the argument.
2027     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
2028                                                    ValType, /*consume*/ false);
2029     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2030     if (Arg.isInvalid())
2031       return ExprError();
2032 
2033     // Okay, we have something that *can* be converted to the right type.  Check
2034     // to see if there is a potentially weird extension going on here.  This can
2035     // happen when you do an atomic operation on something like an char* and
2036     // pass in 42.  The 42 gets converted to char.  This is even more strange
2037     // for things like 45.123 -> char, etc.
2038     // FIXME: Do this check.
2039     TheCall->setArg(i+1, Arg.get());
2040   }
2041 
2042   ASTContext& Context = this->getASTContext();
2043 
2044   // Create a new DeclRefExpr to refer to the new decl.
2045   DeclRefExpr* NewDRE = DeclRefExpr::Create(
2046       Context,
2047       DRE->getQualifierLoc(),
2048       SourceLocation(),
2049       NewBuiltinDecl,
2050       /*enclosing*/ false,
2051       DRE->getLocation(),
2052       Context.BuiltinFnTy,
2053       DRE->getValueKind());
2054 
2055   // Set the callee in the CallExpr.
2056   // FIXME: This loses syntactic information.
2057   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
2058   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
2059                                               CK_BuiltinFnToFnPtr);
2060   TheCall->setCallee(PromotedCall.get());
2061 
2062   // Change the result type of the call to match the original value type. This
2063   // is arbitrary, but the codegen for these builtins ins design to handle it
2064   // gracefully.
2065   TheCall->setType(ResultType);
2066 
2067   return TheCallResult;
2068 }
2069 
2070 /// CheckObjCString - Checks that the argument to the builtin
2071 /// CFString constructor is correct
2072 /// Note: It might also make sense to do the UTF-16 conversion here (would
2073 /// simplify the backend).
CheckObjCString(Expr * Arg)2074 bool Sema::CheckObjCString(Expr *Arg) {
2075   Arg = Arg->IgnoreParenCasts();
2076   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
2077 
2078   if (!Literal || !Literal->isAscii()) {
2079     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
2080       << Arg->getSourceRange();
2081     return true;
2082   }
2083 
2084   if (Literal->containsNonAsciiOrNull()) {
2085     StringRef String = Literal->getString();
2086     unsigned NumBytes = String.size();
2087     SmallVector<UTF16, 128> ToBuf(NumBytes);
2088     const UTF8 *FromPtr = (const UTF8 *)String.data();
2089     UTF16 *ToPtr = &ToBuf[0];
2090 
2091     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2092                                                  &ToPtr, ToPtr + NumBytes,
2093                                                  strictConversion);
2094     // Check for conversion failure.
2095     if (Result != conversionOK)
2096       Diag(Arg->getLocStart(),
2097            diag::warn_cfstring_truncated) << Arg->getSourceRange();
2098   }
2099   return false;
2100 }
2101 
2102 /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
2103 /// Emit an error and return true on failure, return false on success.
SemaBuiltinVAStart(CallExpr * TheCall)2104 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
2105   Expr *Fn = TheCall->getCallee();
2106   if (TheCall->getNumArgs() > 2) {
2107     Diag(TheCall->getArg(2)->getLocStart(),
2108          diag::err_typecheck_call_too_many_args)
2109       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2110       << Fn->getSourceRange()
2111       << SourceRange(TheCall->getArg(2)->getLocStart(),
2112                      (*(TheCall->arg_end()-1))->getLocEnd());
2113     return true;
2114   }
2115 
2116   if (TheCall->getNumArgs() < 2) {
2117     return Diag(TheCall->getLocEnd(),
2118       diag::err_typecheck_call_too_few_args_at_least)
2119       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
2120   }
2121 
2122   // Type-check the first argument normally.
2123   if (checkBuiltinArgument(*this, TheCall, 0))
2124     return true;
2125 
2126   // Determine whether the current function is variadic or not.
2127   BlockScopeInfo *CurBlock = getCurBlock();
2128   bool isVariadic;
2129   if (CurBlock)
2130     isVariadic = CurBlock->TheDecl->isVariadic();
2131   else if (FunctionDecl *FD = getCurFunctionDecl())
2132     isVariadic = FD->isVariadic();
2133   else
2134     isVariadic = getCurMethodDecl()->isVariadic();
2135 
2136   if (!isVariadic) {
2137     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
2138     return true;
2139   }
2140 
2141   // Verify that the second argument to the builtin is the last argument of the
2142   // current function or method.
2143   bool SecondArgIsLastNamedArgument = false;
2144   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
2145 
2146   // These are valid if SecondArgIsLastNamedArgument is false after the next
2147   // block.
2148   QualType Type;
2149   SourceLocation ParamLoc;
2150 
2151   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
2152     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
2153       // FIXME: This isn't correct for methods (results in bogus warning).
2154       // Get the last formal in the current function.
2155       const ParmVarDecl *LastArg;
2156       if (CurBlock)
2157         LastArg = *(CurBlock->TheDecl->param_end()-1);
2158       else if (FunctionDecl *FD = getCurFunctionDecl())
2159         LastArg = *(FD->param_end()-1);
2160       else
2161         LastArg = *(getCurMethodDecl()->param_end()-1);
2162       SecondArgIsLastNamedArgument = PV == LastArg;
2163 
2164       Type = PV->getType();
2165       ParamLoc = PV->getLocation();
2166     }
2167   }
2168 
2169   if (!SecondArgIsLastNamedArgument)
2170     Diag(TheCall->getArg(1)->getLocStart(),
2171          diag::warn_second_parameter_of_va_start_not_last_named_argument);
2172   else if (Type->isReferenceType()) {
2173     Diag(Arg->getLocStart(),
2174          diag::warn_va_start_of_reference_type_is_undefined);
2175     Diag(ParamLoc, diag::note_parameter_type) << Type;
2176   }
2177 
2178   TheCall->setType(Context.VoidTy);
2179   return false;
2180 }
2181 
SemaBuiltinVAStartARM(CallExpr * Call)2182 bool Sema::SemaBuiltinVAStartARM(CallExpr *Call) {
2183   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
2184   //                 const char *named_addr);
2185 
2186   Expr *Func = Call->getCallee();
2187 
2188   if (Call->getNumArgs() < 3)
2189     return Diag(Call->getLocEnd(),
2190                 diag::err_typecheck_call_too_few_args_at_least)
2191            << 0 /*function call*/ << 3 << Call->getNumArgs();
2192 
2193   // Determine whether the current function is variadic or not.
2194   bool IsVariadic;
2195   if (BlockScopeInfo *CurBlock = getCurBlock())
2196     IsVariadic = CurBlock->TheDecl->isVariadic();
2197   else if (FunctionDecl *FD = getCurFunctionDecl())
2198     IsVariadic = FD->isVariadic();
2199   else if (ObjCMethodDecl *MD = getCurMethodDecl())
2200     IsVariadic = MD->isVariadic();
2201   else
2202     llvm_unreachable("unexpected statement type");
2203 
2204   if (!IsVariadic) {
2205     Diag(Func->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
2206     return true;
2207   }
2208 
2209   // Type-check the first argument normally.
2210   if (checkBuiltinArgument(*this, Call, 0))
2211     return true;
2212 
2213   const struct {
2214     unsigned ArgNo;
2215     QualType Type;
2216   } ArgumentTypes[] = {
2217     { 1, Context.getPointerType(Context.CharTy.withConst()) },
2218     { 2, Context.getSizeType() },
2219   };
2220 
2221   for (const auto &AT : ArgumentTypes) {
2222     const Expr *Arg = Call->getArg(AT.ArgNo)->IgnoreParens();
2223     if (Arg->getType().getCanonicalType() == AT.Type.getCanonicalType())
2224       continue;
2225     Diag(Arg->getLocStart(), diag::err_typecheck_convert_incompatible)
2226       << Arg->getType() << AT.Type << 1 /* different class */
2227       << 0 /* qualifier difference */ << 3 /* parameter mismatch */
2228       << AT.ArgNo + 1 << Arg->getType() << AT.Type;
2229   }
2230 
2231   return false;
2232 }
2233 
2234 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
2235 /// friends.  This is declared to take (...), so we have to check everything.
SemaBuiltinUnorderedCompare(CallExpr * TheCall)2236 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
2237   if (TheCall->getNumArgs() < 2)
2238     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2239       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
2240   if (TheCall->getNumArgs() > 2)
2241     return Diag(TheCall->getArg(2)->getLocStart(),
2242                 diag::err_typecheck_call_too_many_args)
2243       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2244       << SourceRange(TheCall->getArg(2)->getLocStart(),
2245                      (*(TheCall->arg_end()-1))->getLocEnd());
2246 
2247   ExprResult OrigArg0 = TheCall->getArg(0);
2248   ExprResult OrigArg1 = TheCall->getArg(1);
2249 
2250   // Do standard promotions between the two arguments, returning their common
2251   // type.
2252   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
2253   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
2254     return true;
2255 
2256   // Make sure any conversions are pushed back into the call; this is
2257   // type safe since unordered compare builtins are declared as "_Bool
2258   // foo(...)".
2259   TheCall->setArg(0, OrigArg0.get());
2260   TheCall->setArg(1, OrigArg1.get());
2261 
2262   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
2263     return false;
2264 
2265   // If the common type isn't a real floating type, then the arguments were
2266   // invalid for this operation.
2267   if (Res.isNull() || !Res->isRealFloatingType())
2268     return Diag(OrigArg0.get()->getLocStart(),
2269                 diag::err_typecheck_call_invalid_ordered_compare)
2270       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
2271       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
2272 
2273   return false;
2274 }
2275 
2276 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
2277 /// __builtin_isnan and friends.  This is declared to take (...), so we have
2278 /// to check everything. We expect the last argument to be a floating point
2279 /// value.
SemaBuiltinFPClassification(CallExpr * TheCall,unsigned NumArgs)2280 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
2281   if (TheCall->getNumArgs() < NumArgs)
2282     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
2283       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
2284   if (TheCall->getNumArgs() > NumArgs)
2285     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
2286                 diag::err_typecheck_call_too_many_args)
2287       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
2288       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
2289                      (*(TheCall->arg_end()-1))->getLocEnd());
2290 
2291   Expr *OrigArg = TheCall->getArg(NumArgs-1);
2292 
2293   if (OrigArg->isTypeDependent())
2294     return false;
2295 
2296   // This operation requires a non-_Complex floating-point number.
2297   if (!OrigArg->getType()->isRealFloatingType())
2298     return Diag(OrigArg->getLocStart(),
2299                 diag::err_typecheck_call_invalid_unary_fp)
2300       << OrigArg->getType() << OrigArg->getSourceRange();
2301 
2302   // If this is an implicit conversion from float -> double, remove it.
2303   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
2304     Expr *CastArg = Cast->getSubExpr();
2305     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
2306       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
2307              "promotion from float to double is the only expected cast here");
2308       Cast->setSubExpr(nullptr);
2309       TheCall->setArg(NumArgs-1, CastArg);
2310     }
2311   }
2312 
2313   return false;
2314 }
2315 
2316 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
2317 // This is declared to take (...), so we have to check everything.
SemaBuiltinShuffleVector(CallExpr * TheCall)2318 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
2319   if (TheCall->getNumArgs() < 2)
2320     return ExprError(Diag(TheCall->getLocEnd(),
2321                           diag::err_typecheck_call_too_few_args_at_least)
2322                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
2323                      << TheCall->getSourceRange());
2324 
2325   // Determine which of the following types of shufflevector we're checking:
2326   // 1) unary, vector mask: (lhs, mask)
2327   // 2) binary, vector mask: (lhs, rhs, mask)
2328   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
2329   QualType resType = TheCall->getArg(0)->getType();
2330   unsigned numElements = 0;
2331 
2332   if (!TheCall->getArg(0)->isTypeDependent() &&
2333       !TheCall->getArg(1)->isTypeDependent()) {
2334     QualType LHSType = TheCall->getArg(0)->getType();
2335     QualType RHSType = TheCall->getArg(1)->getType();
2336 
2337     if (!LHSType->isVectorType() || !RHSType->isVectorType())
2338       return ExprError(Diag(TheCall->getLocStart(),
2339                             diag::err_shufflevector_non_vector)
2340                        << SourceRange(TheCall->getArg(0)->getLocStart(),
2341                                       TheCall->getArg(1)->getLocEnd()));
2342 
2343     numElements = LHSType->getAs<VectorType>()->getNumElements();
2344     unsigned numResElements = TheCall->getNumArgs() - 2;
2345 
2346     // Check to see if we have a call with 2 vector arguments, the unary shuffle
2347     // with mask.  If so, verify that RHS is an integer vector type with the
2348     // same number of elts as lhs.
2349     if (TheCall->getNumArgs() == 2) {
2350       if (!RHSType->hasIntegerRepresentation() ||
2351           RHSType->getAs<VectorType>()->getNumElements() != numElements)
2352         return ExprError(Diag(TheCall->getLocStart(),
2353                               diag::err_shufflevector_incompatible_vector)
2354                          << SourceRange(TheCall->getArg(1)->getLocStart(),
2355                                         TheCall->getArg(1)->getLocEnd()));
2356     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
2357       return ExprError(Diag(TheCall->getLocStart(),
2358                             diag::err_shufflevector_incompatible_vector)
2359                        << SourceRange(TheCall->getArg(0)->getLocStart(),
2360                                       TheCall->getArg(1)->getLocEnd()));
2361     } else if (numElements != numResElements) {
2362       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
2363       resType = Context.getVectorType(eltType, numResElements,
2364                                       VectorType::GenericVector);
2365     }
2366   }
2367 
2368   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
2369     if (TheCall->getArg(i)->isTypeDependent() ||
2370         TheCall->getArg(i)->isValueDependent())
2371       continue;
2372 
2373     llvm::APSInt Result(32);
2374     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
2375       return ExprError(Diag(TheCall->getLocStart(),
2376                             diag::err_shufflevector_nonconstant_argument)
2377                        << TheCall->getArg(i)->getSourceRange());
2378 
2379     // Allow -1 which will be translated to undef in the IR.
2380     if (Result.isSigned() && Result.isAllOnesValue())
2381       continue;
2382 
2383     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
2384       return ExprError(Diag(TheCall->getLocStart(),
2385                             diag::err_shufflevector_argument_too_large)
2386                        << TheCall->getArg(i)->getSourceRange());
2387   }
2388 
2389   SmallVector<Expr*, 32> exprs;
2390 
2391   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
2392     exprs.push_back(TheCall->getArg(i));
2393     TheCall->setArg(i, nullptr);
2394   }
2395 
2396   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
2397                                          TheCall->getCallee()->getLocStart(),
2398                                          TheCall->getRParenLoc());
2399 }
2400 
2401 /// SemaConvertVectorExpr - Handle __builtin_convertvector
SemaConvertVectorExpr(Expr * E,TypeSourceInfo * TInfo,SourceLocation BuiltinLoc,SourceLocation RParenLoc)2402 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
2403                                        SourceLocation BuiltinLoc,
2404                                        SourceLocation RParenLoc) {
2405   ExprValueKind VK = VK_RValue;
2406   ExprObjectKind OK = OK_Ordinary;
2407   QualType DstTy = TInfo->getType();
2408   QualType SrcTy = E->getType();
2409 
2410   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
2411     return ExprError(Diag(BuiltinLoc,
2412                           diag::err_convertvector_non_vector)
2413                      << E->getSourceRange());
2414   if (!DstTy->isVectorType() && !DstTy->isDependentType())
2415     return ExprError(Diag(BuiltinLoc,
2416                           diag::err_convertvector_non_vector_type));
2417 
2418   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
2419     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
2420     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
2421     if (SrcElts != DstElts)
2422       return ExprError(Diag(BuiltinLoc,
2423                             diag::err_convertvector_incompatible_vector)
2424                        << E->getSourceRange());
2425   }
2426 
2427   return new (Context)
2428       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
2429 }
2430 
2431 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
2432 // This is declared to take (const void*, ...) and can take two
2433 // optional constant int args.
SemaBuiltinPrefetch(CallExpr * TheCall)2434 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
2435   unsigned NumArgs = TheCall->getNumArgs();
2436 
2437   if (NumArgs > 3)
2438     return Diag(TheCall->getLocEnd(),
2439              diag::err_typecheck_call_too_many_args_at_most)
2440              << 0 /*function call*/ << 3 << NumArgs
2441              << TheCall->getSourceRange();
2442 
2443   // Argument 0 is checked for us and the remaining arguments must be
2444   // constant integers.
2445   for (unsigned i = 1; i != NumArgs; ++i)
2446     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
2447       return true;
2448 
2449   return false;
2450 }
2451 
2452 /// SemaBuiltinAssume - Handle __assume (MS Extension).
2453 // __assume does not evaluate its arguments, and should warn if its argument
2454 // has side effects.
SemaBuiltinAssume(CallExpr * TheCall)2455 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
2456   Expr *Arg = TheCall->getArg(0);
2457   if (Arg->isInstantiationDependent()) return false;
2458 
2459   if (Arg->HasSideEffects(Context))
2460     Diag(Arg->getLocStart(), diag::warn_assume_side_effects)
2461       << Arg->getSourceRange()
2462       << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
2463 
2464   return false;
2465 }
2466 
2467 /// Handle __builtin_assume_aligned. This is declared
2468 /// as (const void*, size_t, ...) and can take one optional constant int arg.
SemaBuiltinAssumeAligned(CallExpr * TheCall)2469 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
2470   unsigned NumArgs = TheCall->getNumArgs();
2471 
2472   if (NumArgs > 3)
2473     return Diag(TheCall->getLocEnd(),
2474              diag::err_typecheck_call_too_many_args_at_most)
2475              << 0 /*function call*/ << 3 << NumArgs
2476              << TheCall->getSourceRange();
2477 
2478   // The alignment must be a constant integer.
2479   Expr *Arg = TheCall->getArg(1);
2480 
2481   // We can't check the value of a dependent argument.
2482   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
2483     llvm::APSInt Result;
2484     if (SemaBuiltinConstantArg(TheCall, 1, Result))
2485       return true;
2486 
2487     if (!Result.isPowerOf2())
2488       return Diag(TheCall->getLocStart(),
2489                   diag::err_alignment_not_power_of_two)
2490            << Arg->getSourceRange();
2491   }
2492 
2493   if (NumArgs > 2) {
2494     ExprResult Arg(TheCall->getArg(2));
2495     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
2496       Context.getSizeType(), false);
2497     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
2498     if (Arg.isInvalid()) return true;
2499     TheCall->setArg(2, Arg.get());
2500   }
2501 
2502   return false;
2503 }
2504 
2505 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
2506 /// TheCall is a constant expression.
SemaBuiltinConstantArg(CallExpr * TheCall,int ArgNum,llvm::APSInt & Result)2507 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
2508                                   llvm::APSInt &Result) {
2509   Expr *Arg = TheCall->getArg(ArgNum);
2510   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2511   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
2512 
2513   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
2514 
2515   if (!Arg->isIntegerConstantExpr(Result, Context))
2516     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
2517                 << FDecl->getDeclName() <<  Arg->getSourceRange();
2518 
2519   return false;
2520 }
2521 
2522 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
2523 /// TheCall is a constant expression in the range [Low, High].
SemaBuiltinConstantArgRange(CallExpr * TheCall,int ArgNum,int Low,int High)2524 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
2525                                        int Low, int High) {
2526   llvm::APSInt Result;
2527 
2528   // We can't check the value of a dependent argument.
2529   Expr *Arg = TheCall->getArg(ArgNum);
2530   if (Arg->isTypeDependent() || Arg->isValueDependent())
2531     return false;
2532 
2533   // Check constant-ness first.
2534   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
2535     return true;
2536 
2537   if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
2538     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
2539       << Low << High << Arg->getSourceRange();
2540 
2541   return false;
2542 }
2543 
2544 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
2545 /// This checks that the target supports __builtin_longjmp and
2546 /// that val is a constant 1.
SemaBuiltinLongjmp(CallExpr * TheCall)2547 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
2548   if (!Context.getTargetInfo().hasSjLjLowering())
2549     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_unsupported)
2550              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
2551 
2552   Expr *Arg = TheCall->getArg(1);
2553   llvm::APSInt Result;
2554 
2555   // TODO: This is less than ideal. Overload this to take a value.
2556   if (SemaBuiltinConstantArg(TheCall, 1, Result))
2557     return true;
2558 
2559   if (Result != 1)
2560     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
2561              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
2562 
2563   return false;
2564 }
2565 
2566 
2567 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
2568 /// This checks that the target supports __builtin_setjmp.
SemaBuiltinSetjmp(CallExpr * TheCall)2569 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
2570   if (!Context.getTargetInfo().hasSjLjLowering())
2571     return Diag(TheCall->getLocStart(), diag::err_builtin_setjmp_unsupported)
2572              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
2573   return false;
2574 }
2575 
2576 namespace {
2577 enum StringLiteralCheckType {
2578   SLCT_NotALiteral,
2579   SLCT_UncheckedLiteral,
2580   SLCT_CheckedLiteral
2581 };
2582 }
2583 
2584 // Determine if an expression is a string literal or constant string.
2585 // If this function returns false on the arguments to a function expecting a
2586 // format string, we will usually need to emit a warning.
2587 // True string literals are then checked by CheckFormatString.
2588 static StringLiteralCheckType
checkFormatStringExpr(Sema & S,const Expr * E,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,Sema::FormatStringType Type,Sema::VariadicCallType CallType,bool InFunctionCall,llvm::SmallBitVector & CheckedVarArgs)2589 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
2590                       bool HasVAListArg, unsigned format_idx,
2591                       unsigned firstDataArg, Sema::FormatStringType Type,
2592                       Sema::VariadicCallType CallType, bool InFunctionCall,
2593                       llvm::SmallBitVector &CheckedVarArgs) {
2594  tryAgain:
2595   if (E->isTypeDependent() || E->isValueDependent())
2596     return SLCT_NotALiteral;
2597 
2598   E = E->IgnoreParenCasts();
2599 
2600   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
2601     // Technically -Wformat-nonliteral does not warn about this case.
2602     // The behavior of printf and friends in this case is implementation
2603     // dependent.  Ideally if the format string cannot be null then
2604     // it should have a 'nonnull' attribute in the function prototype.
2605     return SLCT_UncheckedLiteral;
2606 
2607   switch (E->getStmtClass()) {
2608   case Stmt::BinaryConditionalOperatorClass:
2609   case Stmt::ConditionalOperatorClass: {
2610     // The expression is a literal if both sub-expressions were, and it was
2611     // completely checked only if both sub-expressions were checked.
2612     const AbstractConditionalOperator *C =
2613         cast<AbstractConditionalOperator>(E);
2614     StringLiteralCheckType Left =
2615         checkFormatStringExpr(S, C->getTrueExpr(), Args,
2616                               HasVAListArg, format_idx, firstDataArg,
2617                               Type, CallType, InFunctionCall, CheckedVarArgs);
2618     if (Left == SLCT_NotALiteral)
2619       return SLCT_NotALiteral;
2620     StringLiteralCheckType Right =
2621         checkFormatStringExpr(S, C->getFalseExpr(), Args,
2622                               HasVAListArg, format_idx, firstDataArg,
2623                               Type, CallType, InFunctionCall, CheckedVarArgs);
2624     return Left < Right ? Left : Right;
2625   }
2626 
2627   case Stmt::ImplicitCastExprClass: {
2628     E = cast<ImplicitCastExpr>(E)->getSubExpr();
2629     goto tryAgain;
2630   }
2631 
2632   case Stmt::OpaqueValueExprClass:
2633     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
2634       E = src;
2635       goto tryAgain;
2636     }
2637     return SLCT_NotALiteral;
2638 
2639   case Stmt::PredefinedExprClass:
2640     // While __func__, etc., are technically not string literals, they
2641     // cannot contain format specifiers and thus are not a security
2642     // liability.
2643     return SLCT_UncheckedLiteral;
2644 
2645   case Stmt::DeclRefExprClass: {
2646     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
2647 
2648     // As an exception, do not flag errors for variables binding to
2649     // const string literals.
2650     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
2651       bool isConstant = false;
2652       QualType T = DR->getType();
2653 
2654       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
2655         isConstant = AT->getElementType().isConstant(S.Context);
2656       } else if (const PointerType *PT = T->getAs<PointerType>()) {
2657         isConstant = T.isConstant(S.Context) &&
2658                      PT->getPointeeType().isConstant(S.Context);
2659       } else if (T->isObjCObjectPointerType()) {
2660         // In ObjC, there is usually no "const ObjectPointer" type,
2661         // so don't check if the pointee type is constant.
2662         isConstant = T.isConstant(S.Context);
2663       }
2664 
2665       if (isConstant) {
2666         if (const Expr *Init = VD->getAnyInitializer()) {
2667           // Look through initializers like const char c[] = { "foo" }
2668           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2669             if (InitList->isStringLiteralInit())
2670               Init = InitList->getInit(0)->IgnoreParenImpCasts();
2671           }
2672           return checkFormatStringExpr(S, Init, Args,
2673                                        HasVAListArg, format_idx,
2674                                        firstDataArg, Type, CallType,
2675                                        /*InFunctionCall*/false, CheckedVarArgs);
2676         }
2677       }
2678 
2679       // For vprintf* functions (i.e., HasVAListArg==true), we add a
2680       // special check to see if the format string is a function parameter
2681       // of the function calling the printf function.  If the function
2682       // has an attribute indicating it is a printf-like function, then we
2683       // should suppress warnings concerning non-literals being used in a call
2684       // to a vprintf function.  For example:
2685       //
2686       // void
2687       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
2688       //      va_list ap;
2689       //      va_start(ap, fmt);
2690       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
2691       //      ...
2692       // }
2693       if (HasVAListArg) {
2694         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
2695           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
2696             int PVIndex = PV->getFunctionScopeIndex() + 1;
2697             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
2698               // adjust for implicit parameter
2699               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2700                 if (MD->isInstance())
2701                   ++PVIndex;
2702               // We also check if the formats are compatible.
2703               // We can't pass a 'scanf' string to a 'printf' function.
2704               if (PVIndex == PVFormat->getFormatIdx() &&
2705                   Type == S.GetFormatStringType(PVFormat))
2706                 return SLCT_UncheckedLiteral;
2707             }
2708           }
2709         }
2710       }
2711     }
2712 
2713     return SLCT_NotALiteral;
2714   }
2715 
2716   case Stmt::CallExprClass:
2717   case Stmt::CXXMemberCallExprClass: {
2718     const CallExpr *CE = cast<CallExpr>(E);
2719     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
2720       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
2721         unsigned ArgIndex = FA->getFormatIdx();
2722         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
2723           if (MD->isInstance())
2724             --ArgIndex;
2725         const Expr *Arg = CE->getArg(ArgIndex - 1);
2726 
2727         return checkFormatStringExpr(S, Arg, Args,
2728                                      HasVAListArg, format_idx, firstDataArg,
2729                                      Type, CallType, InFunctionCall,
2730                                      CheckedVarArgs);
2731       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
2732         unsigned BuiltinID = FD->getBuiltinID();
2733         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
2734             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
2735           const Expr *Arg = CE->getArg(0);
2736           return checkFormatStringExpr(S, Arg, Args,
2737                                        HasVAListArg, format_idx,
2738                                        firstDataArg, Type, CallType,
2739                                        InFunctionCall, CheckedVarArgs);
2740         }
2741       }
2742     }
2743 
2744     return SLCT_NotALiteral;
2745   }
2746   case Stmt::ObjCStringLiteralClass:
2747   case Stmt::StringLiteralClass: {
2748     const StringLiteral *StrE = nullptr;
2749 
2750     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
2751       StrE = ObjCFExpr->getString();
2752     else
2753       StrE = cast<StringLiteral>(E);
2754 
2755     if (StrE) {
2756       S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
2757                           Type, InFunctionCall, CallType, CheckedVarArgs);
2758       return SLCT_CheckedLiteral;
2759     }
2760 
2761     return SLCT_NotALiteral;
2762   }
2763 
2764   default:
2765     return SLCT_NotALiteral;
2766   }
2767 }
2768 
GetFormatStringType(const FormatAttr * Format)2769 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
2770   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
2771   .Case("scanf", FST_Scanf)
2772   .Cases("printf", "printf0", FST_Printf)
2773   .Cases("NSString", "CFString", FST_NSString)
2774   .Case("strftime", FST_Strftime)
2775   .Case("strfmon", FST_Strfmon)
2776   .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
2777   .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
2778   .Case("os_trace", FST_OSTrace)
2779   .Default(FST_Unknown);
2780 }
2781 
2782 /// CheckFormatArguments - Check calls to printf and scanf (and similar
2783 /// functions) for correct use of format strings.
2784 /// Returns true if a format string has been fully checked.
CheckFormatArguments(const FormatAttr * Format,ArrayRef<const Expr * > Args,bool IsCXXMember,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)2785 bool Sema::CheckFormatArguments(const FormatAttr *Format,
2786                                 ArrayRef<const Expr *> Args,
2787                                 bool IsCXXMember,
2788                                 VariadicCallType CallType,
2789                                 SourceLocation Loc, SourceRange Range,
2790                                 llvm::SmallBitVector &CheckedVarArgs) {
2791   FormatStringInfo FSI;
2792   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
2793     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
2794                                 FSI.FirstDataArg, GetFormatStringType(Format),
2795                                 CallType, Loc, Range, CheckedVarArgs);
2796   return false;
2797 }
2798 
CheckFormatArguments(ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,VariadicCallType CallType,SourceLocation Loc,SourceRange Range,llvm::SmallBitVector & CheckedVarArgs)2799 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
2800                                 bool HasVAListArg, unsigned format_idx,
2801                                 unsigned firstDataArg, FormatStringType Type,
2802                                 VariadicCallType CallType,
2803                                 SourceLocation Loc, SourceRange Range,
2804                                 llvm::SmallBitVector &CheckedVarArgs) {
2805   // CHECK: printf/scanf-like function is called with no format string.
2806   if (format_idx >= Args.size()) {
2807     Diag(Loc, diag::warn_missing_format_string) << Range;
2808     return false;
2809   }
2810 
2811   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
2812 
2813   // CHECK: format string is not a string literal.
2814   //
2815   // Dynamically generated format strings are difficult to
2816   // automatically vet at compile time.  Requiring that format strings
2817   // are string literals: (1) permits the checking of format strings by
2818   // the compiler and thereby (2) can practically remove the source of
2819   // many format string exploits.
2820 
2821   // Format string can be either ObjC string (e.g. @"%d") or
2822   // C string (e.g. "%d")
2823   // ObjC string uses the same format specifiers as C string, so we can use
2824   // the same format string checking logic for both ObjC and C strings.
2825   StringLiteralCheckType CT =
2826       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
2827                             format_idx, firstDataArg, Type, CallType,
2828                             /*IsFunctionCall*/true, CheckedVarArgs);
2829   if (CT != SLCT_NotALiteral)
2830     // Literal format string found, check done!
2831     return CT == SLCT_CheckedLiteral;
2832 
2833   // Strftime is particular as it always uses a single 'time' argument,
2834   // so it is safe to pass a non-literal string.
2835   if (Type == FST_Strftime)
2836     return false;
2837 
2838   // Do not emit diag when the string param is a macro expansion and the
2839   // format is either NSString or CFString. This is a hack to prevent
2840   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
2841   // which are usually used in place of NS and CF string literals.
2842   if (Type == FST_NSString &&
2843       SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
2844     return false;
2845 
2846   // If there are no arguments specified, warn with -Wformat-security, otherwise
2847   // warn only with -Wformat-nonliteral.
2848   if (Args.size() == firstDataArg)
2849     Diag(Args[format_idx]->getLocStart(),
2850          diag::warn_format_nonliteral_noargs)
2851       << OrigFormatExpr->getSourceRange();
2852   else
2853     Diag(Args[format_idx]->getLocStart(),
2854          diag::warn_format_nonliteral)
2855            << OrigFormatExpr->getSourceRange();
2856   return false;
2857 }
2858 
2859 namespace {
2860 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
2861 protected:
2862   Sema &S;
2863   const StringLiteral *FExpr;
2864   const Expr *OrigFormatExpr;
2865   const unsigned FirstDataArg;
2866   const unsigned NumDataArgs;
2867   const char *Beg; // Start of format string.
