1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with code generation of C++ expressions
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "clang/Frontend/CodeGenOptions.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Intrinsics.h"
23
24 using namespace clang;
25 using namespace CodeGen;
26
commonEmitCXXMemberOrOperatorCall(CodeGenFunction & CGF,const CXXMethodDecl * MD,llvm::Value * Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE,CallArgList & Args)27 static RequiredArgs commonEmitCXXMemberOrOperatorCall(
28 CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee,
29 ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam,
30 QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) {
31 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
32 isa<CXXOperatorCallExpr>(CE));
33 assert(MD->isInstance() &&
34 "Trying to emit a member or operator call expr on a static method!");
35
36 // C++11 [class.mfct.non-static]p2:
37 // If a non-static member function of a class X is called for an object that
38 // is not of type X, or of a type derived from X, the behavior is undefined.
39 SourceLocation CallLoc;
40 if (CE)
41 CallLoc = CE->getExprLoc();
42 CGF.EmitTypeCheck(
43 isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
44 : CodeGenFunction::TCK_MemberCall,
45 CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
46
47 // Push the this ptr.
48 Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
49
50 // If there is an implicit parameter (e.g. VTT), emit it.
51 if (ImplicitParam) {
52 Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
53 }
54
55 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
56 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
57
58 // And the rest of the call args.
59 if (CE) {
60 // Special case: skip first argument of CXXOperatorCall (it is "this").
61 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
62 CGF.EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(),
63 CE->getDirectCallee());
64 } else {
65 assert(
66 FPT->getNumParams() == 0 &&
67 "No CallExpr specified for function with non-zero number of arguments");
68 }
69 return required;
70 }
71
EmitCXXMemberOrOperatorCall(const CXXMethodDecl * MD,llvm::Value * Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE)72 RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
73 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
74 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
75 const CallExpr *CE) {
76 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
77 CallArgList Args;
78 RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
79 *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE,
80 Args);
81 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
82 Callee, ReturnValue, Args, MD);
83 }
84
EmitCXXStructorCall(const CXXMethodDecl * MD,llvm::Value * Callee,ReturnValueSlot ReturnValue,llvm::Value * This,llvm::Value * ImplicitParam,QualType ImplicitParamTy,const CallExpr * CE,StructorType Type)85 RValue CodeGenFunction::EmitCXXStructorCall(
86 const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
87 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
88 const CallExpr *CE, StructorType Type) {
89 CallArgList Args;
90 commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This,
91 ImplicitParam, ImplicitParamTy, CE, Args);
92 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type),
93 Callee, ReturnValue, Args, MD);
94 }
95
getCXXRecord(const Expr * E)96 static CXXRecordDecl *getCXXRecord(const Expr *E) {
97 QualType T = E->getType();
98 if (const PointerType *PTy = T->getAs<PointerType>())
99 T = PTy->getPointeeType();
100 const RecordType *Ty = T->castAs<RecordType>();
101 return cast<CXXRecordDecl>(Ty->getDecl());
102 }
103
104 // Note: This function also emit constructor calls to support a MSVC
105 // extensions allowing explicit constructor function call.
EmitCXXMemberCallExpr(const CXXMemberCallExpr * CE,ReturnValueSlot ReturnValue)106 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
107 ReturnValueSlot ReturnValue) {
108 const Expr *callee = CE->getCallee()->IgnoreParens();
109
110 if (isa<BinaryOperator>(callee))
111 return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
112
113 const MemberExpr *ME = cast<MemberExpr>(callee);
114 const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
115
116 if (MD->isStatic()) {
117 // The method is static, emit it as we would a regular call.
118 llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
119 return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
120 ReturnValue);
121 }
122
123 bool HasQualifier = ME->hasQualifier();
124 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
125 bool IsArrow = ME->isArrow();
126 const Expr *Base = ME->getBase();
127
128 return EmitCXXMemberOrOperatorMemberCallExpr(
129 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
130 }
131
EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr * CE,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue,bool HasQualifier,NestedNameSpecifier * Qualifier,bool IsArrow,const Expr * Base)132 RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
133 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
134 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
135 const Expr *Base) {
136 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
137
138 // Compute the object pointer.
139 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
140
141 const CXXMethodDecl *DevirtualizedMethod = nullptr;
142 if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
143 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
144 DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
145 assert(DevirtualizedMethod);
146 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
147 const Expr *Inner = Base->ignoreParenBaseCasts();
148 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
149 MD->getReturnType().getCanonicalType())
150 // If the return types are not the same, this might be a case where more
151 // code needs to run to compensate for it. For example, the derived
152 // method might return a type that inherits form from the return
153 // type of MD and has a prefix.
154 // For now we just avoid devirtualizing these covariant cases.
155 DevirtualizedMethod = nullptr;
156 else if (getCXXRecord(Inner) == DevirtualizedClass)
157 // If the class of the Inner expression is where the dynamic method
158 // is defined, build the this pointer from it.
159 Base = Inner;
160 else if (getCXXRecord(Base) != DevirtualizedClass) {
161 // If the method is defined in a class that is not the best dynamic
162 // one or the one of the full expression, we would have to build
163 // a derived-to-base cast to compute the correct this pointer, but
164 // we don't have support for that yet, so do a virtual call.
165 DevirtualizedMethod = nullptr;
166 }
167 }
168
169 llvm::Value *This;
170 if (IsArrow)
171 This = EmitScalarExpr(Base);
172 else
173 This = EmitLValue(Base).getAddress();
174
175
176 if (MD->isTrivial()) {
177 if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
178 if (isa<CXXConstructorDecl>(MD) &&
179 cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
180 return RValue::get(nullptr);
181
182 if (!MD->getParent()->mayInsertExtraPadding()) {
183 if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
184 // We don't like to generate the trivial copy/move assignment operator
185 // when it isn't necessary; just produce the proper effect here.
186 // Special case: skip first argument of CXXOperatorCall (it is "this").
187 unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
188 llvm::Value *RHS =
189 EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
190 EmitAggregateAssign(This, RHS, CE->getType());
191 return RValue::get(This);
192 }
193
194 if (isa<CXXConstructorDecl>(MD) &&
195 cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
196 // Trivial move and copy ctor are the same.
197 assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
198 llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
199 EmitAggregateCopy(This, RHS, CE->arg_begin()->getType());
200 return RValue::get(This);
201 }
202 llvm_unreachable("unknown trivial member function");
203 }
204 }
205
206 // Compute the function type we're calling.
207 const CXXMethodDecl *CalleeDecl =
208 DevirtualizedMethod ? DevirtualizedMethod : MD;
209 const CGFunctionInfo *FInfo = nullptr;
210 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
211 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
212 Dtor, StructorType::Complete);
213 else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
214 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
215 Ctor, StructorType::Complete);
216 else
217 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
218
219 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
220
221 // C++ [class.virtual]p12:
222 // Explicit qualification with the scope operator (5.1) suppresses the
223 // virtual call mechanism.
224 //
225 // We also don't emit a virtual call if the base expression has a record type
226 // because then we know what the type is.
