1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/cipher.h>
58
59 #include <assert.h>
60 #include <string.h>
61
62 #include <openssl/err.h>
63 #include <openssl/mem.h>
64 #include <openssl/obj.h>
65
66 #include "internal.h"
67
68
EVP_get_cipherbynid(int nid)69 const EVP_CIPHER *EVP_get_cipherbynid(int nid) {
70 switch (nid) {
71 case NID_des_ede3_cbc:
72 return EVP_des_ede3_cbc();
73 case NID_des_ede_cbc:
74 return EVP_des_cbc();
75 case NID_aes_128_cbc:
76 return EVP_aes_128_cbc();
77 case NID_aes_256_cbc:
78 return EVP_aes_256_cbc();
79 default:
80 return NULL;
81 }
82 }
83
EVP_CIPHER_CTX_init(EVP_CIPHER_CTX * ctx)84 void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx) {
85 memset(ctx, 0, sizeof(EVP_CIPHER_CTX));
86 }
87
EVP_CIPHER_CTX_new(void)88 EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) {
89 EVP_CIPHER_CTX *ctx = OPENSSL_malloc(sizeof(EVP_CIPHER_CTX));
90 if (ctx) {
91 EVP_CIPHER_CTX_init(ctx);
92 }
93 return ctx;
94 }
95
EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX * c)96 int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *c) {
97 if (c->cipher != NULL) {
98 if (c->cipher->cleanup) {
99 c->cipher->cleanup(c);
100 }
101 OPENSSL_cleanse(c->cipher_data, c->cipher->ctx_size);
102 }
103 OPENSSL_free(c->cipher_data);
104
105 memset(c, 0, sizeof(EVP_CIPHER_CTX));
106 return 1;
107 }
108
EVP_CIPHER_CTX_free(EVP_CIPHER_CTX * ctx)109 void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) {
110 if (ctx) {
111 EVP_CIPHER_CTX_cleanup(ctx);
112 OPENSSL_free(ctx);
113 }
114 }
115
EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX * out,const EVP_CIPHER_CTX * in)116 int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) {
117 if (in == NULL || in->cipher == NULL) {
118 OPENSSL_PUT_ERROR(CIPHER, EVP_CIPHER_CTX_copy, CIPHER_R_INPUT_NOT_INITIALIZED);
119 return 0;
120 }
121
122 EVP_CIPHER_CTX_cleanup(out);
123 memcpy(out, in, sizeof(EVP_CIPHER_CTX));
124
125 if (in->cipher_data && in->cipher->ctx_size) {
126 out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size);
127 if (!out->cipher_data) {
128 OPENSSL_PUT_ERROR(CIPHER, EVP_CIPHER_CTX_copy, ERR_R_MALLOC_FAILURE);
129 return 0;
130 }
131 memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size);
132 }
133
134 if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) {
135 return in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out);
136 }
137
138 return 1;
139 }
140
EVP_CipherInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * engine,const uint8_t * key,const uint8_t * iv,int enc)141 int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
142 ENGINE *engine, const uint8_t *key, const uint8_t *iv,
143 int enc) {
144 if (enc == -1) {
145 enc = ctx->encrypt;
146 } else {
147 if (enc) {
148 enc = 1;
149 }
150 ctx->encrypt = enc;
151 }
152
153 if (cipher) {
154 /* Ensure a context left from last time is cleared (the previous check
155 * attempted to avoid this if the same ENGINE and EVP_CIPHER could be
156 * used). */
157 if (ctx->cipher) {
158 EVP_CIPHER_CTX_cleanup(ctx);
159 /* Restore encrypt and flags */
160 ctx->encrypt = enc;
161 }
162
163 ctx->cipher = cipher;
164 if (ctx->cipher->ctx_size) {
165 ctx->cipher_data = OPENSSL_malloc(ctx->cipher->ctx_size);
166 if (!ctx->cipher_data) {
167 ctx->cipher = NULL;
168 OPENSSL_PUT_ERROR(CIPHER, EVP_CipherInit_ex, ERR_R_MALLOC_FAILURE);
169 return 0;
170 }
171 } else {
172 ctx->cipher_data = NULL;
173 }
174
175 ctx->key_len = cipher->key_len;
