1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include <cstdarg>
33
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37
38 //===----------------------------------------------------------------------===//
39 // Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41
42 namespace {
43 struct BinOpInfo {
44 Value *LHS;
45 Value *RHS;
46 QualType Ty; // Computation Type.
47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48 bool FPContractable;
49 const Expr *E; // Entire expr, for error unsupported. May not be binop.
50 };
51
MustVisitNullValue(const Expr * E)52 static bool MustVisitNullValue(const Expr *E) {
53 // If a null pointer expression's type is the C++0x nullptr_t, then
54 // it's not necessarily a simple constant and it must be evaluated
55 // for its potential side effects.
56 return E->getType()->isNullPtrType();
57 }
58
59 class ScalarExprEmitter
60 : public StmtVisitor<ScalarExprEmitter, Value*> {
61 CodeGenFunction &CGF;
62 CGBuilderTy &Builder;
63 bool IgnoreResultAssign;
64 llvm::LLVMContext &VMContext;
65 public:
66
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69 VMContext(cgf.getLLVMContext()) {
70 }
71
72 //===--------------------------------------------------------------------===//
73 // Utilities
74 //===--------------------------------------------------------------------===//
75
TestAndClearIgnoreResultAssign()76 bool TestAndClearIgnoreResultAssign() {
77 bool I = IgnoreResultAssign;
78 IgnoreResultAssign = false;
79 return I;
80 }
81
ConvertType(QualType T)82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85 return CGF.EmitCheckedLValue(E, TCK);
86 }
87
88 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerKind>> Checks,
89 const BinOpInfo &Info);
90
EmitLoadOfLValue(LValue LV,SourceLocation Loc)91 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
92 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
93 }
94
EmitLValueAlignmentAssumption(const Expr * E,Value * V)95 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
96 const AlignValueAttr *AVAttr = nullptr;
97 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
98 const ValueDecl *VD = DRE->getDecl();
99
100 if (VD->getType()->isReferenceType()) {
101 if (const auto *TTy =
102 dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
103 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
104 } else {
105 // Assumptions for function parameters are emitted at the start of the
106 // function, so there is no need to repeat that here.
107 if (isa<ParmVarDecl>(VD))
108 return;
109
110 AVAttr = VD->getAttr<AlignValueAttr>();
111 }
112 }
113
114 if (!AVAttr)
115 if (const auto *TTy =
116 dyn_cast<TypedefType>(E->getType()))
117 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
118
119 if (!AVAttr)
120 return;
121
122 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
123 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
124 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
125 }
126
127 /// EmitLoadOfLValue - Given an expression with complex type that represents a
128 /// value l-value, this method emits the address of the l-value, then loads
129 /// and returns the result.
EmitLoadOfLValue(const Expr * E)130 Value *EmitLoadOfLValue(const Expr *E) {
131 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
132 E->getExprLoc());
133
134 EmitLValueAlignmentAssumption(E, V);
135 return V;
136 }
137
138 /// EmitConversionToBool - Convert the specified expression value to a
139 /// boolean (i1) truth value. This is equivalent to "Val != 0".
140 Value *EmitConversionToBool(Value *Src, QualType DstTy);
141
142 /// \brief Emit a check that a conversion to or from a floating-point type
143 /// does not overflow.
144 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
145 Value *Src, QualType SrcType,
146 QualType DstType, llvm::Type *DstTy);
147
148 /// EmitScalarConversion - Emit a conversion from the specified type to the
149 /// specified destination type, both of which are LLVM scalar types.
150 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
151
152 /// EmitComplexToScalarConversion - Emit a conversion from the specified
153 /// complex type to the specified destination type, where the destination type
154 /// is an LLVM scalar type.
155 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
156 QualType SrcTy, QualType DstTy);
157
158 /// EmitNullValue - Emit a value that corresponds to null for the given type.
159 Value *EmitNullValue(QualType Ty);
160
161 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)162 Value *EmitFloatToBoolConversion(Value *V) {
163 // Compare against 0.0 for fp scalars.
