1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #include <cstdlib>
12 #include <cerrno>
13 #include <ctime>
14 #include <iostream>
15 #include <fstream>
16 #include <string>
17 #include <sstream>
18 #include <vector>
19 #include <typeinfo>
20
21 // The following includes of STL headers have to be done _before_ the
22 // definition of macros min() and max(). The reason is that many STL
23 // implementations will not work properly as the min and max symbols collide
24 // with the STL functions std:min() and std::max(). The STL headers may check
25 // for the macro definition of min/max and issue a warning or undefine the
26 // macros.
27 //
28 // Still, Windows defines min() and max() in windef.h as part of the regular
29 // Windows system interfaces and many other Windows APIs depend on these
30 // macros being available. To prevent the macro expansion of min/max and to
31 // make Eigen compatible with the Windows environment all function calls of
32 // std::min() and std::max() have to be written with parenthesis around the
33 // function name.
34 //
35 // All STL headers used by Eigen should be included here. Because main.h is
36 // included before any Eigen header and because the STL headers are guarded
37 // against multiple inclusions, no STL header will see our own min/max macro
38 // definitions.
39 #include <limits>
40 #include <algorithm>
41 #include <complex>
42 #include <deque>
43 #include <queue>
44 #include <list>
45
46 // To test that all calls from Eigen code to std::min() and std::max() are
47 // protected by parenthesis against macro expansion, the min()/max() macros
48 // are defined here and any not-parenthesized min/max call will cause a
49 // compiler error.
50 #define min(A,B) please_protect_your_min_with_parentheses
51 #define max(A,B) please_protect_your_max_with_parentheses
52
53 #define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes
54 // B0 is defined in POSIX header termios.h
55 #define B0 FORBIDDEN_IDENTIFIER
56
57
58 // shuts down ICC's remark #593: variable "XXX" was set but never used
59 #define TEST_SET_BUT_UNUSED_VARIABLE(X) X = X + 0;
60
61 // the following file is automatically generated by cmake
62 #include "split_test_helper.h"
63
64 #ifdef NDEBUG
65 #undef NDEBUG
66 #endif
67
68 // On windows CE, NDEBUG is automatically defined <assert.h> if NDEBUG is not defined.
69 #ifndef DEBUG
70 #define DEBUG
71 #endif
72
73 // bounds integer values for AltiVec
74 #ifdef __ALTIVEC__
75 #define EIGEN_MAKING_DOCS
76 #endif
77
78 #ifndef EIGEN_TEST_FUNC
79 #error EIGEN_TEST_FUNC must be defined
80 #endif
81
82 #define DEFAULT_REPEAT 10
83
84 namespace Eigen
85 {
86 static std::vector<std::string> g_test_stack;
87 static int g_repeat;
88 static unsigned int g_seed;
89 static bool g_has_set_repeat, g_has_set_seed;
90 }
91
92 #define EI_PP_MAKE_STRING2(S) #S
93 #define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S)
94
95 #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "")
96
97 #ifndef EIGEN_NO_ASSERTION_CHECKING
98
99 namespace Eigen
100 {
101 static const bool should_raise_an_assert = false;
102
103 // Used to avoid to raise two exceptions at a time in which
104 // case the exception is not properly caught.
105 // This may happen when a second exceptions is triggered in a destructor.
106 static bool no_more_assert = false;
107 static bool report_on_cerr_on_assert_failure = true;
108
109 struct eigen_assert_exception
110 {
eigen_assert_exceptioneigen_assert_exception111 eigen_assert_exception(void) {}
~eigen_assert_exceptioneigen_assert_exception112 ~eigen_assert_exception() { Eigen::no_more_assert = false; }
113 };
114 }
115 // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while
116 // one should have been, then the list of excecuted assertions is printed out.
117 //
118 // EIGEN_DEBUG_ASSERTS is not enabled by default as it
119 // significantly increases the compilation time
120 // and might even introduce side effects that would hide
121 // some memory errors.