176 ctx->flags = 0;
177
178 if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) {
179 if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) {
180 ctx->cipher = NULL;
181 OPENSSL_PUT_ERROR(CIPHER, EVP_CipherInit_ex, CIPHER_R_INITIALIZATION_ERROR);
182 return 0;
183 }
184 }
185 } else if (!ctx->cipher) {
186 OPENSSL_PUT_ERROR(CIPHER, EVP_CipherInit_ex, CIPHER_R_NO_CIPHER_SET);
187 return 0;
188 }
189
190 /* we assume block size is a power of 2 in *cryptUpdate */
191 assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 ||
192 ctx->cipher->block_size == 16);
193
194 if (!(EVP_CIPHER_CTX_flags(ctx) & EVP_CIPH_CUSTOM_IV)) {
195 switch (EVP_CIPHER_CTX_mode(ctx)) {
196 case EVP_CIPH_STREAM_CIPHER:
197 case EVP_CIPH_ECB_MODE:
198 break;
199
200 case EVP_CIPH_CFB_MODE:
201 ctx->num = 0;
202 /* fall-through */
203
204 case EVP_CIPH_CBC_MODE:
205 assert(EVP_CIPHER_CTX_iv_length(ctx) <= sizeof(ctx->iv));
206 if (iv) {
207 memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx));
208 }
209 memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx));
210 break;
211
212 case EVP_CIPH_CTR_MODE:
213 case EVP_CIPH_OFB_MODE:
214 ctx->num = 0;
215 /* Don't reuse IV for CTR mode */
216 if (iv) {
217 memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
218 }
219 break;
220
221 default:
222 return 0;
223 }
224 }
225
226 if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) {
227 if (!ctx->cipher->init(ctx, key, iv, enc)) {
228 return 0;
229 }
230 }
231
232 ctx->buf_len = 0;
233 ctx->final_used = 0;
234 ctx->block_mask = ctx->cipher->block_size - 1;
235 return 1;
236 }
237
EVP_EncryptInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * impl,const uint8_t * key,const uint8_t * iv)238 int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
239 ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
240 return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1);
241 }
242
EVP_DecryptInit_ex(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,ENGINE * impl,const uint8_t * key,const uint8_t * iv)243 int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
244 ENGINE *impl, const uint8_t *key, const uint8_t *iv) {
245 return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0);
246 }
247
EVP_EncryptUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)248 int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
249 const uint8_t *in, int in_len) {
250 int i, j, bl;
251
252 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
253 i = ctx->cipher->cipher(ctx, out, in, in_len);
254 if (i < 0) {
255 return 0;
256 } else {
257 *out_len = i;
258 }
259 return 1;
260 }
261
262 if (in_len <= 0) {
263 *out_len = 0;
264 return in_len == 0;
265 }
266
267 if (ctx->buf_len == 0 && (in_len & ctx->block_mask) == 0) {
268 if (ctx->cipher->cipher(ctx, out, in, in_len)) {
269 *out_len = in_len;
270 return 1;
271 } else {
272 *out_len = 0;
273 return 0;
274 }
275 }
276
277 i = ctx->buf_len;
278 bl = ctx->cipher->block_size;
279 assert(bl <= (int)sizeof(ctx->buf));
280 if (i != 0) {
281 if (i + in_len < bl) {
282 memcpy(&ctx->buf[i], in, in_len);
283 ctx->buf_len += in_len;
284 *out_len = 0;
285 return 1;
286 } else {
287 j = bl - i;
288 memcpy(&ctx->buf[i], in, j);
289 if (!ctx->cipher->cipher(ctx, out, ctx->buf, bl)) {
290 return 0;
291 }
292 in_len -= j;
293 in += j;
294 out += bl;
295 *out_len = bl;
296 }
297 } else {
298 *out_len = 0;
299 }
300
301 i = in_len & ctx->block_mask;
302 in_len -= i;