164 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
165 return Builder.CreateFCmpUNE(V, Zero, "tobool");
166 }
167
168 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)169 Value *EmitPointerToBoolConversion(Value *V) {
170 Value *Zero = llvm::ConstantPointerNull::get(
171 cast<llvm::PointerType>(V->getType()));
172 return Builder.CreateICmpNE(V, Zero, "tobool");
173 }
174
EmitIntToBoolConversion(Value * V)175 Value *EmitIntToBoolConversion(Value *V) {
176 // Because of the type rules of C, we often end up computing a
177 // logical value, then zero extending it to int, then wanting it
178 // as a logical value again. Optimize this common case.
179 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
180 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
181 Value *Result = ZI->getOperand(0);
182 // If there aren't any more uses, zap the instruction to save space.
183 // Note that there can be more uses, for example if this
184 // is the result of an assignment.
185 if (ZI->use_empty())
186 ZI->eraseFromParent();
187 return Result;
188 }
189 }
190
191 return Builder.CreateIsNotNull(V, "tobool");
192 }
193
194 //===--------------------------------------------------------------------===//
195 // Visitor Methods
196 //===--------------------------------------------------------------------===//
197
Visit(Expr * E)198 Value *Visit(Expr *E) {
199 ApplyDebugLocation DL(CGF, E);
200 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
201 }
202
VisitStmt(Stmt * S)203 Value *VisitStmt(Stmt *S) {
204 S->dump(CGF.getContext().getSourceManager());
205 llvm_unreachable("Stmt can't have complex result type!");
206 }
207 Value *VisitExpr(Expr *S);
208
VisitParenExpr(ParenExpr * PE)209 Value *VisitParenExpr(ParenExpr *PE) {
210 return Visit(PE->getSubExpr());
211 }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)212 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
213 return Visit(E->getReplacement());
214 }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)215 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
216 return Visit(GE->getResultExpr());
217 }
218
219 // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)220 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
221 return Builder.getInt(E->getValue());
222 }
VisitFloatingLiteral(const FloatingLiteral * E)223 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
224 return llvm::ConstantFP::get(VMContext, E->getValue());
225 }
VisitCharacterLiteral(const CharacterLiteral * E)226 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
227 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
228 }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)229 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
230 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
231 }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)232 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
233 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
234 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)235 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
236 return EmitNullValue(E->getType());
237 }
VisitGNUNullExpr(const GNUNullExpr * E)238 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
239 return EmitNullValue(E->getType());
240 }
241 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
242 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)243 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
244 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
245 return Builder.CreateBitCast(V, ConvertType(E->getType()));
246 }
247
VisitSizeOfPackExpr(SizeOfPackExpr * E)248 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
249 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
250 }
251
VisitPseudoObjectExpr(PseudoObjectExpr * E)252 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
253 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
254 }
255
VisitOpaqueValueExpr(OpaqueValueExpr * E)256 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
257 if (E->isGLValue())
258 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
259
260 // Otherwise, assume the mapping is the scalar directly.
261 return CGF.getOpaqueRValueMapping(E).getScalarVal();
262 }
263
264 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)265 Value *VisitDeclRefExpr(DeclRefExpr *E) {
266 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
267 if (result.isReference())
268 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
269 E->getExprLoc());
270 return result.getValue();
271 }
272 return EmitLoadOfLValue(E);
273 }
274
VisitObjCSelectorExpr(ObjCSelectorExpr * E)275 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
276 return CGF.EmitObjCSelectorExpr(E);
277 }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)278 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
279 return CGF.EmitObjCProtocolExpr(E);
280 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)281 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
282 return EmitLoadOfLValue(E);
283 }
VisitObjCMessageExpr(ObjCMessageExpr * E)284 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
285 if (E->getMethodDecl() &&
286 E->getMethodDecl()->getReturnType()->isReferenceType())
287 return EmitLoadOfLValue(E);
288 return CGF.EmitObjCMessageExpr(E).getScalarVal();
289 }
290
VisitObjCIsaExpr(ObjCIsaExpr * E)291 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
292 LValue LV = CGF.EmitObjCIsaExpr(E);
293 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
294 return V;
295 }
296
297 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