227 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
228 llvm::Value *Callee;
229
230 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
231 assert(CE->arg_begin() == CE->arg_end() &&
232 "Destructor shouldn't have explicit parameters");
233 assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
234 if (UseVirtualCall) {
235 CGM.getCXXABI().EmitVirtualDestructorCall(
236 *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
237 } else {
238 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
239 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
240 else if (!DevirtualizedMethod)
241 Callee =
242 CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
243 else {
244 const CXXDestructorDecl *DDtor =
245 cast<CXXDestructorDecl>(DevirtualizedMethod);
246 Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
247 }
248 EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
249 /*ImplicitParam=*/nullptr, QualType(), CE);
250 }
251 return RValue::get(nullptr);
252 }
253
254 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
255 Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
256 } else if (UseVirtualCall) {
257 Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty);
258 } else {
259 if (SanOpts.has(SanitizerKind::CFINVCall) &&
260 MD->getParent()->isDynamicClass()) {
261 llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy);
262 EmitVTablePtrCheckForCall(MD, VTable);
263 }
264
265 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
266 Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
267 else if (!DevirtualizedMethod)
268 Callee = CGM.GetAddrOfFunction(MD, Ty);
269 else {
270 Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
271 }
272 }
273
274 if (MD->isVirtual()) {
275 This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
276 *this, MD, This, UseVirtualCall);
277 }
278
279 return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
280 /*ImplicitParam=*/nullptr, QualType(), CE);
281 }
282
283 RValue
EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr * E,ReturnValueSlot ReturnValue)284 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
285 ReturnValueSlot ReturnValue) {
286 const BinaryOperator *BO =
287 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
288 const Expr *BaseExpr = BO->getLHS();
289 const Expr *MemFnExpr = BO->getRHS();
290
291 const MemberPointerType *MPT =
292 MemFnExpr->getType()->castAs<MemberPointerType>();
293
294 const FunctionProtoType *FPT =
295 MPT->getPointeeType()->castAs<FunctionProtoType>();
296 const CXXRecordDecl *RD =
297 cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
298
299 // Get the member function pointer.
300 llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
301
302 // Emit the 'this' pointer.
303 llvm::Value *This;
304
305 if (BO->getOpcode() == BO_PtrMemI)
306 This = EmitScalarExpr(BaseExpr);
307 else
308 This = EmitLValue(BaseExpr).getAddress();
309
310 EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
311 QualType(MPT->getClass(), 0));
312
313 // Ask the ABI to load the callee. Note that This is modified.
314 llvm::Value *Callee =
315 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT);
316
317 CallArgList Args;
318
319 QualType ThisType =
320 getContext().getPointerType(getContext().getTagDeclType(RD));
321
322 // Push the this ptr.
323 Args.add(RValue::get(This), ThisType);
324
325 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
326
327 // And the rest of the call args
328 EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee());
329 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
330 Callee, ReturnValue, Args);
331 }
332
333 RValue
EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,ReturnValueSlot ReturnValue)334 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
335 const CXXMethodDecl *MD,
336 ReturnValueSlot ReturnValue) {
337 assert(MD->isInstance() &&
338 "Trying to emit a member call expr on a static method!");
339 return EmitCXXMemberOrOperatorMemberCallExpr(
340 E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
341 /*IsArrow=*/false, E->getArg(0));
342 }
343
EmitCUDAKernelCallExpr(const CUDAKernelCallExpr * E,ReturnValueSlot ReturnValue)344 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
345 ReturnValueSlot ReturnValue) {
346 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
347 }
348
EmitNullBaseClassInitialization(CodeGenFunction & CGF,llvm::Value * DestPtr,const CXXRecordDecl * Base)349 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
350 llvm::Value *DestPtr,
351 const CXXRecordDecl *Base) {
352 if (Base->isEmpty())
353 return;
354
355 DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
356
357 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
358 CharUnits Size = Layout.getNonVirtualSize();
359 CharUnits Align = Layout.getNonVirtualAlignment();
360
361 llvm::Value *SizeVal = CGF.CGM.getSize(Size);
362
363 // If the type contains a pointer to data member we can't memset it to zero.
364 // Instead, create a null constant and copy it to the destination.
365 // TODO: there are other patterns besides zero that we can usefully memset,
366 // like -1, which happens to be the pattern used by member-pointers.
367 // TODO: isZeroInitializable can be over-conservative in the case where a
368 // virtual base contains a member pointer.
369 if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
370 llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
371
372 llvm::GlobalVariable *NullVariable =
373 new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
374 /*isConstant=*/true,
375 llvm::GlobalVariable::PrivateLinkage,
376 NullConstant, Twine());
377 NullVariable->setAlignment(Align.getQuantity());
378 llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
379
380 // Get and call the appropriate llvm.memcpy overload.
381 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
382 return;
383 }
384
385 // Otherwise, just memset the whole thing to zero. This is legal
386 // because in LLVM, all default initializers (other than the ones we just
387 // handled above) are guaranteed to have a bit pattern of all zeros.
388 CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
389 Align.getQuantity());
390 }
391
392 void
EmitCXXConstructExpr(const CXXConstructExpr * E,AggValueSlot Dest)393 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
394 AggValueSlot Dest) {
395 assert(!Dest.isIgnored() && "Must have a destination!");
396 const CXXConstructorDecl *CD = E->getConstructor();
397
398 // If we require zero initialization before (or instead of) calling the
399 // constructor, as can be the case with a non-user-provided default
400 // constructor, emit the zero initialization now, unless destination is
401 // already zeroed.
402 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
403 switch (E->getConstructionKind()) {
404 case CXXConstructExpr::CK_Delegating:
405 case CXXConstructExpr::CK_Complete:
406 EmitNullInitialization(Dest.getAddr(), E->getType());
407 break;
408 case CXXConstructExpr::CK_VirtualBase:
409 case CXXConstructExpr::CK_NonVirtualBase:
410 EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
411 break;
412 }
413 }
414
415 // If this is a call to a trivial default constructor, do nothing.
416 if (CD->isTrivial() && CD->isDefaultConstructor())
417 return;
418
419 // Elide the constructor if we're constructing from a temporary.
420 // The temporary check is required because Sema sets this on NRVO
421 // returns.
422 if (getLangOpts().ElideConstructors && E->isElidable()) {
423 assert(getContext().hasSameUnqualifiedType(E->getType(),
424 E->getArg(0)->getType()));
425 if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
426 EmitAggExpr(E->getArg(0), Dest);
427 return;
428 }
429 }
430
431 if (const ConstantArrayType *arrayType
432 = getContext().getAsConstantArrayType(E->getType())) {
433 EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E);
434 } else {
435 CXXCtorType Type = Ctor_Complete;
436 bool ForVirtualBase = false;
437 bool Delegating = false;
438
439 switch (E->getConstructionKind()) {
440 case CXXConstructExpr::CK_Delegating:
441 // We should be emitting a constructor; GlobalDecl will assert this
442 Type = CurGD.getCtorType();
443 Delegating = true;
444 break;
445
446 case CXXConstructExpr::CK_Complete:
447 Type = Ctor_Complete;
448 break;
449
450 case CXXConstructExpr::CK_VirtualBase:
451 ForVirtualBase = true;
452 // fall-through
453
454 case CXXConstructExpr::CK_NonVirtualBase:
455 Type = Ctor_Base;
456 }
457
458 // Call the constructor.
459 EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
460 E);
461 }
462 }
463
464 void
EmitSynthesizedCXXCopyCtor(llvm::Value * Dest,llvm::Value * Src,const Expr * Exp)465 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
466 llvm::Value *Src,
467 const Expr *Exp) {
468 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
469 Exp = E->getSubExpr();
470 assert(isa<CXXConstructExpr>(Exp) &&
471 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
472 const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
473 const CXXConstructorDecl *CD = E->getConstructor();
474 RunCleanupsScope Scope(*this);
475
476 // If we require zero initialization before (or instead of) calling the
477 // constructor, as can be the case with a non-user-provided default
478 // constructor, emit the zero initialization now.
479 // FIXME. Do I still need this for a copy ctor synthesis?
480 if (E->requiresZeroInitialization())
481 EmitNullInitialization(Dest, E->getType());
482
483 assert(!getContext().getAsConstantArrayType(E->getType())
484 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
485 EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
486 }
487
CalculateCookiePadding(CodeGenFunction & CGF,const CXXNewExpr * E)488 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
489 const CXXNewExpr *E) {
490 if (!E->isArray())
491 return CharUnits::Zero();
492
493 // No cookie is required if the operator new[] being used is the
494 // reserved placement operator new[].
495 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
496 return CharUnits::Zero();
497
498 return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
499 }
500
EmitCXXNewAllocSize(CodeGenFunction & CGF,const CXXNewExpr * e,unsigned minElements,llvm::Value * & numElements,llvm::Value * & sizeWithoutCookie)501 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
502 const CXXNewExpr *e,
503 unsigned minElements,
504 llvm::Value *&numElements,
505 llvm::Value *&sizeWithoutCookie) {
506 QualType type = e->getAllocatedType();
507
508 if (!e->isArray()) {
509 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
510 sizeWithoutCookie
511 = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
512 return sizeWithoutCookie;
513 }
514
515 // The width of size_t.