2868   const bool HasVAListArg;
2869   ArrayRef<const Expr *> Args;
2870   unsigned FormatIdx;
2871   llvm::SmallBitVector CoveredArgs;
2872   bool usesPositionalArgs;
2873   bool atFirstArg;
2874   bool inFunctionCall;
2875   Sema::VariadicCallType CallType;
2876   llvm::SmallBitVector &CheckedVarArgs;
2877 public:
CheckFormatHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType callType,llvm::SmallBitVector & CheckedVarArgs)2878   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
2879                      const Expr *origFormatExpr, unsigned firstDataArg,
2880                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
2881                      ArrayRef<const Expr *> Args,
2882                      unsigned formatIdx, bool inFunctionCall,
2883                      Sema::VariadicCallType callType,
2884                      llvm::SmallBitVector &CheckedVarArgs)
2885     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
2886       FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
2887       Beg(beg), HasVAListArg(hasVAListArg),
2888       Args(Args), FormatIdx(formatIdx),
2889       usesPositionalArgs(false), atFirstArg(true),
2890       inFunctionCall(inFunctionCall), CallType(callType),
2891       CheckedVarArgs(CheckedVarArgs) {
2892     CoveredArgs.resize(numDataArgs);
2893     CoveredArgs.reset();
2894   }
2895 
2896   void DoneProcessing();
2897 
2898   void HandleIncompleteSpecifier(const char *startSpecifier,
2899                                  unsigned specifierLen) override;
2900 
2901   void HandleInvalidLengthModifier(
2902                            const analyze_format_string::FormatSpecifier &FS,
2903                            const analyze_format_string::ConversionSpecifier &CS,
2904                            const char *startSpecifier, unsigned specifierLen,
2905                            unsigned DiagID);
2906 
2907   void HandleNonStandardLengthModifier(
2908                     const analyze_format_string::FormatSpecifier &FS,
2909                     const char *startSpecifier, unsigned specifierLen);
2910 
2911   void HandleNonStandardConversionSpecifier(
2912                     const analyze_format_string::ConversionSpecifier &CS,
2913                     const char *startSpecifier, unsigned specifierLen);
2914 
2915   void HandlePosition(const char *startPos, unsigned posLen) override;
2916 
2917   void HandleInvalidPosition(const char *startSpecifier,
2918                              unsigned specifierLen,
2919                              analyze_format_string::PositionContext p) override;
2920 
2921   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
2922 
2923   void HandleNullChar(const char *nullCharacter) override;
2924 
2925   template <typename Range>
2926   static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
2927                                    const Expr *ArgumentExpr,
2928                                    PartialDiagnostic PDiag,
2929                                    SourceLocation StringLoc,
2930                                    bool IsStringLocation, Range StringRange,
2931                                    ArrayRef<FixItHint> Fixit = None);
2932 
2933 protected:
2934   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
2935                                         const char *startSpec,
2936                                         unsigned specifierLen,
2937                                         const char *csStart, unsigned csLen);
2938 
2939   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
2940                                          const char *startSpec,
2941                                          unsigned specifierLen);
2942 
2943   SourceRange getFormatStringRange();
2944   CharSourceRange getSpecifierRange(const char *startSpecifier,
2945                                     unsigned specifierLen);
2946   SourceLocation getLocationOfByte(const char *x);
2947 
2948   const Expr *getDataArg(unsigned i) const;
2949 
2950   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
2951                     const analyze_format_string::ConversionSpecifier &CS,
2952                     const char *startSpecifier, unsigned specifierLen,
2953                     unsigned argIndex);
2954 
2955   template <typename Range>
2956   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
2957                             bool IsStringLocation, Range StringRange,
2958                             ArrayRef<FixItHint> Fixit = None);
2959 };
2960 }
2961 
getFormatStringRange()2962 SourceRange CheckFormatHandler::getFormatStringRange() {
2963   return OrigFormatExpr->getSourceRange();
2964 }
2965 
2966 CharSourceRange CheckFormatHandler::
getSpecifierRange(const char * startSpecifier,unsigned specifierLen)2967 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
2968   SourceLocation Start = getLocationOfByte(startSpecifier);
2969   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
2970 
2971   // Advance the end SourceLocation by one due to half-open ranges.
2972   End = End.getLocWithOffset(1);
2973 
2974   return CharSourceRange::getCharRange(Start, End);
2975 }
2976 
getLocationOfByte(const char * x)2977 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
2978   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
2979 }
2980 
HandleIncompleteSpecifier(const char * startSpecifier,unsigned specifierLen)2981 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
2982                                                    unsigned specifierLen){
2983   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
2984                        getLocationOfByte(startSpecifier),
2985                        /*IsStringLocation*/true,
2986                        getSpecifierRange(startSpecifier, specifierLen));
2987 }
2988 
HandleInvalidLengthModifier(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned DiagID)2989 void CheckFormatHandler::HandleInvalidLengthModifier(
2990     const analyze_format_string::FormatSpecifier &FS,
2991     const analyze_format_string::ConversionSpecifier &CS,
2992     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
2993   using namespace analyze_format_string;
2994 
2995   const LengthModifier &LM = FS.getLengthModifier();
2996   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
2997 
2998   // See if we know how to fix this length modifier.
2999   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
3000   if (FixedLM) {
3001     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
3002                          getLocationOfByte(LM.getStart()),
3003                          /*IsStringLocation*/true,
3004                          getSpecifierRange(startSpecifier, specifierLen));
3005 
3006     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
3007       << FixedLM->toString()
3008       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
3009 
3010   } else {
3011     FixItHint Hint;
3012     if (DiagID == diag::warn_format_nonsensical_length)
3013       Hint = FixItHint::CreateRemoval(LMRange);
3014 
3015     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
3016                          getLocationOfByte(LM.getStart()),
3017                          /*IsStringLocation*/true,
3018                          getSpecifierRange(startSpecifier, specifierLen),
3019                          Hint);
3020   }
3021 }
3022 
HandleNonStandardLengthModifier(const analyze_format_string::FormatSpecifier & FS,const char * startSpecifier,unsigned specifierLen)3023 void CheckFormatHandler::HandleNonStandardLengthModifier(
3024     const analyze_format_string::FormatSpecifier &FS,
3025     const char *startSpecifier, unsigned specifierLen) {
3026   using namespace analyze_format_string;
3027 
3028   const LengthModifier &LM = FS.getLengthModifier();
3029   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
3030 
3031   // See if we know how to fix this length modifier.
3032   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
3033   if (FixedLM) {
3034     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3035                            << LM.toString() << 0,
3036                          getLocationOfByte(LM.getStart()),
3037                          /*IsStringLocation*/true,
3038                          getSpecifierRange(startSpecifier, specifierLen));
3039 
3040     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
3041       << FixedLM->toString()
3042       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
3043 
3044   } else {
3045     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3046                            << LM.toString() << 0,
3047                          getLocationOfByte(LM.getStart()),
3048                          /*IsStringLocation*/true,
3049                          getSpecifierRange(startSpecifier, specifierLen));
3050   }
3051 }
3052 
HandleNonStandardConversionSpecifier(const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen)3053 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
3054     const analyze_format_string::ConversionSpecifier &CS,
3055     const char *startSpecifier, unsigned specifierLen) {
3056   using namespace analyze_format_string;
3057 
3058   // See if we know how to fix this conversion specifier.
3059   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
3060   if (FixedCS) {
3061     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3062                           << CS.toString() << /*conversion specifier*/1,
3063                          getLocationOfByte(CS.getStart()),
3064                          /*IsStringLocation*/true,
3065                          getSpecifierRange(startSpecifier, specifierLen));
3066 
3067     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
3068     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
3069       << FixedCS->toString()
3070       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
3071   } else {
3072     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
3073                           << CS.toString() << /*conversion specifier*/1,
3074                          getLocationOfByte(CS.getStart()),
3075                          /*IsStringLocation*/true,
3076                          getSpecifierRange(startSpecifier, specifierLen));
3077   }
3078 }
3079 
HandlePosition(const char * startPos,unsigned posLen)3080 void CheckFormatHandler::HandlePosition(const char *startPos,
3081                                         unsigned posLen) {
3082   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
3083                                getLocationOfByte(startPos),
3084                                /*IsStringLocation*/true,
3085                                getSpecifierRange(startPos, posLen));
3086 }
3087 
3088 void
HandleInvalidPosition(const char * startPos,unsigned posLen,analyze_format_string::PositionContext p)3089 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
3090                                      analyze_format_string::PositionContext p) {
3091   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
3092                          << (unsigned) p,
3093                        getLocationOfByte(startPos), /*IsStringLocation*/true,
3094                        getSpecifierRange(startPos, posLen));
3095 }
3096 
HandleZeroPosition(const char * startPos,unsigned posLen)3097 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
3098                                             unsigned posLen) {
3099   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
3100                                getLocationOfByte(startPos),
3101                                /*IsStringLocation*/true,
3102                                getSpecifierRange(startPos, posLen));
3103 }
3104 
HandleNullChar(const char * nullCharacter)3105 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
3106   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
3107     // The presence of a null character is likely an error.
3108     EmitFormatDiagnostic(
3109       S.PDiag(diag::warn_printf_format_string_contains_null_char),
3110       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
3111       getFormatStringRange());
3112   }
3113 }
3114 
3115 // Note that this may return NULL if there was an error parsing or building
3116 // one of the argument expressions.
getDataArg(unsigned i) const3117 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
3118   return Args[FirstDataArg + i];
3119 }
3120 
DoneProcessing()3121 void CheckFormatHandler::DoneProcessing() {
3122     // Does the number of data arguments exceed the number of
3123     // format conversions in the format string?
3124   if (!HasVAListArg) {
3125       // Find any arguments that weren't covered.
3126     CoveredArgs.flip();
3127     signed notCoveredArg = CoveredArgs.find_first();
3128     if (notCoveredArg >= 0) {
3129       assert((unsigned)notCoveredArg < NumDataArgs);
3130       if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
3131         SourceLocation Loc = E->getLocStart();
3132         if (!S.getSourceManager().isInSystemMacro(Loc)) {
3133           EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
3134                                Loc, /*IsStringLocation*/false,
3135                                getFormatStringRange());
3136         }
3137       }
3138     }
3139   }
3140 }
3141 
3142 bool
HandleInvalidConversionSpecifier(unsigned argIndex,SourceLocation Loc,const char * startSpec,unsigned specifierLen,const char * csStart,unsigned csLen)3143 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
3144                                                      SourceLocation Loc,
3145                                                      const char *startSpec,
3146                                                      unsigned specifierLen,
3147                                                      const char *csStart,
3148                                                      unsigned csLen) {
3149 
3150   bool keepGoing = true;
3151   if (argIndex < NumDataArgs) {
3152     // Consider the argument coverered, even though the specifier doesn't
3153     // make sense.
3154     CoveredArgs.set(argIndex);
3155   }
3156   else {
3157     // If argIndex exceeds the number of data arguments we
3158     // don't issue a warning because that is just a cascade of warnings (and
3159     // they may have intended '%%' anyway). We don't want to continue processing
3160     // the format string after this point, however, as we will like just get
3161     // gibberish when trying to match arguments.
3162     keepGoing = false;
3163   }
3164 
3165   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
3166                          << StringRef(csStart, csLen),
3167                        Loc, /*IsStringLocation*/true,
3168                        getSpecifierRange(startSpec, specifierLen));
3169 
3170   return keepGoing;
3171 }
3172 
3173 void
HandlePositionalNonpositionalArgs(SourceLocation Loc,const char * startSpec,unsigned specifierLen)3174 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
3175                                                       const char *startSpec,
3176                                                       unsigned specifierLen) {
3177   EmitFormatDiagnostic(
3178     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
3179     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
3180 }
3181 
3182 bool
CheckNumArgs(const analyze_format_string::FormatSpecifier & FS,const analyze_format_string::ConversionSpecifier & CS,const char * startSpecifier,unsigned specifierLen,unsigned argIndex)3183 CheckFormatHandler::CheckNumArgs(
3184   const analyze_format_string::FormatSpecifier &FS,
3185   const analyze_format_string::ConversionSpecifier &CS,
3186   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
3187 
3188   if (argIndex >= NumDataArgs) {
3189     PartialDiagnostic PDiag = FS.usesPositionalArg()
3190       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
3191            << (argIndex+1) << NumDataArgs)
3192       : S.PDiag(diag::warn_printf_insufficient_data_args);
3193     EmitFormatDiagnostic(
3194       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
3195       getSpecifierRange(startSpecifier, specifierLen));
3196     return false;
3197   }
3198   return true;
3199 }
3200 
3201 template<typename Range>
EmitFormatDiagnostic(PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)3202 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
3203                                               SourceLocation Loc,
3204                                               bool IsStringLocation,
3205                                               Range StringRange,
3206                                               ArrayRef<FixItHint> FixIt) {
3207   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
3208                        Loc, IsStringLocation, StringRange, FixIt);
3209 }
3210 
3211 /// \brief If the format string is not within the funcion call, emit a note
3212 /// so that the function call and string are in diagnostic messages.
3213 ///
3214 /// \param InFunctionCall if true, the format string is within the function
3215 /// call and only one diagnostic message will be produced.  Otherwise, an
3216 /// extra note will be emitted pointing to location of the format string.
3217 ///
3218 /// \param ArgumentExpr the expression that is passed as the format string
3219 /// argument in the function call.  Used for getting locations when two
3220 /// diagnostics are emitted.
3221 ///
3222 /// \param PDiag the callee should already have provided any strings for the
3223 /// diagnostic message.  This function only adds locations and fixits
3224 /// to diagnostics.
3225 ///
3226 /// \param Loc primary location for diagnostic.  If two diagnostics are
3227 /// required, one will be at Loc and a new SourceLocation will be created for
3228 /// the other one.
3229 ///
3230 /// \param IsStringLocation if true, Loc points to the format string should be
3231 /// used for the note.  Otherwise, Loc points to the argument list and will
3232 /// be used with PDiag.
3233 ///
3234 /// \param StringRange some or all of the string to highlight.  This is
3235 /// templated so it can accept either a CharSourceRange or a SourceRange.
3236 ///
3237 /// \param FixIt optional fix it hint for the format string.
3238 template<typename Range>
EmitFormatDiagnostic(Sema & S,bool InFunctionCall,const Expr * ArgumentExpr,PartialDiagnostic PDiag,SourceLocation Loc,bool IsStringLocation,Range StringRange,ArrayRef<FixItHint> FixIt)3239 void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
3240                                               const Expr *ArgumentExpr,
3241                                               PartialDiagnostic PDiag,
3242                                               SourceLocation Loc,
3243                                               bool IsStringLocation,
3244                                               Range StringRange,
3245                                               ArrayRef<FixItHint> FixIt) {
3246   if (InFunctionCall) {
3247     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
3248     D << StringRange;
3249     D << FixIt;
3250   } else {
3251     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
3252       << ArgumentExpr->getSourceRange();
3253 
3254     const Sema::SemaDiagnosticBuilder &Note =
3255       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
3256              diag::note_format_string_defined);
3257 
3258     Note << StringRange;
3259     Note << FixIt;
3260   }
3261 }
3262 
3263 //===--- CHECK: Printf format string checking ------------------------------===//
3264 
3265 namespace {
3266 class CheckPrintfHandler : public CheckFormatHandler {
3267   bool ObjCContext;
3268 public:
CheckPrintfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,bool isObjC,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)3269   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
3270                      const Expr *origFormatExpr, unsigned firstDataArg,
3271                      unsigned numDataArgs, bool isObjC,
3272                      const char *beg, bool hasVAListArg,
3273                      ArrayRef<const Expr *> Args,
3274                      unsigned formatIdx, bool inFunctionCall,
3275                      Sema::VariadicCallType CallType,
3276                      llvm::SmallBitVector &CheckedVarArgs)
3277     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
3278                          numDataArgs, beg, hasVAListArg, Args,
3279                          formatIdx, inFunctionCall, CallType, CheckedVarArgs),
3280       ObjCContext(isObjC)
3281   {}
3282 
3283 
3284   bool HandleInvalidPrintfConversionSpecifier(
3285                                       const analyze_printf::PrintfSpecifier &FS,
3286                                       const char *startSpecifier,
3287                                       unsigned specifierLen) override;
3288 
3289   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
3290                              const char *startSpecifier,
3291                              unsigned specifierLen) override;
3292   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3293                        const char *StartSpecifier,
3294                        unsigned SpecifierLen,
3295                        const Expr *E);
3296 
3297   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
3298                     const char *startSpecifier, unsigned specifierLen);
3299   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
3300                            const analyze_printf::OptionalAmount &Amt,
3301                            unsigned type,
3302                            const char *startSpecifier, unsigned specifierLen);
3303   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
3304                   const analyze_printf::OptionalFlag &flag,
3305                   const char *startSpecifier, unsigned specifierLen);
3306   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
3307                          const analyze_printf::OptionalFlag &ignoredFlag,
3308                          const analyze_printf::OptionalFlag &flag,
3309                          const char *startSpecifier, unsigned specifierLen);
3310   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
3311                            const Expr *E);
3312 
3313 };
3314 }
3315 
HandleInvalidPrintfConversionSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)3316 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
3317                                       const analyze_printf::PrintfSpecifier &FS,
3318                                       const char *startSpecifier,
3319                                       unsigned specifierLen) {
3320   const analyze_printf::PrintfConversionSpecifier &CS =
3321     FS.getConversionSpecifier();
3322 
3323   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
3324                                           getLocationOfByte(CS.getStart()),
3325                                           startSpecifier, specifierLen,
3326                                           CS.getStart(), CS.getLength());
3327 }
3328 
HandleAmount(const analyze_format_string::OptionalAmount & Amt,unsigned k,const char * startSpecifier,unsigned specifierLen)3329 bool CheckPrintfHandler::HandleAmount(
3330                                const analyze_format_string::OptionalAmount &Amt,
3331                                unsigned k, const char *startSpecifier,
3332                                unsigned specifierLen) {
3333 
3334   if (Amt.hasDataArgument()) {
3335     if (!HasVAListArg) {
3336       unsigned argIndex = Amt.getArgIndex();
3337       if (argIndex >= NumDataArgs) {
3338         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
3339                                << k,
3340                              getLocationOfByte(Amt.getStart()),
3341                              /*IsStringLocation*/true,
3342                              getSpecifierRange(startSpecifier, specifierLen));
3343         // Don't do any more checking.  We will just emit
3344         // spurious errors.
3345         return false;
3346       }
3347 
3348       // Type check the data argument.  It should be an 'int'.
3349       // Although not in conformance with C99, we also allow the argument to be
3350       // an 'unsigned int' as that is a reasonably safe case.  GCC also
3351       // doesn't emit a warning for that case.
3352       CoveredArgs.set(argIndex);
3353       const Expr *Arg = getDataArg(argIndex);
3354       if (!Arg)
3355         return false;
3356 
3357       QualType T = Arg->getType();
3358 
3359       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
3360       assert(AT.isValid());
3361 
3362       if (!AT.matchesType(S.Context, T)) {
3363         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
3364                                << k << AT.getRepresentativeTypeName(S.Context)
3365                                << T << Arg->getSourceRange(),
3366                              getLocationOfByte(Amt.getStart()),
3367                              /*IsStringLocation*/true,
3368                              getSpecifierRange(startSpecifier, specifierLen));
3369         // Don't do any more checking.  We will just emit
3370         // spurious errors.
3371         return false;
3372       }
3373     }
3374   }
3375   return true;
3376 }
3377 
HandleInvalidAmount(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalAmount & Amt,unsigned type,const char * startSpecifier,unsigned specifierLen)3378 void CheckPrintfHandler::HandleInvalidAmount(
3379                                       const analyze_printf::PrintfSpecifier &FS,
3380                                       const analyze_printf::OptionalAmount &Amt,
3381                                       unsigned type,
3382                                       const char *startSpecifier,
3383                                       unsigned specifierLen) {
3384   const analyze_printf::PrintfConversionSpecifier &CS =
3385     FS.getConversionSpecifier();
3386 
3387   FixItHint fixit =
3388     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
3389       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
3390                                  Amt.getConstantLength()))
3391       : FixItHint();
3392 
3393   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
3394                          << type << CS.toString(),
3395                        getLocationOfByte(Amt.getStart()),
3396                        /*IsStringLocation*/true,
3397                        getSpecifierRange(startSpecifier, specifierLen),
3398                        fixit);
3399 }
3400 
HandleFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)3401 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
3402                                     const analyze_printf::OptionalFlag &flag,
3403                                     const char *startSpecifier,
3404                                     unsigned specifierLen) {
3405   // Warn about pointless flag with a fixit removal.
3406   const analyze_printf::PrintfConversionSpecifier &CS =
3407     FS.getConversionSpecifier();
3408   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
3409                          << flag.toString() << CS.toString(),
3410                        getLocationOfByte(flag.getPosition()),
3411                        /*IsStringLocation*/true,
3412                        getSpecifierRange(startSpecifier, specifierLen),
3413                        FixItHint::CreateRemoval(
3414                          getSpecifierRange(flag.getPosition(), 1)));
3415 }
3416 
HandleIgnoredFlag(const analyze_printf::PrintfSpecifier & FS,const analyze_printf::OptionalFlag & ignoredFlag,const analyze_printf::OptionalFlag & flag,const char * startSpecifier,unsigned specifierLen)3417 void CheckPrintfHandler::HandleIgnoredFlag(
3418                                 const analyze_printf::PrintfSpecifier &FS,
3419                                 const analyze_printf::OptionalFlag &ignoredFlag,
3420                                 const analyze_printf::OptionalFlag &flag,
3421                                 const char *startSpecifier,
3422                                 unsigned specifierLen) {
3423   // Warn about ignored flag with a fixit removal.
3424   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
3425                          << ignoredFlag.toString() << flag.toString(),
3426                        getLocationOfByte(ignoredFlag.getPosition()),
3427                        /*IsStringLocation*/true,
3428                        getSpecifierRange(startSpecifier, specifierLen),
3429                        FixItHint::CreateRemoval(
3430                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
3431 }
3432 
3433 // Determines if the specified is a C++ class or struct containing
3434 // a member with the specified name and kind (e.g. a CXXMethodDecl named
3435 // "c_str()").
3436 template<typename MemberKind>
3437 static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name,Sema & S,QualType Ty)3438 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
3439   const RecordType *RT = Ty->getAs<RecordType>();
3440   llvm::SmallPtrSet<MemberKind*, 1> Results;
3441 
3442   if (!RT)
3443     return Results;
3444   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
3445   if (!RD || !RD->getDefinition())
3446     return Results;
3447 
3448   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
3449                  Sema::LookupMemberName);
3450   R.suppressDiagnostics();
3451 
3452   // We just need to include all members of the right kind turned up by the
3453   // filter, at this point.
3454   if (S.LookupQualifiedName(R, RT->getDecl()))
3455     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3456       NamedDecl *decl = (*I)->getUnderlyingDecl();
3457       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
3458         Results.insert(FK);
3459     }
3460   return Results;
3461 }
3462 
3463 /// Check if we could call '.c_str()' on an object.
3464 ///
3465 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
3466 /// allow the call, or if it would be ambiguous).
hasCStrMethod(const Expr * E)3467 bool Sema::hasCStrMethod(const Expr *E) {
3468   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
3469   MethodSet Results =
3470       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
3471   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
3472        MI != ME; ++MI)
3473     if ((*MI)->getMinRequiredArguments() == 0)
3474       return true;
3475   return false;
3476 }
3477 
3478 // Check if a (w)string was passed when a (w)char* was needed, and offer a
3479 // better diagnostic if so. AT is assumed to be valid.
3480 // Returns true when a c_str() conversion method is found.
checkForCStrMembers(const analyze_printf::ArgType & AT,const Expr * E)3481 bool CheckPrintfHandler::checkForCStrMembers(
3482     const analyze_printf::ArgType &AT, const Expr *E) {
3483   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
3484 
3485   MethodSet Results =
3486       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
3487 
3488   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
3489        MI != ME; ++MI) {
3490     const CXXMethodDecl *Method = *MI;
3491     if (Method->getMinRequiredArguments() == 0 &&
3492         AT.matchesType(S.Context, Method->getReturnType())) {
3493       // FIXME: Suggest parens if the expression needs them.
3494       SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
3495       S.Diag(E->getLocStart(), diag::note_printf_c_str)
3496           << "c_str()"
3497           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
3498       return true;
3499     }
3500   }
3501 
3502   return false;
3503 }
3504 
3505 bool
HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)3506 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
3507                                             &FS,
3508                                           const char *startSpecifier,
3509                                           unsigned specifierLen) {
3510 
3511   using namespace analyze_format_string;
3512   using namespace analyze_printf;
3513   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
3514 
3515   if (FS.consumesDataArgument()) {
3516     if (atFirstArg) {
3517         atFirstArg = false;
3518         usesPositionalArgs = FS.usesPositionalArg();
3519     }
3520     else if (usesPositionalArgs != FS.usesPositionalArg()) {
3521       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
3522                                         startSpecifier, specifierLen);
3523       return false;
3524     }
3525   }
3526 
3527   // First check if the field width, precision, and conversion specifier
3528   // have matching data arguments.
3529   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
3530                     startSpecifier, specifierLen)) {
3531     return false;
3532   }
3533 
3534   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
3535                     startSpecifier, specifierLen)) {
3536     return false;
3537   }
3538 
3539   if (!CS.consumesDataArgument()) {
3540     // FIXME: Technically specifying a precision or field width here
3541     // makes no sense.  Worth issuing a warning at some point.
3542     return true;
3543   }
3544 
3545   // Consume the argument.
3546   unsigned argIndex = FS.getArgIndex();
3547   if (argIndex < NumDataArgs) {
3548     // The check to see if the argIndex is valid will come later.
3549     // We set the bit here because we may exit early from this
3550     // function if we encounter some other error.
3551     CoveredArgs.set(argIndex);
3552   }
3553 
3554   // FreeBSD kernel extensions.
3555   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
3556       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
3557     // We need at least two arguments.
3558     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
3559       return false;
3560 
3561     // Claim the second argument.
3562     CoveredArgs.set(argIndex + 1);
3563 
3564     // Type check the first argument (int for %b, pointer for %D)
3565     const Expr *Ex = getDataArg(argIndex);
3566     const analyze_printf::ArgType &AT =
3567       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
3568         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
3569     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
3570       EmitFormatDiagnostic(
3571         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3572         << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
3573         << false << Ex->getSourceRange(),
3574         Ex->getLocStart(), /*IsStringLocation*/false,
3575         getSpecifierRange(startSpecifier, specifierLen));
3576 
3577     // Type check the second argument (char * for both %b and %D)
3578     Ex = getDataArg(argIndex + 1);
3579     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
3580     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
3581       EmitFormatDiagnostic(
3582         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3583         << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
3584         << false << Ex->getSourceRange(),
3585         Ex->getLocStart(), /*IsStringLocation*/false,
3586         getSpecifierRange(startSpecifier, specifierLen));
3587 
3588      return true;
3589   }
3590 
3591   // Check for using an Objective-C specific conversion specifier
3592   // in a non-ObjC literal.
3593   if (!ObjCContext && CS.isObjCArg()) {
3594     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
3595                                                   specifierLen);
3596   }
3597 
3598   // Check for invalid use of field width
3599   if (!FS.hasValidFieldWidth()) {
3600     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
3601         startSpecifier, specifierLen);
3602   }
3603 
3604   // Check for invalid use of precision
3605   if (!FS.hasValidPrecision()) {
3606     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
3607         startSpecifier, specifierLen);
3608   }
3609 
3610   // Check each flag does not conflict with any other component.
3611   if (!FS.hasValidThousandsGroupingPrefix())
3612     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
3613   if (!FS.hasValidLeadingZeros())
3614     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
3615   if (!FS.hasValidPlusPrefix())
3616     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
3617   if (!FS.hasValidSpacePrefix())
3618     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
3619   if (!FS.hasValidAlternativeForm())
3620     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
3621   if (!FS.hasValidLeftJustified())
3622     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
3623 
3624   // Check that flags are not ignored by another flag
3625   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
3626     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
3627         startSpecifier, specifierLen);
3628   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
3629     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
3630             startSpecifier, specifierLen);
3631 
3632   // Check the length modifier is valid with the given conversion specifier.
3633   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
3634     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3635                                 diag::warn_format_nonsensical_length);
3636   else if (!FS.hasStandardLengthModifier())
3637     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
3638   else if (!FS.hasStandardLengthConversionCombination())
3639     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
3640                                 diag::warn_format_non_standard_conversion_spec);
3641 
3642   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
3643     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
3644 
3645   // The remaining checks depend on the data arguments.
3646   if (HasVAListArg)
3647     return true;
3648 
3649   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
3650     return false;
3651 
3652   const Expr *Arg = getDataArg(argIndex);
3653   if (!Arg)
3654     return true;
3655 
3656   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
3657 }
3658 
requiresParensToAddCast(const Expr * E)3659 static bool requiresParensToAddCast(const Expr *E) {
3660   // FIXME: We should have a general way to reason about operator
3661   // precedence and whether parens are actually needed here.
3662   // Take care of a few common cases where they aren't.
3663   const Expr *Inside = E->IgnoreImpCasts();
3664   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
3665     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
3666 
3667   switch (Inside->getStmtClass()) {
3668   case Stmt::ArraySubscriptExprClass:
3669   case Stmt::CallExprClass:
3670   case Stmt::CharacterLiteralClass:
3671   case Stmt::CXXBoolLiteralExprClass:
3672   case Stmt::DeclRefExprClass:
3673   case Stmt::FloatingLiteralClass:
3674   case Stmt::IntegerLiteralClass:
3675   case Stmt::MemberExprClass:
3676   case Stmt::ObjCArrayLiteralClass:
3677   case Stmt::ObjCBoolLiteralExprClass:
3678   case Stmt::ObjCBoxedExprClass:
3679   case Stmt::ObjCDictionaryLiteralClass:
3680   case Stmt::ObjCEncodeExprClass:
3681   case Stmt::ObjCIvarRefExprClass:
3682   case Stmt::ObjCMessageExprClass:
3683   case Stmt::ObjCPropertyRefExprClass:
3684   case Stmt::ObjCStringLiteralClass:
3685   case Stmt::ObjCSubscriptRefExprClass:
3686   case Stmt::ParenExprClass:
3687   case Stmt::StringLiteralClass:
3688   case Stmt::UnaryOperatorClass:
3689     return false;
3690   default:
3691     return true;
3692   }
3693 }
3694 
3695 static std::pair<QualType, StringRef>
shouldNotPrintDirectly(const ASTContext & Context,QualType IntendedTy,const Expr * E)3696 shouldNotPrintDirectly(const ASTContext &Context,
3697                        QualType IntendedTy,
3698                        const Expr *E) {
3699   // Use a 'while' to peel off layers of typedefs.
3700   QualType TyTy = IntendedTy;
3701   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
3702     StringRef Name = UserTy->getDecl()->getName();
3703     QualType CastTy = llvm::StringSwitch<QualType>(Name)
3704       .Case("NSInteger", Context.LongTy)
3705       .Case("NSUInteger", Context.UnsignedLongTy)
3706       .Case("SInt32", Context.IntTy)
3707       .Case("UInt32", Context.UnsignedIntTy)
3708       .Default(QualType());
3709 
3710     if (!CastTy.isNull())
3711       return std::make_pair(CastTy, Name);
3712 
3713     TyTy = UserTy->desugar();
3714   }
3715 
3716   // Strip parens if necessary.
3717   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
3718     return shouldNotPrintDirectly(Context,
3719                                   PE->getSubExpr()->getType(),
3720                                   PE->getSubExpr());
3721 
3722   // If this is a conditional expression, then its result type is constructed
3723   // via usual arithmetic conversions and thus there might be no necessary
3724   // typedef sugar there.  Recurse to operands to check for NSInteger &
3725   // Co. usage condition.
3726   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3727     QualType TrueTy, FalseTy;
3728     StringRef TrueName, FalseName;
3729 
3730     std::tie(TrueTy, TrueName) =
3731       shouldNotPrintDirectly(Context,
3732                              CO->getTrueExpr()->getType(),
3733                              CO->getTrueExpr());
3734     std::tie(FalseTy, FalseName) =
3735       shouldNotPrintDirectly(Context,
3736                              CO->getFalseExpr()->getType(),
3737                              CO->getFalseExpr());
3738 
3739     if (TrueTy == FalseTy)
3740       return std::make_pair(TrueTy, TrueName);
3741     else if (TrueTy.isNull())
3742       return std::make_pair(FalseTy, FalseName);
3743     else if (FalseTy.isNull())
3744       return std::make_pair(TrueTy, TrueName);
3745   }
3746 
3747   return std::make_pair(QualType(), StringRef());
3748 }
3749 
3750 bool
checkFormatExpr(const analyze_printf::PrintfSpecifier & FS,const char * StartSpecifier,unsigned SpecifierLen,const Expr * E)3751 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
3752                                     const char *StartSpecifier,
3753                                     unsigned SpecifierLen,
3754                                     const Expr *E) {
3755   using namespace analyze_format_string;
3756   using namespace analyze_printf;
3757   // Now type check the data expression that matches the
3758   // format specifier.