298 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
299 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
300 Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)301 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)302 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
303 return EmitLoadOfLValue(E);
304 }
305
306 Value *VisitInitListExpr(InitListExpr *E);
307
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)308 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
309 return EmitNullValue(E->getType());
310 }
VisitExplicitCastExpr(ExplicitCastExpr * E)311 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
312 if (E->getType()->isVariablyModifiedType())
313 CGF.EmitVariablyModifiedType(E->getType());
314
315 if (CGDebugInfo *DI = CGF.getDebugInfo())
316 DI->EmitExplicitCastType(E->getType());
317
318 return VisitCastExpr(E);
319 }
320 Value *VisitCastExpr(CastExpr *E);
321
VisitCallExpr(const CallExpr * E)322 Value *VisitCallExpr(const CallExpr *E) {
323 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324 return EmitLoadOfLValue(E);
325
326 Value *V = CGF.EmitCallExpr(E).getScalarVal();
327
328 EmitLValueAlignmentAssumption(E, V);
329 return V;
330 }
331
332 Value *VisitStmtExpr(const StmtExpr *E);
333
334 // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)335 Value *VisitUnaryPostDec(const UnaryOperator *E) {
336 LValue LV = EmitLValue(E->getSubExpr());
337 return EmitScalarPrePostIncDec(E, LV, false, false);
338 }
VisitUnaryPostInc(const UnaryOperator * E)339 Value *VisitUnaryPostInc(const UnaryOperator *E) {
340 LValue LV = EmitLValue(E->getSubExpr());
341 return EmitScalarPrePostIncDec(E, LV, true, false);
342 }
VisitUnaryPreDec(const UnaryOperator * E)343 Value *VisitUnaryPreDec(const UnaryOperator *E) {
344 LValue LV = EmitLValue(E->getSubExpr());
345 return EmitScalarPrePostIncDec(E, LV, false, true);
346 }
VisitUnaryPreInc(const UnaryOperator * E)347 Value *VisitUnaryPreInc(const UnaryOperator *E) {
348 LValue LV = EmitLValue(E->getSubExpr());
349 return EmitScalarPrePostIncDec(E, LV, true, true);
350 }
351
352 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
353 llvm::Value *InVal,
354 llvm::Value *NextVal,
355 bool IsInc);
356
357 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
358 bool isInc, bool isPre);
359
360
VisitUnaryAddrOf(const UnaryOperator * E)361 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
362 if (isa<MemberPointerType>(E->getType())) // never sugared
363 return CGF.CGM.getMemberPointerConstant(E);
364
365 return EmitLValue(E->getSubExpr()).getAddress();
366 }
VisitUnaryDeref(const UnaryOperator * E)367 Value *VisitUnaryDeref(const UnaryOperator *E) {
368 if (E->getType()->isVoidType())
369 return Visit(E->getSubExpr()); // the actual value should be unused
370 return EmitLoadOfLValue(E);
371 }
VisitUnaryPlus(const UnaryOperator * E)372 Value *VisitUnaryPlus(const UnaryOperator *E) {
373 // This differs from gcc, though, most likely due to a bug in gcc.
374 TestAndClearIgnoreResultAssign();
375 return Visit(E->getSubExpr());
376 }
377 Value *VisitUnaryMinus (const UnaryOperator *E);
378 Value *VisitUnaryNot (const UnaryOperator *E);
379 Value *VisitUnaryLNot (const UnaryOperator *E);
380 Value *VisitUnaryReal (const UnaryOperator *E);
381 Value *VisitUnaryImag (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)382 Value *VisitUnaryExtension(const UnaryOperator *E) {
383 return Visit(E->getSubExpr());
384 }
385
386 // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)387 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
388 return EmitLoadOfLValue(E);
389 }
390
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)391 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
392 return Visit(DAE->getExpr());
393 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)394 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
395 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
396 return Visit(DIE->getExpr());
397 }
VisitCXXThisExpr(CXXThisExpr * TE)398 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
399 return CGF.LoadCXXThis();
400 }
401
VisitExprWithCleanups(ExprWithCleanups * E)402 Value *VisitExprWithCleanups(ExprWithCleanups *E) {
403 CGF.enterFullExpression(E);
404 CodeGenFunction::RunCleanupsScope Scope(CGF);
405 return Visit(E->getSubExpr());
406 }
VisitCXXNewExpr(const CXXNewExpr * E)407 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
408 return CGF.EmitCXXNewExpr(E);
409 }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)410 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
411 CGF.EmitCXXDeleteExpr(E);
412 return nullptr;
413 }
414
VisitTypeTraitExpr(const TypeTraitExpr * E)415 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
416 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
417 }
418
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)419 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
420 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
421 }
422
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)423 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
424 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
425 }
426
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)427 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
428 // C++ [expr.pseudo]p1:
429 // The result shall only be used as the operand for the function call
430 // operator (), and the result of such a call has type void. The only
431 // effect is the evaluation of the postfix-expression before the dot or
432 // arrow.