516 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
517
518 // Figure out the cookie size.
519 llvm::APInt cookieSize(sizeWidth,
520 CalculateCookiePadding(CGF, e).getQuantity());
521
522 // Emit the array size expression.
523 // We multiply the size of all dimensions for NumElements.
524 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
525 numElements = CGF.EmitScalarExpr(e->getArraySize());
526 assert(isa<llvm::IntegerType>(numElements->getType()));
527
528 // The number of elements can be have an arbitrary integer type;
529 // essentially, we need to multiply it by a constant factor, add a
530 // cookie size, and verify that the result is representable as a
531 // size_t. That's just a gloss, though, and it's wrong in one
532 // important way: if the count is negative, it's an error even if
533 // the cookie size would bring the total size >= 0.
534 bool isSigned
535 = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
536 llvm::IntegerType *numElementsType
537 = cast<llvm::IntegerType>(numElements->getType());
538 unsigned numElementsWidth = numElementsType->getBitWidth();
539
540 // Compute the constant factor.
541 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
542 while (const ConstantArrayType *CAT
543 = CGF.getContext().getAsConstantArrayType(type)) {
544 type = CAT->getElementType();
545 arraySizeMultiplier *= CAT->getSize();
546 }
547
548 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
549 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
550 typeSizeMultiplier *= arraySizeMultiplier;
551
552 // This will be a size_t.
553 llvm::Value *size;
554
555 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
556 // Don't bloat the -O0 code.
557 if (llvm::ConstantInt *numElementsC =
558 dyn_cast<llvm::ConstantInt>(numElements)) {
559 const llvm::APInt &count = numElementsC->getValue();
560
561 bool hasAnyOverflow = false;
562
563 // If 'count' was a negative number, it's an overflow.
564 if (isSigned && count.isNegative())
565 hasAnyOverflow = true;
566
567 // We want to do all this arithmetic in size_t. If numElements is
568 // wider than that, check whether it's already too big, and if so,
569 // overflow.
570 else if (numElementsWidth > sizeWidth &&
571 numElementsWidth - sizeWidth > count.countLeadingZeros())
572 hasAnyOverflow = true;
573
574 // Okay, compute a count at the right width.
575 llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
576
577 // If there is a brace-initializer, we cannot allocate fewer elements than
578 // there are initializers. If we do, that's treated like an overflow.
579 if (adjustedCount.ult(minElements))
580 hasAnyOverflow = true;
581
582 // Scale numElements by that. This might overflow, but we don't
583 // care because it only overflows if allocationSize does, too, and
584 // if that overflows then we shouldn't use this.
585 numElements = llvm::ConstantInt::get(CGF.SizeTy,
586 adjustedCount * arraySizeMultiplier);
587
588 // Compute the size before cookie, and track whether it overflowed.
589 bool overflow;
590 llvm::APInt allocationSize
591 = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
592 hasAnyOverflow |= overflow;
593
594 // Add in the cookie, and check whether it's overflowed.
595 if (cookieSize != 0) {
596 // Save the current size without a cookie. This shouldn't be
597 // used if there was overflow.
598 sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
599
600 allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
601 hasAnyOverflow |= overflow;
602 }
603
604 // On overflow, produce a -1 so operator new will fail.
605 if (hasAnyOverflow) {
606 size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
607 } else {
608 size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
609 }
610
611 // Otherwise, we might need to use the overflow intrinsics.
612 } else {
613 // There are up to five conditions we need to test for:
614 // 1) if isSigned, we need to check whether numElements is negative;
615 // 2) if numElementsWidth > sizeWidth, we need to check whether
616 // numElements is larger than something representable in size_t;
617 // 3) if minElements > 0, we need to check whether numElements is smaller
618 // than that.
619 // 4) we need to compute
620 // sizeWithoutCookie := numElements * typeSizeMultiplier
621 // and check whether it overflows; and
622 // 5) if we need a cookie, we need to compute
623 // size := sizeWithoutCookie + cookieSize
624 // and check whether it overflows.
625
626 llvm::Value *hasOverflow = nullptr;
627
628 // If numElementsWidth > sizeWidth, then one way or another, we're
629 // going to have to do a comparison for (2), and this happens to
630 // take care of (1), too.
631 if (numElementsWidth > sizeWidth) {
632 llvm::APInt threshold(numElementsWidth, 1);
633 threshold <<= sizeWidth;
634
635 llvm::Value *thresholdV
636 = llvm::ConstantInt::get(numElementsType, threshold);
637
638 hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
639 numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
640
641 // Otherwise, if we're signed, we want to sext up to size_t.
642 } else if (isSigned) {
643 if (numElementsWidth < sizeWidth)
644 numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
645
646 // If there's a non-1 type size multiplier, then we can do the
647 // signedness check at the same time as we do the multiply
648 // because a negative number times anything will cause an
649 // unsigned overflow. Otherwise, we have to do it here. But at least
650 // in this case, we can subsume the >= minElements check.
651 if (typeSizeMultiplier == 1)
652 hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
653 llvm::ConstantInt::get(CGF.SizeTy, minElements));
654
655 // Otherwise, zext up to size_t if necessary.
656 } else if (numElementsWidth < sizeWidth) {
657 numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
658 }
659
660 assert(numElements->getType() == CGF.SizeTy);
661
662 if (minElements) {
663 // Don't allow allocation of fewer elements than we have initializers.
664 if (!hasOverflow) {
665 hasOverflow = CGF.Builder.CreateICmpULT(numElements,
666 llvm::ConstantInt::get(CGF.SizeTy, minElements));
667 } else if (numElementsWidth > sizeWidth) {
668 // The other existing overflow subsumes this check.
669 // We do an unsigned comparison, since any signed value < -1 is
670 // taken care of either above or below.
671 hasOverflow = CGF.Builder.CreateOr(hasOverflow,
672 CGF.Builder.CreateICmpULT(numElements,
673 llvm::ConstantInt::get(CGF.SizeTy, minElements)));
674 }
675 }
676
677 size = numElements;
678
679 // Multiply by the type size if necessary. This multiplier
680 // includes all the factors for nested arrays.
681 //
682 // This step also causes numElements to be scaled up by the
683 // nested-array factor if necessary. Overflow on this computation
684 // can be ignored because the result shouldn't be used if
685 // allocation fails.
686 if (typeSizeMultiplier != 1) {
687 llvm::Value *umul_with_overflow
688 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
689
690 llvm::Value *tsmV =
691 llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
692 llvm::Value *result =
693 CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
694
695 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
696 if (hasOverflow)
697 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
698 else
699 hasOverflow = overflowed;
700
701 size = CGF.Builder.CreateExtractValue(result, 0);
702
703 // Also scale up numElements by the array size multiplier.
704 if (arraySizeMultiplier != 1) {
705 // If the base element type size is 1, then we can re-use the
706 // multiply we just did.
707 if (typeSize.isOne()) {
708 assert(arraySizeMultiplier == typeSizeMultiplier);
709 numElements = size;
710
711 // Otherwise we need a separate multiply.
712 } else {
713 llvm::Value *asmV =
714 llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
715 numElements = CGF.Builder.CreateMul(numElements, asmV);
716 }
717 }
718 } else {
719 // numElements doesn't need to be scaled.
720 assert(arraySizeMultiplier == 1);
721 }
722
723 // Add in the cookie size if necessary.
724 if (cookieSize != 0) {
725 sizeWithoutCookie = size;
726
727 llvm::Value *uadd_with_overflow
728 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
729
730 llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
731 llvm::Value *result =
732 CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
733
734 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
735 if (hasOverflow)
736 hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
737 else
738 hasOverflow = overflowed;
739
740 size = CGF.Builder.CreateExtractValue(result, 0);
741 }
742
743 // If we had any possibility of dynamic overflow, make a select to
744 // overwrite 'size' with an all-ones value, which should cause
745 // operator new to throw.