303 if (in_len > 0) {
304 if (!ctx->cipher->cipher(ctx, out, in, in_len)) {
305 return 0;
306 }
307 *out_len += in_len;
308 }
309
310 if (i != 0) {
311 memcpy(ctx->buf, &in[in_len], i);
312 }
313 ctx->buf_len = i;
314 return 1;
315 }
316
EVP_EncryptFinal_ex(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)317 int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
318 int n, ret;
319 unsigned int i, b, bl;
320
321 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
322 ret = ctx->cipher->cipher(ctx, out, NULL, 0);
323 if (ret < 0) {
324 return 0;
325 } else {
326 *out_len = ret;
327 }
328 return 1;
329 }
330
331 b = ctx->cipher->block_size;
332 assert(b <= sizeof(ctx->buf));
333 if (b == 1) {
334 *out_len = 0;
335 return 1;
336 }
337
338 bl = ctx->buf_len;
339 if (ctx->flags & EVP_CIPH_NO_PADDING) {
340 if (bl) {
341 OPENSSL_PUT_ERROR(CIPHER, EVP_EncryptFinal_ex,
342 CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
343 return 0;
344 }
345 *out_len = 0;
346 return 1;
347 }
348
349 n = b - bl;
350 for (i = bl; i < b; i++) {
351 ctx->buf[i] = n;
352 }
353 ret = ctx->cipher->cipher(ctx, out, ctx->buf, b);
354
355 if (ret) {
356 *out_len = b;
357 }
358
359 return ret;
360 }
361
EVP_DecryptUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)362 int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
363 const uint8_t *in, int in_len) {
364 int fix_len;
365 unsigned int b;
366
367 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
368 int r = ctx->cipher->cipher(ctx, out, in, in_len);
369 if (r < 0) {
370 *out_len = 0;
371 return 0;
372 } else {
373 *out_len = r;
374 }
375 return 1;
376 }
377
378 if (in_len <= 0) {
379 *out_len = 0;
380 return in_len == 0;
381 }
382
383 if (ctx->flags & EVP_CIPH_NO_PADDING) {
384 return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
385 }
386
387 b = ctx->cipher->block_size;
388 assert(b <= sizeof(ctx->final));
389
390 if (ctx->final_used) {
391 memcpy(out, ctx->final, b);
392 out += b;
393 fix_len = 1;
394 } else {
395 fix_len = 0;
396 }
397
398 if (!EVP_EncryptUpdate(ctx, out, out_len, in, in_len)) {
399 return 0;
400 }
401
402 /* if we have 'decrypted' a multiple of block size, make sure
403 * we have a copy of this last block */
404 if (b > 1 && !ctx->buf_len) {
405 *out_len -= b;
406 ctx->final_used = 1;
407 memcpy(ctx->final, &out[*out_len], b);
408 } else {
409 ctx->final_used = 0;
410 }
411
412 if (fix_len) {
413 *out_len += b;
414 }
415
416 return 1;
417 }
418
EVP_DecryptFinal_ex(EVP_CIPHER_CTX * ctx,unsigned char * out,int * out_len)419 int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *out_len) {
420 int i, n;
421 unsigned int b;
422 *out_len = 0;
423
424 if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) {
425 i = ctx->cipher->cipher(ctx, out, NULL, 0);
426 if (i < 0) {
427 return 0;
428 } else {
429 *out_len = i;
430 }
431 return 1;
432 }
433
434 b = ctx->cipher->block_size;
435 if (ctx->flags & EVP_CIPH_NO_PADDING) {
436 if (ctx->buf_len) {
437 OPENSSL_PUT_ERROR(CIPHER, EVP_DecryptFinal_ex,
438 CIPHER_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH);
439 return 0;
440 }
441 *out_len = 0;
442 return 1;
443 }
444
445 if (b > 1) {
446 if (ctx->buf_len || !ctx->final_used) {
447 OPENSSL_PUT_ERROR(CIPHER, EVP_DecryptFinal_ex,
448 CIPHER_R_WRONG_FINAL_BLOCK_LENGTH);
449 return 0;
450 }
451 assert(b <= sizeof(ctx->final));
452
453 /* The following assumes that the ciphertext has been authenticated.