3759   const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
3760                                                     ObjCContext);
3761   if (!AT.isValid())
3762     return true;
3763 
3764   QualType ExprTy = E->getType();
3765   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
3766     ExprTy = TET->getUnderlyingExpr()->getType();
3767   }
3768 
3769   analyze_printf::ArgType::MatchKind match = AT.matchesType(S.Context, ExprTy);
3770 
3771   if (match == analyze_printf::ArgType::Match) {
3772     return true;
3773   }
3774 
3775   // Look through argument promotions for our error message's reported type.
3776   // This includes the integral and floating promotions, but excludes array
3777   // and function pointer decay; seeing that an argument intended to be a
3778   // string has type 'char [6]' is probably more confusing than 'char *'.
3779   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3780     if (ICE->getCastKind() == CK_IntegralCast ||
3781         ICE->getCastKind() == CK_FloatingCast) {
3782       E = ICE->getSubExpr();
3783       ExprTy = E->getType();
3784 
3785       // Check if we didn't match because of an implicit cast from a 'char'
3786       // or 'short' to an 'int'.  This is done because printf is a varargs
3787       // function.
3788       if (ICE->getType() == S.Context.IntTy ||
3789           ICE->getType() == S.Context.UnsignedIntTy) {
3790         // All further checking is done on the subexpression.
3791         if (AT.matchesType(S.Context, ExprTy))
3792           return true;
3793       }
3794     }
3795   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
3796     // Special case for 'a', which has type 'int' in C.
3797     // Note, however, that we do /not/ want to treat multibyte constants like
3798     // 'MooV' as characters! This form is deprecated but still exists.
3799     if (ExprTy == S.Context.IntTy)
3800       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
3801         ExprTy = S.Context.CharTy;
3802   }
3803 
3804   // Look through enums to their underlying type.
3805   bool IsEnum = false;
3806   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
3807     ExprTy = EnumTy->getDecl()->getIntegerType();
3808     IsEnum = true;
3809   }
3810 
3811   // %C in an Objective-C context prints a unichar, not a wchar_t.
3812   // If the argument is an integer of some kind, believe the %C and suggest
3813   // a cast instead of changing the conversion specifier.
3814   QualType IntendedTy = ExprTy;
3815   if (ObjCContext &&
3816       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
3817     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
3818         !ExprTy->isCharType()) {
3819       // 'unichar' is defined as a typedef of unsigned short, but we should
3820       // prefer using the typedef if it is visible.
3821       IntendedTy = S.Context.UnsignedShortTy;
3822 
3823       // While we are here, check if the value is an IntegerLiteral that happens
3824       // to be within the valid range.
3825       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
3826         const llvm::APInt &V = IL->getValue();
3827         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
3828           return true;
3829       }
3830 
3831       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
3832                           Sema::LookupOrdinaryName);
3833       if (S.LookupName(Result, S.getCurScope())) {
3834         NamedDecl *ND = Result.getFoundDecl();
3835         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
3836           if (TD->getUnderlyingType() == IntendedTy)
3837             IntendedTy = S.Context.getTypedefType(TD);
3838       }
3839     }
3840   }
3841 
3842   // Special-case some of Darwin's platform-independence types by suggesting
3843   // casts to primitive types that are known to be large enough.
3844   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
3845   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
3846     QualType CastTy;
3847     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
3848     if (!CastTy.isNull()) {
3849       IntendedTy = CastTy;
3850       ShouldNotPrintDirectly = true;
3851     }
3852   }
3853 
3854   // We may be able to offer a FixItHint if it is a supported type.
3855   PrintfSpecifier fixedFS = FS;
3856   bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
3857                                  S.Context, ObjCContext);
3858 
3859   if (success) {
3860     // Get the fix string from the fixed format specifier
3861     SmallString<16> buf;
3862     llvm::raw_svector_ostream os(buf);
3863     fixedFS.toString(os);
3864 
3865     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
3866 
3867     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
3868       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
3869       if (match == analyze_format_string::ArgType::NoMatchPedantic) {
3870         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
3871       }
3872       // In this case, the specifier is wrong and should be changed to match
3873       // the argument.
3874       EmitFormatDiagnostic(S.PDiag(diag)
3875                                << AT.getRepresentativeTypeName(S.Context)
3876                                << IntendedTy << IsEnum << E->getSourceRange(),
3877                            E->getLocStart(),
3878                            /*IsStringLocation*/ false, SpecRange,
3879                            FixItHint::CreateReplacement(SpecRange, os.str()));
3880 
3881     } else {
3882       // The canonical type for formatting this value is different from the
3883       // actual type of the expression. (This occurs, for example, with Darwin's
3884       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
3885       // should be printed as 'long' for 64-bit compatibility.)
3886       // Rather than emitting a normal format/argument mismatch, we want to
3887       // add a cast to the recommended type (and correct the format string
3888       // if necessary).
3889       SmallString<16> CastBuf;
3890       llvm::raw_svector_ostream CastFix(CastBuf);
3891       CastFix << "(";
3892       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
3893       CastFix << ")";
3894 
3895       SmallVector<FixItHint,4> Hints;
3896       if (!AT.matchesType(S.Context, IntendedTy))
3897         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
3898 
3899       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
3900         // If there's already a cast present, just replace it.
3901         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
3902         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
3903 
3904       } else if (!requiresParensToAddCast(E)) {
3905         // If the expression has high enough precedence,
3906         // just write the C-style cast.
3907         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3908                                                    CastFix.str()));
3909       } else {
3910         // Otherwise, add parens around the expression as well as the cast.
3911         CastFix << "(";
3912         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
3913                                                    CastFix.str()));
3914 
3915         SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
3916         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
3917       }
3918 
3919       if (ShouldNotPrintDirectly) {
3920         // The expression has a type that should not be printed directly.
3921         // We extract the name from the typedef because we don't want to show
3922         // the underlying type in the diagnostic.
3923         StringRef Name;
3924         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
3925           Name = TypedefTy->getDecl()->getName();
3926         else
3927           Name = CastTyName;
3928         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
3929                                << Name << IntendedTy << IsEnum
3930                                << E->getSourceRange(),
3931                              E->getLocStart(), /*IsStringLocation=*/false,
3932                              SpecRange, Hints);
3933       } else {
3934         // In this case, the expression could be printed using a different
3935         // specifier, but we've decided that the specifier is probably correct
3936         // and we should cast instead. Just use the normal warning message.
3937         EmitFormatDiagnostic(
3938           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
3939             << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
3940             << E->getSourceRange(),
3941           E->getLocStart(), /*IsStringLocation*/false,
3942           SpecRange, Hints);
3943       }
3944     }
3945   } else {
3946     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
3947                                                    SpecifierLen);
3948     // Since the warning for passing non-POD types to variadic functions
3949     // was deferred until now, we emit a warning for non-POD
3950     // arguments here.
3951     switch (S.isValidVarArgType(ExprTy)) {
3952     case Sema::VAK_Valid:
3953     case Sema::VAK_ValidInCXX11: {
3954       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
3955       if (match == analyze_printf::ArgType::NoMatchPedantic) {
3956         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
3957       }
3958 
3959       EmitFormatDiagnostic(
3960           S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
3961                         << IsEnum << CSR << E->getSourceRange(),
3962           E->getLocStart(), /*IsStringLocation*/ false, CSR);
3963       break;
3964     }
3965     case Sema::VAK_Undefined:
3966     case Sema::VAK_MSVCUndefined:
3967       EmitFormatDiagnostic(
3968         S.PDiag(diag::warn_non_pod_vararg_with_format_string)
3969           << S.getLangOpts().CPlusPlus11
3970           << ExprTy
3971           << CallType
3972           << AT.getRepresentativeTypeName(S.Context)
3973           << CSR
3974           << E->getSourceRange(),
3975         E->getLocStart(), /*IsStringLocation*/false, CSR);
3976       checkForCStrMembers(AT, E);
3977       break;
3978 
3979     case Sema::VAK_Invalid:
3980       if (ExprTy->isObjCObjectType())
3981         EmitFormatDiagnostic(
3982           S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
3983             << S.getLangOpts().CPlusPlus11
3984             << ExprTy
3985             << CallType
3986             << AT.getRepresentativeTypeName(S.Context)
3987             << CSR
3988             << E->getSourceRange(),
3989           E->getLocStart(), /*IsStringLocation*/false, CSR);
3990       else
3991         // FIXME: If this is an initializer list, suggest removing the braces
3992         // or inserting a cast to the target type.
3993         S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
3994           << isa<InitListExpr>(E) << ExprTy << CallType
3995           << AT.getRepresentativeTypeName(S.Context)
3996           << E->getSourceRange();
3997       break;
3998     }
3999 
4000     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
4001            "format string specifier index out of range");
4002     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
4003   }
4004 
4005   return true;
4006 }
4007 
4008 //===--- CHECK: Scanf format string checking ------------------------------===//
4009 
4010 namespace {
4011 class CheckScanfHandler : public CheckFormatHandler {
4012 public:
CheckScanfHandler(Sema & s,const StringLiteral * fexpr,const Expr * origFormatExpr,unsigned firstDataArg,unsigned numDataArgs,const char * beg,bool hasVAListArg,ArrayRef<const Expr * > Args,unsigned formatIdx,bool inFunctionCall,Sema::VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)4013   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
4014                     const Expr *origFormatExpr, unsigned firstDataArg,
4015                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
4016                     ArrayRef<const Expr *> Args,
4017                     unsigned formatIdx, bool inFunctionCall,
4018                     Sema::VariadicCallType CallType,
4019                     llvm::SmallBitVector &CheckedVarArgs)
4020     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
4021                          numDataArgs, beg, hasVAListArg,
4022                          Args, formatIdx, inFunctionCall, CallType,
4023                          CheckedVarArgs)
4024   {}
4025 
4026   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
4027                             const char *startSpecifier,
4028                             unsigned specifierLen) override;
4029 
4030   bool HandleInvalidScanfConversionSpecifier(
4031           const analyze_scanf::ScanfSpecifier &FS,
4032           const char *startSpecifier,
4033           unsigned specifierLen) override;
4034 
4035   void HandleIncompleteScanList(const char *start, const char *end) override;
4036 };
4037 }
4038 
HandleIncompleteScanList(const char * start,const char * end)4039 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
4040                                                  const char *end) {
4041   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
4042                        getLocationOfByte(end), /*IsStringLocation*/true,
4043                        getSpecifierRange(start, end - start));
4044 }
4045 
HandleInvalidScanfConversionSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)4046 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
4047                                         const analyze_scanf::ScanfSpecifier &FS,
4048                                         const char *startSpecifier,
4049                                         unsigned specifierLen) {
4050 
4051   const analyze_scanf::ScanfConversionSpecifier &CS =
4052     FS.getConversionSpecifier();
4053 
4054   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
4055                                           getLocationOfByte(CS.getStart()),
4056                                           startSpecifier, specifierLen,
4057                                           CS.getStart(), CS.getLength());
4058 }
4059 
HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier & FS,const char * startSpecifier,unsigned specifierLen)4060 bool CheckScanfHandler::HandleScanfSpecifier(
4061                                        const analyze_scanf::ScanfSpecifier &FS,
4062                                        const char *startSpecifier,
4063                                        unsigned specifierLen) {
4064 
4065   using namespace analyze_scanf;
4066   using namespace analyze_format_string;
4067 
4068   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
4069 
4070   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
4071   // be used to decide if we are using positional arguments consistently.
4072   if (FS.consumesDataArgument()) {
4073     if (atFirstArg) {
4074       atFirstArg = false;
4075       usesPositionalArgs = FS.usesPositionalArg();
4076     }
4077     else if (usesPositionalArgs != FS.usesPositionalArg()) {
4078       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
4079                                         startSpecifier, specifierLen);
4080       return false;
4081     }
4082   }
4083 
4084   // Check if the field with is non-zero.
4085   const OptionalAmount &Amt = FS.getFieldWidth();
4086   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
4087     if (Amt.getConstantAmount() == 0) {
4088       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
4089                                                    Amt.getConstantLength());
4090       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
4091                            getLocationOfByte(Amt.getStart()),
4092                            /*IsStringLocation*/true, R,
4093                            FixItHint::CreateRemoval(R));
4094     }
4095   }
4096 
4097   if (!FS.consumesDataArgument()) {
4098     // FIXME: Technically specifying a precision or field width here
4099     // makes no sense.  Worth issuing a warning at some point.
4100     return true;
4101   }
4102 
4103   // Consume the argument.
4104   unsigned argIndex = FS.getArgIndex();
4105   if (argIndex < NumDataArgs) {
4106       // The check to see if the argIndex is valid will come later.
4107       // We set the bit here because we may exit early from this
4108       // function if we encounter some other error.
4109     CoveredArgs.set(argIndex);
4110   }
4111 
4112   // Check the length modifier is valid with the given conversion specifier.
4113   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
4114     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4115                                 diag::warn_format_nonsensical_length);
4116   else if (!FS.hasStandardLengthModifier())
4117     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
4118   else if (!FS.hasStandardLengthConversionCombination())
4119     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
4120                                 diag::warn_format_non_standard_conversion_spec);
4121 
4122   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
4123     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
4124 
4125   // The remaining checks depend on the data arguments.
4126   if (HasVAListArg)
4127     return true;
4128 
4129   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
4130     return false;
4131 
4132   // Check that the argument type matches the format specifier.
4133   const Expr *Ex = getDataArg(argIndex);
4134   if (!Ex)
4135     return true;
4136 
4137   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
4138 
4139   if (!AT.isValid()) {
4140     return true;
4141   }
4142 
4143   analyze_format_string::ArgType::MatchKind match =
4144       AT.matchesType(S.Context, Ex->getType());
4145   if (match == analyze_format_string::ArgType::Match) {
4146     return true;
4147   }
4148 
4149   ScanfSpecifier fixedFS = FS;
4150   bool success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
4151                                  S.getLangOpts(), S.Context);
4152 
4153   unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
4154   if (match == analyze_format_string::ArgType::NoMatchPedantic) {
4155     diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
4156   }
4157 
4158   if (success) {
4159     // Get the fix string from the fixed format specifier.
4160     SmallString<128> buf;
4161     llvm::raw_svector_ostream os(buf);
4162     fixedFS.toString(os);
4163 
4164     EmitFormatDiagnostic(
4165         S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context)
4166                       << Ex->getType() << false << Ex->getSourceRange(),
4167         Ex->getLocStart(),
4168         /*IsStringLocation*/ false,
4169         getSpecifierRange(startSpecifier, specifierLen),
4170         FixItHint::CreateReplacement(
4171             getSpecifierRange(startSpecifier, specifierLen), os.str()));
4172   } else {
4173     EmitFormatDiagnostic(S.PDiag(diag)
4174                              << AT.getRepresentativeTypeName(S.Context)
4175                              << Ex->getType() << false << Ex->getSourceRange(),
4176                          Ex->getLocStart(),
4177                          /*IsStringLocation*/ false,
4178                          getSpecifierRange(startSpecifier, specifierLen));
4179   }
4180 
4181   return true;
4182 }
4183 
CheckFormatString(const StringLiteral * FExpr,const Expr * OrigFormatExpr,ArrayRef<const Expr * > Args,bool HasVAListArg,unsigned format_idx,unsigned firstDataArg,FormatStringType Type,bool inFunctionCall,VariadicCallType CallType,llvm::SmallBitVector & CheckedVarArgs)4184 void Sema::CheckFormatString(const StringLiteral *FExpr,
4185                              const Expr *OrigFormatExpr,
4186                              ArrayRef<const Expr *> Args,
4187                              bool HasVAListArg, unsigned format_idx,
4188                              unsigned firstDataArg, FormatStringType Type,
4189                              bool inFunctionCall, VariadicCallType CallType,
4190                              llvm::SmallBitVector &CheckedVarArgs) {
4191 
4192   // CHECK: is the format string a wide literal?
4193   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
4194     CheckFormatHandler::EmitFormatDiagnostic(
4195       *this, inFunctionCall, Args[format_idx],
4196       PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
4197       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
4198     return;
4199   }
4200 
4201   // Str - The format string.  NOTE: this is NOT null-terminated!
4202   StringRef StrRef = FExpr->getString();
4203   const char *Str = StrRef.data();
4204   // Account for cases where the string literal is truncated in a declaration.
4205   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
4206   assert(T && "String literal not of constant array type!");
4207   size_t TypeSize = T->getSize().getZExtValue();
4208   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
4209   const unsigned numDataArgs = Args.size() - firstDataArg;
4210 
4211   // Emit a warning if the string literal is truncated and does not contain an
4212   // embedded null character.
4213   if (TypeSize <= StrRef.size() &&
4214       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
4215     CheckFormatHandler::EmitFormatDiagnostic(
4216         *this, inFunctionCall, Args[format_idx],
4217         PDiag(diag::warn_printf_format_string_not_null_terminated),
4218         FExpr->getLocStart(),
4219         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
4220     return;
4221   }
4222 
4223   // CHECK: empty format string?
4224   if (StrLen == 0 && numDataArgs > 0) {
4225     CheckFormatHandler::EmitFormatDiagnostic(
4226       *this, inFunctionCall, Args[format_idx],
4227       PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
4228       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
4229     return;
4230   }
4231 
4232   if (Type == FST_Printf || Type == FST_NSString ||
4233       Type == FST_FreeBSDKPrintf || Type == FST_OSTrace) {
4234     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
4235                          numDataArgs, (Type == FST_NSString || Type == FST_OSTrace),
4236                          Str, HasVAListArg, Args, format_idx,
4237                          inFunctionCall, CallType, CheckedVarArgs);
4238 
4239     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
4240                                                   getLangOpts(),
4241                                                   Context.getTargetInfo(),
4242                                                   Type == FST_FreeBSDKPrintf))
4243       H.DoneProcessing();
4244   } else if (Type == FST_Scanf) {
4245     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
4246                         Str, HasVAListArg, Args, format_idx,
4247                         inFunctionCall, CallType, CheckedVarArgs);
4248 
4249     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
4250                                                  getLangOpts(),
4251                                                  Context.getTargetInfo()))
4252       H.DoneProcessing();
4253   } // TODO: handle other formats
4254 }
4255 
FormatStringHasSArg(const StringLiteral * FExpr)4256 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
4257   // Str - The format string.  NOTE: this is NOT null-terminated!
4258   StringRef StrRef = FExpr->getString();
4259   const char *Str = StrRef.data();
4260   // Account for cases where the string literal is truncated in a declaration.
4261   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
4262   assert(T && "String literal not of constant array type!");
4263   size_t TypeSize = T->getSize().getZExtValue();
4264   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
4265   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
4266                                                          getLangOpts(),
4267                                                          Context.getTargetInfo());
4268 }
4269 
4270 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
4271 
4272 // Returns the related absolute value function that is larger, of 0 if one
4273 // does not exist.
getLargerAbsoluteValueFunction(unsigned AbsFunction)4274 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
4275   switch (AbsFunction) {
4276   default:
4277     return 0;
4278 
4279   case Builtin::BI__builtin_abs:
4280     return Builtin::BI__builtin_labs;
4281   case Builtin::BI__builtin_labs:
4282     return Builtin::BI__builtin_llabs;
4283   case Builtin::BI__builtin_llabs:
4284     return 0;
4285 
4286   case Builtin::BI__builtin_fabsf:
4287     return Builtin::BI__builtin_fabs;
4288   case Builtin::BI__builtin_fabs:
4289     return Builtin::BI__builtin_fabsl;
4290   case Builtin::BI__builtin_fabsl:
4291     return 0;
4292 
4293   case Builtin::BI__builtin_cabsf:
4294     return Builtin::BI__builtin_cabs;
4295   case Builtin::BI__builtin_cabs:
4296     return Builtin::BI__builtin_cabsl;
4297   case Builtin::BI__builtin_cabsl:
4298     return 0;
4299 
4300   case Builtin::BIabs:
4301     return Builtin::BIlabs;
4302   case Builtin::BIlabs:
4303     return Builtin::BIllabs;
4304   case Builtin::BIllabs:
4305     return 0;
4306 
4307   case Builtin::BIfabsf:
4308     return Builtin::BIfabs;
4309   case Builtin::BIfabs:
4310     return Builtin::BIfabsl;
4311   case Builtin::BIfabsl:
4312     return 0;
4313 
4314   case Builtin::BIcabsf:
4315    return Builtin::BIcabs;
4316   case Builtin::BIcabs:
4317     return Builtin::BIcabsl;
4318   case Builtin::BIcabsl:
4319     return 0;
4320   }
4321 }
4322 
4323 // Returns the argument type of the absolute value function.
getAbsoluteValueArgumentType(ASTContext & Context,unsigned AbsType)4324 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
4325                                              unsigned AbsType) {
4326   if (AbsType == 0)
4327     return QualType();
4328 
4329   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
4330   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
4331   if (Error != ASTContext::GE_None)
4332     return QualType();
4333 
4334   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
4335   if (!FT)
4336     return QualType();
4337 
4338   if (FT->getNumParams() != 1)
4339     return QualType();
4340 
4341   return FT->getParamType(0);
4342 }
4343 
4344 // Returns the best absolute value function, or zero, based on type and
4345 // current absolute value function.
getBestAbsFunction(ASTContext & Context,QualType ArgType,unsigned AbsFunctionKind)4346 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
4347                                    unsigned AbsFunctionKind) {
4348   unsigned BestKind = 0;
4349   uint64_t ArgSize = Context.getTypeSize(ArgType);
4350   for (unsigned Kind = AbsFunctionKind; Kind != 0;
4351        Kind = getLargerAbsoluteValueFunction(Kind)) {
4352     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
4353     if (Context.getTypeSize(ParamType) >= ArgSize) {
4354       if (BestKind == 0)
4355         BestKind = Kind;
4356       else if (Context.hasSameType(ParamType, ArgType)) {
4357         BestKind = Kind;
4358         break;
4359       }
4360     }
4361   }
4362   return BestKind;
4363 }
4364 
4365 enum AbsoluteValueKind {
4366   AVK_Integer,
4367   AVK_Floating,
4368   AVK_Complex
4369 };
4370 
getAbsoluteValueKind(QualType T)4371 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
4372   if (T->isIntegralOrEnumerationType())
4373     return AVK_Integer;
4374   if (T->isRealFloatingType())
4375     return AVK_Floating;
4376   if (T->isAnyComplexType())
4377     return AVK_Complex;
4378 
4379   llvm_unreachable("Type not integer, floating, or complex");
4380 }
4381 
4382 // Changes the absolute value function to a different type.  Preserves whether
4383 // the function is a builtin.
changeAbsFunction(unsigned AbsKind,AbsoluteValueKind ValueKind)4384 static unsigned changeAbsFunction(unsigned AbsKind,
4385                                   AbsoluteValueKind ValueKind) {
4386   switch (ValueKind) {
4387   case AVK_Integer:
4388     switch (AbsKind) {
4389     default:
4390       return 0;
4391     case Builtin::BI__builtin_fabsf:
4392     case Builtin::BI__builtin_fabs:
4393     case Builtin::BI__builtin_fabsl:
4394     case Builtin::BI__builtin_cabsf:
4395     case Builtin::BI__builtin_cabs:
4396     case Builtin::BI__builtin_cabsl:
4397       return Builtin::BI__builtin_abs;
4398     case Builtin::BIfabsf:
4399     case Builtin::BIfabs:
4400     case Builtin::BIfabsl:
4401     case Builtin::BIcabsf:
4402     case Builtin::BIcabs:
4403     case Builtin::BIcabsl:
4404       return Builtin::BIabs;
4405     }
4406   case AVK_Floating:
4407     switch (AbsKind) {
4408     default:
4409       return 0;
4410     case Builtin::BI__builtin_abs:
4411     case Builtin::BI__builtin_labs:
4412     case Builtin::BI__builtin_llabs:
4413     case Builtin::BI__builtin_cabsf:
4414     case Builtin::BI__builtin_cabs:
4415     case Builtin::BI__builtin_cabsl:
4416       return Builtin::BI__builtin_fabsf;
4417     case Builtin::BIabs:
4418     case Builtin::BIlabs:
4419     case Builtin::BIllabs:
4420     case Builtin::BIcabsf:
4421     case Builtin::BIcabs:
4422     case Builtin::BIcabsl:
4423       return Builtin::BIfabsf;
4424     }
4425   case AVK_Complex:
4426     switch (AbsKind) {
4427     default:
4428       return 0;
4429     case Builtin::BI__builtin_abs:
4430     case Builtin::BI__builtin_labs:
4431     case Builtin::BI__builtin_llabs:
4432     case Builtin::BI__builtin_fabsf:
4433     case Builtin::BI__builtin_fabs:
4434     case Builtin::BI__builtin_fabsl:
4435       return Builtin::BI__builtin_cabsf;
4436     case Builtin::BIabs:
4437     case Builtin::BIlabs:
4438     case Builtin::BIllabs:
4439     case Builtin::BIfabsf:
4440     case Builtin::BIfabs:
4441     case Builtin::BIfabsl:
4442       return Builtin::BIcabsf;
4443     }
4444   }
4445   llvm_unreachable("Unable to convert function");
4446 }
4447 
getAbsoluteValueFunctionKind(const FunctionDecl * FDecl)4448 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
4449   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
4450   if (!FnInfo)
4451     return 0;
4452 
4453   switch (FDecl->getBuiltinID()) {
4454   default:
4455     return 0;
4456   case Builtin::BI__builtin_abs:
4457   case Builtin::BI__builtin_fabs:
4458   case Builtin::BI__builtin_fabsf:
4459   case Builtin::BI__builtin_fabsl:
4460   case Builtin::BI__builtin_labs:
4461   case Builtin::BI__builtin_llabs:
4462   case Builtin::BI__builtin_cabs:
4463   case Builtin::BI__builtin_cabsf:
4464   case Builtin::BI__builtin_cabsl:
4465   case Builtin::BIabs:
4466   case Builtin::BIlabs:
4467   case Builtin::BIllabs:
4468   case Builtin::BIfabs:
4469   case Builtin::BIfabsf:
4470   case Builtin::BIfabsl:
4471   case Builtin::BIcabs:
4472   case Builtin::BIcabsf:
4473   case Builtin::BIcabsl:
4474     return FDecl->getBuiltinID();
4475   }
4476   llvm_unreachable("Unknown Builtin type");
4477 }
4478 
4479 // If the replacement is valid, emit a note with replacement function.
4480 // Additionally, suggest including the proper header if not already included.
emitReplacement(Sema & S,SourceLocation Loc,SourceRange Range,unsigned AbsKind,QualType ArgType)4481 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
4482                             unsigned AbsKind, QualType ArgType) {
4483   bool EmitHeaderHint = true;
4484   const char *HeaderName = nullptr;
4485   const char *FunctionName = nullptr;
4486   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
4487     FunctionName = "std::abs";
4488     if (ArgType->isIntegralOrEnumerationType()) {
4489       HeaderName = "cstdlib";
4490     } else if (ArgType->isRealFloatingType()) {
4491       HeaderName = "cmath";
4492     } else {
4493       llvm_unreachable("Invalid Type");
4494     }
4495 
4496     // Lookup all std::abs
4497     if (NamespaceDecl *Std = S.getStdNamespace()) {
4498       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
4499       R.suppressDiagnostics();
4500       S.LookupQualifiedName(R, Std);
4501 
4502       for (const auto *I : R) {
4503         const FunctionDecl *FDecl = nullptr;
4504         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
4505           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
4506         } else {
4507           FDecl = dyn_cast<FunctionDecl>(I);
4508         }
4509         if (!FDecl)
4510           continue;
4511 
4512         // Found std::abs(), check that they are the right ones.
4513         if (FDecl->getNumParams() != 1)
4514           continue;
4515 
4516         // Check that the parameter type can handle the argument.
4517         QualType ParamType = FDecl->getParamDecl(0)->getType();
4518         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
4519             S.Context.getTypeSize(ArgType) <=
4520                 S.Context.getTypeSize(ParamType)) {
4521           // Found a function, don't need the header hint.
4522           EmitHeaderHint = false;
4523           break;
4524         }
4525       }
4526     }
4527   } else {
4528     FunctionName = S.Context.BuiltinInfo.GetName(AbsKind);
4529     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
4530 
4531     if (HeaderName) {
4532       DeclarationName DN(&S.Context.Idents.get(FunctionName));
4533       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
4534       R.suppressDiagnostics();
4535       S.LookupName(R, S.getCurScope());
4536 
4537       if (R.isSingleResult()) {
4538         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
4539         if (FD && FD->getBuiltinID() == AbsKind) {
4540           EmitHeaderHint = false;
4541         } else {
4542           return;
4543         }
4544       } else if (!R.empty()) {
4545         return;
4546       }
4547     }
4548   }
4549 
4550   S.Diag(Loc, diag::note_replace_abs_function)
4551       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
4552 
4553   if (!HeaderName)
4554     return;
4555 
4556   if (!EmitHeaderHint)
4557     return;
4558 
4559   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
4560                                                     << FunctionName;
4561 }
4562 
IsFunctionStdAbs(const FunctionDecl * FDecl)4563 static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
4564   if (!FDecl)
4565     return false;
4566 
4567   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
4568     return false;
4569 
4570   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
4571 
4572   while (ND && ND->isInlineNamespace()) {
4573     ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
4574   }
4575 
4576   if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
4577     return false;
4578 
4579   if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
4580     return false;
4581 
4582   return true;
4583 }
4584 
4585 // Warn when using the wrong abs() function.
CheckAbsoluteValueFunction(const CallExpr * Call,const FunctionDecl * FDecl,IdentifierInfo * FnInfo)4586 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
4587                                       const FunctionDecl *FDecl,
4588                                       IdentifierInfo *FnInfo) {
4589   if (Call->getNumArgs() != 1)
4590     return;
4591 
4592   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
4593   bool IsStdAbs = IsFunctionStdAbs(FDecl);
4594   if (AbsKind == 0 && !IsStdAbs)
4595     return;
4596 
4597   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
4598   QualType ParamType = Call->getArg(0)->getType();
4599 
4600   // Unsigned types cannot be negative.  Suggest removing the absolute value
4601   // function call.
4602   if (ArgType->isUnsignedIntegerType()) {
4603     const char *FunctionName =
4604         IsStdAbs ? "std::abs" : Context.BuiltinInfo.GetName(AbsKind);
4605     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
4606     Diag(Call->getExprLoc(), diag::note_remove_abs)
4607         << FunctionName
4608         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
4609     return;
4610   }
4611 
4612   // std::abs has overloads which prevent most of the absolute value problems
4613   // from occurring.
4614   if (IsStdAbs)
4615     return;
4616 
4617   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
4618   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
4619 
4620   // The argument and parameter are the same kind.  Check if they are the right
4621   // size.
4622   if (ArgValueKind == ParamValueKind) {
4623     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
4624       return;
4625 
4626     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
4627     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
4628         << FDecl << ArgType << ParamType;
4629 
4630     if (NewAbsKind == 0)
4631       return;
4632 
4633     emitReplacement(*this, Call->getExprLoc(),
4634                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
4635     return;
4636   }
4637 
4638   // ArgValueKind != ParamValueKind
4639   // The wrong type of absolute value function was used.  Attempt to find the
4640   // proper one.
4641   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
4642   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
4643   if (NewAbsKind == 0)
4644     return;
4645 
4646   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
4647       << FDecl << ParamValueKind << ArgValueKind;
4648 
4649   emitReplacement(*this, Call->getExprLoc(),
4650                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
4651   return;
4652 }
4653 
4654 //===--- CHECK: Standard memory functions ---------------------------------===//
4655 
4656 /// \brief Takes the expression passed to the size_t parameter of functions
4657 /// such as memcmp, strncat, etc and warns if it's a comparison.