746 if (hasOverflow)
747 size = CGF.Builder.CreateSelect(hasOverflow,
748 llvm::Constant::getAllOnesValue(CGF.SizeTy),
749 size);
750 }
751
752 if (cookieSize == 0)
753 sizeWithoutCookie = size;
754 else
755 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
756
757 return size;
758 }
759
StoreAnyExprIntoOneUnit(CodeGenFunction & CGF,const Expr * Init,QualType AllocType,llvm::Value * NewPtr)760 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
761 QualType AllocType, llvm::Value *NewPtr) {
762 // FIXME: Refactor with EmitExprAsInit.
763 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
764 switch (CGF.getEvaluationKind(AllocType)) {
765 case TEK_Scalar:
766 CGF.EmitScalarInit(Init, nullptr,
767 CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), false);
768 return;
769 case TEK_Complex:
770 CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
771 Alignment),
772 /*isInit*/ true);
773 return;
774 case TEK_Aggregate: {
775 AggValueSlot Slot
776 = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
777 AggValueSlot::IsDestructed,
778 AggValueSlot::DoesNotNeedGCBarriers,
779 AggValueSlot::IsNotAliased);
780 CGF.EmitAggExpr(Init, Slot);
781 return;
782 }
783 }
784 llvm_unreachable("bad evaluation kind");
785 }
786
EmitNewArrayInitializer(const CXXNewExpr * E,QualType ElementType,llvm::Type * ElementTy,llvm::Value * BeginPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)787 void CodeGenFunction::EmitNewArrayInitializer(
788 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
789 llvm::Value *BeginPtr, llvm::Value *NumElements,
790 llvm::Value *AllocSizeWithoutCookie) {
791 // If we have a type with trivial initialization and no initializer,
792 // there's nothing to do.
793 if (!E->hasInitializer())
794 return;
795
796 llvm::Value *CurPtr = BeginPtr;
797
798 unsigned InitListElements = 0;
799
800 const Expr *Init = E->getInitializer();
801 llvm::AllocaInst *EndOfInit = nullptr;
802 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
803 EHScopeStack::stable_iterator Cleanup;
804 llvm::Instruction *CleanupDominator = nullptr;
805
806 // If the initializer is an initializer list, first do the explicit elements.
807 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
808 InitListElements = ILE->getNumInits();
809
810 // If this is a multi-dimensional array new, we will initialize multiple
811 // elements with each init list element.
812 QualType AllocType = E->getAllocatedType();
813 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
814 AllocType->getAsArrayTypeUnsafe())) {
815 unsigned AS = CurPtr->getType()->getPointerAddressSpace();
816 ElementTy = ConvertTypeForMem(AllocType);
817 llvm::Type *AllocPtrTy = ElementTy->getPointerTo(AS);
818 CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy);
819 InitListElements *= getContext().getConstantArrayElementCount(CAT);
820 }
821
822 // Enter a partial-destruction Cleanup if necessary.
823 if (needsEHCleanup(DtorKind)) {
824 // In principle we could tell the Cleanup where we are more
825 // directly, but the control flow can get so varied here that it
826 // would actually be quite complex. Therefore we go through an
827 // alloca.
828 EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end");
829 CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit);
830 pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType,
831 getDestroyer(DtorKind));
832 Cleanup = EHStack.stable_begin();
833 }
834
835 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
836 // Tell the cleanup that it needs to destroy up to this
837 // element. TODO: some of these stores can be trivially
838 // observed to be unnecessary.
839 if (EndOfInit)
840 Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()),
841 EndOfInit);
842 // FIXME: If the last initializer is an incomplete initializer list for
843 // an array, and we have an array filler, we can fold together the two
844 // initialization loops.
845 StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
846 ILE->getInit(i)->getType(), CurPtr);
847 CurPtr = Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1,
848 "array.exp.next");
849 }
850
851 // The remaining elements are filled with the array filler expression.
852 Init = ILE->getArrayFiller();
853
854 // Extract the initializer for the individual array elements by pulling
855 // out the array filler from all the nested initializer lists. This avoids
856 // generating a nested loop for the initialization.
857 while (Init && Init->getType()->isConstantArrayType()) {
858 auto *SubILE = dyn_cast<InitListExpr>(Init);
859 if (!SubILE)
860 break;
861 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
862 Init = SubILE->getArrayFiller();
863 }
864
865 // Switch back to initializing one base element at a time.
866 CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType());
867 }
868
869 // Attempt to perform zero-initialization using memset.
870 auto TryMemsetInitialization = [&]() -> bool {
871 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
872 // we can initialize with a memset to -1.
873 if (!CGM.getTypes().isZeroInitializable(ElementType))
874 return false;
875
876 // Optimization: since zero initialization will just set the memory
877 // to all zeroes, generate a single memset to do it in one shot.
878
879 // Subtract out the size of any elements we've already initialized.
880 auto *RemainingSize = AllocSizeWithoutCookie;
881 if (InitListElements) {
882 // We know this can't overflow; we check this when doing the allocation.
883 auto *InitializedSize = llvm::ConstantInt::get(
884 RemainingSize->getType(),
885 getContext().getTypeSizeInChars(ElementType).getQuantity() *
886 InitListElements);
887 RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
888 }
889
890 // Create the memset.
891 CharUnits Alignment = getContext().getTypeAlignInChars(ElementType);
892 Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize,
893 Alignment.getQuantity(), false);
894 return true;
895 };
896
897 // If all elements have already been initialized, skip any further
898 // initialization.
899 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
900 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
901 // If there was a Cleanup, deactivate it.
902 if (CleanupDominator)
903 DeactivateCleanupBlock(Cleanup, CleanupDominator);
904 return;
905 }
906
907 assert(Init && "have trailing elements to initialize but no initializer");
908
909 // If this is a constructor call, try to optimize it out, and failing that
910 // emit a single loop to initialize all remaining elements.
911 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
912 CXXConstructorDecl *Ctor = CCE->getConstructor();
913 if (Ctor->isTrivial()) {
914 // If new expression did not specify value-initialization, then there
915 // is no initialization.
916 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
917 return;
918
919 if (TryMemsetInitialization())
920 return;
921 }
922
923 // Store the new Cleanup position for irregular Cleanups.
924 //
925 // FIXME: Share this cleanup with the constructor call emission rather than
926 // having it create a cleanup of its own.
927 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
928
929 // Emit a constructor call loop to initialize the remaining elements.
930 if (InitListElements)
931 NumElements = Builder.CreateSub(
932 NumElements,
933 llvm::ConstantInt::get(NumElements->getType(), InitListElements));
934 EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
935 CCE->requiresZeroInitialization());
936 return;
937 }
938
939 // If this is value-initialization, we can usually use memset.
940 ImplicitValueInitExpr IVIE(ElementType);
941 if (isa<ImplicitValueInitExpr>(Init)) {
942 if (TryMemsetInitialization())
943 return;
944
945 // Switch to an ImplicitValueInitExpr for the element type. This handles
946 // only one case: multidimensional array new of pointers to members. In
947 // all other cases, we already have an initializer for the array element.
948 Init = &IVIE;
949 }
950
951 // At this point we should have found an initializer for the individual
952 // elements of the array.
953 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
954 "got wrong type of element to initialize");
955
956 // If we have an empty initializer list, we can usually use memset.
957 if (auto *ILE = dyn_cast<InitListExpr>(Init))
958 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
959 return;
960
961 // Create the loop blocks.
962 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
963 llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
964 llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
965
966 // Find the end of the array, hoisted out of the loop.
967 llvm::Value *EndPtr =
968 Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end");
969
970 // If the number of elements isn't constant, we have to now check if there is
971 // anything left to initialize.
972 if (!ConstNum) {
973 llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr,
974 "array.isempty");
975 Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
976 }
977
978 // Enter the loop.