122 #ifdef EIGEN_DEBUG_ASSERTS
123
124 namespace Eigen
125 {
126 namespace internal
127 {
128 static bool push_assert = false;
129 }
130 static std::vector<std::string> eigen_assert_list;
131 }
132 #define eigen_assert(a) \
133 if( (!(a)) && (!no_more_assert) ) \
134 { \
135 if(report_on_cerr_on_assert_failure) \
136 std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \
137 Eigen::no_more_assert = true; \
138 throw Eigen::eigen_assert_exception(); \
139 } \
140 else if (Eigen::internal::push_assert) \
141 { \
142 eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__) " (" EI_PP_MAKE_STRING(__LINE__) ") : " #a) ); \
143 }
144
145 #define VERIFY_RAISES_ASSERT(a) \
146 { \
147 Eigen::no_more_assert = false; \
148 Eigen::eigen_assert_list.clear(); \
149 Eigen::internal::push_assert = true; \
150 Eigen::report_on_cerr_on_assert_failure = false; \
151 try { \
152 a; \
153 std::cerr << "One of the following asserts should have been triggered:\n"; \
154 for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai) \
155 std::cerr << " " << eigen_assert_list[ai] << "\n"; \
156 VERIFY(Eigen::should_raise_an_assert && # a); \
157 } catch (Eigen::eigen_assert_exception) { \
158 Eigen::internal::push_assert = false; VERIFY(true); \
159 } \
160 Eigen::report_on_cerr_on_assert_failure = true; \
161 Eigen::internal::push_assert = false; \
162 }
163
164 #else // EIGEN_DEBUG_ASSERTS
165 // see bug 89. The copy_bool here is working around a bug in gcc <= 4.3
166 #define eigen_assert(a) \
167 if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\
168 { \
169 Eigen::no_more_assert = true; \
170 if(report_on_cerr_on_assert_failure) \
171 eigen_plain_assert(a); \
172 else \
173 throw Eigen::eigen_assert_exception(); \
174 }
175 #define VERIFY_RAISES_ASSERT(a) { \
176 Eigen::no_more_assert = false; \
177 Eigen::report_on_cerr_on_assert_failure = false; \
178 try { \
179 a; \
180 VERIFY(Eigen::should_raise_an_assert && # a); \
181 } \
182 catch (Eigen::eigen_assert_exception&) { VERIFY(true); } \
183 Eigen::report_on_cerr_on_assert_failure = true; \
184 }
185
186 #endif // EIGEN_DEBUG_ASSERTS
187
188 #define EIGEN_USE_CUSTOM_ASSERT
189
190 #else // EIGEN_NO_ASSERTION_CHECKING
191
192 #define VERIFY_RAISES_ASSERT(a) {}
193
194 #endif // EIGEN_NO_ASSERTION_CHECKING
195
196
197 #define EIGEN_INTERNAL_DEBUGGING
198 #include <Eigen/QR> // required for createRandomPIMatrixOfRank
199
verify_impl(bool condition,const char * testname,const char * file,int line,const char * condition_as_string)200 inline void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string)
201 {
202 if (!condition)
203 {
204 std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")"
205 << std::endl << " " << condition_as_string << std::endl;
206 std::cerr << "Stack:\n";
207 const int test_stack_size = static_cast<int>(Eigen::g_test_stack.size());
208 for(int i=test_stack_size-1; i>=0; --i)
209 std::cerr << " - " << Eigen::g_test_stack[i] << "\n";
210 std::cerr << "\n";
211 abort();
212 }
213 }
214
215 #define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a))
216
217 #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b))
218 #define VERIFY_IS_APPROX(a, b) VERIFY(test_isApprox(a, b))
219 #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b))
220 #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b))
221 #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b))
222 #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b))
223 #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b))
224
225 #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a))
226
227 #define CALL_SUBTEST(FUNC) do { \
228 g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \
229 FUNC; \
230 g_test_stack.pop_back(); \
231 } while (0)
232
233
234 namespace Eigen {
235
test_precision()236 template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
237 template<> inline float test_precision<float>() { return 1e-3f; }
238 template<> inline double test_precision<double>() { return 1e-6; }
239 template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
240 template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }
241 template<> inline long double test_precision<long double>() { return 1e-6; }