4658 ///
4659 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
CheckMemorySizeofForComparison(Sema & S,const Expr * E,IdentifierInfo * FnName,SourceLocation FnLoc,SourceLocation RParenLoc)4660 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
4661                                            IdentifierInfo *FnName,
4662                                            SourceLocation FnLoc,
4663                                            SourceLocation RParenLoc) {
4664   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
4665   if (!Size)
4666     return false;
4667 
4668   // if E is binop and op is >, <, >=, <=, ==, &&, ||:
4669   if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
4670     return false;
4671 
4672   SourceRange SizeRange = Size->getSourceRange();
4673   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
4674       << SizeRange << FnName;
4675   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
4676       << FnName << FixItHint::CreateInsertion(
4677                        S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
4678       << FixItHint::CreateRemoval(RParenLoc);
4679   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
4680       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
4681       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
4682                                     ")");
4683 
4684   return true;
4685 }
4686 
4687 /// \brief Determine whether the given type is or contains a dynamic class type
4688 /// (e.g., whether it has a vtable).
getContainedDynamicClass(QualType T,bool & IsContained)4689 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
4690                                                      bool &IsContained) {
4691   // Look through array types while ignoring qualifiers.
4692   const Type *Ty = T->getBaseElementTypeUnsafe();
4693   IsContained = false;
4694 
4695   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
4696   RD = RD ? RD->getDefinition() : nullptr;
4697   if (!RD)
4698     return nullptr;
4699 
4700   if (RD->isDynamicClass())
4701     return RD;
4702 
4703   // Check all the fields.  If any bases were dynamic, the class is dynamic.
4704   // It's impossible for a class to transitively contain itself by value, so
4705   // infinite recursion is impossible.
4706   for (auto *FD : RD->fields()) {
4707     bool SubContained;
4708     if (const CXXRecordDecl *ContainedRD =
4709             getContainedDynamicClass(FD->getType(), SubContained)) {
4710       IsContained = true;
4711       return ContainedRD;
4712     }
4713   }
4714 
4715   return nullptr;
4716 }
4717 
4718 /// \brief If E is a sizeof expression, returns its argument expression,
4719 /// otherwise returns NULL.
getSizeOfExprArg(const Expr * E)4720 static const Expr *getSizeOfExprArg(const Expr *E) {
4721   if (const UnaryExprOrTypeTraitExpr *SizeOf =
4722       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
4723     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
4724       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
4725 
4726   return nullptr;
4727 }
4728 
4729 /// \brief If E is a sizeof expression, returns its argument type.
getSizeOfArgType(const Expr * E)4730 static QualType getSizeOfArgType(const Expr *E) {
4731   if (const UnaryExprOrTypeTraitExpr *SizeOf =
4732       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
4733     if (SizeOf->getKind() == clang::UETT_SizeOf)
4734       return SizeOf->getTypeOfArgument();
4735 
4736   return QualType();
4737 }
4738 
4739 /// \brief Check for dangerous or invalid arguments to memset().
4740 ///
4741 /// This issues warnings on known problematic, dangerous or unspecified
4742 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
4743 /// function calls.
4744 ///
4745 /// \param Call The call expression to diagnose.
CheckMemaccessArguments(const CallExpr * Call,unsigned BId,IdentifierInfo * FnName)4746 void Sema::CheckMemaccessArguments(const CallExpr *Call,
4747                                    unsigned BId,
4748                                    IdentifierInfo *FnName) {
4749   assert(BId != 0);
4750 
4751   // It is possible to have a non-standard definition of memset.  Validate
4752   // we have enough arguments, and if not, abort further checking.
4753   unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
4754   if (Call->getNumArgs() < ExpectedNumArgs)
4755     return;
4756 
4757   unsigned LastArg = (BId == Builtin::BImemset ||
4758                       BId == Builtin::BIstrndup ? 1 : 2);
4759   unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
4760   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
4761 
4762   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
4763                                      Call->getLocStart(), Call->getRParenLoc()))
4764     return;
4765 
4766   // We have special checking when the length is a sizeof expression.
4767   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
4768   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
4769   llvm::FoldingSetNodeID SizeOfArgID;
4770 
4771   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
4772     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
4773     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
4774 
4775     QualType DestTy = Dest->getType();
4776     QualType PointeeTy;
4777     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
4778       PointeeTy = DestPtrTy->getPointeeType();
4779 
4780       // Never warn about void type pointers. This can be used to suppress
4781       // false positives.
4782       if (PointeeTy->isVoidType())
4783         continue;
4784 
4785       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
4786       // actually comparing the expressions for equality. Because computing the
4787       // expression IDs can be expensive, we only do this if the diagnostic is
4788       // enabled.
4789       if (SizeOfArg &&
4790           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
4791                            SizeOfArg->getExprLoc())) {
4792         // We only compute IDs for expressions if the warning is enabled, and
4793         // cache the sizeof arg's ID.
4794         if (SizeOfArgID == llvm::FoldingSetNodeID())
4795           SizeOfArg->Profile(SizeOfArgID, Context, true);
4796         llvm::FoldingSetNodeID DestID;
4797         Dest->Profile(DestID, Context, true);
4798         if (DestID == SizeOfArgID) {
4799           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
4800           //       over sizeof(src) as well.
4801           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
4802           StringRef ReadableName = FnName->getName();
4803 
4804           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
4805             if (UnaryOp->getOpcode() == UO_AddrOf)
4806               ActionIdx = 1; // If its an address-of operator, just remove it.
4807           if (!PointeeTy->isIncompleteType() &&
4808               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
4809             ActionIdx = 2; // If the pointee's size is sizeof(char),
4810                            // suggest an explicit length.
4811 
4812           // If the function is defined as a builtin macro, do not show macro
4813           // expansion.
4814           SourceLocation SL = SizeOfArg->getExprLoc();
4815           SourceRange DSR = Dest->getSourceRange();
4816           SourceRange SSR = SizeOfArg->getSourceRange();
4817           SourceManager &SM = getSourceManager();
4818 
4819           if (SM.isMacroArgExpansion(SL)) {
4820             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
4821             SL = SM.getSpellingLoc(SL);
4822             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
4823                              SM.getSpellingLoc(DSR.getEnd()));
4824             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
4825                              SM.getSpellingLoc(SSR.getEnd()));
4826           }
4827 
4828           DiagRuntimeBehavior(SL, SizeOfArg,
4829                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
4830                                 << ReadableName
4831                                 << PointeeTy
4832                                 << DestTy
4833                                 << DSR
4834                                 << SSR);
4835           DiagRuntimeBehavior(SL, SizeOfArg,
4836                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
4837                                 << ActionIdx
4838                                 << SSR);
4839 
4840           break;
4841         }
4842       }
4843 
4844       // Also check for cases where the sizeof argument is the exact same
4845       // type as the memory argument, and where it points to a user-defined
4846       // record type.
4847       if (SizeOfArgTy != QualType()) {
4848         if (PointeeTy->isRecordType() &&
4849             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
4850           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
4851                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
4852                                 << FnName << SizeOfArgTy << ArgIdx
4853                                 << PointeeTy << Dest->getSourceRange()
4854                                 << LenExpr->getSourceRange());
4855           break;
4856         }
4857       }
4858     } else if (DestTy->isArrayType()) {
4859       PointeeTy = DestTy;
4860     }
4861 
4862     if (PointeeTy == QualType())
4863       continue;
4864 
4865     // Always complain about dynamic classes.
4866     bool IsContained;
4867     if (const CXXRecordDecl *ContainedRD =
4868             getContainedDynamicClass(PointeeTy, IsContained)) {
4869 
4870       unsigned OperationType = 0;
4871       // "overwritten" if we're warning about the destination for any call
4872       // but memcmp; otherwise a verb appropriate to the call.
4873       if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
4874         if (BId == Builtin::BImemcpy)
4875           OperationType = 1;
4876         else if(BId == Builtin::BImemmove)
4877           OperationType = 2;
4878         else if (BId == Builtin::BImemcmp)
4879           OperationType = 3;
4880       }
4881 
4882       DiagRuntimeBehavior(
4883         Dest->getExprLoc(), Dest,
4884         PDiag(diag::warn_dyn_class_memaccess)
4885           << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
4886           << FnName << IsContained << ContainedRD << OperationType
4887           << Call->getCallee()->getSourceRange());
4888     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
4889              BId != Builtin::BImemset)
4890       DiagRuntimeBehavior(
4891         Dest->getExprLoc(), Dest,
4892         PDiag(diag::warn_arc_object_memaccess)
4893           << ArgIdx << FnName << PointeeTy
4894           << Call->getCallee()->getSourceRange());
4895     else
4896       continue;
4897 
4898     DiagRuntimeBehavior(
4899       Dest->getExprLoc(), Dest,
4900       PDiag(diag::note_bad_memaccess_silence)
4901         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
4902     break;
4903   }
4904 
4905 }
4906 
4907 // A little helper routine: ignore addition and subtraction of integer literals.
4908 // This intentionally does not ignore all integer constant expressions because
4909 // we don't want to remove sizeof().
ignoreLiteralAdditions(const Expr * Ex,ASTContext & Ctx)4910 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
4911   Ex = Ex->IgnoreParenCasts();
4912 
4913   for (;;) {
4914     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
4915     if (!BO || !BO->isAdditiveOp())
4916       break;
4917 
4918     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
4919     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
4920 
4921     if (isa<IntegerLiteral>(RHS))
4922       Ex = LHS;
4923     else if (isa<IntegerLiteral>(LHS))
4924       Ex = RHS;
4925     else
4926       break;
4927   }
4928 
4929   return Ex;
4930 }
4931 
isConstantSizeArrayWithMoreThanOneElement(QualType Ty,ASTContext & Context)4932 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
4933                                                       ASTContext &Context) {
4934   // Only handle constant-sized or VLAs, but not flexible members.
4935   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
4936     // Only issue the FIXIT for arrays of size > 1.
4937     if (CAT->getSize().getSExtValue() <= 1)
4938       return false;
4939   } else if (!Ty->isVariableArrayType()) {
4940     return false;
4941   }
4942   return true;
4943 }
4944 
4945 // Warn if the user has made the 'size' argument to strlcpy or strlcat
4946 // be the size of the source, instead of the destination.
CheckStrlcpycatArguments(const CallExpr * Call,IdentifierInfo * FnName)4947 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
4948                                     IdentifierInfo *FnName) {
4949 
4950   // Don't crash if the user has the wrong number of arguments
4951   unsigned NumArgs = Call->getNumArgs();
4952   if ((NumArgs != 3) && (NumArgs != 4))
4953     return;
4954 
4955   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
4956   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
4957   const Expr *CompareWithSrc = nullptr;
4958 
4959   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
4960                                      Call->getLocStart(), Call->getRParenLoc()))
4961     return;
4962 
4963   // Look for 'strlcpy(dst, x, sizeof(x))'
4964   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
4965     CompareWithSrc = Ex;
4966   else {
4967     // Look for 'strlcpy(dst, x, strlen(x))'
4968     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
4969       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
4970           SizeCall->getNumArgs() == 1)
4971         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
4972     }
4973   }
4974 
4975   if (!CompareWithSrc)
4976     return;
4977 
4978   // Determine if the argument to sizeof/strlen is equal to the source
4979   // argument.  In principle there's all kinds of things you could do
4980   // here, for instance creating an == expression and evaluating it with
4981   // EvaluateAsBooleanCondition, but this uses a more direct technique:
4982   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
4983   if (!SrcArgDRE)
4984     return;
4985 
4986   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
4987   if (!CompareWithSrcDRE ||
4988       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
4989     return;
4990 
4991   const Expr *OriginalSizeArg = Call->getArg(2);
4992   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
4993     << OriginalSizeArg->getSourceRange() << FnName;
4994 
4995   // Output a FIXIT hint if the destination is an array (rather than a
4996   // pointer to an array).  This could be enhanced to handle some
4997   // pointers if we know the actual size, like if DstArg is 'array+2'
4998   // we could say 'sizeof(array)-2'.
4999   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
5000   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
5001     return;
5002 
5003   SmallString<128> sizeString;
5004   llvm::raw_svector_ostream OS(sizeString);
5005   OS << "sizeof(";
5006   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
5007   OS << ")";
5008 
5009   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
5010     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
5011                                     OS.str());
5012 }
5013 
5014 /// Check if two expressions refer to the same declaration.
referToTheSameDecl(const Expr * E1,const Expr * E2)5015 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
5016   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
5017     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
5018       return D1->getDecl() == D2->getDecl();
5019   return false;
5020 }
5021 
getStrlenExprArg(const Expr * E)5022 static const Expr *getStrlenExprArg(const Expr *E) {
5023   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
5024     const FunctionDecl *FD = CE->getDirectCallee();
5025     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
5026       return nullptr;
5027     return CE->getArg(0)->IgnoreParenCasts();
5028   }
5029   return nullptr;
5030 }
5031 
5032 // Warn on anti-patterns as the 'size' argument to strncat.
5033 // The correct size argument should look like following:
5034 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
CheckStrncatArguments(const CallExpr * CE,IdentifierInfo * FnName)5035 void Sema::CheckStrncatArguments(const CallExpr *CE,
5036                                  IdentifierInfo *FnName) {
5037   // Don't crash if the user has the wrong number of arguments.
5038   if (CE->getNumArgs() < 3)
5039     return;
5040   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
5041   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
5042   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
5043 
5044   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
5045                                      CE->getRParenLoc()))
5046     return;
5047 
5048   // Identify common expressions, which are wrongly used as the size argument
5049   // to strncat and may lead to buffer overflows.
5050   unsigned PatternType = 0;
5051   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
5052     // - sizeof(dst)
5053     if (referToTheSameDecl(SizeOfArg, DstArg))
5054       PatternType = 1;
5055     // - sizeof(src)
5056     else if (referToTheSameDecl(SizeOfArg, SrcArg))
5057       PatternType = 2;
5058   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
5059     if (BE->getOpcode() == BO_Sub) {
5060       const Expr *L = BE->getLHS()->IgnoreParenCasts();
5061       const Expr *R = BE->getRHS()->IgnoreParenCasts();
5062       // - sizeof(dst) - strlen(dst)
5063       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
5064           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
5065         PatternType = 1;
5066       // - sizeof(src) - (anything)
5067       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
5068         PatternType = 2;
5069     }
5070   }
5071 
5072   if (PatternType == 0)
5073     return;
5074 
5075   // Generate the diagnostic.
5076   SourceLocation SL = LenArg->getLocStart();
5077   SourceRange SR = LenArg->getSourceRange();
5078   SourceManager &SM = getSourceManager();
5079 
5080   // If the function is defined as a builtin macro, do not show macro expansion.
5081   if (SM.isMacroArgExpansion(SL)) {
5082     SL = SM.getSpellingLoc(SL);
5083     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
5084                      SM.getSpellingLoc(SR.getEnd()));
5085   }
5086 
5087   // Check if the destination is an array (rather than a pointer to an array).
5088   QualType DstTy = DstArg->getType();
5089   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
5090                                                                     Context);
5091   if (!isKnownSizeArray) {
5092     if (PatternType == 1)
5093       Diag(SL, diag::warn_strncat_wrong_size) << SR;
5094     else
5095       Diag(SL, diag::warn_strncat_src_size) << SR;
5096     return;
5097   }
5098 
5099   if (PatternType == 1)
5100     Diag(SL, diag::warn_strncat_large_size) << SR;
5101   else
5102     Diag(SL, diag::warn_strncat_src_size) << SR;
5103 
5104   SmallString<128> sizeString;
5105   llvm::raw_svector_ostream OS(sizeString);
5106   OS << "sizeof(";
5107   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
5108   OS << ") - ";
5109   OS << "strlen(";
5110   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
5111   OS << ") - 1";
5112 
5113   Diag(SL, diag::note_strncat_wrong_size)
5114     << FixItHint::CreateReplacement(SR, OS.str());
5115 }
5116 
5117 //===--- CHECK: Return Address of Stack Variable --------------------------===//
5118 
5119 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5120                      Decl *ParentDecl);
5121 static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
5122                       Decl *ParentDecl);
5123 
5124 /// CheckReturnStackAddr - Check if a return statement returns the address
5125 ///   of a stack variable.
5126 static void
CheckReturnStackAddr(Sema & S,Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc)5127 CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
5128                      SourceLocation ReturnLoc) {
5129 
5130   Expr *stackE = nullptr;
5131   SmallVector<DeclRefExpr *, 8> refVars;
5132 
5133   // Perform checking for returned stack addresses, local blocks,
5134   // label addresses or references to temporaries.
5135   if (lhsType->isPointerType() ||
5136       (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
5137     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
5138   } else if (lhsType->isReferenceType()) {
5139     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
5140   }
5141 
5142   if (!stackE)
5143     return; // Nothing suspicious was found.
5144 
5145   SourceLocation diagLoc;
5146   SourceRange diagRange;
5147   if (refVars.empty()) {
5148     diagLoc = stackE->getLocStart();
5149     diagRange = stackE->getSourceRange();
5150   } else {
5151     // We followed through a reference variable. 'stackE' contains the
5152     // problematic expression but we will warn at the return statement pointing
5153     // at the reference variable. We will later display the "trail" of
5154     // reference variables using notes.
5155     diagLoc = refVars[0]->getLocStart();
5156     diagRange = refVars[0]->getSourceRange();
5157   }
5158 
5159   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
5160     S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
5161                                              : diag::warn_ret_stack_addr)
5162      << DR->getDecl()->getDeclName() << diagRange;
5163   } else if (isa<BlockExpr>(stackE)) { // local block.
5164     S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
5165   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
5166     S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
5167   } else { // local temporary.
5168     S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
5169                                                : diag::warn_ret_local_temp_addr)
5170      << diagRange;
5171   }
5172 
5173   // Display the "trail" of reference variables that we followed until we
5174   // found the problematic expression using notes.
5175   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
5176     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
5177     // If this var binds to another reference var, show the range of the next
5178     // var, otherwise the var binds to the problematic expression, in which case
5179     // show the range of the expression.
5180     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
5181                                   : stackE->getSourceRange();
5182     S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
5183         << VD->getDeclName() << range;
5184   }
5185 }
5186 
5187 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
5188 ///  check if the expression in a return statement evaluates to an address
5189 ///  to a location on the stack, a local block, an address of a label, or a
5190 ///  reference to local temporary. The recursion is used to traverse the
5191 ///  AST of the return expression, with recursion backtracking when we
5192 ///  encounter a subexpression that (1) clearly does not lead to one of the
5193 ///  above problematic expressions (2) is something we cannot determine leads to
5194 ///  a problematic expression based on such local checking.
5195 ///
5196 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
5197 ///  the expression that they point to. Such variables are added to the
5198 ///  'refVars' vector so that we know what the reference variable "trail" was.
5199 ///
5200 ///  EvalAddr processes expressions that are pointers that are used as
5201 ///  references (and not L-values).  EvalVal handles all other values.
5202 ///  At the base case of the recursion is a check for the above problematic
5203 ///  expressions.
5204 ///
5205 ///  This implementation handles:
5206 ///
5207 ///   * pointer-to-pointer casts
5208 ///   * implicit conversions from array references to pointers
5209 ///   * taking the address of fields
5210 ///   * arbitrary interplay between "&" and "*" operators
5211 ///   * pointer arithmetic from an address of a stack variable
5212 ///   * taking the address of an array element where the array is on the stack
EvalAddr(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)5213 static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5214                       Decl *ParentDecl) {
5215   if (E->isTypeDependent())
5216     return nullptr;
5217 
5218   // We should only be called for evaluating pointer expressions.
5219   assert((E->getType()->isAnyPointerType() ||
5220           E->getType()->isBlockPointerType() ||
5221           E->getType()->isObjCQualifiedIdType()) &&
5222          "EvalAddr only works on pointers");
5223 
5224   E = E->IgnoreParens();
5225 
5226   // Our "symbolic interpreter" is just a dispatch off the currently
5227   // viewed AST node.  We then recursively traverse the AST by calling
5228   // EvalAddr and EvalVal appropriately.
5229   switch (E->getStmtClass()) {
5230   case Stmt::DeclRefExprClass: {
5231     DeclRefExpr *DR = cast<DeclRefExpr>(E);
5232 
5233     // If we leave the immediate function, the lifetime isn't about to end.
5234     if (DR->refersToEnclosingVariableOrCapture())
5235       return nullptr;
5236 
5237     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
5238       // If this is a reference variable, follow through to the expression that
5239       // it points to.
5240       if (V->hasLocalStorage() &&
5241           V->getType()->isReferenceType() && V->hasInit()) {
5242         // Add the reference variable to the "trail".
5243         refVars.push_back(DR);
5244         return EvalAddr(V->getInit(), refVars, ParentDecl);
5245       }
5246 
5247     return nullptr;
5248   }
5249 
5250   case Stmt::UnaryOperatorClass: {
5251     // The only unary operator that make sense to handle here
5252     // is AddrOf.  All others don't make sense as pointers.
5253     UnaryOperator *U = cast<UnaryOperator>(E);
5254 
5255     if (U->getOpcode() == UO_AddrOf)
5256       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
5257     else
5258       return nullptr;
5259   }
5260 
5261   case Stmt::BinaryOperatorClass: {
5262     // Handle pointer arithmetic.  All other binary operators are not valid
5263     // in this context.
5264     BinaryOperator *B = cast<BinaryOperator>(E);
5265     BinaryOperatorKind op = B->getOpcode();
5266 
5267     if (op != BO_Add && op != BO_Sub)
5268       return nullptr;
5269 
5270     Expr *Base = B->getLHS();
5271 
5272     // Determine which argument is the real pointer base.  It could be
5273     // the RHS argument instead of the LHS.
5274     if (!Base->getType()->isPointerType()) Base = B->getRHS();
5275 
5276     assert (Base->getType()->isPointerType());
5277     return EvalAddr(Base, refVars, ParentDecl);
5278   }
5279 
5280   // For conditional operators we need to see if either the LHS or RHS are
5281   // valid DeclRefExpr*s.  If one of them is valid, we return it.
5282   case Stmt::ConditionalOperatorClass: {
5283     ConditionalOperator *C = cast<ConditionalOperator>(E);
5284 
5285     // Handle the GNU extension for missing LHS.
5286     // FIXME: That isn't a ConditionalOperator, so doesn't get here.
5287     if (Expr *LHSExpr = C->getLHS()) {
5288       // In C++, we can have a throw-expression, which has 'void' type.
5289       if (!LHSExpr->getType()->isVoidType())
5290         if (Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
5291           return LHS;
5292     }
5293 
5294     // In C++, we can have a throw-expression, which has 'void' type.
5295     if (C->getRHS()->getType()->isVoidType())
5296       return nullptr;
5297 
5298     return EvalAddr(C->getRHS(), refVars, ParentDecl);
5299   }
5300 
5301   case Stmt::BlockExprClass:
5302     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
5303       return E; // local block.
5304     return nullptr;
5305 
5306   case Stmt::AddrLabelExprClass:
5307     return E; // address of label.
5308 
5309   case Stmt::ExprWithCleanupsClass:
5310     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
5311                     ParentDecl);
5312 
5313   // For casts, we need to handle conversions from arrays to
5314   // pointer values, and pointer-to-pointer conversions.
5315   case Stmt::ImplicitCastExprClass:
5316   case Stmt::CStyleCastExprClass:
5317   case Stmt::CXXFunctionalCastExprClass:
5318   case Stmt::ObjCBridgedCastExprClass:
5319   case Stmt::CXXStaticCastExprClass:
5320   case Stmt::CXXDynamicCastExprClass:
5321   case Stmt::CXXConstCastExprClass:
5322   case Stmt::CXXReinterpretCastExprClass: {
5323     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
5324     switch (cast<CastExpr>(E)->getCastKind()) {
5325     case CK_LValueToRValue:
5326     case CK_NoOp:
5327     case CK_BaseToDerived:
5328     case CK_DerivedToBase:
5329     case CK_UncheckedDerivedToBase:
5330     case CK_Dynamic:
5331     case CK_CPointerToObjCPointerCast:
5332     case CK_BlockPointerToObjCPointerCast:
5333     case CK_AnyPointerToBlockPointerCast:
5334       return EvalAddr(SubExpr, refVars, ParentDecl);
5335 
5336     case CK_ArrayToPointerDecay:
5337       return EvalVal(SubExpr, refVars, ParentDecl);
5338 
5339     case CK_BitCast:
5340       if (SubExpr->getType()->isAnyPointerType() ||
5341           SubExpr->getType()->isBlockPointerType() ||
5342           SubExpr->getType()->isObjCQualifiedIdType())
5343         return EvalAddr(SubExpr, refVars, ParentDecl);
5344       else
5345         return nullptr;
5346 
5347     default:
5348       return nullptr;
5349     }
5350   }
5351 
5352   case Stmt::MaterializeTemporaryExprClass:
5353     if (Expr *Result = EvalAddr(
5354                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
5355                                 refVars, ParentDecl))
5356       return Result;
5357 
5358     return E;
5359 
5360   // Everything else: we simply don't reason about them.
5361   default:
5362     return nullptr;
5363   }
5364 }
5365 
5366 
5367 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
5368 ///   See the comments for EvalAddr for more details.
EvalVal(Expr * E,SmallVectorImpl<DeclRefExpr * > & refVars,Decl * ParentDecl)5369 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
5370                      Decl *ParentDecl) {
5371 do {
5372   // We should only be called for evaluating non-pointer expressions, or
5373   // expressions with a pointer type that are not used as references but instead
5374   // are l-values (e.g., DeclRefExpr with a pointer type).
5375 
5376   // Our "symbolic interpreter" is just a dispatch off the currently
5377   // viewed AST node.  We then recursively traverse the AST by calling
5378   // EvalAddr and EvalVal appropriately.
5379 
5380   E = E->IgnoreParens();
5381   switch (E->getStmtClass()) {
5382   case Stmt::ImplicitCastExprClass: {
5383     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
5384     if (IE->getValueKind() == VK_LValue) {
5385       E = IE->getSubExpr();
5386       continue;
5387     }
5388     return nullptr;
5389   }
5390 
5391   case Stmt::ExprWithCleanupsClass:
5392     return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
5393 
5394   case Stmt::DeclRefExprClass: {
5395     // When we hit a DeclRefExpr we are looking at code that refers to a
5396     // variable's name. If it's not a reference variable we check if it has
5397     // local storage within the function, and if so, return the expression.
5398     DeclRefExpr *DR = cast<DeclRefExpr>(E);
5399 
5400     // If we leave the immediate function, the lifetime isn't about to end.
5401     if (DR->refersToEnclosingVariableOrCapture())
5402       return nullptr;
5403 
5404     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
5405       // Check if it refers to itself, e.g. "int& i = i;".
5406       if (V == ParentDecl)
5407         return DR;
5408 
5409       if (V->hasLocalStorage()) {
5410         if (!V->getType()->isReferenceType())
5411           return DR;
5412 
5413         // Reference variable, follow through to the expression that
5414         // it points to.
5415         if (V->hasInit()) {
5416           // Add the reference variable to the "trail".
5417           refVars.push_back(DR);
5418           return EvalVal(V->getInit(), refVars, V);
5419         }
5420       }
5421     }
5422 
5423     return nullptr;
5424   }
5425 
5426   case Stmt::UnaryOperatorClass: {
5427     // The only unary operator that make sense to handle here
5428     // is Deref.  All others don't resolve to a "name."  This includes
5429     // handling all sorts of rvalues passed to a unary operator.
5430     UnaryOperator *U = cast<UnaryOperator>(E);
5431 
5432     if (U->getOpcode() == UO_Deref)
5433       return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
5434 
5435     return nullptr;
5436   }
5437 
5438   case Stmt::ArraySubscriptExprClass: {
5439     // Array subscripts are potential references to data on the stack.  We
5440     // retrieve the DeclRefExpr* for the array variable if it indeed
5441     // has local storage.
5442     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
5443   }
5444 
5445   case Stmt::ConditionalOperatorClass: {
5446     // For conditional operators we need to see if either the LHS or RHS are
5447     // non-NULL Expr's.  If one is non-NULL, we return it.
5448     ConditionalOperator *C = cast<ConditionalOperator>(E);
5449 
5450     // Handle the GNU extension for missing LHS.
5451     if (Expr *LHSExpr = C->getLHS()) {
5452       // In C++, we can have a throw-expression, which has 'void' type.
5453       if (!LHSExpr->getType()->isVoidType())
5454         if (Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
5455           return LHS;
5456     }
5457 
5458     // In C++, we can have a throw-expression, which has 'void' type.
5459     if (C->getRHS()->getType()->isVoidType())
5460       return nullptr;
5461 
5462     return EvalVal(C->getRHS(), refVars, ParentDecl);
5463   }
5464 
5465   // Accesses to members are potential references to data on the stack.
5466   case Stmt::MemberExprClass: {
5467     MemberExpr *M = cast<MemberExpr>(E);
5468 
5469     // Check for indirect access.  We only want direct field accesses.
5470     if (M->isArrow())
5471       return nullptr;
5472 
5473     // Check whether the member type is itself a reference, in which case
5474     // we're not going to refer to the member, but to what the member refers to.
5475     if (M->getMemberDecl()->getType()->isReferenceType())
5476       return nullptr;
5477 
5478     return EvalVal(M->getBase(), refVars, ParentDecl);
5479   }
5480 
5481   case Stmt::MaterializeTemporaryExprClass:
5482     if (Expr *Result = EvalVal(
5483                           cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
5484                                refVars, ParentDecl))
5485       return Result;
5486 
5487     return E;
5488 
5489   default:
5490     // Check that we don't return or take the address of a reference to a
5491     // temporary. This is only useful in C++.
5492     if (!E->isTypeDependent() && E->isRValue())
5493       return E;
5494 
5495     // Everything else: we simply don't reason about them.
5496     return nullptr;
5497   }
5498 } while (true);
5499 }
5500 
5501 void
CheckReturnValExpr(Expr * RetValExp,QualType lhsType,SourceLocation ReturnLoc,bool isObjCMethod,const AttrVec * Attrs,const FunctionDecl * FD)5502 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
5503                          SourceLocation ReturnLoc,
5504                          bool isObjCMethod,
5505                          const AttrVec *Attrs,
5506                          const FunctionDecl *FD) {
5507   CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
5508 
5509   // Check if the return value is null but should not be.
5510   if (Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs) &&
5511       CheckNonNullExpr(*this, RetValExp))
5512     Diag(ReturnLoc, diag::warn_null_ret)
5513       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
5514 
5515   // C++11 [basic.stc.dynamic.allocation]p4:
5516   //   If an allocation function declared with a non-throwing
5517   //   exception-specification fails to allocate storage, it shall return
5518   //   a null pointer. Any other allocation function that fails to allocate
5519   //   storage shall indicate failure only by throwing an exception [...]
5520   if (FD) {
5521     OverloadedOperatorKind Op = FD->getOverloadedOperator();
5522     if (Op == OO_New || Op == OO_Array_New) {
5523       const FunctionProtoType *Proto
5524         = FD->getType()->castAs<FunctionProtoType>();
5525       if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
5526           CheckNonNullExpr(*this, RetValExp))
5527         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
5528           << FD << getLangOpts().CPlusPlus11;
5529     }
5530   }
5531 }
5532 
5533 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
5534 
5535 /// Check for comparisons of floating point operands using != and ==.
5536 /// Issue a warning if these are no self-comparisons, as they are not likely
5537 /// to do what the programmer intended.
CheckFloatComparison(SourceLocation Loc,Expr * LHS,Expr * RHS)5538 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
5539   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
5540   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
5541 
5542   // Special case: check for x == x (which is OK).
5543   // Do not emit warnings for such cases.
5544   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
5545     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
5546       if (DRL->getDecl() == DRR->getDecl())
5547         return;
5548 
5549 
5550   // Special case: check for comparisons against literals that can be exactly
5551   //  represented by APFloat.  In such cases, do not emit a warning.  This
5552   //  is a heuristic: often comparison against such literals are used to
5553   //  detect if a value in a variable has not changed.  This clearly can
5554   //  lead to false negatives.
5555   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
5556     if (FLL->isExact())
5557       return;
5558   } else
5559     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
5560       if (FLR->isExact())
5561         return;
5562 
5563   // Check for comparisons with builtin types.
5564   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
5565     if (CL->getBuiltinCallee())
5566       return;
5567 
5568   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
5569     if (CR->getBuiltinCallee())
5570       return;
5571 
5572   // Emit the diagnostic.
5573   Diag(Loc, diag::warn_floatingpoint_eq)
5574     << LHS->getSourceRange() << RHS->getSourceRange();
5575 }
5576 
5577 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
5578 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
5579 
5580 namespace {
5581 
5582 /// Structure recording the 'active' range of an integer-valued
5583 /// expression.
5584 struct IntRange {
5585   /// The number of bits active in the int.
5586   unsigned Width;
5587 
5588   /// True if the int is known not to have negative values.