454 * Otherwise it provides a padding oracle. */
455 n = ctx->final[b - 1];
456 if (n == 0 || n > (int)b) {
457 OPENSSL_PUT_ERROR(CIPHER, EVP_DecryptFinal_ex, CIPHER_R_BAD_DECRYPT);
458 return 0;
459 }
460
461 for (i = 0; i < n; i++) {
462 if (ctx->final[--b] != n) {
463 OPENSSL_PUT_ERROR(CIPHER, EVP_DecryptFinal_ex, CIPHER_R_BAD_DECRYPT);
464 return 0;
465 }
466 }
467
468 n = ctx->cipher->block_size - n;
469 for (i = 0; i < n; i++) {
470 out[i] = ctx->final[i];
471 }
472 *out_len = n;
473 } else {
474 *out_len = 0;
475 }
476
477 return 1;
478 }
479
EVP_Cipher(EVP_CIPHER_CTX * ctx,uint8_t * out,const uint8_t * in,size_t in_len)480 int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
481 size_t in_len) {
482 return ctx->cipher->cipher(ctx, out, in, in_len);
483 }
484
EVP_CipherUpdate(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len,const uint8_t * in,int in_len)485 int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len,
486 const uint8_t *in, int in_len) {
487 if (ctx->encrypt) {
488 return EVP_EncryptUpdate(ctx, out, out_len, in, in_len);
489 } else {
490 return EVP_DecryptUpdate(ctx, out, out_len, in, in_len);
491 }
492 }
493
EVP_CipherFinal_ex(EVP_CIPHER_CTX * ctx,uint8_t * out,int * out_len)494 int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out, int *out_len) {
495 if (ctx->encrypt) {
496 return EVP_EncryptFinal_ex(ctx, out, out_len);
497 } else {
498 return EVP_DecryptFinal_ex(ctx, out, out_len);
499 }
500 }
501
EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX * ctx)502 const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx) {
503 return ctx->cipher;
504 }
505
EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX * ctx)506 int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx) {
507 return ctx->cipher->nid;
508 }
509
EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX * ctx)510 unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx) {
511 return ctx->cipher->block_size;
512 }
513
EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX * ctx)514 unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx) {
515 return ctx->key_len;
516 }
517
EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX * ctx)518 unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx) {
519 return ctx->cipher->iv_len;
520 }
521
EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX * ctx)522 void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx) {
523 return ctx->app_data;
524 }
525
EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX * ctx,void * data)526 void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx, void *data) {
527 ctx->app_data = data;
528 }
529
EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX * ctx)530 uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx) {
531 return ctx->cipher->flags & ~EVP_CIPH_MODE_MASK;
532 }
533
EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX * ctx)534 uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx) {
535 return ctx->cipher->flags & EVP_CIPH_MODE_MASK;
536 }
537
EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX * ctx,int command,int arg,void * ptr)538 int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command, int arg, void *ptr) {
539 int ret;
540 if (!ctx->cipher) {
541 OPENSSL_PUT_ERROR(CIPHER, EVP_CIPHER_CTX_ctrl, CIPHER_R_NO_CIPHER_SET);
542 return 0;
543 }
544
545 if (!ctx->cipher->ctrl) {
546 OPENSSL_PUT_ERROR(CIPHER, EVP_CIPHER_CTX_ctrl, CIPHER_R_CTRL_NOT_IMPLEMENTED);
547 return 0;
548 }
549
550 ret = ctx->cipher->ctrl(ctx, command, arg, ptr);
551 if (ret == -1) {
552 OPENSSL_PUT_ERROR(CIPHER, EVP_CIPHER_CTX_ctrl,
553 CIPHER_R_CTRL_OPERATION_NOT_IMPLEMENTED);