242
test_isApprox(const int & a,const int & b)243 inline bool test_isApprox(const int& a, const int& b)
244 { return internal::isApprox(a, b, test_precision<int>()); }
test_isMuchSmallerThan(const int & a,const int & b)245 inline bool test_isMuchSmallerThan(const int& a, const int& b)
246 { return internal::isMuchSmallerThan(a, b, test_precision<int>()); }
test_isApproxOrLessThan(const int & a,const int & b)247 inline bool test_isApproxOrLessThan(const int& a, const int& b)
248 { return internal::isApproxOrLessThan(a, b, test_precision<int>()); }
249
test_isApprox(const float & a,const float & b)250 inline bool test_isApprox(const float& a, const float& b)
251 { return internal::isApprox(a, b, test_precision<float>()); }
test_isMuchSmallerThan(const float & a,const float & b)252 inline bool test_isMuchSmallerThan(const float& a, const float& b)
253 { return internal::isMuchSmallerThan(a, b, test_precision<float>()); }
test_isApproxOrLessThan(const float & a,const float & b)254 inline bool test_isApproxOrLessThan(const float& a, const float& b)
255 { return internal::isApproxOrLessThan(a, b, test_precision<float>()); }
test_isApprox(const double & a,const double & b)256 inline bool test_isApprox(const double& a, const double& b)
257 { return internal::isApprox(a, b, test_precision<double>()); }
258
test_isMuchSmallerThan(const double & a,const double & b)259 inline bool test_isMuchSmallerThan(const double& a, const double& b)
260 { return internal::isMuchSmallerThan(a, b, test_precision<double>()); }
test_isApproxOrLessThan(const double & a,const double & b)261 inline bool test_isApproxOrLessThan(const double& a, const double& b)
262 { return internal::isApproxOrLessThan(a, b, test_precision<double>()); }
263
test_isApprox(const std::complex<float> & a,const std::complex<float> & b)264 inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b)
265 { return internal::isApprox(a, b, test_precision<std::complex<float> >()); }
test_isMuchSmallerThan(const std::complex<float> & a,const std::complex<float> & b)266 inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b)
267 { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); }
268
test_isApprox(const std::complex<double> & a,const std::complex<double> & b)269 inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b)
270 { return internal::isApprox(a, b, test_precision<std::complex<double> >()); }
test_isMuchSmallerThan(const std::complex<double> & a,const std::complex<double> & b)271 inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b)
272 { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); }
273
test_isApprox(const long double & a,const long double & b)274 inline bool test_isApprox(const long double& a, const long double& b)
275 {
276 bool ret = internal::isApprox(a, b, test_precision<long double>());
277 if (!ret) std::cerr
278 << std::endl << " actual = " << a
279 << std::endl << " expected = " << b << std::endl << std::endl;
280 return ret;
281 }
282
test_isMuchSmallerThan(const long double & a,const long double & b)283 inline bool test_isMuchSmallerThan(const long double& a, const long double& b)
284 { return internal::isMuchSmallerThan(a, b, test_precision<long double>()); }
test_isApproxOrLessThan(const long double & a,const long double & b)285 inline bool test_isApproxOrLessThan(const long double& a, const long double& b)
286 { return internal::isApproxOrLessThan(a, b, test_precision<long double>()); }
287
288 template<typename Type1, typename Type2>
test_isApprox(const Type1 & a,const Type2 & b)289 inline bool test_isApprox(const Type1& a, const Type2& b)
290 {
291 return a.isApprox(b, test_precision<typename Type1::Scalar>());
292 }
293
294 // The idea behind this function is to compare the two scalars a and b where
295 // the scalar ref is a hint about the expected order of magnitude of a and b.
296 // WARNING: the scalar a and b must be positive
297 // Therefore, if for some reason a and b are very small compared to ref,
298 // we won't issue a false negative.
299 // This test could be: abs(a-b) <= eps * ref
300 // However, it seems that simply comparing a+ref and b+ref is more sensitive to true error.