5589   bool NonNegative;
5590 
IntRange__anon817ecb130711::IntRange5591   IntRange(unsigned Width, bool NonNegative)
5592     : Width(Width), NonNegative(NonNegative)
5593   {}
5594 
5595   /// Returns the range of the bool type.
forBoolType__anon817ecb130711::IntRange5596   static IntRange forBoolType() {
5597     return IntRange(1, true);
5598   }
5599 
5600   /// Returns the range of an opaque value of the given integral type.
forValueOfType__anon817ecb130711::IntRange5601   static IntRange forValueOfType(ASTContext &C, QualType T) {
5602     return forValueOfCanonicalType(C,
5603                           T->getCanonicalTypeInternal().getTypePtr());
5604   }
5605 
5606   /// Returns the range of an opaque value of a canonical integral type.
forValueOfCanonicalType__anon817ecb130711::IntRange5607   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
5608     assert(T->isCanonicalUnqualified());
5609 
5610     if (const VectorType *VT = dyn_cast<VectorType>(T))
5611       T = VT->getElementType().getTypePtr();
5612     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
5613       T = CT->getElementType().getTypePtr();
5614     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
5615       T = AT->getValueType().getTypePtr();
5616 
5617     // For enum types, use the known bit width of the enumerators.
5618     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
5619       EnumDecl *Enum = ET->getDecl();
5620       if (!Enum->isCompleteDefinition())
5621         return IntRange(C.getIntWidth(QualType(T, 0)), false);
5622 
5623       unsigned NumPositive = Enum->getNumPositiveBits();
5624       unsigned NumNegative = Enum->getNumNegativeBits();
5625 
5626       if (NumNegative == 0)
5627         return IntRange(NumPositive, true/*NonNegative*/);
5628       else
5629         return IntRange(std::max(NumPositive + 1, NumNegative),
5630                         false/*NonNegative*/);
5631     }
5632 
5633     const BuiltinType *BT = cast<BuiltinType>(T);
5634     assert(BT->isInteger());
5635 
5636     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
5637   }
5638 
5639   /// Returns the "target" range of a canonical integral type, i.e.
5640   /// the range of values expressible in the type.
5641   ///
5642   /// This matches forValueOfCanonicalType except that enums have the
5643   /// full range of their type, not the range of their enumerators.
forTargetOfCanonicalType__anon817ecb130711::IntRange5644   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
5645     assert(T->isCanonicalUnqualified());
5646 
5647     if (const VectorType *VT = dyn_cast<VectorType>(T))
5648       T = VT->getElementType().getTypePtr();
5649     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
5650       T = CT->getElementType().getTypePtr();
5651     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
5652       T = AT->getValueType().getTypePtr();
5653     if (const EnumType *ET = dyn_cast<EnumType>(T))
5654       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
5655 
5656     const BuiltinType *BT = cast<BuiltinType>(T);
5657     assert(BT->isInteger());
5658 
5659     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
5660   }
5661 
5662   /// Returns the supremum of two ranges: i.e. their conservative merge.
join__anon817ecb130711::IntRange5663   static IntRange join(IntRange L, IntRange R) {
5664     return IntRange(std::max(L.Width, R.Width),
5665                     L.NonNegative && R.NonNegative);
5666   }
5667 
5668   /// Returns the infinum of two ranges: i.e. their aggressive merge.
meet__anon817ecb130711::IntRange5669   static IntRange meet(IntRange L, IntRange R) {
5670     return IntRange(std::min(L.Width, R.Width),
5671                     L.NonNegative || R.NonNegative);
5672   }
5673 };
5674 
GetValueRange(ASTContext & C,llvm::APSInt & value,unsigned MaxWidth)5675 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
5676                               unsigned MaxWidth) {
5677   if (value.isSigned() && value.isNegative())
5678     return IntRange(value.getMinSignedBits(), false);
5679 
5680   if (value.getBitWidth() > MaxWidth)
5681     value = value.trunc(MaxWidth);
5682 
5683   // isNonNegative() just checks the sign bit without considering
5684   // signedness.
5685   return IntRange(value.getActiveBits(), true);
5686 }
5687 
GetValueRange(ASTContext & C,APValue & result,QualType Ty,unsigned MaxWidth)5688 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
5689                               unsigned MaxWidth) {
5690   if (result.isInt())
5691     return GetValueRange(C, result.getInt(), MaxWidth);
5692 
5693   if (result.isVector()) {
5694     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
5695     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
5696       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
5697       R = IntRange::join(R, El);
5698     }
5699     return R;
5700   }
5701 
5702   if (result.isComplexInt()) {
5703     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
5704     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
5705     return IntRange::join(R, I);
5706   }
5707 
5708   // This can happen with lossless casts to intptr_t of "based" lvalues.
5709   // Assume it might use arbitrary bits.
5710   // FIXME: The only reason we need to pass the type in here is to get
5711   // the sign right on this one case.  It would be nice if APValue
5712   // preserved this.
5713   assert(result.isLValue() || result.isAddrLabelDiff());
5714   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
5715 }
5716 
GetExprType(Expr * E)5717 static QualType GetExprType(Expr *E) {
5718   QualType Ty = E->getType();
5719   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
5720     Ty = AtomicRHS->getValueType();
5721   return Ty;
5722 }
5723 
5724 /// Pseudo-evaluate the given integer expression, estimating the
5725 /// range of values it might take.
5726 ///
5727 /// \param MaxWidth - the width to which the value will be truncated
GetExprRange(ASTContext & C,Expr * E,unsigned MaxWidth)5728 static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
5729   E = E->IgnoreParens();
5730 
5731   // Try a full evaluation first.
5732   Expr::EvalResult result;
5733   if (E->EvaluateAsRValue(result, C))
5734     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
5735 
5736   // I think we only want to look through implicit casts here; if the
5737   // user has an explicit widening cast, we should treat the value as
5738   // being of the new, wider type.
5739   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
5740     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
5741       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
5742 
5743     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
5744 
5745     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
5746 
5747     // Assume that non-integer casts can span the full range of the type.
5748     if (!isIntegerCast)
5749       return OutputTypeRange;
5750 
5751     IntRange SubRange
5752       = GetExprRange(C, CE->getSubExpr(),
5753                      std::min(MaxWidth, OutputTypeRange.Width));
5754 
5755     // Bail out if the subexpr's range is as wide as the cast type.
5756     if (SubRange.Width >= OutputTypeRange.Width)
5757       return OutputTypeRange;
5758 
5759     // Otherwise, we take the smaller width, and we're non-negative if
5760     // either the output type or the subexpr is.
5761     return IntRange(SubRange.Width,
5762                     SubRange.NonNegative || OutputTypeRange.NonNegative);
5763   }
5764 
5765   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
5766     // If we can fold the condition, just take that operand.
5767     bool CondResult;
5768     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
5769       return GetExprRange(C, CondResult ? CO->getTrueExpr()
5770                                         : CO->getFalseExpr(),
5771                           MaxWidth);
5772 
5773     // Otherwise, conservatively merge.
5774     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
5775     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
5776     return IntRange::join(L, R);
5777   }
5778 
5779   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5780     switch (BO->getOpcode()) {
5781 
5782     // Boolean-valued operations are single-bit and positive.
5783     case BO_LAnd:
5784     case BO_LOr:
5785     case BO_LT:
5786     case BO_GT:
5787     case BO_LE:
5788     case BO_GE:
5789     case BO_EQ:
5790     case BO_NE:
5791       return IntRange::forBoolType();
5792 
5793     // The type of the assignments is the type of the LHS, so the RHS
5794     // is not necessarily the same type.
5795     case BO_MulAssign:
5796     case BO_DivAssign:
5797     case BO_RemAssign:
5798     case BO_AddAssign:
5799     case BO_SubAssign:
5800     case BO_XorAssign:
5801     case BO_OrAssign:
5802       // TODO: bitfields?
5803       return IntRange::forValueOfType(C, GetExprType(E));
5804 
5805     // Simple assignments just pass through the RHS, which will have
5806     // been coerced to the LHS type.
5807     case BO_Assign:
5808       // TODO: bitfields?
5809       return GetExprRange(C, BO->getRHS(), MaxWidth);
5810 
5811     // Operations with opaque sources are black-listed.
5812     case BO_PtrMemD:
5813     case BO_PtrMemI:
5814       return IntRange::forValueOfType(C, GetExprType(E));
5815 
5816     // Bitwise-and uses the *infinum* of the two source ranges.
5817     case BO_And:
5818     case BO_AndAssign:
5819       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
5820                             GetExprRange(C, BO->getRHS(), MaxWidth));
5821 
5822     // Left shift gets black-listed based on a judgement call.
5823     case BO_Shl:
5824       // ...except that we want to treat '1 << (blah)' as logically
5825       // positive.  It's an important idiom.
5826       if (IntegerLiteral *I
5827             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
5828         if (I->getValue() == 1) {
5829           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
5830           return IntRange(R.Width, /*NonNegative*/ true);
5831         }
5832       }
5833       // fallthrough
5834 
5835     case BO_ShlAssign:
5836       return IntRange::forValueOfType(C, GetExprType(E));
5837 
5838     // Right shift by a constant can narrow its left argument.
5839     case BO_Shr:
5840     case BO_ShrAssign: {
5841       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
5842 
5843       // If the shift amount is a positive constant, drop the width by
5844       // that much.
5845       llvm::APSInt shift;
5846       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
5847           shift.isNonNegative()) {
5848         unsigned zext = shift.getZExtValue();
5849         if (zext >= L.Width)
5850           L.Width = (L.NonNegative ? 0 : 1);
5851         else
5852           L.Width -= zext;
5853       }
5854 
5855       return L;
5856     }
5857 
5858     // Comma acts as its right operand.
5859     case BO_Comma:
5860       return GetExprRange(C, BO->getRHS(), MaxWidth);
5861 
5862     // Black-list pointer subtractions.
5863     case BO_Sub:
5864       if (BO->getLHS()->getType()->isPointerType())
5865         return IntRange::forValueOfType(C, GetExprType(E));
5866       break;
5867 
5868     // The width of a division result is mostly determined by the size
5869     // of the LHS.
5870     case BO_Div: {
5871       // Don't 'pre-truncate' the operands.
5872       unsigned opWidth = C.getIntWidth(GetExprType(E));
5873       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
5874 
5875       // If the divisor is constant, use that.
5876       llvm::APSInt divisor;
5877       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
5878         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
5879         if (log2 >= L.Width)
5880           L.Width = (L.NonNegative ? 0 : 1);
5881         else
5882           L.Width = std::min(L.Width - log2, MaxWidth);
5883         return L;
5884       }
5885 
5886       // Otherwise, just use the LHS's width.
5887       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
5888       return IntRange(L.Width, L.NonNegative && R.NonNegative);
5889     }
5890 
5891     // The result of a remainder can't be larger than the result of
5892     // either side.
5893     case BO_Rem: {
5894       // Don't 'pre-truncate' the operands.
5895       unsigned opWidth = C.getIntWidth(GetExprType(E));
5896       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
5897       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
5898 
5899       IntRange meet = IntRange::meet(L, R);
5900       meet.Width = std::min(meet.Width, MaxWidth);
5901       return meet;
5902     }
5903 
5904     // The default behavior is okay for these.
5905     case BO_Mul:
5906     case BO_Add:
5907     case BO_Xor:
5908     case BO_Or:
5909       break;
5910     }
5911 
5912     // The default case is to treat the operation as if it were closed
5913     // on the narrowest type that encompasses both operands.
5914     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
5915     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
5916     return IntRange::join(L, R);
5917   }
5918 
5919   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
5920     switch (UO->getOpcode()) {
5921     // Boolean-valued operations are white-listed.
5922     case UO_LNot:
5923       return IntRange::forBoolType();
5924 
5925     // Operations with opaque sources are black-listed.
5926     case UO_Deref:
5927     case UO_AddrOf: // should be impossible
5928       return IntRange::forValueOfType(C, GetExprType(E));
5929 
5930     default:
5931       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
5932     }
5933   }
5934 
5935   if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
5936     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
5937 
5938   if (FieldDecl *BitField = E->getSourceBitField())
5939     return IntRange(BitField->getBitWidthValue(C),
5940                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
5941 
5942   return IntRange::forValueOfType(C, GetExprType(E));
5943 }
5944 
GetExprRange(ASTContext & C,Expr * E)5945 static IntRange GetExprRange(ASTContext &C, Expr *E) {
5946   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
5947 }
5948 
5949 /// Checks whether the given value, which currently has the given
5950 /// source semantics, has the same value when coerced through the
5951 /// target semantics.
IsSameFloatAfterCast(const llvm::APFloat & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)5952 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
5953                                  const llvm::fltSemantics &Src,
5954                                  const llvm::fltSemantics &Tgt) {
5955   llvm::APFloat truncated = value;
5956 
5957   bool ignored;
5958   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
5959   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
5960 
5961   return truncated.bitwiseIsEqual(value);
5962 }
5963 
5964 /// Checks whether the given value, which currently has the given
5965 /// source semantics, has the same value when coerced through the
5966 /// target semantics.
5967 ///
5968 /// The value might be a vector of floats (or a complex number).
IsSameFloatAfterCast(const APValue & value,const llvm::fltSemantics & Src,const llvm::fltSemantics & Tgt)5969 static bool IsSameFloatAfterCast(const APValue &value,
5970                                  const llvm::fltSemantics &Src,
5971                                  const llvm::fltSemantics &Tgt) {
5972   if (value.isFloat())
5973     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
5974 
5975   if (value.isVector()) {
5976     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
5977       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
5978         return false;
5979     return true;
5980   }
5981 
5982   assert(value.isComplexFloat());
5983   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
5984           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
5985 }
5986 
5987 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
5988 
IsZero(Sema & S,Expr * E)5989 static bool IsZero(Sema &S, Expr *E) {
5990   // Suppress cases where we are comparing against an enum constant.
5991   if (const DeclRefExpr *DR =
5992       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
5993     if (isa<EnumConstantDecl>(DR->getDecl()))
5994       return false;
5995 
5996   // Suppress cases where the '0' value is expanded from a macro.
5997   if (E->getLocStart().isMacroID())
5998     return false;
5999 
6000   llvm::APSInt Value;
6001   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
6002 }
6003 
HasEnumType(Expr * E)6004 static bool HasEnumType(Expr *E) {
6005   // Strip off implicit integral promotions.
6006   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
6007     if (ICE->getCastKind() != CK_IntegralCast &&
6008         ICE->getCastKind() != CK_NoOp)
6009       break;
6010     E = ICE->getSubExpr();
6011   }
6012 
6013   return E->getType()->isEnumeralType();
6014 }
6015 
CheckTrivialUnsignedComparison(Sema & S,BinaryOperator * E)6016 static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
6017   // Disable warning in template instantiations.
6018   if (!S.ActiveTemplateInstantiations.empty())
6019     return;
6020 
6021   BinaryOperatorKind op = E->getOpcode();
6022   if (E->isValueDependent())
6023     return;
6024 
6025   if (op == BO_LT && IsZero(S, E->getRHS())) {
6026     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
6027       << "< 0" << "false" << HasEnumType(E->getLHS())
6028       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6029   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
6030     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
6031       << ">= 0" << "true" << HasEnumType(E->getLHS())
6032       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6033   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
6034     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
6035       << "0 >" << "false" << HasEnumType(E->getRHS())
6036       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6037   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
6038     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
6039       << "0 <=" << "true" << HasEnumType(E->getRHS())
6040       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
6041   }
6042 }
6043 
DiagnoseOutOfRangeComparison(Sema & S,BinaryOperator * E,Expr * Constant,Expr * Other,llvm::APSInt Value,bool RhsConstant)6044 static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
6045                                          Expr *Constant, Expr *Other,
6046                                          llvm::APSInt Value,
6047                                          bool RhsConstant) {
6048   // Disable warning in template instantiations.
6049   if (!S.ActiveTemplateInstantiations.empty())
6050     return;
6051 
6052   // TODO: Investigate using GetExprRange() to get tighter bounds
6053   // on the bit ranges.
6054   QualType OtherT = Other->getType();
6055   if (const AtomicType *AT = dyn_cast<AtomicType>(OtherT))
6056     OtherT = AT->getValueType();
6057   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
6058   unsigned OtherWidth = OtherRange.Width;
6059 
6060   bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
6061 
6062   // 0 values are handled later by CheckTrivialUnsignedComparison().
6063   if ((Value == 0) && (!OtherIsBooleanType))
6064     return;
6065 
6066   BinaryOperatorKind op = E->getOpcode();
6067   bool IsTrue = true;
6068 
6069   // Used for diagnostic printout.
6070   enum {
6071     LiteralConstant = 0,
6072     CXXBoolLiteralTrue,
6073     CXXBoolLiteralFalse
6074   } LiteralOrBoolConstant = LiteralConstant;
6075 
6076   if (!OtherIsBooleanType) {
6077     QualType ConstantT = Constant->getType();
6078     QualType CommonT = E->getLHS()->getType();
6079 
6080     if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
6081       return;
6082     assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
6083            "comparison with non-integer type");
6084 
6085     bool ConstantSigned = ConstantT->isSignedIntegerType();
6086     bool CommonSigned = CommonT->isSignedIntegerType();
6087 
6088     bool EqualityOnly = false;
6089 
6090     if (CommonSigned) {
6091       // The common type is signed, therefore no signed to unsigned conversion.
6092       if (!OtherRange.NonNegative) {
6093         // Check that the constant is representable in type OtherT.
6094         if (ConstantSigned) {
6095           if (OtherWidth >= Value.getMinSignedBits())
6096             return;
6097         } else { // !ConstantSigned
6098           if (OtherWidth >= Value.getActiveBits() + 1)
6099             return;
6100         }
6101       } else { // !OtherSigned
6102                // Check that the constant is representable in type OtherT.
6103         // Negative values are out of range.
6104         if (ConstantSigned) {
6105           if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
6106             return;
6107         } else { // !ConstantSigned
6108           if (OtherWidth >= Value.getActiveBits())
6109             return;
6110         }
6111       }
6112     } else { // !CommonSigned
6113       if (OtherRange.NonNegative) {
6114         if (OtherWidth >= Value.getActiveBits())
6115           return;
6116       } else { // OtherSigned
6117         assert(!ConstantSigned &&
6118                "Two signed types converted to unsigned types.");
6119         // Check to see if the constant is representable in OtherT.
6120         if (OtherWidth > Value.getActiveBits())
6121           return;
6122         // Check to see if the constant is equivalent to a negative value
6123         // cast to CommonT.
6124         if (S.Context.getIntWidth(ConstantT) ==
6125                 S.Context.getIntWidth(CommonT) &&
6126             Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
6127           return;
6128         // The constant value rests between values that OtherT can represent
6129         // after conversion.  Relational comparison still works, but equality
6130         // comparisons will be tautological.
6131         EqualityOnly = true;
6132       }
6133     }
6134 
6135     bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
6136 
6137     if (op == BO_EQ || op == BO_NE) {
6138       IsTrue = op == BO_NE;
6139     } else if (EqualityOnly) {
6140       return;
6141     } else if (RhsConstant) {
6142       if (op == BO_GT || op == BO_GE)
6143         IsTrue = !PositiveConstant;
6144       else // op == BO_LT || op == BO_LE
6145         IsTrue = PositiveConstant;
6146     } else {
6147       if (op == BO_LT || op == BO_LE)
6148         IsTrue = !PositiveConstant;
6149       else // op == BO_GT || op == BO_GE
6150         IsTrue = PositiveConstant;
6151     }
6152   } else {
6153     // Other isKnownToHaveBooleanValue
6154     enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
6155     enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
6156     enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
6157 
6158     static const struct LinkedConditions {
6159       CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
6160       CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
6161       CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
6162       CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
6163       CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
6164       CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
6165 
6166     } TruthTable = {
6167         // Constant on LHS.              | Constant on RHS.              |
6168         // LT_Zero| Zero  | One   |GT_One| LT_Zero| Zero  | One   |GT_One|
6169         { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
6170         { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
6171         { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
6172         { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
6173         { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
6174         { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
6175       };
6176 
6177     bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
6178 
6179     enum ConstantValue ConstVal = Zero;
6180     if (Value.isUnsigned() || Value.isNonNegative()) {
6181       if (Value == 0) {
6182         LiteralOrBoolConstant =
6183             ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
6184         ConstVal = Zero;
6185       } else if (Value == 1) {
6186         LiteralOrBoolConstant =
6187             ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
6188         ConstVal = One;
6189       } else {
6190         LiteralOrBoolConstant = LiteralConstant;
6191         ConstVal = GT_One;
6192       }
6193     } else {
6194       ConstVal = LT_Zero;
6195     }
6196 
6197     CompareBoolWithConstantResult CmpRes;
6198 
6199     switch (op) {
6200     case BO_LT:
6201       CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
6202       break;
6203     case BO_GT:
6204       CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
6205       break;
6206     case BO_LE:
6207       CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
6208       break;
6209     case BO_GE:
6210       CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
6211       break;
6212     case BO_EQ:
6213       CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
6214       break;
6215     case BO_NE:
6216       CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
6217       break;
6218     default:
6219       CmpRes = Unkwn;
6220       break;
6221     }
6222 
6223     if (CmpRes == AFals) {
6224       IsTrue = false;
6225     } else if (CmpRes == ATrue) {
6226       IsTrue = true;
6227     } else {
6228       return;
6229     }
6230   }
6231 
6232   // If this is a comparison to an enum constant, include that
6233   // constant in the diagnostic.
6234   const EnumConstantDecl *ED = nullptr;
6235   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
6236     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
6237 
6238   SmallString<64> PrettySourceValue;
6239   llvm::raw_svector_ostream OS(PrettySourceValue);
6240   if (ED)
6241     OS << '\'' << *ED << "' (" << Value << ")";
6242   else
6243     OS << Value;
6244 
6245   S.DiagRuntimeBehavior(
6246     E->getOperatorLoc(), E,
6247     S.PDiag(diag::warn_out_of_range_compare)
6248         << OS.str() << LiteralOrBoolConstant
6249         << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
6250         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
6251 }
6252 
6253 /// Analyze the operands of the given comparison.  Implements the
6254 /// fallback case from AnalyzeComparison.
AnalyzeImpConvsInComparison(Sema & S,BinaryOperator * E)6255 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
6256   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
6257   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
6258 }
6259 
6260 /// \brief Implements -Wsign-compare.
6261 ///
6262 /// \param E the binary operator to check for warnings
AnalyzeComparison(Sema & S,BinaryOperator * E)6263 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
6264   // The type the comparison is being performed in.
6265   QualType T = E->getLHS()->getType();
6266 
6267   // Only analyze comparison operators where both sides have been converted to
6268   // the same type.
6269   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
6270     return AnalyzeImpConvsInComparison(S, E);
6271 
6272   // Don't analyze value-dependent comparisons directly.
6273   if (E->isValueDependent())
6274     return AnalyzeImpConvsInComparison(S, E);
6275 
6276   Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
6277   Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
6278 
6279   bool IsComparisonConstant = false;
6280 
6281   // Check whether an integer constant comparison results in a value
6282   // of 'true' or 'false'.
6283   if (T->isIntegralType(S.Context)) {
6284     llvm::APSInt RHSValue;
6285     bool IsRHSIntegralLiteral =
6286       RHS->isIntegerConstantExpr(RHSValue, S.Context);
6287     llvm::APSInt LHSValue;
6288     bool IsLHSIntegralLiteral =
6289       LHS->isIntegerConstantExpr(LHSValue, S.Context);
6290     if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
6291         DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
6292     else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
6293       DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
6294     else
6295       IsComparisonConstant =
6296         (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
6297   } else if (!T->hasUnsignedIntegerRepresentation())
6298       IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
6299 
6300   // We don't do anything special if this isn't an unsigned integral
6301   // comparison:  we're only interested in integral comparisons, and
6302   // signed comparisons only happen in cases we don't care to warn about.
6303   //
6304   // We also don't care about value-dependent expressions or expressions
6305   // whose result is a constant.
6306   if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
6307     return AnalyzeImpConvsInComparison(S, E);
6308 
6309   // Check to see if one of the (unmodified) operands is of different
6310   // signedness.
6311   Expr *signedOperand, *unsignedOperand;
6312   if (LHS->getType()->hasSignedIntegerRepresentation()) {
6313     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
6314            "unsigned comparison between two signed integer expressions?");
6315     signedOperand = LHS;
6316     unsignedOperand = RHS;
6317   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
6318     signedOperand = RHS;
6319     unsignedOperand = LHS;
6320   } else {
6321     CheckTrivialUnsignedComparison(S, E);
6322     return AnalyzeImpConvsInComparison(S, E);
6323   }
6324 
6325   // Otherwise, calculate the effective range of the signed operand.
6326   IntRange signedRange = GetExprRange(S.Context, signedOperand);
6327 
6328   // Go ahead and analyze implicit conversions in the operands.  Note
6329   // that we skip the implicit conversions on both sides.
6330   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
6331   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
6332 
6333   // If the signed range is non-negative, -Wsign-compare won't fire,
6334   // but we should still check for comparisons which are always true
6335   // or false.
6336   if (signedRange.NonNegative)
6337     return CheckTrivialUnsignedComparison(S, E);
6338 
6339   // For (in)equality comparisons, if the unsigned operand is a
6340   // constant which cannot collide with a overflowed signed operand,
6341   // then reinterpreting the signed operand as unsigned will not
6342   // change the result of the comparison.
6343   if (E->isEqualityOp()) {
6344     unsigned comparisonWidth = S.Context.getIntWidth(T);
6345     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
6346 
6347     // We should never be unable to prove that the unsigned operand is
6348     // non-negative.
6349     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
6350 
6351     if (unsignedRange.Width < comparisonWidth)
6352       return;
6353   }
6354 
6355   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
6356     S.PDiag(diag::warn_mixed_sign_comparison)
6357       << LHS->getType() << RHS->getType()
6358       << LHS->getSourceRange() << RHS->getSourceRange());
6359 }
6360 
6361 /// Analyzes an attempt to assign the given value to a bitfield.
6362 ///
6363 /// Returns true if there was something fishy about the attempt.
AnalyzeBitFieldAssignment(Sema & S,FieldDecl * Bitfield,Expr * Init,SourceLocation InitLoc)6364 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
6365                                       SourceLocation InitLoc) {
6366   assert(Bitfield->isBitField());
6367   if (Bitfield->isInvalidDecl())
6368     return false;
6369 
6370   // White-list bool bitfields.
6371   if (Bitfield->getType()->isBooleanType())
6372     return false;
6373 
6374   // Ignore value- or type-dependent expressions.
6375   if (Bitfield->getBitWidth()->isValueDependent() ||
6376       Bitfield->getBitWidth()->isTypeDependent() ||
6377       Init->isValueDependent() ||
6378       Init->isTypeDependent())
6379     return false;
6380 
6381   Expr *OriginalInit = Init->IgnoreParenImpCasts();
6382 
6383   llvm::APSInt Value;
6384   if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
6385     return false;
6386 
6387   unsigned OriginalWidth = Value.getBitWidth();
6388   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
6389 
6390   if (OriginalWidth <= FieldWidth)
6391     return false;
6392 
6393   // Compute the value which the bitfield will contain.
6394   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
6395   TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
6396 
6397   // Check whether the stored value is equal to the original value.
6398   TruncatedValue = TruncatedValue.extend(OriginalWidth);
6399   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
6400     return false;
6401 
6402   // Special-case bitfields of width 1: booleans are naturally 0/1, and
6403   // therefore don't strictly fit into a signed bitfield of width 1.
6404   if (FieldWidth == 1 && Value == 1)
6405     return false;
6406 
6407   std::string PrettyValue = Value.toString(10);
6408   std::string PrettyTrunc = TruncatedValue.toString(10);
6409 
6410   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
6411     << PrettyValue << PrettyTrunc << OriginalInit->getType()
6412     << Init->getSourceRange();
6413 
6414   return true;
6415 }
6416 
6417 /// Analyze the given simple or compound assignment for warning-worthy
6418 /// operations.
AnalyzeAssignment(Sema & S,BinaryOperator * E)6419 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
6420   // Just recurse on the LHS.
6421   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
6422 
6423   // We want to recurse on the RHS as normal unless we're assigning to
6424   // a bitfield.
6425   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
6426     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
6427                                   E->getOperatorLoc())) {
6428       // Recurse, ignoring any implicit conversions on the RHS.
6429       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
6430                                         E->getOperatorLoc());
6431     }
6432   }
6433 
6434   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
6435 }
6436 
6437 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType SourceType,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)6438 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
6439                             SourceLocation CContext, unsigned diag,
6440                             bool pruneControlFlow = false) {
6441   if (pruneControlFlow) {
6442     S.DiagRuntimeBehavior(E->getExprLoc(), E,
6443                           S.PDiag(diag)
6444                             << SourceType << T << E->getSourceRange()
6445                             << SourceRange(CContext));
6446     return;
6447   }
6448   S.Diag(E->getExprLoc(), diag)
6449     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
6450 }
6451 
6452 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
DiagnoseImpCast(Sema & S,Expr * E,QualType T,SourceLocation CContext,unsigned diag,bool pruneControlFlow=false)6453 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
6454                             SourceLocation CContext, unsigned diag,
6455                             bool pruneControlFlow = false) {
6456   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
6457 }
6458 
6459 /// Diagnose an implicit cast from a literal expression. Does not warn when the
6460 /// cast wouldn't lose information.
DiagnoseFloatingLiteralImpCast(Sema & S,FloatingLiteral * FL,QualType T,SourceLocation CContext)6461 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
6462                                     SourceLocation CContext) {
6463   // Try to convert the literal exactly to an integer. If we can, don't warn.
6464   bool isExact = false;
6465   const llvm::APFloat &Value = FL->getValue();
6466   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
6467                             T->hasUnsignedIntegerRepresentation());
6468   if (Value.convertToInteger(IntegerValue,
6469                              llvm::APFloat::rmTowardZero, &isExact)
6470       == llvm::APFloat::opOK && isExact)
6471     return;
6472 
6473   // FIXME: Force the precision of the source value down so we don't print
6474   // digits which are usually useless (we don't really care here if we
6475   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
6476   // would automatically print the shortest representation, but it's a bit
6477   // tricky to implement.
6478   SmallString<16> PrettySourceValue;
6479   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
6480   precision = (precision * 59 + 195) / 196;
6481   Value.toString(PrettySourceValue, precision);
6482 
6483   SmallString<16> PrettyTargetValue;
6484   if (T->isSpecificBuiltinType(BuiltinType::Bool))
6485     PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
6486   else
6487     IntegerValue.toString(PrettyTargetValue);
6488 
6489   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
6490     << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
6491     << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
6492 }
6493 
PrettyPrintInRange(const llvm::APSInt & Value,IntRange Range)6494 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
6495   if (!Range.Width) return "0";
6496 
6497   llvm::APSInt ValueInRange = Value;
6498   ValueInRange.setIsSigned(!Range.NonNegative);
6499   ValueInRange = ValueInRange.trunc(Range.Width);
6500   return ValueInRange.toString(10);
6501 }
6502 
IsImplicitBoolFloatConversion(Sema & S,Expr * Ex,bool ToBool)6503 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
6504   if (!isa<ImplicitCastExpr>(Ex))
6505     return false;
6506 
6507   Expr *InnerE = Ex->IgnoreParenImpCasts();
6508   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
6509   const Type *Source =
6510     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
6511   if (Target->isDependentType())
6512     return false;
6513 
6514   const BuiltinType *FloatCandidateBT =
6515     dyn_cast<BuiltinType>(ToBool ? Source : Target);
6516   const Type *BoolCandidateType = ToBool ? Target : Source;
6517 
6518   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
6519           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
6520 }
6521 
CheckImplicitArgumentConversions(Sema & S,CallExpr * TheCall,SourceLocation CC)6522 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
6523                                       SourceLocation CC) {
6524   unsigned NumArgs = TheCall->getNumArgs();
6525   for (unsigned i = 0; i < NumArgs; ++i) {
6526     Expr *CurrA = TheCall->getArg(i);
6527     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
6528       continue;
6529 
6530     bool IsSwapped = ((i > 0) &&
6531         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
6532     IsSwapped |= ((i < (NumArgs - 1)) &&
6533         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
6534     if (IsSwapped) {
6535       // Warn on this floating-point to bool conversion.