979 EmitBlock(LoopBB);
980
981 // Set up the current-element phi.
982 llvm::PHINode *CurPtrPhi =
983 Builder.CreatePHI(CurPtr->getType(), 2, "array.cur");
984 CurPtrPhi->addIncoming(CurPtr, EntryBB);
985 CurPtr = CurPtrPhi;
986
987 // Store the new Cleanup position for irregular Cleanups.
988 if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
989
990 // Enter a partial-destruction Cleanup if necessary.
991 if (!CleanupDominator && needsEHCleanup(DtorKind)) {
992 pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType,
993 getDestroyer(DtorKind));
994 Cleanup = EHStack.stable_begin();
995 CleanupDominator = Builder.CreateUnreachable();
996 }
997
998 // Emit the initializer into this element.
999 StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
1000
1001 // Leave the Cleanup if we entered one.
1002 if (CleanupDominator) {
1003 DeactivateCleanupBlock(Cleanup, CleanupDominator);
1004 CleanupDominator->eraseFromParent();
1005 }
1006
1007 // Advance to the next element by adjusting the pointer type as necessary.
1008 llvm::Value *NextPtr =
1009 Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1, "array.next");
1010
1011 // Check whether we've gotten to the end of the array and, if so,
1012 // exit the loop.
1013 llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
1014 Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
1015 CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
1016
1017 EmitBlock(ContBB);
1018 }
1019
EmitNewInitializer(CodeGenFunction & CGF,const CXXNewExpr * E,QualType ElementType,llvm::Type * ElementTy,llvm::Value * NewPtr,llvm::Value * NumElements,llvm::Value * AllocSizeWithoutCookie)1020 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1021 QualType ElementType, llvm::Type *ElementTy,
1022 llvm::Value *NewPtr, llvm::Value *NumElements,
1023 llvm::Value *AllocSizeWithoutCookie) {
1024 ApplyDebugLocation DL(CGF, E);
1025 if (E->isArray())
1026 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
1027 AllocSizeWithoutCookie);
1028 else if (const Expr *Init = E->getInitializer())
1029 StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
1030 }
1031
1032 /// Emit a call to an operator new or operator delete function, as implicitly
1033 /// created by new-expressions and delete-expressions.
EmitNewDeleteCall(CodeGenFunction & CGF,const FunctionDecl * Callee,const FunctionProtoType * CalleeType,const CallArgList & Args)1034 static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1035 const FunctionDecl *Callee,
1036 const FunctionProtoType *CalleeType,
1037 const CallArgList &Args) {
1038 llvm::Instruction *CallOrInvoke;
1039 llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
1040 RValue RV =
1041 CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
1042 Args, CalleeType, /*chainCall=*/false),
1043 CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
1044
1045 /// C++1y [expr.new]p10:
1046 /// [In a new-expression,] an implementation is allowed to omit a call
1047 /// to a replaceable global allocation function.
1048 ///
1049 /// We model such elidable calls with the 'builtin' attribute.
1050 llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
1051 if (Callee->isReplaceableGlobalAllocationFunction() &&
1052 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1053 // FIXME: Add addAttribute to CallSite.
1054 if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
1055 CI->addAttribute(llvm::AttributeSet::FunctionIndex,
1056 llvm::Attribute::Builtin);
1057 else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
1058 II->addAttribute(llvm::AttributeSet::FunctionIndex,
1059 llvm::Attribute::Builtin);
1060 else
1061 llvm_unreachable("unexpected kind of call instruction");
1062 }
1063
1064 return RV;
1065 }
1066
EmitBuiltinNewDeleteCall(const FunctionProtoType * Type,const Expr * Arg,bool IsDelete)1067 RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1068 const Expr *Arg,
1069 bool IsDelete) {
1070 CallArgList Args;
1071 const Stmt *ArgS = Arg;
1072 EmitCallArgs(Args, *Type->param_type_begin(),
1073 ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1));
1074 // Find the allocation or deallocation function that we're calling.
1075 ASTContext &Ctx = getContext();
1076 DeclarationName Name = Ctx.DeclarationNames
1077 .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
1078 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1079 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1080 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1081 return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
1082 llvm_unreachable("predeclared global operator new/delete is missing");
1083 }
1084
1085 namespace {
1086 /// A cleanup to call the given 'operator delete' function upon
1087 /// abnormal exit from a new expression.
1088 class CallDeleteDuringNew : public EHScopeStack::Cleanup {
1089 size_t NumPlacementArgs;
1090 const FunctionDecl *OperatorDelete;
1091 llvm::Value *Ptr;
1092 llvm::Value *AllocSize;
1093
getPlacementArgs()1094 RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
1095
1096 public:
getExtraSize(size_t NumPlacementArgs)1097 static size_t getExtraSize(size_t NumPlacementArgs) {
1098 return NumPlacementArgs * sizeof(RValue);
1099 }
1100
CallDeleteDuringNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,llvm::Value * Ptr,llvm::Value * AllocSize)1101 CallDeleteDuringNew(size_t NumPlacementArgs,
1102 const FunctionDecl *OperatorDelete,
1103 llvm::Value *Ptr,
1104 llvm::Value *AllocSize)
1105 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1106 Ptr(Ptr), AllocSize(AllocSize) {}
1107
setPlacementArg(unsigned I,RValue Arg)1108 void setPlacementArg(unsigned I, RValue Arg) {
1109 assert(I < NumPlacementArgs && "index out of range");
1110 getPlacementArgs()[I] = Arg;
1111 }
1112
Emit(CodeGenFunction & CGF,Flags flags)1113 void Emit(CodeGenFunction &CGF, Flags flags) override {
1114 const FunctionProtoType *FPT
1115 = OperatorDelete->getType()->getAs<FunctionProtoType>();
1116 assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1117 (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1118
1119 CallArgList DeleteArgs;
1120
1121 // The first argument is always a void*.
1122 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1123 DeleteArgs.add(RValue::get(Ptr), *AI++);
1124
1125 // A member 'operator delete' can take an extra 'size_t' argument.
1126 if (FPT->getNumParams() == NumPlacementArgs + 2)
1127 DeleteArgs.add(RValue::get(AllocSize), *AI++);
1128
1129 // Pass the rest of the arguments, which must match exactly.
1130 for (unsigned I = 0; I != NumPlacementArgs; ++I)
1131 DeleteArgs.add(getPlacementArgs()[I], *AI++);
1132
1133 // Call 'operator delete'.
1134 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1135 }
1136 };
1137
1138 /// A cleanup to call the given 'operator delete' function upon
1139 /// abnormal exit from a new expression when the new expression is
1140 /// conditional.
1141 class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
1142 size_t NumPlacementArgs;
1143 const FunctionDecl *OperatorDelete;
1144 DominatingValue<RValue>::saved_type Ptr;
1145 DominatingValue<RValue>::saved_type AllocSize;
1146
getPlacementArgs()1147 DominatingValue<RValue>::saved_type *getPlacementArgs() {
1148 return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
1149 }
1150
1151 public:
getExtraSize(size_t NumPlacementArgs)1152 static size_t getExtraSize(size_t NumPlacementArgs) {
1153 return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
1154 }
1155
CallDeleteDuringConditionalNew(size_t NumPlacementArgs,const FunctionDecl * OperatorDelete,DominatingValue<RValue>::saved_type Ptr,DominatingValue<RValue>::saved_type AllocSize)1156 CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
1157 const FunctionDecl *OperatorDelete,
1158 DominatingValue<RValue>::saved_type Ptr,
1159 DominatingValue<RValue>::saved_type AllocSize)
1160 : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
1161 Ptr(Ptr), AllocSize(AllocSize) {}
1162
setPlacementArg(unsigned I,DominatingValue<RValue>::saved_type Arg)1163 void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
1164 assert(I < NumPlacementArgs && "index out of range");
1165 getPlacementArgs()[I] = Arg;
1166 }
1167
Emit(CodeGenFunction & CGF,Flags flags)1168 void Emit(CodeGenFunction &CGF, Flags flags) override {
1169 const FunctionProtoType *FPT
1170 = OperatorDelete->getType()->getAs<FunctionProtoType>();
1171 assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
1172 (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
1173
1174 CallArgList DeleteArgs;
1175
1176 // The first argument is always a void*.