554 return 0;
555 }
556
557 return ret;
558 }
559
EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX * ctx,int pad)560 int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) {
561 if (pad) {
562 ctx->flags &= ~EVP_CIPH_NO_PADDING;
563 } else {
564 ctx->flags |= EVP_CIPH_NO_PADDING;
565 }
566 return 1;
567 }
568
EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX * c,unsigned key_len)569 int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, unsigned key_len) {
570 if (c->key_len == key_len) {
571 return 1;
572 }
573
574 if (key_len == 0 || !(c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) {
575 OPENSSL_PUT_ERROR(CIPHER, EVP_CIPHER_CTX_set_key_length,
576 CIPHER_R_INVALID_KEY_LENGTH);
577 return 0;
578 }
579
580 c->key_len = key_len;
581 return 1;
582 }
583
EVP_CIPHER_nid(const EVP_CIPHER * cipher)584 int EVP_CIPHER_nid(const EVP_CIPHER *cipher) { return cipher->nid; }
585
EVP_CIPHER_block_size(const EVP_CIPHER * cipher)586 unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher) {
587 return cipher->block_size;
588 }
589
EVP_CIPHER_key_length(const EVP_CIPHER * cipher)590 unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher) {
591 return cipher->key_len;
592 }
593
EVP_CIPHER_iv_length(const EVP_CIPHER * cipher)594 unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher) {
595 return cipher->iv_len;
596 }
597
EVP_CIPHER_flags(const EVP_CIPHER * cipher)598 uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher) {
599 return cipher->flags & ~EVP_CIPH_MODE_MASK;
600 }
601
EVP_CIPHER_mode(const EVP_CIPHER * cipher)602 uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher) {
603 return cipher->flags & EVP_CIPH_MODE_MASK;
604 }
605
EVP_CipherInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv,int enc)606 int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
607 const uint8_t *key, const uint8_t *iv, int enc) {
608 if (cipher) {
609 EVP_CIPHER_CTX_init(ctx);
610 }
611 return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc);
612 }
613
EVP_EncryptInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv)614 int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
615 const uint8_t *key, const uint8_t *iv) {
616 return EVP_CipherInit(ctx, cipher, key, iv, 1);
617 }
618
EVP_DecryptInit(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const uint8_t * key,const uint8_t * iv)619 int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
620 const uint8_t *key, const uint8_t *iv) {
621 return EVP_CipherInit(ctx, cipher, key, iv, 0);
622 }
623
EVP_add_cipher_alias(const char * a,const char * b)624 int EVP_add_cipher_alias(const char *a, const char *b) {
625 return 1;
626 }
627
EVP_get_cipherbyname(const char * name)628 const EVP_CIPHER *EVP_get_cipherbyname(const char *name) {
629 if (OPENSSL_strcasecmp(name, "rc4") == 0) {
630 return EVP_rc4();
631 } else if (OPENSSL_strcasecmp(name, "des-cbc") == 0) {
632 return EVP_des_cbc();
633 } else if (OPENSSL_strcasecmp(name, "3des-cbc") == 0 ||
634 OPENSSL_strcasecmp(name, "3des") == 0) {
635 return EVP_des_ede3_cbc();
636 } else if (OPENSSL_strcasecmp(name, "aes-128-cbc") == 0) {
637 return EVP_aes_128_cbc();
638 } else if (OPENSSL_strcasecmp(name, "aes-256-cbc") == 0) {
639 return EVP_aes_256_cbc();
640 } else if (OPENSSL_strcasecmp(name, "aes-128-ctr") == 0) {
641 return EVP_aes_128_ctr();
642 } else if (OPENSSL_strcasecmp(name, "aes-256-ctr") == 0) {
643 return EVP_aes_256_ctr();
644 } else if (OPENSSL_strcasecmp(name, "aes-128-ecb") == 0) {
645 return EVP_aes_128_ecb();
646 } else if (OPENSSL_strcasecmp(name, "aes-256-ecb") == 0) {
647 return EVP_aes_256_ecb();
648 }
649
650 return NULL;
651 }
652