6536       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
6537                       CurrA->getType(), CC,
6538                       diag::warn_impcast_floating_point_to_bool);
6539     }
6540   }
6541 }
6542 
DiagnoseNullConversion(Sema & S,Expr * E,QualType T,SourceLocation CC)6543 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
6544                                    SourceLocation CC) {
6545   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
6546                         E->getExprLoc()))
6547     return;
6548 
6549   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
6550   const Expr::NullPointerConstantKind NullKind =
6551       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
6552   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
6553     return;
6554 
6555   // Return if target type is a safe conversion.
6556   if (T->isAnyPointerType() || T->isBlockPointerType() ||
6557       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
6558     return;
6559 
6560   SourceLocation Loc = E->getSourceRange().getBegin();
6561 
6562   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
6563   if (NullKind == Expr::NPCK_GNUNull) {
6564     if (Loc.isMacroID())
6565       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
6566   }
6567 
6568   // Only warn if the null and context location are in the same macro expansion.
6569   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
6570     return;
6571 
6572   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
6573       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << clang::SourceRange(CC)
6574       << FixItHint::CreateReplacement(Loc,
6575                                       S.getFixItZeroLiteralForType(T, Loc));
6576 }
6577 
CheckImplicitConversion(Sema & S,Expr * E,QualType T,SourceLocation CC,bool * ICContext=nullptr)6578 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
6579                              SourceLocation CC, bool *ICContext = nullptr) {
6580   if (E->isTypeDependent() || E->isValueDependent()) return;
6581 
6582   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
6583   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
6584   if (Source == Target) return;
6585   if (Target->isDependentType()) return;
6586 
6587   // If the conversion context location is invalid don't complain. We also
6588   // don't want to emit a warning if the issue occurs from the expansion of
6589   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
6590   // delay this check as long as possible. Once we detect we are in that
6591   // scenario, we just return.
6592   if (CC.isInvalid())
6593     return;
6594 
6595   // Diagnose implicit casts to bool.
6596   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
6597     if (isa<StringLiteral>(E))
6598       // Warn on string literal to bool.  Checks for string literals in logical
6599       // and expressions, for instance, assert(0 && "error here"), are
6600       // prevented by a check in AnalyzeImplicitConversions().
6601       return DiagnoseImpCast(S, E, T, CC,
6602                              diag::warn_impcast_string_literal_to_bool);
6603     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
6604         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
6605       // This covers the literal expressions that evaluate to Objective-C
6606       // objects.
6607       return DiagnoseImpCast(S, E, T, CC,
6608                              diag::warn_impcast_objective_c_literal_to_bool);
6609     }
6610     if (Source->isPointerType() || Source->canDecayToPointerType()) {
6611       // Warn on pointer to bool conversion that is always true.
6612       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
6613                                      SourceRange(CC));
6614     }
6615   }
6616 
6617   // Strip vector types.
6618   if (isa<VectorType>(Source)) {
6619     if (!isa<VectorType>(Target)) {
6620       if (S.SourceMgr.isInSystemMacro(CC))
6621         return;
6622       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
6623     }
6624 
6625     // If the vector cast is cast between two vectors of the same size, it is
6626     // a bitcast, not a conversion.
6627     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
6628       return;
6629 
6630     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
6631     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
6632   }
6633   if (auto VecTy = dyn_cast<VectorType>(Target))
6634     Target = VecTy->getElementType().getTypePtr();
6635 
6636   // Strip complex types.
6637   if (isa<ComplexType>(Source)) {
6638     if (!isa<ComplexType>(Target)) {
6639       if (S.SourceMgr.isInSystemMacro(CC))
6640         return;
6641 
6642       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
6643     }
6644 
6645     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
6646     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
6647   }
6648 
6649   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
6650   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
6651 
6652   // If the source is floating point...
6653   if (SourceBT && SourceBT->isFloatingPoint()) {
6654     // ...and the target is floating point...
6655     if (TargetBT && TargetBT->isFloatingPoint()) {
6656       // ...then warn if we're dropping FP rank.
6657 
6658       // Builtin FP kinds are ordered by increasing FP rank.
6659       if (SourceBT->getKind() > TargetBT->getKind()) {
6660         // Don't warn about float constants that are precisely
6661         // representable in the target type.
6662         Expr::EvalResult result;
6663         if (E->EvaluateAsRValue(result, S.Context)) {
6664           // Value might be a float, a float vector, or a float complex.
6665           if (IsSameFloatAfterCast(result.Val,
6666                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
6667                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
6668             return;
6669         }
6670 
6671         if (S.SourceMgr.isInSystemMacro(CC))
6672           return;
6673 
6674         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
6675       }
6676       return;
6677     }
6678 
6679     // If the target is integral, always warn.
6680     if (TargetBT && TargetBT->isInteger()) {
6681       if (S.SourceMgr.isInSystemMacro(CC))
6682         return;
6683 
6684       Expr *InnerE = E->IgnoreParenImpCasts();
6685       // We also want to warn on, e.g., "int i = -1.234"
6686       if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
6687         if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
6688           InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
6689 
6690       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
6691         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
6692       } else {
6693         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
6694       }
6695     }
6696 
6697     // If the target is bool, warn if expr is a function or method call.
6698     if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
6699         isa<CallExpr>(E)) {
6700       // Check last argument of function call to see if it is an
6701       // implicit cast from a type matching the type the result
6702       // is being cast to.
6703       CallExpr *CEx = cast<CallExpr>(E);
6704       unsigned NumArgs = CEx->getNumArgs();
6705       if (NumArgs > 0) {
6706         Expr *LastA = CEx->getArg(NumArgs - 1);
6707         Expr *InnerE = LastA->IgnoreParenImpCasts();
6708         const Type *InnerType =
6709           S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
6710         if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
6711           // Warn on this floating-point to bool conversion
6712           DiagnoseImpCast(S, E, T, CC,
6713                           diag::warn_impcast_floating_point_to_bool);
6714         }
6715       }
6716     }
6717     return;
6718   }
6719 
6720   DiagnoseNullConversion(S, E, T, CC);
6721 
6722   if (!Source->isIntegerType() || !Target->isIntegerType())
6723     return;
6724 
6725   // TODO: remove this early return once the false positives for constant->bool
6726   // in templates, macros, etc, are reduced or removed.
6727   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
6728     return;
6729 
6730   IntRange SourceRange = GetExprRange(S.Context, E);
6731   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
6732 
6733   if (SourceRange.Width > TargetRange.Width) {
6734     // If the source is a constant, use a default-on diagnostic.
6735     // TODO: this should happen for bitfield stores, too.
6736     llvm::APSInt Value(32);
6737     if (E->isIntegerConstantExpr(Value, S.Context)) {
6738       if (S.SourceMgr.isInSystemMacro(CC))
6739         return;
6740 
6741       std::string PrettySourceValue = Value.toString(10);
6742       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
6743 
6744       S.DiagRuntimeBehavior(E->getExprLoc(), E,
6745         S.PDiag(diag::warn_impcast_integer_precision_constant)
6746             << PrettySourceValue << PrettyTargetValue
6747             << E->getType() << T << E->getSourceRange()
6748             << clang::SourceRange(CC));
6749       return;
6750     }
6751 
6752     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
6753     if (S.SourceMgr.isInSystemMacro(CC))
6754       return;
6755 
6756     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
6757       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
6758                              /* pruneControlFlow */ true);
6759     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
6760   }
6761 
6762   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
6763       (!TargetRange.NonNegative && SourceRange.NonNegative &&
6764        SourceRange.Width == TargetRange.Width)) {
6765 
6766     if (S.SourceMgr.isInSystemMacro(CC))
6767       return;
6768 
6769     unsigned DiagID = diag::warn_impcast_integer_sign;
6770 
6771     // Traditionally, gcc has warned about this under -Wsign-compare.
6772     // We also want to warn about it in -Wconversion.
6773     // So if -Wconversion is off, use a completely identical diagnostic
6774     // in the sign-compare group.
6775     // The conditional-checking code will
6776     if (ICContext) {
6777       DiagID = diag::warn_impcast_integer_sign_conditional;
6778       *ICContext = true;
6779     }
6780 
6781     return DiagnoseImpCast(S, E, T, CC, DiagID);
6782   }
6783 
6784   // Diagnose conversions between different enumeration types.
6785   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
6786   // type, to give us better diagnostics.
6787   QualType SourceType = E->getType();
6788   if (!S.getLangOpts().CPlusPlus) {
6789     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6790       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
6791         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
6792         SourceType = S.Context.getTypeDeclType(Enum);
6793         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
6794       }
6795   }
6796 
6797   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
6798     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
6799       if (SourceEnum->getDecl()->hasNameForLinkage() &&
6800           TargetEnum->getDecl()->hasNameForLinkage() &&
6801           SourceEnum != TargetEnum) {
6802         if (S.SourceMgr.isInSystemMacro(CC))
6803           return;
6804 
6805         return DiagnoseImpCast(S, E, SourceType, T, CC,
6806                                diag::warn_impcast_different_enum_types);
6807       }
6808 
6809   return;
6810 }
6811 
6812 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
6813                               SourceLocation CC, QualType T);
6814 
CheckConditionalOperand(Sema & S,Expr * E,QualType T,SourceLocation CC,bool & ICContext)6815 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
6816                              SourceLocation CC, bool &ICContext) {
6817   E = E->IgnoreParenImpCasts();
6818 
6819   if (isa<ConditionalOperator>(E))
6820     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
6821 
6822   AnalyzeImplicitConversions(S, E, CC);
6823   if (E->getType() != T)
6824     return CheckImplicitConversion(S, E, T, CC, &ICContext);
6825   return;
6826 }
6827 
CheckConditionalOperator(Sema & S,ConditionalOperator * E,SourceLocation CC,QualType T)6828 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
6829                               SourceLocation CC, QualType T) {
6830   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
6831 
6832   bool Suspicious = false;
6833   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
6834   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
6835 
6836   // If -Wconversion would have warned about either of the candidates
6837   // for a signedness conversion to the context type...
6838   if (!Suspicious) return;
6839 
6840   // ...but it's currently ignored...
6841   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
6842     return;
6843 
6844   // ...then check whether it would have warned about either of the
6845   // candidates for a signedness conversion to the condition type.
6846   if (E->getType() == T) return;
6847 
6848   Suspicious = false;
6849   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
6850                           E->getType(), CC, &Suspicious);
6851   if (!Suspicious)
6852     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
6853                             E->getType(), CC, &Suspicious);
6854 }
6855 
6856 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
6857 /// Input argument E is a logical expression.
CheckBoolLikeConversion(Sema & S,Expr * E,SourceLocation CC)6858 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
6859   if (S.getLangOpts().Bool)
6860     return;
6861   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
6862 }
6863 
6864 /// AnalyzeImplicitConversions - Find and report any interesting
6865 /// implicit conversions in the given expression.  There are a couple
6866 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
AnalyzeImplicitConversions(Sema & S,Expr * OrigE,SourceLocation CC)6867 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
6868   QualType T = OrigE->getType();
6869   Expr *E = OrigE->IgnoreParenImpCasts();
6870 
6871   if (E->isTypeDependent() || E->isValueDependent())
6872     return;
6873 
6874   // For conditional operators, we analyze the arguments as if they
6875   // were being fed directly into the output.
6876   if (isa<ConditionalOperator>(E)) {
6877     ConditionalOperator *CO = cast<ConditionalOperator>(E);
6878     CheckConditionalOperator(S, CO, CC, T);
6879     return;
6880   }
6881 
6882   // Check implicit argument conversions for function calls.
6883   if (CallExpr *Call = dyn_cast<CallExpr>(E))
6884     CheckImplicitArgumentConversions(S, Call, CC);
6885 
6886   // Go ahead and check any implicit conversions we might have skipped.
6887   // The non-canonical typecheck is just an optimization;
6888   // CheckImplicitConversion will filter out dead implicit conversions.
6889   if (E->getType() != T)
6890     CheckImplicitConversion(S, E, T, CC);
6891 
6892   // Now continue drilling into this expression.
6893 
6894   if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
6895     if (POE->getResultExpr())
6896       E = POE->getResultExpr();
6897   }
6898 
6899   if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
6900     if (OVE->getSourceExpr())
6901       AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
6902     return;
6903   }
6904 
6905   // Skip past explicit casts.
6906   if (isa<ExplicitCastExpr>(E)) {
6907     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
6908     return AnalyzeImplicitConversions(S, E, CC);
6909   }
6910 
6911   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6912     // Do a somewhat different check with comparison operators.
6913     if (BO->isComparisonOp())
6914       return AnalyzeComparison(S, BO);
6915 
6916     // And with simple assignments.
6917     if (BO->getOpcode() == BO_Assign)
6918       return AnalyzeAssignment(S, BO);
6919   }
6920 
6921   // These break the otherwise-useful invariant below.  Fortunately,
6922   // we don't really need to recurse into them, because any internal
6923   // expressions should have been analyzed already when they were
6924   // built into statements.
6925   if (isa<StmtExpr>(E)) return;
6926 
6927   // Don't descend into unevaluated contexts.
6928   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
6929 
6930   // Now just recurse over the expression's children.
6931   CC = E->getExprLoc();
6932   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
6933   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
6934   for (Stmt::child_range I = E->children(); I; ++I) {
6935     Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
6936     if (!ChildExpr)
6937       continue;
6938 
6939     if (IsLogicalAndOperator &&
6940         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
6941       // Ignore checking string literals that are in logical and operators.
6942       // This is a common pattern for asserts.
6943       continue;
6944     AnalyzeImplicitConversions(S, ChildExpr, CC);
6945   }
6946 
6947   if (BO && BO->isLogicalOp()) {
6948     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
6949     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
6950       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
6951 
6952     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
6953     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
6954       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
6955   }
6956 
6957   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E))
6958     if (U->getOpcode() == UO_LNot)
6959       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
6960 }
6961 
6962 } // end anonymous namespace
6963 
6964 enum {
6965   AddressOf,
6966   FunctionPointer,
6967   ArrayPointer
6968 };
6969 
6970 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
6971 // Returns true when emitting a warning about taking the address of a reference.
CheckForReference(Sema & SemaRef,const Expr * E,PartialDiagnostic PD)6972 static bool CheckForReference(Sema &SemaRef, const Expr *E,
6973                               PartialDiagnostic PD) {
6974   E = E->IgnoreParenImpCasts();
6975 
6976   const FunctionDecl *FD = nullptr;
6977 
6978   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
6979     if (!DRE->getDecl()->getType()->isReferenceType())
6980       return false;
6981   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
6982     if (!M->getMemberDecl()->getType()->isReferenceType())
6983       return false;
6984   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
6985     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
6986       return false;
6987     FD = Call->getDirectCallee();
6988   } else {
6989     return false;
6990   }
6991 
6992   SemaRef.Diag(E->getExprLoc(), PD);
6993 
6994   // If possible, point to location of function.
6995   if (FD) {
6996     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
6997   }
6998 
6999   return true;
7000 }
7001 
7002 // Returns true if the SourceLocation is expanded from any macro body.
7003 // Returns false if the SourceLocation is invalid, is from not in a macro
7004 // expansion, or is from expanded from a top-level macro argument.
IsInAnyMacroBody(const SourceManager & SM,SourceLocation Loc)7005 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
7006   if (Loc.isInvalid())
7007     return false;
7008 
7009   while (Loc.isMacroID()) {
7010     if (SM.isMacroBodyExpansion(Loc))
7011       return true;
7012     Loc = SM.getImmediateMacroCallerLoc(Loc);
7013   }
7014 
7015   return false;
7016 }
7017 
7018 /// \brief Diagnose pointers that are always non-null.
7019 /// \param E the expression containing the pointer
7020 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
7021 /// compared to a null pointer
7022 /// \param IsEqual True when the comparison is equal to a null pointer
7023 /// \param Range Extra SourceRange to highlight in the diagnostic
DiagnoseAlwaysNonNullPointer(Expr * E,Expr::NullPointerConstantKind NullKind,bool IsEqual,SourceRange Range)7024 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
7025                                         Expr::NullPointerConstantKind NullKind,
7026                                         bool IsEqual, SourceRange Range) {
7027   if (!E)
7028     return;
7029 
7030   // Don't warn inside macros.
7031   if (E->getExprLoc().isMacroID()) {
7032     const SourceManager &SM = getSourceManager();
7033     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
7034         IsInAnyMacroBody(SM, Range.getBegin()))
7035       return;
7036   }
7037   E = E->IgnoreImpCasts();
7038 
7039   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
7040 
7041   if (isa<CXXThisExpr>(E)) {
7042     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
7043                                 : diag::warn_this_bool_conversion;
7044     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
7045     return;
7046   }
7047 
7048   bool IsAddressOf = false;
7049 
7050   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
7051     if (UO->getOpcode() != UO_AddrOf)
7052       return;
7053     IsAddressOf = true;
7054     E = UO->getSubExpr();
7055   }
7056 
7057   if (IsAddressOf) {
7058     unsigned DiagID = IsCompare
7059                           ? diag::warn_address_of_reference_null_compare
7060                           : diag::warn_address_of_reference_bool_conversion;
7061     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
7062                                          << IsEqual;
7063     if (CheckForReference(*this, E, PD)) {
7064       return;
7065     }
7066   }
7067 
7068   // Expect to find a single Decl.  Skip anything more complicated.
7069   ValueDecl *D = nullptr;
7070   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
7071     D = R->getDecl();
7072   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
7073     D = M->getMemberDecl();
7074   }
7075 
7076   // Weak Decls can be null.
7077   if (!D || D->isWeak())
7078     return;
7079 
7080   // Check for parameter decl with nonnull attribute
7081   if (const ParmVarDecl* PV = dyn_cast<ParmVarDecl>(D)) {
7082     if (getCurFunction() && !getCurFunction()->ModifiedNonNullParams.count(PV))
7083       if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
7084         unsigned NumArgs = FD->getNumParams();
7085         llvm::SmallBitVector AttrNonNull(NumArgs);
7086         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
7087           if (!NonNull->args_size()) {
7088             AttrNonNull.set(0, NumArgs);
7089             break;
7090           }
7091           for (unsigned Val : NonNull->args()) {
7092             if (Val >= NumArgs)
7093               continue;
7094             AttrNonNull.set(Val);
7095           }
7096         }
7097         if (!AttrNonNull.empty())
7098           for (unsigned i = 0; i < NumArgs; ++i)
7099             if (FD->getParamDecl(i) == PV &&
7100                 (AttrNonNull[i] || PV->hasAttr<NonNullAttr>())) {
7101               std::string Str;
7102               llvm::raw_string_ostream S(Str);
7103               E->printPretty(S, nullptr, getPrintingPolicy());
7104               unsigned DiagID = IsCompare ? diag::warn_nonnull_parameter_compare
7105                                           : diag::warn_cast_nonnull_to_bool;
7106               Diag(E->getExprLoc(), DiagID) << S.str() << E->getSourceRange()
7107                 << Range << IsEqual;
7108               return;
7109             }
7110       }
7111     }
7112 
7113   QualType T = D->getType();
7114   const bool IsArray = T->isArrayType();
7115   const bool IsFunction = T->isFunctionType();
7116 
7117   // Address of function is used to silence the function warning.
7118   if (IsAddressOf && IsFunction) {
7119     return;
7120   }
7121 
7122   // Found nothing.
7123   if (!IsAddressOf && !IsFunction && !IsArray)
7124     return;
7125 
7126   // Pretty print the expression for the diagnostic.
7127   std::string Str;
7128   llvm::raw_string_ostream S(Str);
7129   E->printPretty(S, nullptr, getPrintingPolicy());
7130 
7131   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
7132                               : diag::warn_impcast_pointer_to_bool;
7133   unsigned DiagType;
7134   if (IsAddressOf)
7135     DiagType = AddressOf;
7136   else if (IsFunction)
7137     DiagType = FunctionPointer;
7138   else if (IsArray)
7139     DiagType = ArrayPointer;
7140   else
7141     llvm_unreachable("Could not determine diagnostic.");
7142   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
7143                                 << Range << IsEqual;
7144 
7145   if (!IsFunction)
7146     return;
7147 
7148   // Suggest '&' to silence the function warning.
7149   Diag(E->getExprLoc(), diag::note_function_warning_silence)
7150       << FixItHint::CreateInsertion(E->getLocStart(), "&");
7151 
7152   // Check to see if '()' fixit should be emitted.
7153   QualType ReturnType;
7154   UnresolvedSet<4> NonTemplateOverloads;
7155   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
7156   if (ReturnType.isNull())
7157     return;
7158 
7159   if (IsCompare) {
7160     // There are two cases here.  If there is null constant, the only suggest
7161     // for a pointer return type.  If the null is 0, then suggest if the return
7162     // type is a pointer or an integer type.
7163     if (!ReturnType->isPointerType()) {
7164       if (NullKind == Expr::NPCK_ZeroExpression ||
7165           NullKind == Expr::NPCK_ZeroLiteral) {
7166         if (!ReturnType->isIntegerType())
7167           return;
7168       } else {
7169         return;
7170       }
7171     }
7172   } else { // !IsCompare
7173     // For function to bool, only suggest if the function pointer has bool
7174     // return type.
7175     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
7176       return;
7177   }
7178   Diag(E->getExprLoc(), diag::note_function_to_function_call)
7179       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
7180 }
7181 
7182 
7183 /// Diagnoses "dangerous" implicit conversions within the given
7184 /// expression (which is a full expression).  Implements -Wconversion
7185 /// and -Wsign-compare.
7186 ///
7187 /// \param CC the "context" location of the implicit conversion, i.e.
7188 ///   the most location of the syntactic entity requiring the implicit
7189 ///   conversion
CheckImplicitConversions(Expr * E,SourceLocation CC)7190 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
7191   // Don't diagnose in unevaluated contexts.
7192   if (isUnevaluatedContext())
7193     return;
7194 
7195   // Don't diagnose for value- or type-dependent expressions.
7196   if (E->isTypeDependent() || E->isValueDependent())
7197     return;
7198 
7199   // Check for array bounds violations in cases where the check isn't triggered
7200   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
7201   // ArraySubscriptExpr is on the RHS of a variable initialization.
7202   CheckArrayAccess(E);
7203 
7204   // This is not the right CC for (e.g.) a variable initialization.
7205   AnalyzeImplicitConversions(*this, E, CC);
7206 }
7207 
7208 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
7209 /// Input argument E is a logical expression.
CheckBoolLikeConversion(Expr * E,SourceLocation CC)7210 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
7211   ::CheckBoolLikeConversion(*this, E, CC);
7212 }
7213 
7214 /// Diagnose when expression is an integer constant expression and its evaluation
7215 /// results in integer overflow
CheckForIntOverflow(Expr * E)7216 void Sema::CheckForIntOverflow (Expr *E) {
7217   if (isa<BinaryOperator>(E->IgnoreParenCasts()))
7218     E->IgnoreParenCasts()->EvaluateForOverflow(Context);
7219 }
7220 
7221 namespace {
7222 /// \brief Visitor for expressions which looks for unsequenced operations on the
7223 /// same object.
7224 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
7225   typedef EvaluatedExprVisitor<SequenceChecker> Base;
7226 
7227   /// \brief A tree of sequenced regions within an expression. Two regions are
7228   /// unsequenced if one is an ancestor or a descendent of the other. When we
7229   /// finish processing an expression with sequencing, such as a comma
7230   /// expression, we fold its tree nodes into its parent, since they are
7231   /// unsequenced with respect to nodes we will visit later.
7232   class SequenceTree {
7233     struct Value {
Value__anon817ecb130a11::SequenceChecker::SequenceTree::Value7234       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
7235       unsigned Parent : 31;
7236       bool Merged : 1;
7237     };
7238     SmallVector<Value, 8> Values;
7239 
7240   public:
7241     /// \brief A region within an expression which may be sequenced with respect
7242     /// to some other region.
7243     class Seq {
Seq(unsigned N)7244       explicit Seq(unsigned N) : Index(N) {}
7245       unsigned Index;
7246       friend class SequenceTree;
7247     public:
Seq()7248       Seq() : Index(0) {}
7249     };
7250 
SequenceTree()7251     SequenceTree() { Values.push_back(Value(0)); }
root() const7252     Seq root() const { return Seq(0); }
7253 
7254     /// \brief Create a new sequence of operations, which is an unsequenced
7255     /// subset of \p Parent. This sequence of operations is sequenced with
7256     /// respect to other children of \p Parent.
allocate(Seq Parent)7257     Seq allocate(Seq Parent) {
7258       Values.push_back(Value(Parent.Index));
7259       return Seq(Values.size() - 1);
7260     }
7261 
7262     /// \brief Merge a sequence of operations into its parent.
merge(Seq S)7263     void merge(Seq S) {
7264       Values[S.Index].Merged = true;
7265     }
7266 
7267     /// \brief Determine whether two operations are unsequenced. This operation
7268     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
7269     /// should have been merged into its parent as appropriate.
isUnsequenced(Seq Cur,Seq Old)7270     bool isUnsequenced(Seq Cur, Seq Old) {
7271       unsigned C = representative(Cur.Index);
7272       unsigned Target = representative(Old.Index);
7273       while (C >= Target) {
7274         if (C == Target)
7275           return true;
7276         C = Values[C].Parent;
7277       }
7278       return false;
7279     }
7280 
7281   private:
7282     /// \brief Pick a representative for a sequence.
representative(unsigned K)7283     unsigned representative(unsigned K) {
7284       if (Values[K].Merged)
7285         // Perform path compression as we go.
7286         return Values[K].Parent = representative(Values[K].Parent);
7287       return K;
7288     }
7289   };
7290 
7291   /// An object for which we can track unsequenced uses.
7292   typedef NamedDecl *Object;
7293 
7294   /// Different flavors of object usage which we track. We only track the
7295   /// least-sequenced usage of each kind.
7296   enum UsageKind {
7297     /// A read of an object. Multiple unsequenced reads are OK.
7298     UK_Use,
7299     /// A modification of an object which is sequenced before the value
7300     /// computation of the expression, such as ++n in C++.
7301     UK_ModAsValue,
7302     /// A modification of an object which is not sequenced before the value
7303     /// computation of the expression, such as n++.
7304     UK_ModAsSideEffect,
7305 
7306     UK_Count = UK_ModAsSideEffect + 1
7307   };
7308 
7309   struct Usage {
Usage__anon817ecb130a11::SequenceChecker::Usage7310     Usage() : Use(nullptr), Seq() {}
7311     Expr *Use;
7312     SequenceTree::Seq Seq;
7313   };
7314 
7315   struct UsageInfo {
UsageInfo__anon817ecb130a11::SequenceChecker::UsageInfo7316     UsageInfo() : Diagnosed(false) {}
7317     Usage Uses[UK_Count];
7318     /// Have we issued a diagnostic for this variable already?
7319     bool Diagnosed;
7320   };
7321   typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
7322 
7323   Sema &SemaRef;
7324   /// Sequenced regions within the expression.
7325   SequenceTree Tree;
7326   /// Declaration modifications and references which we have seen.
7327   UsageInfoMap UsageMap;
7328   /// The region we are currently within.
7329   SequenceTree::Seq Region;
7330   /// Filled in with declarations which were modified as a side-effect
7331   /// (that is, post-increment operations).
7332   SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
7333   /// Expressions to check later. We defer checking these to reduce
7334   /// stack usage.
7335   SmallVectorImpl<Expr *> &WorkList;
7336 
7337   /// RAII object wrapping the visitation of a sequenced subexpression of an
7338   /// expression. At the end of this process, the side-effects of the evaluation
7339   /// become sequenced with respect to the value computation of the result, so
7340   /// we downgrade any UK_ModAsSideEffect within the evaluation to
7341   /// UK_ModAsValue.
7342   struct SequencedSubexpression {
SequencedSubexpression__anon817ecb130a11::SequenceChecker::SequencedSubexpression7343     SequencedSubexpression(SequenceChecker &Self)
7344       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
7345       Self.ModAsSideEffect = &ModAsSideEffect;
7346     }
~SequencedSubexpression__anon817ecb130a11::SequenceChecker::SequencedSubexpression7347     ~SequencedSubexpression() {
7348       for (auto MI = ModAsSideEffect.rbegin(), ME = ModAsSideEffect.rend();
7349            MI != ME; ++MI) {
7350         UsageInfo &U = Self.UsageMap[MI->first];
7351         auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
7352         Self.addUsage(U, MI->first, SideEffectUsage.Use, UK_ModAsValue);
7353         SideEffectUsage = MI->second;
7354       }
7355       Self.ModAsSideEffect = OldModAsSideEffect;
7356     }
7357 
7358     SequenceChecker &Self;
7359     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
7360     SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
7361   };
7362 
7363   /// RAII object wrapping the visitation of a subexpression which we might
7364   /// choose to evaluate as a constant. If any subexpression is evaluated and
7365   /// found to be non-constant, this allows us to suppress the evaluation of
7366   /// the outer expression.
7367   class EvaluationTracker {
7368   public:
EvaluationTracker(SequenceChecker & Self)7369     EvaluationTracker(SequenceChecker &Self)
7370         : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
7371       Self.EvalTracker = this;
7372     }
~EvaluationTracker()7373     ~EvaluationTracker() {
7374       Self.EvalTracker = Prev;
7375       if (Prev)
7376         Prev->EvalOK &= EvalOK;
7377     }
7378 
evaluate(const Expr * E,bool & Result)7379     bool evaluate(const Expr *E, bool &Result) {
7380       if (!EvalOK || E->isValueDependent())
7381         return false;
7382       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
7383       return EvalOK;
7384     }
7385 
7386   private:
7387     SequenceChecker &Self;
7388     EvaluationTracker *Prev;
7389     bool EvalOK;
7390   } *EvalTracker;
7391 
7392   /// \brief Find the object which is produced by the specified expression,
7393   /// if any.
getObject(Expr * E,bool Mod) const7394   Object getObject(Expr *E, bool Mod) const {
7395     E = E->IgnoreParenCasts();
7396     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
7397       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
7398         return getObject(UO->getSubExpr(), Mod);
7399     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7400       if (BO->getOpcode() == BO_Comma)
7401         return getObject(BO->getRHS(), Mod);
7402       if (Mod && BO->isAssignmentOp())
7403         return getObject(BO->getLHS(), Mod);
7404     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
7405       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
7406       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
7407         return ME->getMemberDecl();
7408     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
7409       // FIXME: If this is a reference, map through to its value.
7410       return DRE->getDecl();
7411     return nullptr;
7412   }
7413 
7414   /// \brief Note that an object was modified or used by an expression.
addUsage(UsageInfo & UI,Object O,Expr * Ref,UsageKind UK)7415   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
7416     Usage &U = UI.Uses[UK];
7417     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
7418       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
7419         ModAsSideEffect->push_back(std::make_pair(O, U));
7420       U.Use = Ref;
7421       U.Seq = Region;
7422     }
7423   }
7424   /// \brief Check whether a modification or use conflicts with a prior usage.
checkUsage(Object O,UsageInfo & UI,Expr * Ref,UsageKind OtherKind,bool IsModMod)7425   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
7426                   bool IsModMod) {
7427     if (UI.Diagnosed)
7428       return;
7429 
7430     const Usage &U = UI.Uses[OtherKind];
7431     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
7432       return;
7433 
7434     Expr *Mod = U.Use;
7435     Expr *ModOrUse = Ref;
7436     if (OtherKind == UK_Use)
7437       std::swap(Mod, ModOrUse);
7438 
7439     SemaRef.Diag(Mod->getExprLoc(),
7440                  IsModMod ? diag::warn_unsequenced_mod_mod
7441                           : diag::warn_unsequenced_mod_use)
7442       << O << SourceRange(ModOrUse->getExprLoc());
7443     UI.Diagnosed = true;
7444   }
7445 
notePreUse(Object O,Expr * Use)7446   void notePreUse(Object O, Expr *Use) {
7447     UsageInfo &U = UsageMap[O];
7448     // Uses conflict with other modifications.
7449     checkUsage(O, U, Use, UK_ModAsValue, false);
7450   }
notePostUse(Object O,Expr * Use)7451   void notePostUse(Object O, Expr *Use) {
7452     UsageInfo &U = UsageMap[O];
7453     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
7454     addUsage(U, O, Use, UK_Use);
7455   }
7456 
notePreMod(Object O,Expr * Mod)7457   void notePreMod(Object O, Expr *Mod) {
7458     UsageInfo &U = UsageMap[O];
7459     // Modifications conflict with other modifications and with uses.