1177 FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
1178 DeleteArgs.add(Ptr.restore(CGF), *AI++);
1179
1180 // A member 'operator delete' can take an extra 'size_t' argument.
1181 if (FPT->getNumParams() == NumPlacementArgs + 2) {
1182 RValue RV = AllocSize.restore(CGF);
1183 DeleteArgs.add(RV, *AI++);
1184 }
1185
1186 // Pass the rest of the arguments, which must match exactly.
1187 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1188 RValue RV = getPlacementArgs()[I].restore(CGF);
1189 DeleteArgs.add(RV, *AI++);
1190 }
1191
1192 // Call 'operator delete'.
1193 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1194 }
1195 };
1196 }
1197
1198 /// Enter a cleanup to call 'operator delete' if the initializer in a
1199 /// new-expression throws.
EnterNewDeleteCleanup(CodeGenFunction & CGF,const CXXNewExpr * E,llvm::Value * NewPtr,llvm::Value * AllocSize,const CallArgList & NewArgs)1200 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1201 const CXXNewExpr *E,
1202 llvm::Value *NewPtr,
1203 llvm::Value *AllocSize,
1204 const CallArgList &NewArgs) {
1205 // If we're not inside a conditional branch, then the cleanup will
1206 // dominate and we can do the easier (and more efficient) thing.
1207 if (!CGF.isInConditionalBranch()) {
1208 CallDeleteDuringNew *Cleanup = CGF.EHStack
1209 .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
1210 E->getNumPlacementArgs(),
1211 E->getOperatorDelete(),
1212 NewPtr, AllocSize);
1213 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1214 Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
1215
1216 return;
1217 }
1218
1219 // Otherwise, we need to save all this stuff.
1220 DominatingValue<RValue>::saved_type SavedNewPtr =
1221 DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
1222 DominatingValue<RValue>::saved_type SavedAllocSize =
1223 DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
1224
1225 CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
1226 .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
1227 E->getNumPlacementArgs(),
1228 E->getOperatorDelete(),
1229 SavedNewPtr,
1230 SavedAllocSize);
1231 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
1232 Cleanup->setPlacementArg(I,
1233 DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
1234
1235 CGF.initFullExprCleanup();
1236 }
1237
EmitCXXNewExpr(const CXXNewExpr * E)1238 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1239 // The element type being allocated.
1240 QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
1241
1242 // 1. Build a call to the allocation function.
1243 FunctionDecl *allocator = E->getOperatorNew();
1244 const FunctionProtoType *allocatorType =
1245 allocator->getType()->castAs<FunctionProtoType>();
1246
1247 CallArgList allocatorArgs;
1248
1249 // The allocation size is the first argument.
1250 QualType sizeType = getContext().getSizeType();
1251
1252 // If there is a brace-initializer, cannot allocate fewer elements than inits.
1253 unsigned minElements = 0;
1254 if (E->isArray() && E->hasInitializer()) {
1255 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
1256 minElements = ILE->getNumInits();
1257 }
1258
1259 llvm::Value *numElements = nullptr;
1260 llvm::Value *allocSizeWithoutCookie = nullptr;
1261 llvm::Value *allocSize =
1262 EmitCXXNewAllocSize(*this, E, minElements, numElements,
1263 allocSizeWithoutCookie);
1264
1265 allocatorArgs.add(RValue::get(allocSize), sizeType);
1266
1267 // We start at 1 here because the first argument (the allocation size)
1268 // has already been emitted.
1269 EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(),
1270 E->placement_arg_end(), /* CalleeDecl */ nullptr,
1271 /*ParamsToSkip*/ 1);
1272
1273 // Emit the allocation call. If the allocator is a global placement
1274 // operator, just "inline" it directly.
1275 RValue RV;
1276 if (allocator->isReservedGlobalPlacementOperator()) {
1277 assert(allocatorArgs.size() == 2);
1278 RV = allocatorArgs[1].RV;
1279 // TODO: kill any unnecessary computations done for the size
1280 // argument.
1281 } else {
1282 RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
1283 }
1284
1285 // Emit a null check on the allocation result if the allocation
1286 // function is allowed to return null (because it has a non-throwing
1287 // exception spec or is the reserved placement new) and we have an
1288 // interesting initializer.
1289 bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
1290 (!allocType.isPODType(getContext()) || E->hasInitializer());
1291
1292 llvm::BasicBlock *nullCheckBB = nullptr;
1293 llvm::BasicBlock *contBB = nullptr;
1294
1295 llvm::Value *allocation = RV.getScalarVal();
1296 unsigned AS = allocation->getType()->getPointerAddressSpace();
1297
1298 // The null-check means that the initializer is conditionally
1299 // evaluated.
1300 ConditionalEvaluation conditional(*this);
1301
1302 if (nullCheck) {
1303 conditional.begin(*this);
1304
1305 nullCheckBB = Builder.GetInsertBlock();
1306 llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
1307 contBB = createBasicBlock("new.cont");
1308
1309 llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
1310 Builder.CreateCondBr(isNull, contBB, notNullBB);
1311 EmitBlock(notNullBB);
1312 }
1313
1314 // If there's an operator delete, enter a cleanup to call it if an
1315 // exception is thrown.
1316 EHScopeStack::stable_iterator operatorDeleteCleanup;
1317 llvm::Instruction *cleanupDominator = nullptr;
1318 if (E->getOperatorDelete() &&
1319 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1320 EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
1321 operatorDeleteCleanup = EHStack.stable_begin();
1322 cleanupDominator = Builder.CreateUnreachable();
1323 }
1324
1325 assert((allocSize == allocSizeWithoutCookie) ==
1326 CalculateCookiePadding(*this, E).isZero());
1327 if (allocSize != allocSizeWithoutCookie) {
1328 assert(E->isArray());
1329 allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
1330 numElements,
1331 E, allocType);
1332 }
1333
1334 llvm::Type *elementTy = ConvertTypeForMem(allocType);
1335 llvm::Type *elementPtrTy = elementTy->getPointerTo(AS);
1336 llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
1337
1338 EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
1339 allocSizeWithoutCookie);
1340 if (E->isArray()) {
1341 // NewPtr is a pointer to the base element type. If we're
1342 // allocating an array of arrays, we'll need to cast back to the
1343 // array pointer type.
1344 llvm::Type *resultType = ConvertTypeForMem(E->getType());
1345 if (result->getType() != resultType)
1346 result = Builder.CreateBitCast(result, resultType);
1347 }
1348
1349 // Deactivate the 'operator delete' cleanup if we finished
1350 // initialization.
1351 if (operatorDeleteCleanup.isValid()) {
1352 DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
1353 cleanupDominator->eraseFromParent();
1354 }
1355
1356 if (nullCheck) {
1357 conditional.end(*this);
1358
1359 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1360 EmitBlock(contBB);
1361
1362 llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
1363 PHI->addIncoming(result, notNullBB);
1364 PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
1365 nullCheckBB);
1366
1367 result = PHI;
1368 }
1369
1370 return result;
1371 }
1372
EmitDeleteCall(const FunctionDecl * DeleteFD,llvm::Value * Ptr,QualType DeleteTy)1373 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1374 llvm::Value *Ptr,
1375 QualType DeleteTy) {
1376 assert(DeleteFD->getOverloadedOperator() == OO_Delete);
1377
1378 const FunctionProtoType *DeleteFTy =
1379 DeleteFD->getType()->getAs<FunctionProtoType>();
1380
1381 CallArgList DeleteArgs;
1382
1383 // Check if we need to pass the size to the delete operator.