433 CGF.EmitScalarExpr(E->getBase());
434 return nullptr;
435 }
436
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)437 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
438 return EmitNullValue(E->getType());
439 }
440
VisitCXXThrowExpr(const CXXThrowExpr * E)441 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
442 CGF.EmitCXXThrowExpr(E);
443 return nullptr;
444 }
445
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)446 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
447 return Builder.getInt1(E->getValue());
448 }
449
450 // Binary Operators.
EmitMul(const BinOpInfo & Ops)451 Value *EmitMul(const BinOpInfo &Ops) {
452 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
453 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
454 case LangOptions::SOB_Defined:
455 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
456 case LangOptions::SOB_Undefined:
457 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
458 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
459 // Fall through.
460 case LangOptions::SOB_Trapping:
461 return EmitOverflowCheckedBinOp(Ops);
462 }
463 }
464
465 if (Ops.Ty->isUnsignedIntegerType() &&
466 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
467 return EmitOverflowCheckedBinOp(Ops);
468
469 if (Ops.LHS->getType()->isFPOrFPVectorTy())
470 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
471 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
472 }
473 /// Create a binary op that checks for overflow.
474 /// Currently only supports +, - and *.
475 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
476
477 // Check for undefined division and modulus behaviors.
478 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
479 llvm::Value *Zero,bool isDiv);
480 // Common helper for getting how wide LHS of shift is.
481 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
482 Value *EmitDiv(const BinOpInfo &Ops);
483 Value *EmitRem(const BinOpInfo &Ops);
484 Value *EmitAdd(const BinOpInfo &Ops);
485 Value *EmitSub(const BinOpInfo &Ops);
486 Value *EmitShl(const BinOpInfo &Ops);
487 Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)488 Value *EmitAnd(const BinOpInfo &Ops) {
489 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
490 }
EmitXor(const BinOpInfo & Ops)491 Value *EmitXor(const BinOpInfo &Ops) {
492 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
493 }
EmitOr(const BinOpInfo & Ops)494 Value *EmitOr (const BinOpInfo &Ops) {
495 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
496 }
497
498 BinOpInfo EmitBinOps(const BinaryOperator *E);
499 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
500 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
501 Value *&Result);
502
503 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
504 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
505
506 // Binary operators and binary compound assignment operators.
507 #define HANDLEBINOP(OP) \
508 Value *VisitBin ## OP(const BinaryOperator *E) { \
509 return Emit ## OP(EmitBinOps(E)); \
510 } \
511 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
512 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
513 }
514 HANDLEBINOP(Mul)
515 HANDLEBINOP(Div)
516 HANDLEBINOP(Rem)
517 HANDLEBINOP(Add)
518 HANDLEBINOP(Sub)
519 HANDLEBINOP(Shl)
520 HANDLEBINOP(Shr)
521 HANDLEBINOP(And)
522 HANDLEBINOP(Xor)
523 HANDLEBINOP(Or)
524 #undef HANDLEBINOP
525
526 // Comparisons.
527 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
528 unsigned SICmpOpc, unsigned FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530 Value *VisitBin##CODE(const BinaryOperator *E) { \
531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532 llvm::FCmpInst::FP); }
533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540
541 Value *VisitBinAssign (const BinaryOperator *E);
542
543 Value *VisitBinLAnd (const BinaryOperator *E);
544 Value *VisitBinLOr (const BinaryOperator *E);
545 Value *VisitBinComma (const BinaryOperator *E);
546
VisitBinPtrMemD(const Expr * E)547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549
550 // Other Operators.