7460     checkUsage(O, U, Mod, UK_ModAsValue, true);
7461     checkUsage(O, U, Mod, UK_Use, false);
7462   }
notePostMod(Object O,Expr * Use,UsageKind UK)7463   void notePostMod(Object O, Expr *Use, UsageKind UK) {
7464     UsageInfo &U = UsageMap[O];
7465     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
7466     addUsage(U, O, Use, UK);
7467   }
7468 
7469 public:
SequenceChecker(Sema & S,Expr * E,SmallVectorImpl<Expr * > & WorkList)7470   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
7471       : Base(S.Context), SemaRef(S), Region(Tree.root()),
7472         ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
7473     Visit(E);
7474   }
7475 
VisitStmt(Stmt * S)7476   void VisitStmt(Stmt *S) {
7477     // Skip all statements which aren't expressions for now.
7478   }
7479 
VisitExpr(Expr * E)7480   void VisitExpr(Expr *E) {
7481     // By default, just recurse to evaluated subexpressions.
7482     Base::VisitStmt(E);
7483   }
7484 
VisitCastExpr(CastExpr * E)7485   void VisitCastExpr(CastExpr *E) {
7486     Object O = Object();
7487     if (E->getCastKind() == CK_LValueToRValue)
7488       O = getObject(E->getSubExpr(), false);
7489 
7490     if (O)
7491       notePreUse(O, E);
7492     VisitExpr(E);
7493     if (O)
7494       notePostUse(O, E);
7495   }
7496 
VisitBinComma(BinaryOperator * BO)7497   void VisitBinComma(BinaryOperator *BO) {
7498     // C++11 [expr.comma]p1:
7499     //   Every value computation and side effect associated with the left
7500     //   expression is sequenced before every value computation and side
7501     //   effect associated with the right expression.
7502     SequenceTree::Seq LHS = Tree.allocate(Region);
7503     SequenceTree::Seq RHS = Tree.allocate(Region);
7504     SequenceTree::Seq OldRegion = Region;
7505 
7506     {
7507       SequencedSubexpression SeqLHS(*this);
7508       Region = LHS;
7509       Visit(BO->getLHS());
7510     }
7511 
7512     Region = RHS;
7513     Visit(BO->getRHS());
7514 
7515     Region = OldRegion;
7516 
7517     // Forget that LHS and RHS are sequenced. They are both unsequenced
7518     // with respect to other stuff.
7519     Tree.merge(LHS);
7520     Tree.merge(RHS);
7521   }
7522 
VisitBinAssign(BinaryOperator * BO)7523   void VisitBinAssign(BinaryOperator *BO) {
7524     // The modification is sequenced after the value computation of the LHS
7525     // and RHS, so check it before inspecting the operands and update the
7526     // map afterwards.
7527     Object O = getObject(BO->getLHS(), true);
7528     if (!O)
7529       return VisitExpr(BO);
7530 
7531     notePreMod(O, BO);
7532 
7533     // C++11 [expr.ass]p7:
7534     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
7535     //   only once.
7536     //
7537     // Therefore, for a compound assignment operator, O is considered used
7538     // everywhere except within the evaluation of E1 itself.
7539     if (isa<CompoundAssignOperator>(BO))
7540       notePreUse(O, BO);
7541 
7542     Visit(BO->getLHS());
7543 
7544     if (isa<CompoundAssignOperator>(BO))
7545       notePostUse(O, BO);
7546 
7547     Visit(BO->getRHS());
7548 
7549     // C++11 [expr.ass]p1:
7550     //   the assignment is sequenced [...] before the value computation of the
7551     //   assignment expression.
7552     // C11 6.5.16/3 has no such rule.
7553     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
7554                                                        : UK_ModAsSideEffect);
7555   }
VisitCompoundAssignOperator(CompoundAssignOperator * CAO)7556   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
7557     VisitBinAssign(CAO);
7558   }
7559 
VisitUnaryPreInc(UnaryOperator * UO)7560   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreDec(UnaryOperator * UO)7561   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
VisitUnaryPreIncDec(UnaryOperator * UO)7562   void VisitUnaryPreIncDec(UnaryOperator *UO) {
7563     Object O = getObject(UO->getSubExpr(), true);
7564     if (!O)
7565       return VisitExpr(UO);
7566 
7567     notePreMod(O, UO);
7568     Visit(UO->getSubExpr());
7569     // C++11 [expr.pre.incr]p1:
7570     //   the expression ++x is equivalent to x+=1
7571     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
7572                                                        : UK_ModAsSideEffect);
7573   }
7574 
VisitUnaryPostInc(UnaryOperator * UO)7575   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostDec(UnaryOperator * UO)7576   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
VisitUnaryPostIncDec(UnaryOperator * UO)7577   void VisitUnaryPostIncDec(UnaryOperator *UO) {
7578     Object O = getObject(UO->getSubExpr(), true);
7579     if (!O)
7580       return VisitExpr(UO);
7581 
7582     notePreMod(O, UO);
7583     Visit(UO->getSubExpr());
7584     notePostMod(O, UO, UK_ModAsSideEffect);
7585   }
7586 
7587   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
VisitBinLOr(BinaryOperator * BO)7588   void VisitBinLOr(BinaryOperator *BO) {
7589     // The side-effects of the LHS of an '&&' are sequenced before the
7590     // value computation of the RHS, and hence before the value computation
7591     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
7592     // as if they were unconditionally sequenced.
7593     EvaluationTracker Eval(*this);
7594     {
7595       SequencedSubexpression Sequenced(*this);
7596       Visit(BO->getLHS());
7597     }
7598 
7599     bool Result;
7600     if (Eval.evaluate(BO->getLHS(), Result)) {
7601       if (!Result)
7602         Visit(BO->getRHS());
7603     } else {
7604       // Check for unsequenced operations in the RHS, treating it as an
7605       // entirely separate evaluation.
7606       //
7607       // FIXME: If there are operations in the RHS which are unsequenced
7608       // with respect to operations outside the RHS, and those operations
7609       // are unconditionally evaluated, diagnose them.
7610       WorkList.push_back(BO->getRHS());
7611     }
7612   }
VisitBinLAnd(BinaryOperator * BO)7613   void VisitBinLAnd(BinaryOperator *BO) {
7614     EvaluationTracker Eval(*this);
7615     {
7616       SequencedSubexpression Sequenced(*this);
7617       Visit(BO->getLHS());
7618     }
7619 
7620     bool Result;
7621     if (Eval.evaluate(BO->getLHS(), Result)) {
7622       if (Result)
7623         Visit(BO->getRHS());
7624     } else {
7625       WorkList.push_back(BO->getRHS());
7626     }
7627   }
7628 
7629   // Only visit the condition, unless we can be sure which subexpression will
7630   // be chosen.
VisitAbstractConditionalOperator(AbstractConditionalOperator * CO)7631   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
7632     EvaluationTracker Eval(*this);
7633     {
7634       SequencedSubexpression Sequenced(*this);
7635       Visit(CO->getCond());
7636     }
7637 
7638     bool Result;
7639     if (Eval.evaluate(CO->getCond(), Result))
7640       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
7641     else {
7642       WorkList.push_back(CO->getTrueExpr());
7643       WorkList.push_back(CO->getFalseExpr());
7644     }
7645   }
7646 
VisitCallExpr(CallExpr * CE)7647   void VisitCallExpr(CallExpr *CE) {
7648     // C++11 [intro.execution]p15:
7649     //   When calling a function [...], every value computation and side effect
7650     //   associated with any argument expression, or with the postfix expression
7651     //   designating the called function, is sequenced before execution of every
7652     //   expression or statement in the body of the function [and thus before
7653     //   the value computation of its result].
7654     SequencedSubexpression Sequenced(*this);
7655     Base::VisitCallExpr(CE);
7656 
7657     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
7658   }
7659 
VisitCXXConstructExpr(CXXConstructExpr * CCE)7660   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
7661     // This is a call, so all subexpressions are sequenced before the result.
7662     SequencedSubexpression Sequenced(*this);
7663 
7664     if (!CCE->isListInitialization())
7665       return VisitExpr(CCE);
7666 
7667     // In C++11, list initializations are sequenced.
7668     SmallVector<SequenceTree::Seq, 32> Elts;
7669     SequenceTree::Seq Parent = Region;
7670     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
7671                                         E = CCE->arg_end();
7672          I != E; ++I) {
7673       Region = Tree.allocate(Parent);
7674       Elts.push_back(Region);
7675       Visit(*I);
7676     }
7677 
7678     // Forget that the initializers are sequenced.
7679     Region = Parent;
7680     for (unsigned I = 0; I < Elts.size(); ++I)
7681       Tree.merge(Elts[I]);
7682   }
7683 
VisitInitListExpr(InitListExpr * ILE)7684   void VisitInitListExpr(InitListExpr *ILE) {
7685     if (!SemaRef.getLangOpts().CPlusPlus11)
7686       return VisitExpr(ILE);
7687 
7688     // In C++11, list initializations are sequenced.
7689     SmallVector<SequenceTree::Seq, 32> Elts;
7690     SequenceTree::Seq Parent = Region;
7691     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
7692       Expr *E = ILE->getInit(I);
7693       if (!E) continue;
7694       Region = Tree.allocate(Parent);
7695       Elts.push_back(Region);
7696       Visit(E);
7697     }
7698 
7699     // Forget that the initializers are sequenced.
7700     Region = Parent;
7701     for (unsigned I = 0; I < Elts.size(); ++I)
7702       Tree.merge(Elts[I]);
7703   }
7704 };
7705 }
7706 
CheckUnsequencedOperations(Expr * E)7707 void Sema::CheckUnsequencedOperations(Expr *E) {
7708   SmallVector<Expr *, 8> WorkList;
7709   WorkList.push_back(E);
7710   while (!WorkList.empty()) {
7711     Expr *Item = WorkList.pop_back_val();
7712     SequenceChecker(*this, Item, WorkList);
7713   }
7714 }
7715 
CheckCompletedExpr(Expr * E,SourceLocation CheckLoc,bool IsConstexpr)7716 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
7717                               bool IsConstexpr) {
7718   CheckImplicitConversions(E, CheckLoc);
7719   CheckUnsequencedOperations(E);
7720   if (!IsConstexpr && !E->isValueDependent())
7721     CheckForIntOverflow(E);
7722 }
7723 
CheckBitFieldInitialization(SourceLocation InitLoc,FieldDecl * BitField,Expr * Init)7724 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
7725                                        FieldDecl *BitField,
7726                                        Expr *Init) {
7727   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
7728 }
7729 
diagnoseArrayStarInParamType(Sema & S,QualType PType,SourceLocation Loc)7730 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
7731                                          SourceLocation Loc) {
7732   if (!PType->isVariablyModifiedType())
7733     return;
7734   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
7735     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
7736     return;
7737   }
7738   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
7739     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
7740     return;
7741   }
7742   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
7743     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
7744     return;
7745   }
7746 
7747   const ArrayType *AT = S.Context.getAsArrayType(PType);
7748   if (!AT)
7749     return;
7750 
7751   if (AT->getSizeModifier() != ArrayType::Star) {
7752     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
7753     return;
7754   }
7755 
7756   S.Diag(Loc, diag::err_array_star_in_function_definition);
7757 }
7758 
7759 /// CheckParmsForFunctionDef - Check that the parameters of the given
7760 /// function are appropriate for the definition of a function. This
7761 /// takes care of any checks that cannot be performed on the
7762 /// declaration itself, e.g., that the types of each of the function
7763 /// parameters are complete.
CheckParmsForFunctionDef(ParmVarDecl * const * P,ParmVarDecl * const * PEnd,bool CheckParameterNames)7764 bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
7765                                     ParmVarDecl *const *PEnd,
7766                                     bool CheckParameterNames) {
7767   bool HasInvalidParm = false;
7768   for (; P != PEnd; ++P) {
7769     ParmVarDecl *Param = *P;
7770 
7771     // C99 6.7.5.3p4: the parameters in a parameter type list in a
7772     // function declarator that is part of a function definition of
7773     // that function shall not have incomplete type.
7774     //
7775     // This is also C++ [dcl.fct]p6.
7776     if (!Param->isInvalidDecl() &&
7777         RequireCompleteType(Param->getLocation(), Param->getType(),
7778                             diag::err_typecheck_decl_incomplete_type)) {
7779       Param->setInvalidDecl();
7780       HasInvalidParm = true;
7781     }
7782 
7783     // C99 6.9.1p5: If the declarator includes a parameter type list, the
7784     // declaration of each parameter shall include an identifier.
7785     if (CheckParameterNames &&
7786         Param->getIdentifier() == nullptr &&
7787         !Param->isImplicit() &&
7788         !getLangOpts().CPlusPlus)
7789       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
7790 
7791     // C99 6.7.5.3p12:
7792     //   If the function declarator is not part of a definition of that
7793     //   function, parameters may have incomplete type and may use the [*]
7794     //   notation in their sequences of declarator specifiers to specify
7795     //   variable length array types.
7796     QualType PType = Param->getOriginalType();
7797     // FIXME: This diagnostic should point the '[*]' if source-location
7798     // information is added for it.
7799     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
7800 
7801     // MSVC destroys objects passed by value in the callee.  Therefore a
7802     // function definition which takes such a parameter must be able to call the
7803     // object's destructor.  However, we don't perform any direct access check
7804     // on the dtor.
7805     if (getLangOpts().CPlusPlus && Context.getTargetInfo()
7806                                        .getCXXABI()
7807                                        .areArgsDestroyedLeftToRightInCallee()) {
7808       if (!Param->isInvalidDecl()) {
7809         if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
7810           CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
7811           if (!ClassDecl->isInvalidDecl() &&
7812               !ClassDecl->hasIrrelevantDestructor() &&
7813               !ClassDecl->isDependentContext()) {
7814             CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7815             MarkFunctionReferenced(Param->getLocation(), Destructor);
7816             DiagnoseUseOfDecl(Destructor, Param->getLocation());
7817           }
7818         }
7819       }
7820     }
7821   }
7822 
7823   return HasInvalidParm;
7824 }
7825 
7826 /// CheckCastAlign - Implements -Wcast-align, which warns when a
7827 /// pointer cast increases the alignment requirements.
CheckCastAlign(Expr * Op,QualType T,SourceRange TRange)7828 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
7829   // This is actually a lot of work to potentially be doing on every
7830   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
7831   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
7832     return;
7833 
7834   // Ignore dependent types.
7835   if (T->isDependentType() || Op->getType()->isDependentType())
7836     return;
7837 
7838   // Require that the destination be a pointer type.
7839   const PointerType *DestPtr = T->getAs<PointerType>();
7840   if (!DestPtr) return;
7841 
7842   // If the destination has alignment 1, we're done.
7843   QualType DestPointee = DestPtr->getPointeeType();
7844   if (DestPointee->isIncompleteType()) return;
7845   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
7846   if (DestAlign.isOne()) return;
7847 
7848   // Require that the source be a pointer type.
7849   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
7850   if (!SrcPtr) return;
7851   QualType SrcPointee = SrcPtr->getPointeeType();
7852 
7853   // Whitelist casts from cv void*.  We already implicitly
7854   // whitelisted casts to cv void*, since they have alignment 1.
7855   // Also whitelist casts involving incomplete types, which implicitly
7856   // includes 'void'.
7857   if (SrcPointee->isIncompleteType()) return;
7858 
7859   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
7860   if (SrcAlign >= DestAlign) return;
7861 
7862   Diag(TRange.getBegin(), diag::warn_cast_align)
7863     << Op->getType() << T
7864     << static_cast<unsigned>(SrcAlign.getQuantity())
7865     << static_cast<unsigned>(DestAlign.getQuantity())
7866     << TRange << Op->getSourceRange();
7867 }
7868 
getElementType(const Expr * BaseExpr)7869 static const Type* getElementType(const Expr *BaseExpr) {
7870   const Type* EltType = BaseExpr->getType().getTypePtr();
7871   if (EltType->isAnyPointerType())
7872     return EltType->getPointeeType().getTypePtr();
7873   else if (EltType->isArrayType())
7874     return EltType->getBaseElementTypeUnsafe();
7875   return EltType;
7876 }
7877 
7878 /// \brief Check whether this array fits the idiom of a size-one tail padded
7879 /// array member of a struct.
7880 ///
7881 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
7882 /// commonly used to emulate flexible arrays in C89 code.
IsTailPaddedMemberArray(Sema & S,llvm::APInt Size,const NamedDecl * ND)7883 static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
7884                                     const NamedDecl *ND) {
7885   if (Size != 1 || !ND) return false;
7886 
7887   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
7888   if (!FD) return false;
7889 
7890   // Don't consider sizes resulting from macro expansions or template argument
7891   // substitution to form C89 tail-padded arrays.
7892 
7893   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
7894   while (TInfo) {
7895     TypeLoc TL = TInfo->getTypeLoc();
7896     // Look through typedefs.
7897     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
7898       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
7899       TInfo = TDL->getTypeSourceInfo();
7900       continue;
7901     }
7902     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
7903       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
7904       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
7905         return false;
7906     }
7907     break;
7908   }
7909 
7910   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
7911   if (!RD) return false;
7912   if (RD->isUnion()) return false;
7913   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
7914     if (!CRD->isStandardLayout()) return false;
7915   }
7916 
7917   // See if this is the last field decl in the record.
7918   const Decl *D = FD;
7919   while ((D = D->getNextDeclInContext()))
7920     if (isa<FieldDecl>(D))
7921       return false;
7922   return true;
7923 }
7924 
CheckArrayAccess(const Expr * BaseExpr,const Expr * IndexExpr,const ArraySubscriptExpr * ASE,bool AllowOnePastEnd,bool IndexNegated)7925 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
7926                             const ArraySubscriptExpr *ASE,
7927                             bool AllowOnePastEnd, bool IndexNegated) {
7928   IndexExpr = IndexExpr->IgnoreParenImpCasts();
7929   if (IndexExpr->isValueDependent())
7930     return;
7931 
7932   const Type *EffectiveType = getElementType(BaseExpr);
7933   BaseExpr = BaseExpr->IgnoreParenCasts();
7934   const ConstantArrayType *ArrayTy =
7935     Context.getAsConstantArrayType(BaseExpr->getType());
7936   if (!ArrayTy)
7937     return;
7938 
7939   llvm::APSInt index;
7940   if (!IndexExpr->EvaluateAsInt(index, Context))
7941     return;
7942   if (IndexNegated)
7943     index = -index;
7944 
7945   const NamedDecl *ND = nullptr;
7946   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
7947     ND = dyn_cast<NamedDecl>(DRE->getDecl());
7948   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
7949     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
7950 
7951   if (index.isUnsigned() || !index.isNegative()) {
7952     llvm::APInt size = ArrayTy->getSize();
7953     if (!size.isStrictlyPositive())
7954       return;
7955 
7956     const Type* BaseType = getElementType(BaseExpr);
7957     if (BaseType != EffectiveType) {
7958       // Make sure we're comparing apples to apples when comparing index to size
7959       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
7960       uint64_t array_typesize = Context.getTypeSize(BaseType);
7961       // Handle ptrarith_typesize being zero, such as when casting to void*
7962       if (!ptrarith_typesize) ptrarith_typesize = 1;
7963       if (ptrarith_typesize != array_typesize) {
7964         // There's a cast to a different size type involved
7965         uint64_t ratio = array_typesize / ptrarith_typesize;
7966         // TODO: Be smarter about handling cases where array_typesize is not a
7967         // multiple of ptrarith_typesize
7968         if (ptrarith_typesize * ratio == array_typesize)
7969           size *= llvm::APInt(size.getBitWidth(), ratio);
7970       }
7971     }
7972 
7973     if (size.getBitWidth() > index.getBitWidth())
7974       index = index.zext(size.getBitWidth());
7975     else if (size.getBitWidth() < index.getBitWidth())
7976       size = size.zext(index.getBitWidth());
7977 
7978     // For array subscripting the index must be less than size, but for pointer
7979     // arithmetic also allow the index (offset) to be equal to size since
7980     // computing the next address after the end of the array is legal and
7981     // commonly done e.g. in C++ iterators and range-based for loops.
7982     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
7983       return;
7984 
7985     // Also don't warn for arrays of size 1 which are members of some
7986     // structure. These are often used to approximate flexible arrays in C89
7987     // code.
7988     if (IsTailPaddedMemberArray(*this, size, ND))
7989       return;
7990 
7991     // Suppress the warning if the subscript expression (as identified by the
7992     // ']' location) and the index expression are both from macro expansions
7993     // within a system header.
7994     if (ASE) {
7995       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
7996           ASE->getRBracketLoc());
7997       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
7998         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
7999             IndexExpr->getLocStart());
8000         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
8001           return;
8002       }
8003     }
8004 
8005     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
8006     if (ASE)
8007       DiagID = diag::warn_array_index_exceeds_bounds;
8008 
8009     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
8010                         PDiag(DiagID) << index.toString(10, true)
8011                           << size.toString(10, true)
8012                           << (unsigned)size.getLimitedValue(~0U)
8013                           << IndexExpr->getSourceRange());
8014   } else {
8015     unsigned DiagID = diag::warn_array_index_precedes_bounds;
8016     if (!ASE) {
8017       DiagID = diag::warn_ptr_arith_precedes_bounds;
8018       if (index.isNegative()) index = -index;
8019     }
8020 
8021     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
8022                         PDiag(DiagID) << index.toString(10, true)
8023                           << IndexExpr->getSourceRange());
8024   }
8025 
8026   if (!ND) {
8027     // Try harder to find a NamedDecl to point at in the note.
8028     while (const ArraySubscriptExpr *ASE =
8029            dyn_cast<ArraySubscriptExpr>(BaseExpr))
8030       BaseExpr = ASE->getBase()->IgnoreParenCasts();
8031     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
8032       ND = dyn_cast<NamedDecl>(DRE->getDecl());
8033     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
8034       ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
8035   }
8036 
8037   if (ND)
8038     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
8039                         PDiag(diag::note_array_index_out_of_bounds)
8040                           << ND->getDeclName());
8041 }
8042 
CheckArrayAccess(const Expr * expr)8043 void Sema::CheckArrayAccess(const Expr *expr) {
8044   int AllowOnePastEnd = 0;
8045   while (expr) {
8046     expr = expr->IgnoreParenImpCasts();
8047     switch (expr->getStmtClass()) {
8048       case Stmt::ArraySubscriptExprClass: {
8049         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
8050         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
8051                          AllowOnePastEnd > 0);
8052         return;
8053       }
8054       case Stmt::UnaryOperatorClass: {
8055         // Only unwrap the * and & unary operators
8056         const UnaryOperator *UO = cast<UnaryOperator>(expr);
8057         expr = UO->getSubExpr();
8058         switch (UO->getOpcode()) {
8059           case UO_AddrOf:
8060             AllowOnePastEnd++;
8061             break;
8062           case UO_Deref:
8063             AllowOnePastEnd--;
8064             break;
8065           default:
8066             return;
8067         }
8068         break;
8069       }
8070       case Stmt::ConditionalOperatorClass: {
8071         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
8072         if (const Expr *lhs = cond->getLHS())
8073           CheckArrayAccess(lhs);
8074         if (const Expr *rhs = cond->getRHS())
8075           CheckArrayAccess(rhs);
8076         return;
8077       }
8078       default:
8079         return;
8080     }
8081   }
8082 }
8083 
8084 //===--- CHECK: Objective-C retain cycles ----------------------------------//
8085 
8086 namespace {
8087   struct RetainCycleOwner {
RetainCycleOwner__anon817ecb130b11::RetainCycleOwner8088     RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
8089     VarDecl *Variable;
8090     SourceRange Range;
8091     SourceLocation Loc;
8092     bool Indirect;
8093 
setLocsFrom__anon817ecb130b11::RetainCycleOwner8094     void setLocsFrom(Expr *e) {
8095       Loc = e->getExprLoc();
8096       Range = e->getSourceRange();
8097     }
8098   };
8099 }
8100 
8101 /// Consider whether capturing the given variable can possibly lead to
8102 /// a retain cycle.
considerVariable(VarDecl * var,Expr * ref,RetainCycleOwner & owner)8103 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
8104   // In ARC, it's captured strongly iff the variable has __strong
8105   // lifetime.  In MRR, it's captured strongly if the variable is
8106   // __block and has an appropriate type.
8107   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
8108     return false;
8109 
8110   owner.Variable = var;
8111   if (ref)
8112     owner.setLocsFrom(ref);
8113   return true;
8114 }
8115 
findRetainCycleOwner(Sema & S,Expr * e,RetainCycleOwner & owner)8116 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
8117   while (true) {
8118     e = e->IgnoreParens();
8119     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
8120       switch (cast->getCastKind()) {
8121       case CK_BitCast:
8122       case CK_LValueBitCast:
8123       case CK_LValueToRValue:
8124       case CK_ARCReclaimReturnedObject:
8125         e = cast->getSubExpr();
8126         continue;
8127 
8128       default:
8129         return false;
8130       }
8131     }
8132 
8133     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
8134       ObjCIvarDecl *ivar = ref->getDecl();
8135       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
8136         return false;
8137 
8138       // Try to find a retain cycle in the base.
8139       if (!findRetainCycleOwner(S, ref->getBase(), owner))
8140         return false;
8141 
8142       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
8143       owner.Indirect = true;
8144       return true;
8145     }
8146 
8147     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
8148       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
8149       if (!var) return false;
8150       return considerVariable(var, ref, owner);
8151     }
8152 
8153     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
8154       if (member->isArrow()) return false;
8155 
8156       // Don't count this as an indirect ownership.
8157       e = member->getBase();
8158       continue;
8159     }
8160 
8161     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
8162       // Only pay attention to pseudo-objects on property references.
8163       ObjCPropertyRefExpr *pre
8164         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
8165                                               ->IgnoreParens());
8166       if (!pre) return false;
8167       if (pre->isImplicitProperty()) return false;
8168       ObjCPropertyDecl *property = pre->getExplicitProperty();
8169       if (!property->isRetaining() &&
8170           !(property->getPropertyIvarDecl() &&
8171             property->getPropertyIvarDecl()->getType()
8172               .getObjCLifetime() == Qualifiers::OCL_Strong))
8173           return false;
8174 
8175       owner.Indirect = true;
8176       if (pre->isSuperReceiver()) {
8177         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
8178         if (!owner.Variable)
8179           return false;
8180         owner.Loc = pre->getLocation();
8181         owner.Range = pre->getSourceRange();
8182         return true;
8183       }
8184       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
8185                               ->getSourceExpr());
8186       continue;
8187     }
8188 
8189     // Array ivars?
8190 
8191     return false;
8192   }
8193 }
8194 
8195 namespace {
8196   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
FindCaptureVisitor__anon817ecb130c11::FindCaptureVisitor8197     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
8198       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
8199         Context(Context), Variable(variable), Capturer(nullptr),
8200         VarWillBeReased(false) {}
8201     ASTContext &Context;
8202     VarDecl *Variable;
8203     Expr *Capturer;
8204     bool VarWillBeReased;
8205 
VisitDeclRefExpr__anon817ecb130c11::FindCaptureVisitor8206     void VisitDeclRefExpr(DeclRefExpr *ref) {
8207       if (ref->getDecl() == Variable && !Capturer)
8208         Capturer = ref;
8209     }
8210 
VisitObjCIvarRefExpr__anon817ecb130c11::FindCaptureVisitor8211     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
8212       if (Capturer) return;
8213       Visit(ref->getBase());
8214       if (Capturer && ref->isFreeIvar())
8215         Capturer = ref;
8216     }
8217 
VisitBlockExpr__anon817ecb130c11::FindCaptureVisitor8218     void VisitBlockExpr(BlockExpr *block) {
8219       // Look inside nested blocks
8220       if (block->getBlockDecl()->capturesVariable(Variable))
8221         Visit(block->getBlockDecl()->getBody());
8222     }
8223 
VisitOpaqueValueExpr__anon817ecb130c11::FindCaptureVisitor8224     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
8225       if (Capturer) return;
8226       if (OVE->getSourceExpr())
8227         Visit(OVE->getSourceExpr());
8228     }
VisitBinaryOperator__anon817ecb130c11::FindCaptureVisitor8229     void VisitBinaryOperator(BinaryOperator *BinOp) {
8230       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
8231         return;
8232       Expr *LHS = BinOp->getLHS();
8233       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
8234         if (DRE->getDecl() != Variable)
8235           return;
8236         if (Expr *RHS = BinOp->getRHS()) {
8237           RHS = RHS->IgnoreParenCasts();
8238           llvm::APSInt Value;
8239           VarWillBeReased =
8240             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
8241         }
8242       }
8243     }
8244   };
8245 }
8246 
8247 /// Check whether the given argument is a block which captures a
8248 /// variable.
findCapturingExpr(Sema & S,Expr * e,RetainCycleOwner & owner)8249 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
8250   assert(owner.Variable && owner.Loc.isValid());
8251 
8252   e = e->IgnoreParenCasts();
8253 
8254   // Look through [^{...} copy] and Block_copy(^{...}).
8255   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
8256     Selector Cmd = ME->getSelector();
8257     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
8258       e = ME->getInstanceReceiver();
8259       if (!e)
8260         return nullptr;
8261       e = e->IgnoreParenCasts();
8262     }
8263   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
8264     if (CE->getNumArgs() == 1) {
8265       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
8266       if (Fn) {
8267         const IdentifierInfo *FnI = Fn->getIdentifier();
8268         if (FnI && FnI->isStr("_Block_copy")) {
8269           e = CE->getArg(0)->IgnoreParenCasts();
8270         }
8271       }
8272     }
8273   }
8274 
8275   BlockExpr *block = dyn_cast<BlockExpr>(e);
8276   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
8277     return nullptr;
8278 
8279   FindCaptureVisitor visitor(S.Context, owner.Variable);
8280   visitor.Visit(block->getBlockDecl()->getBody());
8281   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
8282 }
8283 
diagnoseRetainCycle(Sema & S,Expr * capturer,RetainCycleOwner & owner)8284 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
8285                                 RetainCycleOwner &owner) {
8286   assert(capturer);
8287   assert(owner.Variable && owner.Loc.isValid());
8288 
8289   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
8290     << owner.Variable << capturer->getSourceRange();
8291   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
8292     << owner.Indirect << owner.Range;
8293 }
8294 
8295 /// Check for a keyword selector that starts with the word 'add' or
8296 /// 'set'.
isSetterLikeSelector(Selector sel)8297 static bool isSetterLikeSelector(Selector sel) {
8298   if (sel.isUnarySelector()) return false;
8299 
8300   StringRef str = sel.getNameForSlot(0);
8301   while (!str.empty() && str.front() == '_') str = str.substr(1);
8302   if (str.startswith("set"))
8303     str = str.substr(3);
8304   else if (str.startswith("add")) {
8305     // Specially whitelist 'addOperationWithBlock:'.