301 template<typename Scalar,typename ScalarRef>
test_isApproxWithRef(const Scalar & a,const Scalar & b,const ScalarRef & ref)302 inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref)
303 {
304 return test_isApprox(a+ref, b+ref);
305 }
306
307 template<typename Derived1, typename Derived2>
test_isMuchSmallerThan(const MatrixBase<Derived1> & m1,const MatrixBase<Derived2> & m2)308 inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1,
309 const MatrixBase<Derived2>& m2)
310 {
311 return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>());
312 }
313
314 template<typename Derived>
test_isMuchSmallerThan(const MatrixBase<Derived> & m,const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real & s)315 inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m,
316 const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s)
317 {
318 return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>());
319 }
320
321 template<typename Derived>
test_isUnitary(const MatrixBase<Derived> & m)322 inline bool test_isUnitary(const MatrixBase<Derived>& m)
323 {
324 return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>());
325 }
326
327 // Forward declaration to avoid ICC warning
328 template<typename T, typename U>
329 bool test_is_equal(const T& actual, const U& expected);
330
331 template<typename T, typename U>
test_is_equal(const T & actual,const U & expected)332 bool test_is_equal(const T& actual, const U& expected)
333 {
334 if (actual==expected)
335 return true;
336 // false:
337 std::cerr
338 << std::endl << " actual = " << actual
339 << std::endl << " expected = " << expected << std::endl << std::endl;
340 return false;
341 }
342
343 /** Creates a random Partial Isometry matrix of given rank.
344 *
345 * A partial isometry is a matrix all of whose singular values are either 0 or 1.
346 * This is very useful to test rank-revealing algorithms.
347 */
348 // Forward declaration to avoid ICC warning
349 template<typename MatrixType>
350 void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m);
351 template<typename MatrixType>
createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank,typename MatrixType::Index rows,typename MatrixType::Index cols,MatrixType & m)352 void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m)
353 {
354 typedef typename internal::traits<MatrixType>::Index Index;
355 typedef typename internal::traits<MatrixType>::Scalar Scalar;
356 enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
357
358 typedef Matrix<Scalar, Dynamic, 1> VectorType;
359 typedef Matrix<Scalar, Rows, Rows> MatrixAType;
360 typedef Matrix<Scalar, Cols, Cols> MatrixBType;
361
362 if(desired_rank == 0)
363 {
364 m.setZero(rows,cols);
365 return;
366 }
367
368 if(desired_rank == 1)
369 {
370 // here we normalize the vectors to get a partial isometry
371 m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose();
372 return;
373 }
374
375 MatrixAType a = MatrixAType::Random(rows,rows);
376 MatrixType d = MatrixType::Identity(rows,cols);
377 MatrixBType b = MatrixBType::Random(cols,cols);
378
379 // set the diagonal such that only desired_rank non-zero entries reamain
380 const Index diag_size = (std::min)(d.rows(),d.cols());
381 if(diag_size != desired_rank)
382 d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank);
383
384 HouseholderQR<MatrixAType> qra(a);
385 HouseholderQR<MatrixBType> qrb(b);
386 m = qra.householderQ() * d * qrb.householderQ();
387 }
388
389 // Forward declaration to avoid ICC warning
390 template<typename PermutationVectorType>
391 void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size);
392 template<typename PermutationVectorType>
randomPermutationVector(PermutationVectorType & v,typename PermutationVectorType::Index size)393 void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size)
394 {
395 typedef typename PermutationVectorType::Index Index;
396 typedef typename PermutationVectorType::Scalar Scalar;
397 v.resize(size);
398 for(Index i = 0; i < size; ++i) v(i) = Scalar(i);
399 if(size == 1) return;
400 for(Index n = 0; n < 3 * size; ++n)
401 {
402 Index i = internal::random<Index>(0, size-1);
403 Index j;
404 do j = internal::random<Index>(0, size-1); while(j==i);
405 std::swap(v(i), v(j));
406 }
407 }
408
isNotNaN(const T & x)409 template<typename T> bool isNotNaN(const T& x)
410 {
411 return x==x;
412 }
413
isNaN(const T & x)414 template<typename T> bool isNaN(const T& x)
415 {
416 return x!=x;
417 }
418
isInf(const T & x)419 template<typename T> bool isInf(const T& x)