551 Value *VisitBlockExpr(const BlockExpr *BE);
552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553 Value *VisitChooseExpr(ChooseExpr *CE);
554 Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556 return CGF.EmitObjCStringLiteral(E);
557 }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559 return CGF.EmitObjCBoxedExpr(E);
560 }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562 return CGF.EmitObjCArrayLiteral(E);
563 }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565 return CGF.EmitObjCDictionaryLiteral(E);
566 }
567 Value *VisitAsTypeExpr(AsTypeExpr *CE);
568 Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 } // end anonymous namespace.
571
572 //===----------------------------------------------------------------------===//
573 // Utilities
574 //===----------------------------------------------------------------------===//
575
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value. This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580
581 if (SrcType->isRealFloatingType())
582 return EmitFloatToBoolConversion(Src);
583
584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586
587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588 "Unknown scalar type to convert");
589
590 if (isa<llvm::IntegerType>(Src->getType()))
591 return EmitIntToBoolConversion(Src);
592
593 assert(isa<llvm::PointerType>(Src->getType()));
594 return EmitPointerToBoolConversion(Src);
595 }
596
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy)597 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
598 QualType OrigSrcType,
599 Value *Src, QualType SrcType,
600 QualType DstType,
601 llvm::Type *DstTy) {
602 CodeGenFunction::SanitizerScope SanScope(&CGF);
603 using llvm::APFloat;
604 using llvm::APSInt;
605
606 llvm::Type *SrcTy = Src->getType();
607
608 llvm::Value *Check = nullptr;
609 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
610 // Integer to floating-point. This can fail for unsigned short -> __half
611 // or unsigned __int128 -> float.
612 assert(DstType->isFloatingType());
613 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
614
615 APFloat LargestFloat =
616 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
617 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
618
619 bool IsExact;
620 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
621 &IsExact) != APFloat::opOK)
622 // The range of representable values of this floating point type includes
623 // all values of this integer type. Don't need an overflow check.
624 return;
625
626 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
627 if (SrcIsUnsigned)
628 Check = Builder.CreateICmpULE(Src, Max);
629 else {
630 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
631 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
632 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
633 Check = Builder.CreateAnd(GE, LE);
634 }
635 } else {
636 const llvm::fltSemantics &SrcSema =
637 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
638 if (isa<llvm::IntegerType>(DstTy)) {
639 // Floating-point to integer. This has undefined behavior if the source is
640 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
641 // to an integer).
642 unsigned Width = CGF.getContext().getIntWidth(DstType);
643 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
644
645 APSInt Min = APSInt::getMinValue(Width, Unsigned);
646 APFloat MinSrc(SrcSema, APFloat::uninitialized);
647 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
648 APFloat::opOverflow)
649 // Don't need an overflow check for lower bound. Just check for
650 // -Inf/NaN.
651 MinSrc = APFloat::getInf(SrcSema, true);
652 else
653 // Find the largest value which is too small to represent (before
654 // truncation toward zero).
655 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
656
657 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
658 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
659 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
660 APFloat::opOverflow)
661 // Don't need an overflow check for upper bound. Just check for
662 // +Inf/NaN.
663 MaxSrc = APFloat::getInf(SrcSema, false);
664 else
665 // Find the smallest value which is too large to represent (before
666 // truncation toward zero).
667 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
668
669 // If we're converting from __half, convert the range to float to match
670 // the type of src.
671 if (OrigSrcType->isHalfType()) {
672 const llvm::fltSemantics &Sema =
673 CGF.getContext().getFloatTypeSemantics(SrcType);
674 bool IsInexact;
675 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
676 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
677 }
678
679 llvm::Value *GE =
680 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
681 llvm::Value *LE =
682 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
683 Check = Builder.CreateAnd(GE, LE);
684 } else {
685 // FIXME: Maybe split this sanitizer out from float-cast-overflow.
686 //
687 // Floating-point to floating-point. This has undefined behavior if the
688 // source is not in the range of representable values of the destination
689 // type. The C and C++ standards are spectacularly unclear here. We
690 // diagnose finite out-of-range conversions, but allow infinities and NaNs
691 // to convert to the corresponding value in the smaller type.
692 //
693 // C11 Annex F gives all such conversions defined behavior for IEC 60559
694 // conforming implementations. Unfortunately, LLVM's fptrunc instruction
695 // does not.