8306     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
8307       return false;
8308     str = str.substr(3);
8309   }
8310   else
8311     return false;
8312 
8313   if (str.empty()) return true;
8314   return !isLowercase(str.front());
8315 }
8316 
GetNSMutableArrayArgumentIndex(Sema & S,ObjCMessageExpr * Message)8317 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
8318                                                     ObjCMessageExpr *Message) {
8319   if (S.NSMutableArrayPointer.isNull()) {
8320     IdentifierInfo *NSMutableArrayId =
8321       S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSMutableArray);
8322     NamedDecl *IF = S.LookupSingleName(S.TUScope, NSMutableArrayId,
8323                                        Message->getLocStart(),
8324                                        Sema::LookupOrdinaryName);
8325     ObjCInterfaceDecl *InterfaceDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
8326     if (!InterfaceDecl) {
8327       return None;
8328     }
8329     QualType NSMutableArrayObject =
8330       S.Context.getObjCInterfaceType(InterfaceDecl);
8331     S.NSMutableArrayPointer =
8332       S.Context.getObjCObjectPointerType(NSMutableArrayObject);
8333   }
8334 
8335   if (S.NSMutableArrayPointer != Message->getReceiverType()) {
8336     return None;
8337   }
8338 
8339   Selector Sel = Message->getSelector();
8340 
8341   Optional<NSAPI::NSArrayMethodKind> MKOpt =
8342     S.NSAPIObj->getNSArrayMethodKind(Sel);
8343   if (!MKOpt) {
8344     return None;
8345   }
8346 
8347   NSAPI::NSArrayMethodKind MK = *MKOpt;
8348 
8349   switch (MK) {
8350     case NSAPI::NSMutableArr_addObject:
8351     case NSAPI::NSMutableArr_insertObjectAtIndex:
8352     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
8353       return 0;
8354     case NSAPI::NSMutableArr_replaceObjectAtIndex:
8355       return 1;
8356 
8357     default:
8358       return None;
8359   }
8360 
8361   return None;
8362 }
8363 
8364 static
GetNSMutableDictionaryArgumentIndex(Sema & S,ObjCMessageExpr * Message)8365 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
8366                                                   ObjCMessageExpr *Message) {
8367 
8368   if (S.NSMutableDictionaryPointer.isNull()) {
8369     IdentifierInfo *NSMutableDictionaryId =
8370       S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSMutableDictionary);
8371     NamedDecl *IF = S.LookupSingleName(S.TUScope, NSMutableDictionaryId,
8372                                        Message->getLocStart(),
8373                                        Sema::LookupOrdinaryName);
8374     ObjCInterfaceDecl *InterfaceDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
8375     if (!InterfaceDecl) {
8376       return None;
8377     }
8378     QualType NSMutableDictionaryObject =
8379       S.Context.getObjCInterfaceType(InterfaceDecl);
8380     S.NSMutableDictionaryPointer =
8381       S.Context.getObjCObjectPointerType(NSMutableDictionaryObject);
8382   }
8383 
8384   if (S.NSMutableDictionaryPointer != Message->getReceiverType()) {
8385     return None;
8386   }
8387 
8388   Selector Sel = Message->getSelector();
8389 
8390   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
8391     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
8392   if (!MKOpt) {
8393     return None;
8394   }
8395 
8396   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
8397 
8398   switch (MK) {
8399     case NSAPI::NSMutableDict_setObjectForKey:
8400     case NSAPI::NSMutableDict_setValueForKey:
8401     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
8402       return 0;
8403 
8404     default:
8405       return None;
8406   }
8407 
8408   return None;
8409 }
8410 
GetNSSetArgumentIndex(Sema & S,ObjCMessageExpr * Message)8411 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
8412 
8413   ObjCInterfaceDecl *InterfaceDecl;
8414   if (S.NSMutableSetPointer.isNull()) {
8415     IdentifierInfo *NSMutableSetId =
8416       S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSMutableSet);
8417     NamedDecl *IF = S.LookupSingleName(S.TUScope, NSMutableSetId,
8418                                        Message->getLocStart(),
8419                                        Sema::LookupOrdinaryName);
8420     InterfaceDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
8421     if (InterfaceDecl) {
8422       QualType NSMutableSetObject =
8423         S.Context.getObjCInterfaceType(InterfaceDecl);
8424       S.NSMutableSetPointer =
8425         S.Context.getObjCObjectPointerType(NSMutableSetObject);
8426     }
8427   }
8428 
8429   if (S.NSCountedSetPointer.isNull()) {
8430     IdentifierInfo *NSCountedSetId =
8431       S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSCountedSet);
8432     NamedDecl *IF = S.LookupSingleName(S.TUScope, NSCountedSetId,
8433                                        Message->getLocStart(),
8434                                        Sema::LookupOrdinaryName);
8435     InterfaceDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
8436     if (InterfaceDecl) {
8437       QualType NSCountedSetObject =
8438         S.Context.getObjCInterfaceType(InterfaceDecl);
8439       S.NSCountedSetPointer =
8440         S.Context.getObjCObjectPointerType(NSCountedSetObject);
8441     }
8442   }
8443 
8444   if (S.NSMutableOrderedSetPointer.isNull()) {
8445     IdentifierInfo *NSOrderedSetId =
8446       S.NSAPIObj->getNSClassId(NSAPI::ClassId_NSMutableOrderedSet);
8447     NamedDecl *IF = S.LookupSingleName(S.TUScope, NSOrderedSetId,
8448                                        Message->getLocStart(),
8449                                        Sema::LookupOrdinaryName);
8450     InterfaceDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
8451     if (InterfaceDecl) {
8452       QualType NSOrderedSetObject =
8453         S.Context.getObjCInterfaceType(InterfaceDecl);
8454       S.NSMutableOrderedSetPointer =
8455         S.Context.getObjCObjectPointerType(NSOrderedSetObject);
8456     }
8457   }
8458 
8459   QualType ReceiverType = Message->getReceiverType();
8460 
8461   bool IsMutableSet = !S.NSMutableSetPointer.isNull() &&
8462     ReceiverType == S.NSMutableSetPointer;
8463   bool IsMutableOrderedSet = !S.NSMutableOrderedSetPointer.isNull() &&
8464     ReceiverType == S.NSMutableOrderedSetPointer;
8465   bool IsCountedSet = !S.NSCountedSetPointer.isNull() &&
8466     ReceiverType == S.NSCountedSetPointer;
8467 
8468   if (!IsMutableSet && !IsMutableOrderedSet && !IsCountedSet) {
8469     return None;
8470   }
8471 
8472   Selector Sel = Message->getSelector();
8473 
8474   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
8475   if (!MKOpt) {
8476     return None;
8477   }
8478 
8479   NSAPI::NSSetMethodKind MK = *MKOpt;
8480 
8481   switch (MK) {
8482     case NSAPI::NSMutableSet_addObject:
8483     case NSAPI::NSOrderedSet_setObjectAtIndex:
8484     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
8485     case NSAPI::NSOrderedSet_insertObjectAtIndex:
8486       return 0;
8487     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
8488       return 1;
8489   }
8490 
8491   return None;
8492 }
8493 
CheckObjCCircularContainer(ObjCMessageExpr * Message)8494 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
8495   if (!Message->isInstanceMessage()) {
8496     return;
8497   }
8498 
8499   Optional<int> ArgOpt;
8500 
8501   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
8502       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
8503       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
8504     return;
8505   }
8506 
8507   int ArgIndex = *ArgOpt;
8508 
8509   Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
8510   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
8511     Receiver = OE->getSourceExpr()->IgnoreImpCasts();
8512   }
8513 
8514   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
8515   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
8516     Arg = OE->getSourceExpr()->IgnoreImpCasts();
8517   }
8518 
8519   if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
8520     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
8521       if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
8522         ValueDecl *Decl = ReceiverRE->getDecl();
8523         Diag(Message->getSourceRange().getBegin(),
8524              diag::warn_objc_circular_container)
8525           << Decl->getName();
8526         Diag(Decl->getLocation(),
8527              diag::note_objc_circular_container_declared_here)
8528           << Decl->getName();
8529       }
8530     }
8531   } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
8532     if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
8533       if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
8534         ObjCIvarDecl *Decl = IvarRE->getDecl();
8535         Diag(Message->getSourceRange().getBegin(),
8536              diag::warn_objc_circular_container)
8537           << Decl->getName();
8538         Diag(Decl->getLocation(),
8539              diag::note_objc_circular_container_declared_here)
8540           << Decl->getName();
8541       }
8542     }
8543   }
8544 
8545 }
8546 
8547 /// Check a message send to see if it's likely to cause a retain cycle.
checkRetainCycles(ObjCMessageExpr * msg)8548 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
8549   // Only check instance methods whose selector looks like a setter.
8550   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
8551     return;
8552 
8553   // Try to find a variable that the receiver is strongly owned by.
8554   RetainCycleOwner owner;
8555   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
8556     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
8557       return;
8558   } else {
8559     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
8560     owner.Variable = getCurMethodDecl()->getSelfDecl();
8561     owner.Loc = msg->getSuperLoc();
8562     owner.Range = msg->getSuperLoc();
8563   }
8564 
8565   // Check whether the receiver is captured by any of the arguments.
8566   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
8567     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
8568       return diagnoseRetainCycle(*this, capturer, owner);
8569 }
8570 
8571 /// Check a property assign to see if it's likely to cause a retain cycle.
checkRetainCycles(Expr * receiver,Expr * argument)8572 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
8573   RetainCycleOwner owner;
8574   if (!findRetainCycleOwner(*this, receiver, owner))
8575     return;
8576 
8577   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
8578     diagnoseRetainCycle(*this, capturer, owner);
8579 }
8580 
checkRetainCycles(VarDecl * Var,Expr * Init)8581 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
8582   RetainCycleOwner Owner;
8583   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
8584     return;
8585 
8586   // Because we don't have an expression for the variable, we have to set the
8587   // location explicitly here.
8588   Owner.Loc = Var->getLocation();
8589   Owner.Range = Var->getSourceRange();
8590 
8591   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
8592     diagnoseRetainCycle(*this, Capturer, Owner);
8593 }
8594 
checkUnsafeAssignLiteral(Sema & S,SourceLocation Loc,Expr * RHS,bool isProperty)8595 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
8596                                      Expr *RHS, bool isProperty) {
8597   // Check if RHS is an Objective-C object literal, which also can get
8598   // immediately zapped in a weak reference.  Note that we explicitly
8599   // allow ObjCStringLiterals, since those are designed to never really die.
8600   RHS = RHS->IgnoreParenImpCasts();
8601 
8602   // This enum needs to match with the 'select' in
8603   // warn_objc_arc_literal_assign (off-by-1).
8604   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
8605   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
8606     return false;
8607 
8608   S.Diag(Loc, diag::warn_arc_literal_assign)
8609     << (unsigned) Kind
8610     << (isProperty ? 0 : 1)
8611     << RHS->getSourceRange();
8612 
8613   return true;
8614 }
8615 
checkUnsafeAssignObject(Sema & S,SourceLocation Loc,Qualifiers::ObjCLifetime LT,Expr * RHS,bool isProperty)8616 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
8617                                     Qualifiers::ObjCLifetime LT,
8618                                     Expr *RHS, bool isProperty) {
8619   // Strip off any implicit cast added to get to the one ARC-specific.
8620   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
8621     if (cast->getCastKind() == CK_ARCConsumeObject) {
8622       S.Diag(Loc, diag::warn_arc_retained_assign)
8623         << (LT == Qualifiers::OCL_ExplicitNone)
8624         << (isProperty ? 0 : 1)
8625         << RHS->getSourceRange();
8626       return true;
8627     }
8628     RHS = cast->getSubExpr();
8629   }
8630 
8631   if (LT == Qualifiers::OCL_Weak &&
8632       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
8633     return true;
8634 
8635   return false;
8636 }
8637 
checkUnsafeAssigns(SourceLocation Loc,QualType LHS,Expr * RHS)8638 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
8639                               QualType LHS, Expr *RHS) {
8640   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
8641 
8642   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
8643     return false;
8644 
8645   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
8646     return true;
8647 
8648   return false;
8649 }
8650 
checkUnsafeExprAssigns(SourceLocation Loc,Expr * LHS,Expr * RHS)8651 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
8652                               Expr *LHS, Expr *RHS) {
8653   QualType LHSType;
8654   // PropertyRef on LHS type need be directly obtained from
8655   // its declaration as it has a PseudoType.
8656   ObjCPropertyRefExpr *PRE
8657     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
8658   if (PRE && !PRE->isImplicitProperty()) {
8659     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
8660     if (PD)
8661       LHSType = PD->getType();
8662   }
8663 
8664   if (LHSType.isNull())
8665     LHSType = LHS->getType();
8666 
8667   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
8668 
8669   if (LT == Qualifiers::OCL_Weak) {
8670     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
8671       getCurFunction()->markSafeWeakUse(LHS);
8672   }
8673 
8674   if (checkUnsafeAssigns(Loc, LHSType, RHS))
8675     return;
8676 
8677   // FIXME. Check for other life times.
8678   if (LT != Qualifiers::OCL_None)
8679     return;
8680 
8681   if (PRE) {
8682     if (PRE->isImplicitProperty())
8683       return;
8684     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
8685     if (!PD)
8686       return;
8687 
8688     unsigned Attributes = PD->getPropertyAttributes();
8689     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
8690       // when 'assign' attribute was not explicitly specified
8691       // by user, ignore it and rely on property type itself
8692       // for lifetime info.
8693       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
8694       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
8695           LHSType->isObjCRetainableType())
8696         return;
8697 
8698       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
8699         if (cast->getCastKind() == CK_ARCConsumeObject) {
8700           Diag(Loc, diag::warn_arc_retained_property_assign)
8701           << RHS->getSourceRange();
8702           return;
8703         }
8704         RHS = cast->getSubExpr();
8705       }
8706     }
8707     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
8708       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
8709         return;
8710     }
8711   }
8712 }
8713 
8714 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
8715 
8716 namespace {
ShouldDiagnoseEmptyStmtBody(const SourceManager & SourceMgr,SourceLocation StmtLoc,const NullStmt * Body)8717 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
8718                                  SourceLocation StmtLoc,
8719                                  const NullStmt *Body) {
8720   // Do not warn if the body is a macro that expands to nothing, e.g:
8721   //
8722   // #define CALL(x)
8723   // if (condition)
8724   //   CALL(0);
8725   //
8726   if (Body->hasLeadingEmptyMacro())
8727     return false;
8728 
8729   // Get line numbers of statement and body.
8730   bool StmtLineInvalid;
8731   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
8732                                                       &StmtLineInvalid);
8733   if (StmtLineInvalid)
8734     return false;
8735 
8736   bool BodyLineInvalid;
8737   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
8738                                                       &BodyLineInvalid);
8739   if (BodyLineInvalid)
8740     return false;
8741 
8742   // Warn if null statement and body are on the same line.
8743   if (StmtLine != BodyLine)
8744     return false;
8745 
8746   return true;
8747 }
8748 } // Unnamed namespace
8749 
DiagnoseEmptyStmtBody(SourceLocation StmtLoc,const Stmt * Body,unsigned DiagID)8750 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
8751                                  const Stmt *Body,
8752                                  unsigned DiagID) {
8753   // Since this is a syntactic check, don't emit diagnostic for template
8754   // instantiations, this just adds noise.
8755   if (CurrentInstantiationScope)
8756     return;
8757 
8758   // The body should be a null statement.
8759   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
8760   if (!NBody)
8761     return;
8762 
8763   // Do the usual checks.
8764   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
8765     return;
8766 
8767   Diag(NBody->getSemiLoc(), DiagID);
8768   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
8769 }
8770 
DiagnoseEmptyLoopBody(const Stmt * S,const Stmt * PossibleBody)8771 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
8772                                  const Stmt *PossibleBody) {
8773   assert(!CurrentInstantiationScope); // Ensured by caller
8774 
8775   SourceLocation StmtLoc;
8776   const Stmt *Body;
8777   unsigned DiagID;
8778   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
8779     StmtLoc = FS->getRParenLoc();
8780     Body = FS->getBody();
8781     DiagID = diag::warn_empty_for_body;
8782   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
8783     StmtLoc = WS->getCond()->getSourceRange().getEnd();
8784     Body = WS->getBody();
8785     DiagID = diag::warn_empty_while_body;
8786   } else
8787     return; // Neither `for' nor `while'.
8788 
8789   // The body should be a null statement.
8790   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
8791   if (!NBody)
8792     return;
8793 
8794   // Skip expensive checks if diagnostic is disabled.
8795   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
8796     return;
8797 
8798   // Do the usual checks.
8799   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
8800     return;
8801 
8802   // `for(...);' and `while(...);' are popular idioms, so in order to keep
8803   // noise level low, emit diagnostics only if for/while is followed by a
8804   // CompoundStmt, e.g.:
8805   //    for (int i = 0; i < n; i++);
8806   //    {
8807   //      a(i);
8808   //    }
8809   // or if for/while is followed by a statement with more indentation
8810   // than for/while itself:
8811   //    for (int i = 0; i < n; i++);
8812   //      a(i);
8813   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
8814   if (!ProbableTypo) {
8815     bool BodyColInvalid;
8816     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
8817                              PossibleBody->getLocStart(),
8818                              &BodyColInvalid);
8819     if (BodyColInvalid)
8820       return;
8821 
8822     bool StmtColInvalid;
8823     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
8824                              S->getLocStart(),
8825                              &StmtColInvalid);
8826     if (StmtColInvalid)
8827       return;
8828 
8829     if (BodyCol > StmtCol)
8830       ProbableTypo = true;
8831   }
8832 
8833   if (ProbableTypo) {
8834     Diag(NBody->getSemiLoc(), DiagID);
8835     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
8836   }
8837 }
8838 
8839 //===--- CHECK: Warn on self move with std::move. -------------------------===//
8840 
8841 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
DiagnoseSelfMove(const Expr * LHSExpr,const Expr * RHSExpr,SourceLocation OpLoc)8842 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
8843                              SourceLocation OpLoc) {
8844 
8845   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
8846     return;
8847 
8848   if (!ActiveTemplateInstantiations.empty())
8849     return;
8850 
8851   // Strip parens and casts away.
8852   LHSExpr = LHSExpr->IgnoreParenImpCasts();
8853   RHSExpr = RHSExpr->IgnoreParenImpCasts();
8854 
8855   // Check for a call expression
8856   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
8857   if (!CE || CE->getNumArgs() != 1)
8858     return;
8859 
8860   // Check for a call to std::move
8861   const FunctionDecl *FD = CE->getDirectCallee();
8862   if (!FD || !FD->isInStdNamespace() || !FD->getIdentifier() ||
8863       !FD->getIdentifier()->isStr("move"))
8864     return;
8865 
8866   // Get argument from std::move
8867   RHSExpr = CE->getArg(0);
8868 
8869   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
8870   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
8871 
8872   // Two DeclRefExpr's, check that the decls are the same.
8873   if (LHSDeclRef && RHSDeclRef) {
8874     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
8875       return;
8876     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
8877         RHSDeclRef->getDecl()->getCanonicalDecl())
8878       return;
8879 
8880     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
8881                                         << LHSExpr->getSourceRange()
8882                                         << RHSExpr->getSourceRange();
8883     return;
8884   }
8885 
8886   // Member variables require a different approach to check for self moves.
8887   // MemberExpr's are the same if every nested MemberExpr refers to the same
8888   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
8889   // the base Expr's are CXXThisExpr's.
8890   const Expr *LHSBase = LHSExpr;
8891   const Expr *RHSBase = RHSExpr;
8892   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
8893   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
8894   if (!LHSME || !RHSME)
8895     return;
8896 
8897   while (LHSME && RHSME) {
8898     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
8899         RHSME->getMemberDecl()->getCanonicalDecl())
8900       return;
8901 
8902     LHSBase = LHSME->getBase();
8903     RHSBase = RHSME->getBase();
8904     LHSME = dyn_cast<MemberExpr>(LHSBase);
8905     RHSME = dyn_cast<MemberExpr>(RHSBase);
8906   }
8907 
8908   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
8909   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
8910   if (LHSDeclRef && RHSDeclRef) {
8911     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
8912       return;
8913     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
8914         RHSDeclRef->getDecl()->getCanonicalDecl())
8915       return;
8916 
8917     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
8918                                         << LHSExpr->getSourceRange()
8919                                         << RHSExpr->getSourceRange();
8920     return;
8921   }
8922 
8923   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
8924     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
8925                                         << LHSExpr->getSourceRange()
8926                                         << RHSExpr->getSourceRange();
8927 }
8928 
8929 //===--- Layout compatibility ----------------------------------------------//
8930 
8931 namespace {
8932 
8933 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
8934 
8935 /// \brief Check if two enumeration types are layout-compatible.
isLayoutCompatible(ASTContext & C,EnumDecl * ED1,EnumDecl * ED2)8936 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
8937   // C++11 [dcl.enum] p8:
8938   // Two enumeration types are layout-compatible if they have the same
8939   // underlying type.
8940   return ED1->isComplete() && ED2->isComplete() &&
8941          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
8942 }
8943 
8944 /// \brief Check if two fields are layout-compatible.
isLayoutCompatible(ASTContext & C,FieldDecl * Field1,FieldDecl * Field2)8945 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
8946   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
8947     return false;
8948 
8949   if (Field1->isBitField() != Field2->isBitField())
8950     return false;
8951 
8952   if (Field1->isBitField()) {
8953     // Make sure that the bit-fields are the same length.
8954     unsigned Bits1 = Field1->getBitWidthValue(C);
8955     unsigned Bits2 = Field2->getBitWidthValue(C);
8956 
8957     if (Bits1 != Bits2)
8958       return false;
8959   }
8960 
8961   return true;
8962 }
8963 
8964 /// \brief Check if two standard-layout structs are layout-compatible.
8965 /// (C++11 [class.mem] p17)
isLayoutCompatibleStruct(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)8966 bool isLayoutCompatibleStruct(ASTContext &C,
8967                               RecordDecl *RD1,
8968                               RecordDecl *RD2) {
8969   // If both records are C++ classes, check that base classes match.
8970   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
8971     // If one of records is a CXXRecordDecl we are in C++ mode,
8972     // thus the other one is a CXXRecordDecl, too.
8973     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
8974     // Check number of base classes.
8975     if (D1CXX->getNumBases() != D2CXX->getNumBases())
8976       return false;
8977 
8978     // Check the base classes.
8979     for (CXXRecordDecl::base_class_const_iterator
8980                Base1 = D1CXX->bases_begin(),
8981            BaseEnd1 = D1CXX->bases_end(),
8982               Base2 = D2CXX->bases_begin();
8983          Base1 != BaseEnd1;
8984          ++Base1, ++Base2) {
8985       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
8986         return false;
8987     }
8988   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
8989     // If only RD2 is a C++ class, it should have zero base classes.
8990     if (D2CXX->getNumBases() > 0)
8991       return false;
8992   }
8993 
8994   // Check the fields.
8995   RecordDecl::field_iterator Field2 = RD2->field_begin(),
8996                              Field2End = RD2->field_end(),
8997                              Field1 = RD1->field_begin(),
8998                              Field1End = RD1->field_end();
8999   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
9000     if (!isLayoutCompatible(C, *Field1, *Field2))
9001       return false;
9002   }
9003   if (Field1 != Field1End || Field2 != Field2End)
9004     return false;
9005 
9006   return true;
9007 }
9008 
9009 /// \brief Check if two standard-layout unions are layout-compatible.
9010 /// (C++11 [class.mem] p18)
isLayoutCompatibleUnion(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)9011 bool isLayoutCompatibleUnion(ASTContext &C,
9012                              RecordDecl *RD1,
9013                              RecordDecl *RD2) {
9014   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
9015   for (auto *Field2 : RD2->fields())
9016     UnmatchedFields.insert(Field2);
9017 
9018   for (auto *Field1 : RD1->fields()) {
9019     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
9020         I = UnmatchedFields.begin(),
9021         E = UnmatchedFields.end();
9022 
9023     for ( ; I != E; ++I) {
9024       if (isLayoutCompatible(C, Field1, *I)) {
9025         bool Result = UnmatchedFields.erase(*I);
9026         (void) Result;
9027         assert(Result);
9028         break;
9029       }
9030     }
9031     if (I == E)
9032       return false;
9033   }
9034 
9035   return UnmatchedFields.empty();
9036 }
9037 
isLayoutCompatible(ASTContext & C,RecordDecl * RD1,RecordDecl * RD2)9038 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
9039   if (RD1->isUnion() != RD2->isUnion())
9040     return false;
9041 
9042   if (RD1->isUnion())
9043     return isLayoutCompatibleUnion(C, RD1, RD2);
9044   else
9045     return isLayoutCompatibleStruct(C, RD1, RD2);
9046 }
9047 
9048 /// \brief Check if two types are layout-compatible in C++11 sense.
isLayoutCompatible(ASTContext & C,QualType T1,QualType T2)9049 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
9050   if (T1.isNull() || T2.isNull())
9051     return false;
9052 
9053   // C++11 [basic.types] p11:
9054   // If two types T1 and T2 are the same type, then T1 and T2 are
9055   // layout-compatible types.
9056   if (C.hasSameType(T1, T2))
9057     return true;
9058 
9059   T1 = T1.getCanonicalType().getUnqualifiedType();
9060   T2 = T2.getCanonicalType().getUnqualifiedType();
9061 
9062   const Type::TypeClass TC1 = T1->getTypeClass();
9063   const Type::TypeClass TC2 = T2->getTypeClass();
9064 
9065   if (TC1 != TC2)
9066     return false;
9067 
9068   if (TC1 == Type::Enum) {
9069     return isLayoutCompatible(C,
9070                               cast<EnumType>(T1)->getDecl(),
9071                               cast<EnumType>(T2)->getDecl());
9072   } else if (TC1 == Type::Record) {
9073     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
9074       return false;
9075 
9076     return isLayoutCompatible(C,
9077                               cast<RecordType>(T1)->getDecl(),
9078                               cast<RecordType>(T2)->getDecl());
9079   }
9080 
9081   return false;
9082 }
9083 }
9084 
9085 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
9086 
9087 namespace {
9088 /// \brief Given a type tag expression find the type tag itself.
9089 ///
9090 /// \param TypeExpr Type tag expression, as it appears in user's code.
9091 ///
9092 /// \param VD Declaration of an identifier that appears in a type tag.
9093 ///
9094 /// \param MagicValue Type tag magic value.
FindTypeTagExpr(const Expr * TypeExpr,const ASTContext & Ctx,const ValueDecl ** VD,uint64_t * MagicValue)9095 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
9096                      const ValueDecl **VD, uint64_t *MagicValue) {
9097   while(true) {
9098     if (!TypeExpr)
9099       return false;
9100 
9101     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
9102 
9103     switch (TypeExpr->getStmtClass()) {
9104     case Stmt::UnaryOperatorClass: {
9105       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
9106       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
9107         TypeExpr = UO->getSubExpr();
9108         continue;
9109       }
9110       return false;
9111     }
9112 
9113     case Stmt::DeclRefExprClass: {
9114       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
9115       *VD = DRE->getDecl();
9116       return true;
9117     }
9118 
9119     case Stmt::IntegerLiteralClass: {
9120       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
9121       llvm::APInt MagicValueAPInt = IL->getValue();
9122       if (MagicValueAPInt.getActiveBits() <= 64) {
9123         *MagicValue = MagicValueAPInt.getZExtValue();
9124         return true;
9125       } else
9126         return false;
9127     }
9128 
9129     case Stmt::BinaryConditionalOperatorClass:
9130     case Stmt::ConditionalOperatorClass: {
9131       const AbstractConditionalOperator *ACO =
9132           cast<AbstractConditionalOperator>(TypeExpr);
9133       bool Result;
9134       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
9135         if (Result)
9136           TypeExpr = ACO->getTrueExpr();
9137         else
9138           TypeExpr = ACO->getFalseExpr();
9139         continue;
9140       }
9141       return false;
9142     }
9143 
9144     case Stmt::BinaryOperatorClass: {
9145       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
9146       if (BO->getOpcode() == BO_Comma) {
9147         TypeExpr = BO->getRHS();
9148         continue;
9149       }
9150       return false;
9151     }
9152 
9153     default:
9154       return false;
9155     }
9156   }
9157 }
9158 
9159 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
9160 ///
9161 /// \param TypeExpr Expression that specifies a type tag.
9162 ///
9163 /// \param MagicValues Registered magic values.
9164 ///
9165 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
9166 ///        kind.
9167 ///
9168 /// \param TypeInfo Information about the corresponding C type.
9169 ///
9170 /// \returns true if the corresponding C type was found.
GetMatchingCType(const IdentifierInfo * ArgumentKind,const Expr * TypeExpr,const ASTContext & Ctx,const llvm::DenseMap<Sema::TypeTagMagicValue,Sema::TypeTagData> * MagicValues,bool & FoundWrongKind,Sema::TypeTagData & TypeInfo)9171 bool GetMatchingCType(
9172         const IdentifierInfo *ArgumentKind,
9173         const Expr *TypeExpr, const ASTContext &Ctx,
9174         const llvm::DenseMap<Sema::TypeTagMagicValue,
9175                              Sema::TypeTagData> *MagicValues,
9176         bool &FoundWrongKind,
9177         Sema::TypeTagData &TypeInfo) {
9178   FoundWrongKind = false;
9179 
9180   // Variable declaration that has type_tag_for_datatype attribute.
9181   const ValueDecl *VD = nullptr;
9182 
9183   uint64_t MagicValue;
9184 
9185   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
9186     return false;
9187 
9188   if (VD) {
9189     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
9190       if (I->getArgumentKind() != ArgumentKind) {
9191         FoundWrongKind = true;
9192         return false;
9193       }
9194       TypeInfo.Type = I->getMatchingCType();
9195       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
9196       TypeInfo.MustBeNull = I->getMustBeNull();
9197       return true;
9198     }
9199     return false;
9200   }
9201 
9202   if (!MagicValues)
9203     return false;
9204 
9205   llvm::DenseMap<Sema::TypeTagMagicValue,
9206                  Sema::TypeTagData>::const_iterator I =
9207       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
9208   if (I == MagicValues->end())
9209     return false;
9210 
9211   TypeInfo = I->second;
9212   return true;
9213 }
9214 } // unnamed namespace
9215 
RegisterTypeTagForDatatype(const IdentifierInfo * ArgumentKind,uint64_t MagicValue,QualType Type,bool LayoutCompatible,bool MustBeNull)9216 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
9217                                       uint64_t MagicValue, QualType Type,
9218                                       bool LayoutCompatible,
9219                                       bool MustBeNull) {
9220   if (!TypeTagForDatatypeMagicValues)
9221     TypeTagForDatatypeMagicValues.reset(
9222         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
9223 
9224   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
9225   (*TypeTagForDatatypeMagicValues)[Magic] =
9226       TypeTagData(Type, LayoutCompatible, MustBeNull);
9227 }
9228 
9229 namespace {
IsSameCharType(QualType T1,QualType T2)9230 bool IsSameCharType(QualType T1, QualType T2) {
9231   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
9232   if (!BT1)
9233     return false;
9234 
9235   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
9236   if (!BT2)
9237     return false;
9238 
9239   BuiltinType::Kind T1Kind = BT1->getKind();
9240   BuiltinType::Kind T2Kind = BT2->getKind();
9241 
9242   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
9243          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
9244          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
9245          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
9246 }
9247 } // unnamed namespace
9248 
CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr * Attr,const Expr * const * ExprArgs)9249 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
9250                                     const Expr * const *ExprArgs) {
9251   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
9252   bool IsPointerAttr = Attr->getIsPointer();
9253 
9254   const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
9255   bool FoundWrongKind;
9256   TypeTagData TypeInfo;
9257   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
9258                         TypeTagForDatatypeMagicValues.get(),
9259                         FoundWrongKind, TypeInfo)) {
9260     if (FoundWrongKind)
9261       Diag(TypeTagExpr->getExprLoc(),
9262            diag::warn_type_tag_for_datatype_wrong_kind)
9263         << TypeTagExpr->getSourceRange();
9264     return;
9265   }
9266 
9267   const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
9268   if (IsPointerAttr) {
9269     // Skip implicit cast of pointer to `void *' (as a function argument).
9270     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
9271       if (ICE->getType()->isVoidPointerType() &&
9272           ICE->getCastKind() == CK_BitCast)
9273         ArgumentExpr = ICE->getSubExpr();
9274   }
9275   QualType ArgumentType = ArgumentExpr->getType();
9276 
9277   // Passing a `void*' pointer shouldn't trigger a warning.
9278   if (IsPointerAttr && ArgumentType->isVoidPointerType())
9279     return;
9280 
9281   if (TypeInfo.MustBeNull) {
9282     // Type tag with matching void type requires a null pointer.
9283     if (!ArgumentExpr->isNullPointerConstant(Context,
9284                                              Expr::NPC_ValueDependentIsNotNull)) {
9285       Diag(ArgumentExpr->getExprLoc(),
9286            diag::warn_type_safety_null_pointer_required)
9287           << ArgumentKind->getName()
9288           << ArgumentExpr->getSourceRange()
9289           << TypeTagExpr->getSourceRange();
9290     }
9291     return;
9292   }
9293 
9294   QualType RequiredType = TypeInfo.Type;
9295   if (IsPointerAttr)
9296     RequiredType = Context.getPointerType(RequiredType);
9297 
9298   bool mismatch = false;
9299   if (!TypeInfo.LayoutCompatible) {
9300     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
9301 
9302     // C++11 [basic.fundamental] p1:
9303     // Plain char, signed char, and unsigned char are three distinct types.
9304     //
9305     // But we treat plain `char' as equivalent to `signed char' or `unsigned
9306     // char' depending on the current char signedness mode.
9307     if (mismatch)
9308       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
9309                                            RequiredType->getPointeeType())) ||
9310           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
9311         mismatch = false;
9312   } else
9313     if (IsPointerAttr)
9314       mismatch = !isLayoutCompatible(Context,
9315                                      ArgumentType->getPointeeType(),
9316                                      RequiredType->getPointeeType());
9317     else
9318       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
9319 
9320   if (mismatch)
9321     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
9322         << ArgumentType << ArgumentKind
9323         << TypeInfo.LayoutCompatible << RequiredType
9324         << ArgumentExpr->getSourceRange()
9325         << TypeTagExpr->getSourceRange();
9326 }
9327 
9328