420 {
421 return x > NumTraits<T>::highest();
422 }
423
isMinusInf(const T & x)424 template<typename T> bool isMinusInf(const T& x)
425 {
426 return x < NumTraits<T>::lowest();
427 }
428
429 } // end namespace Eigen
430
431 template<typename T> struct GetDifferentType;
432
433 template<> struct GetDifferentType<float> { typedef double type; };
434 template<> struct GetDifferentType<double> { typedef float type; };
435 template<typename T> struct GetDifferentType<std::complex<T> >
436 { typedef std::complex<typename GetDifferentType<T>::type> type; };
437
438 // Forward declaration to avoid ICC warning
439 template<typename T> std::string type_name();
440 template<typename T> std::string type_name() { return "other"; }
441 template<> std::string type_name<float>() { return "float"; }
442 template<> std::string type_name<double>() { return "double"; }
443 template<> std::string type_name<int>() { return "int"; }
444 template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
445 template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
446 template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
447
448 // forward declaration of the main test function
449 void EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
450
451 using namespace Eigen;
452
453 inline void set_repeat_from_string(const char *str)
454 {
455 errno = 0;
456 g_repeat = int(strtoul(str, 0, 10));
457 if(errno || g_repeat <= 0)
458 {
459 std::cout << "Invalid repeat value " << str << std::endl;
460 exit(EXIT_FAILURE);
461 }
462 g_has_set_repeat = true;
463 }
464
465 inline void set_seed_from_string(const char *str)
466 {
467 errno = 0;
468 g_seed = int(strtoul(str, 0, 10));
469 if(errno || g_seed == 0)
470 {
471 std::cout << "Invalid seed value " << str << std::endl;
472 exit(EXIT_FAILURE);
473 }
474 g_has_set_seed = true;
475 }
476
477 int main(int argc, char *argv[])
478 {
479 g_has_set_repeat = false;
480 g_has_set_seed = false;
481 bool need_help = false;
482
483 for(int i = 1; i < argc; i++)
484 {
485 if(argv[i][0] == 'r')
486 {
487 if(g_has_set_repeat)
488 {
489 std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
490 return 1;
491 }
492 set_repeat_from_string(argv[i]+1);
493 }
494 else if(argv[i][0] == 's')
495 {
496 if(g_has_set_seed)
497 {
498 std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl;
499 return 1;
500 }
501 set_seed_from_string(argv[i]+1);
502 }
503 else
504 {
505 need_help = true;
506 }
507 }
508
509 if(need_help)
510 {
511 std::cout << "This test application takes the following optional arguments:" << std::endl;
512 std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl;
513 std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl;
514 std::cout << std::endl;
515 std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl;
516 std::cout << "will be used as default values for these parameters." << std::endl;
517 return 1;
518 }
519
520 char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT");
521 if(!g_has_set_repeat && env_EIGEN_REPEAT)
522 set_repeat_from_string(env_EIGEN_REPEAT);
523 char *env_EIGEN_SEED = getenv("EIGEN_SEED");
524 if(!g_has_set_seed && env_EIGEN_SEED)
525 set_seed_from_string(env_EIGEN_SEED);
526
527 if(!g_has_set_seed) g_seed = (unsigned int) time(NULL);
528 if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT;
529
530 std::cout << "Initializing random number generator with seed " << g_seed << std::endl;
531 std::stringstream ss;
532 ss << "Seed: " << g_seed;
533 g_test_stack.push_back(ss.str());
534 srand(g_seed);
535 std::cout << "Repeating each test " << g_repeat << " times" << std::endl;
536
537 Eigen::g_test_stack.push_back(std::string(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC)));
538
539 EIGEN_CAT(test_,EIGEN_TEST_FUNC)();
540 return 0;
541 }
542
543 // These warning are disabled here such that they are still ON when parsing Eigen's header files.
544 #if defined __INTEL_COMPILER
545 // remark #383: value copied to temporary, reference to temporary used
546 // -> this warning is raised even for legal usage as: g_test_stack.push_back("foo"); where g_test_stack is a std::vector<std::string>
547 // remark #1418: external function definition with no prior declaration
548 // -> this warning is raised for all our test functions. Declaring them static would fix the issue.
549 // warning #279: controlling expression is constant
550 // remark #1572: floating-point equality and inequality comparisons are unreliable
551 #pragma warning disable 279 383 1418 1572
552 #endif
553