1384 llvm::Value *Size = nullptr;
1385 QualType SizeTy;
1386 if (DeleteFTy->getNumParams() == 2) {
1387 SizeTy = DeleteFTy->getParamType(1);
1388 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
1389 Size = llvm::ConstantInt::get(ConvertType(SizeTy),
1390 DeleteTypeSize.getQuantity());
1391 }
1392
1393 QualType ArgTy = DeleteFTy->getParamType(0);
1394 llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
1395 DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
1396
1397 if (Size)
1398 DeleteArgs.add(RValue::get(Size), SizeTy);
1399
1400 // Emit the call to delete.
1401 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1402 }
1403
1404 namespace {
1405 /// Calls the given 'operator delete' on a single object.
1406 struct CallObjectDelete : EHScopeStack::Cleanup {
1407 llvm::Value *Ptr;
1408 const FunctionDecl *OperatorDelete;
1409 QualType ElementType;
1410
CallObjectDelete__anon355f96dc0311::CallObjectDelete1411 CallObjectDelete(llvm::Value *Ptr,
1412 const FunctionDecl *OperatorDelete,
1413 QualType ElementType)
1414 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1415
Emit__anon355f96dc0311::CallObjectDelete1416 void Emit(CodeGenFunction &CGF, Flags flags) override {
1417 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1418 }
1419 };
1420 }
1421
1422 void
pushCallObjectDeleteCleanup(const FunctionDecl * OperatorDelete,llvm::Value * CompletePtr,QualType ElementType)1423 CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1424 llvm::Value *CompletePtr,
1425 QualType ElementType) {
1426 EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
1427 OperatorDelete, ElementType);
1428 }
1429
1430 /// Emit the code for deleting a single object.
EmitObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,llvm::Value * Ptr,QualType ElementType)1431 static void EmitObjectDelete(CodeGenFunction &CGF,
1432 const CXXDeleteExpr *DE,
1433 llvm::Value *Ptr,
1434 QualType ElementType) {
1435 // Find the destructor for the type, if applicable. If the
1436 // destructor is virtual, we'll just emit the vcall and return.
1437 const CXXDestructorDecl *Dtor = nullptr;
1438 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1439 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1440 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1441 Dtor = RD->getDestructor();
1442
1443 if (Dtor->isVirtual()) {
1444 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1445 Dtor);
1446 return;
1447 }
1448 }
1449 }
1450
1451 // Make sure that we call delete even if the dtor throws.
1452 // This doesn't have to a conditional cleanup because we're going
1453 // to pop it off in a second.
1454 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1455 CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
1456 Ptr, OperatorDelete, ElementType);
1457
1458 if (Dtor)
1459 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1460 /*ForVirtualBase=*/false,
1461 /*Delegating=*/false,
1462 Ptr);
1463 else if (CGF.getLangOpts().ObjCAutoRefCount &&
1464 ElementType->isObjCLifetimeType()) {
1465 switch (ElementType.getObjCLifetime()) {
1466 case Qualifiers::OCL_None:
1467 case Qualifiers::OCL_ExplicitNone:
1468 case Qualifiers::OCL_Autoreleasing:
1469 break;
1470
1471 case Qualifiers::OCL_Strong: {
1472 // Load the pointer value.
1473 llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
1474 ElementType.isVolatileQualified());
1475
1476 CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
1477 break;
1478 }
1479
1480 case Qualifiers::OCL_Weak:
1481 CGF.EmitARCDestroyWeak(Ptr);
1482 break;
1483 }
1484 }
1485
1486 CGF.PopCleanupBlock();
1487 }
1488
1489 namespace {
1490 /// Calls the given 'operator delete' on an array of objects.
1491 struct CallArrayDelete : EHScopeStack::Cleanup {
1492 llvm::Value *Ptr;
1493 const FunctionDecl *OperatorDelete;
1494 llvm::Value *NumElements;
1495 QualType ElementType;
1496 CharUnits CookieSize;
1497
CallArrayDelete__anon355f96dc0411::CallArrayDelete1498 CallArrayDelete(llvm::Value *Ptr,
1499 const FunctionDecl *OperatorDelete,
1500 llvm::Value *NumElements,
1501 QualType ElementType,
1502 CharUnits CookieSize)
1503 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
1504 ElementType(ElementType), CookieSize(CookieSize) {}
1505
Emit__anon355f96dc0411::CallArrayDelete1506 void Emit(CodeGenFunction &CGF, Flags flags) override {
1507 const FunctionProtoType *DeleteFTy =
1508 OperatorDelete->getType()->getAs<FunctionProtoType>();
1509 assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
1510
1511 CallArgList Args;
1512
1513 // Pass the pointer as the first argument.
1514 QualType VoidPtrTy = DeleteFTy->getParamType(0);
1515 llvm::Value *DeletePtr
1516 = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
1517 Args.add(RValue::get(DeletePtr), VoidPtrTy);
1518
1519 // Pass the original requested size as the second argument.
1520 if (DeleteFTy->getNumParams() == 2) {
1521 QualType size_t = DeleteFTy->getParamType(1);
1522 llvm::IntegerType *SizeTy
1523 = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
1524
1525 CharUnits ElementTypeSize =
1526 CGF.CGM.getContext().getTypeSizeInChars(ElementType);
1527
1528 // The size of an element, multiplied by the number of elements.
1529 llvm::Value *Size
1530 = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
1531 Size = CGF.Builder.CreateMul(Size, NumElements);
1532
1533 // Plus the size of the cookie if applicable.
1534 if (!CookieSize.isZero()) {
1535 llvm::Value *CookieSizeV
1536 = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
1537 Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
1538 }
1539
1540 Args.add(RValue::get(Size), size_t);
1541 }
1542
1543 // Emit the call to delete.
1544 EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
1545 }
1546 };
1547 }
1548
1549 /// Emit the code for deleting an array of objects.
EmitArrayDelete(CodeGenFunction & CGF,const CXXDeleteExpr * E,llvm::Value * deletedPtr,QualType elementType)1550 static void EmitArrayDelete(CodeGenFunction &CGF,
1551 const CXXDeleteExpr *E,
1552 llvm::Value *deletedPtr,
1553 QualType elementType) {
1554 llvm::Value *numElements = nullptr;
1555 llvm::Value *allocatedPtr = nullptr;
1556 CharUnits cookieSize;
1557 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
1558 numElements, allocatedPtr, cookieSize);
1559
1560 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
1561
1562 // Make sure that we call delete even if one of the dtors throws.
1563 const FunctionDecl *operatorDelete = E->getOperatorDelete();
1564 CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
1565 allocatedPtr, operatorDelete,
1566 numElements, elementType,
1567 cookieSize);
1568
1569 // Destroy the elements.
1570 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
1571 assert(numElements && "no element count for a type with a destructor!");
1572
1573 llvm::Value *arrayEnd =
1574 CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
1575
1576 // Note that it is legal to allocate a zero-length array, and we
1577 // can never fold the check away because the length should always
1578 // come from a cookie.
1579 CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
1580 CGF.getDestroyer(dtorKind),
1581 /*checkZeroLength*/ true,
1582 CGF.needsEHCleanup(dtorKind));
1583 }
1584
1585 // Pop the cleanup block.
1586 CGF.PopCleanupBlock();
1587 }
1588
EmitCXXDeleteExpr(const CXXDeleteExpr * E)1589 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
1590 const Expr *Arg = E->getArgument();
1591 llvm::Value *Ptr = EmitScalarExpr(Arg);
1592
1593 // Null check the pointer.
1594 llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
1595 llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
1596
1597 llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
1598
1599 Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
1600 EmitBlock(DeleteNotNull);
1601
1602 // We might be deleting a pointer to array. If so, GEP down to the
1603 // first non-array element.
1604 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
1605 QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
1606 if (DeleteTy->isConstantArrayType()) {
1607 llvm::Value *Zero = Builder.getInt32(0);
1608 SmallVector<llvm::Value*,8> GEP;
1609
1610 GEP.push_back(Zero); // point at the outermost array
1611
1612 // For each layer of array type we're pointing at:
1613 while (const ConstantArrayType *Arr
1614 = getContext().getAsConstantArrayType(DeleteTy)) {
1615 // 1. Unpeel the array type.