696
697 // Converting from a lower rank to a higher rank can never have
698 // undefined behavior, since higher-rank types must have a superset
699 // of values of lower-rank types.
700 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
701 return;
702
703 assert(!OrigSrcType->isHalfType() &&
704 "should not check conversion from __half, it has the lowest rank");
705
706 const llvm::fltSemantics &DstSema =
707 CGF.getContext().getFloatTypeSemantics(DstType);
708 APFloat MinBad = APFloat::getLargest(DstSema, false);
709 APFloat MaxBad = APFloat::getInf(DstSema, false);
710
711 bool IsInexact;
712 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
713 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
714
715 Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
716 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
717 llvm::Value *GE =
718 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
719 llvm::Value *LE =
720 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
721 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
722 }
723 }
724
725 // FIXME: Provide a SourceLocation.
726 llvm::Constant *StaticArgs[] = {
727 CGF.EmitCheckTypeDescriptor(OrigSrcType),
728 CGF.EmitCheckTypeDescriptor(DstType)
729 };
730 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
731 "float_cast_overflow", StaticArgs, OrigSrc);
732 }
733
734 /// EmitScalarConversion - Emit a conversion from the specified type to the
735 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType)736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
737 QualType DstType) {
738 SrcType = CGF.getContext().getCanonicalType(SrcType);
739 DstType = CGF.getContext().getCanonicalType(DstType);
740 if (SrcType == DstType) return Src;
741
742 if (DstType->isVoidType()) return nullptr;
743
744 llvm::Value *OrigSrc = Src;
745 QualType OrigSrcType = SrcType;
746 llvm::Type *SrcTy = Src->getType();
747
748 // Handle conversions to bool first, they are special: comparisons against 0.
749 if (DstType->isBooleanType())
750 return EmitConversionToBool(Src, SrcType);
751
752 llvm::Type *DstTy = ConvertType(DstType);
753
754 // Cast from half through float if half isn't a native type.
755 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
756 // Cast to FP using the intrinsic if the half type itself isn't supported.
757 if (DstTy->isFloatingPointTy()) {
758 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
759 return Builder.CreateCall(
760 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
761 Src);
762 } else {
763 // Cast to other types through float, using either the intrinsic or FPExt,
764 // depending on whether the half type itself is supported
765 // (as opposed to operations on half, available with NativeHalfType).
766 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
767 Src = Builder.CreateCall(
768 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
769 CGF.CGM.FloatTy),
770 Src);
771 } else {
772 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
773 }
774 SrcType = CGF.getContext().FloatTy;
775 SrcTy = CGF.FloatTy;
776 }
777 }
778
779 // Ignore conversions like int -> uint.
780 if (SrcTy == DstTy)
781 return Src;
782
783 // Handle pointer conversions next: pointers can only be converted to/from
784 // other pointers and integers. Check for pointer types in terms of LLVM, as
785 // some native types (like Obj-C id) may map to a pointer type.
786 if (isa<llvm::PointerType>(DstTy)) {
787 // The source value may be an integer, or a pointer.
788 if (isa<llvm::PointerType>(SrcTy))
789 return Builder.CreateBitCast(Src, DstTy, "conv");
790
791 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
792 // First, convert to the correct width so that we control the kind of
793 // extension.
794 llvm::Type *MiddleTy = CGF.IntPtrTy;
795 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
796 llvm::Value* IntResult =
797 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
798 // Then, cast to pointer.
799 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
800 }
801
802 if (isa<llvm::PointerType>(SrcTy)) {
803 // Must be an ptr to int cast.
804 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
805 return Builder.CreatePtrToInt(Src, DstTy, "conv");
806 }
807
808 // A scalar can be splatted to an extended vector of the same element type
809 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
810 // Cast the scalar to element type
811 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
812 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
813
814 // Splat the element across to all elements
815 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
816 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
817 }
818
819 // Allow bitcast from vector to integer/fp of the same size.
820 if (isa<llvm::VectorType>(SrcTy) ||
821 isa<llvm::VectorType>(DstTy))
822 return Builder.CreateBitCast(Src, DstTy, "conv");
823
824 // Finally, we have the arithmetic types: real int/float.