1616 DeleteTy = Arr->getElementType();
1617
1618 // 2. GEP to the first element of the array.
1619 GEP.push_back(Zero);
1620 }
1621
1622 Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
1623 }
1624
1625 assert(ConvertTypeForMem(DeleteTy) ==
1626 cast<llvm::PointerType>(Ptr->getType())->getElementType());
1627
1628 if (E->isArrayForm()) {
1629 EmitArrayDelete(*this, E, Ptr, DeleteTy);
1630 } else {
1631 EmitObjectDelete(*this, E, Ptr, DeleteTy);
1632 }
1633
1634 EmitBlock(DeleteEnd);
1635 }
1636
isGLValueFromPointerDeref(const Expr * E)1637 static bool isGLValueFromPointerDeref(const Expr *E) {
1638 E = E->IgnoreParens();
1639
1640 if (const auto *CE = dyn_cast<CastExpr>(E)) {
1641 if (!CE->getSubExpr()->isGLValue())
1642 return false;
1643 return isGLValueFromPointerDeref(CE->getSubExpr());
1644 }
1645
1646 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
1647 return isGLValueFromPointerDeref(OVE->getSourceExpr());
1648
1649 if (const auto *BO = dyn_cast<BinaryOperator>(E))
1650 if (BO->getOpcode() == BO_Comma)
1651 return isGLValueFromPointerDeref(BO->getRHS());
1652
1653 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
1654 return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
1655 isGLValueFromPointerDeref(ACO->getFalseExpr());
1656
1657 // C++11 [expr.sub]p1:
1658 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
1659 if (isa<ArraySubscriptExpr>(E))
1660 return true;
1661
1662 if (const auto *UO = dyn_cast<UnaryOperator>(E))
1663 if (UO->getOpcode() == UO_Deref)
1664 return true;
1665
1666 return false;
1667 }
1668
EmitTypeidFromVTable(CodeGenFunction & CGF,const Expr * E,llvm::Type * StdTypeInfoPtrTy)1669 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
1670 llvm::Type *StdTypeInfoPtrTy) {
1671 // Get the vtable pointer.
1672 llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
1673
1674 // C++ [expr.typeid]p2:
1675 // If the glvalue expression is obtained by applying the unary * operator to
1676 // a pointer and the pointer is a null pointer value, the typeid expression
1677 // throws the std::bad_typeid exception.
1678 //
1679 // However, this paragraph's intent is not clear. We choose a very generous
1680 // interpretation which implores us to consider comma operators, conditional
1681 // operators, parentheses and other such constructs.
1682 QualType SrcRecordTy = E->getType();
1683 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
1684 isGLValueFromPointerDeref(E), SrcRecordTy)) {
1685 llvm::BasicBlock *BadTypeidBlock =
1686 CGF.createBasicBlock("typeid.bad_typeid");
1687 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
1688
1689 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
1690 CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
1691
1692 CGF.EmitBlock(BadTypeidBlock);
1693 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
1694 CGF.EmitBlock(EndBlock);
1695 }
1696
1697 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
1698 StdTypeInfoPtrTy);
1699 }
1700
EmitCXXTypeidExpr(const CXXTypeidExpr * E)1701 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
1702 llvm::Type *StdTypeInfoPtrTy =
1703 ConvertType(E->getType())->getPointerTo();
1704
1705 if (E->isTypeOperand()) {
1706 llvm::Constant *TypeInfo =
1707 CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
1708 return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
1709 }
1710
1711 // C++ [expr.typeid]p2:
1712 // When typeid is applied to a glvalue expression whose type is a
1713 // polymorphic class type, the result refers to a std::type_info object
1714 // representing the type of the most derived object (that is, the dynamic
1715 // type) to which the glvalue refers.
1716 if (E->isPotentiallyEvaluated())
1717 return EmitTypeidFromVTable(*this, E->getExprOperand(),
1718 StdTypeInfoPtrTy);
1719
1720 QualType OperandTy = E->getExprOperand()->getType();
1721 return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
1722 StdTypeInfoPtrTy);
1723 }
1724
EmitDynamicCastToNull(CodeGenFunction & CGF,QualType DestTy)1725 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
1726 QualType DestTy) {
1727 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
1728 if (DestTy->isPointerType())
1729 return llvm::Constant::getNullValue(DestLTy);
1730
1731 /// C++ [expr.dynamic.cast]p9:
1732 /// A failed cast to reference type throws std::bad_cast
1733 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
1734 return nullptr;
1735
1736 CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
1737 return llvm::UndefValue::get(DestLTy);
1738 }
1739
EmitDynamicCast(llvm::Value * Value,const CXXDynamicCastExpr * DCE)1740 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
1741 const CXXDynamicCastExpr *DCE) {
1742 QualType DestTy = DCE->getTypeAsWritten();
1743
1744 if (DCE->isAlwaysNull())
1745 if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
1746 return T;
1747
1748 QualType SrcTy = DCE->getSubExpr()->getType();
1749
1750 // C++ [expr.dynamic.cast]p7:
1751 // If T is "pointer to cv void," then the result is a pointer to the most
1752 // derived object pointed to by v.
1753 const PointerType *DestPTy = DestTy->getAs<PointerType>();
1754
1755 bool isDynamicCastToVoid;
1756 QualType SrcRecordTy;
1757 QualType DestRecordTy;
1758 if (DestPTy) {
1759 isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
1760 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
1761 DestRecordTy = DestPTy->getPointeeType();
1762 } else {
1763 isDynamicCastToVoid = false;
1764 SrcRecordTy = SrcTy;
1765 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
1766 }
1767
1768 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
1769
1770 // C++ [expr.dynamic.cast]p4:
1771 // If the value of v is a null pointer value in the pointer case, the result
1772 // is the null pointer value of type T.
1773 bool ShouldNullCheckSrcValue =
1774 CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
1775 SrcRecordTy);
1776
1777 llvm::BasicBlock *CastNull = nullptr;
1778 llvm::BasicBlock *CastNotNull = nullptr;
1779 llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
1780
1781 if (ShouldNullCheckSrcValue) {
1782 CastNull = createBasicBlock("dynamic_cast.null");
1783 CastNotNull = createBasicBlock("dynamic_cast.notnull");
1784
1785 llvm::Value *IsNull = Builder.CreateIsNull(Value);
1786 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
1787 EmitBlock(CastNotNull);
1788 }
1789
1790 if (isDynamicCastToVoid) {
1791 Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy,
1792 DestTy);
1793 } else {
1794 assert(DestRecordTy->isRecordType() &&
1795 "destination type must be a record type!");
1796 Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy,
1797 DestTy, DestRecordTy, CastEnd);
1798 }
1799
1800 if (ShouldNullCheckSrcValue) {
1801 EmitBranch(CastEnd);
1802
1803 EmitBlock(CastNull);
1804 EmitBranch(CastEnd);
1805 }
1806
1807 EmitBlock(CastEnd);
1808
1809 if (ShouldNullCheckSrcValue) {
1810 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
1811 PHI->addIncoming(Value, CastNotNull);
1812 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
1813
1814 Value = PHI;
1815 }
1816
1817 return Value;
1818 }
1819
EmitLambdaExpr(const LambdaExpr * E,AggValueSlot Slot)1820 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
1821 RunCleanupsScope Scope(*this);
1822 LValue SlotLV =
1823 MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment());
1824
1825 CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
1826 for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
1827 e = E->capture_init_end();
1828 i != e; ++i, ++CurField) {
1829 // Emit initialization
1830 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
1831 if (CurField->hasCapturedVLAType()) {
1832 auto VAT = CurField->getCapturedVLAType();
1833 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
1834 } else {
1835 ArrayRef<VarDecl *> ArrayIndexes;
1836 if (CurField->getType()->isArrayType())
1837 ArrayIndexes = E->getCaptureInitIndexVars(i);
1838 EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
1839 }
1840 }
1841 }
1842