825 Value *Res = nullptr;
826 llvm::Type *ResTy = DstTy;
827
828 // An overflowing conversion has undefined behavior if either the source type
829 // or the destination type is a floating-point type.
830 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
831 (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
832 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
833 DstTy);
834
835 // Cast to half through float if half isn't a native type.
836 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
837 // Make sure we cast in a single step if from another FP type.
838 if (SrcTy->isFloatingPointTy()) {
839 // Use the intrinsic if the half type itself isn't supported
840 // (as opposed to operations on half, available with NativeHalfType).
841 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
842 return Builder.CreateCall(
843 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
844 // If the half type is supported, just use an fptrunc.
845 return Builder.CreateFPTrunc(Src, DstTy);
846 }
847 DstTy = CGF.FloatTy;
848 }
849
850 if (isa<llvm::IntegerType>(SrcTy)) {
851 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
852 if (isa<llvm::IntegerType>(DstTy))
853 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
854 else if (InputSigned)
855 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
856 else
857 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
858 } else if (isa<llvm::IntegerType>(DstTy)) {
859 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
860 if (DstType->isSignedIntegerOrEnumerationType())
861 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
862 else
863 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
864 } else {
865 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
866 "Unknown real conversion");
867 if (DstTy->getTypeID() < SrcTy->getTypeID())
868 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
869 else
870 Res = Builder.CreateFPExt(Src, DstTy, "conv");
871 }
872
873 if (DstTy != ResTy) {
874 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
875 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
876 Res = Builder.CreateCall(
877 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
878 Res);
879 } else {
880 Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
881 }
882 }
883
884 return Res;
885 }
886
887 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
888 /// type to the specified destination type, where the destination type is an
889 /// LLVM scalar type.
890 Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy)891 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
892 QualType SrcTy, QualType DstTy) {
893 // Get the source element type.
894 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
895
896 // Handle conversions to bool first, they are special: comparisons against 0.
897 if (DstTy->isBooleanType()) {
898 // Complex != 0 -> (Real != 0) | (Imag != 0)
899 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
900 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
901 return Builder.CreateOr(Src.first, Src.second, "tobool");
902 }
903
904 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
905 // the imaginary part of the complex value is discarded and the value of the
906 // real part is converted according to the conversion rules for the
907 // corresponding real type.
908 return EmitScalarConversion(Src.first, SrcTy, DstTy);
909 }
910
EmitNullValue(QualType Ty)911 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
912 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
913 }
914
915 /// \brief Emit a sanitization check for the given "binary" operation (which
916 /// might actually be a unary increment which has been lowered to a binary
917 /// operation). The check passes if all values in \p Checks (which are \c i1),
918 /// are \c true.
EmitBinOpCheck(ArrayRef<std::pair<Value *,SanitizerKind>> Checks,const BinOpInfo & Info)919 void ScalarExprEmitter::EmitBinOpCheck(
920 ArrayRef<std::pair<Value *, SanitizerKind>> Checks, const BinOpInfo &Info) {
921 assert(CGF.IsSanitizerScope);
922 StringRef CheckName;
923 SmallVector<llvm::Constant *, 4> StaticData;
924 SmallVector<llvm::Value *, 2> DynamicData;
925
926 BinaryOperatorKind Opcode = Info.Opcode;
927 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
928 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
929
930 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
931 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
932 if (UO && UO->getOpcode() == UO_Minus) {
933 CheckName = "negate_overflow";
934 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
935 DynamicData.push_back(Info.RHS);
936 } else {
937 if (BinaryOperator::isShiftOp(Opcode)) {
938 // Shift LHS negative or too large, or RHS out of bounds.
939 CheckName = "shift_out_of_bounds";
940 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
941 StaticData.push_back(
942 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
943 StaticData.push_back(
944 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
945 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
946 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
947 CheckName = "divrem_overflow";
948 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
949 } else {
950 // Arithmetic overflow (+, -, *).
951 switch (Opcode) {
952 case BO_Add: CheckName = "add_overflow"; break;
953 case BO_Sub: CheckName = "sub_overflow"; break;
954 case BO_Mul: CheckName = "mul_overflow"; break;
955 default: llvm_unreachable("unexpected opcode for bin op check");
956 }
957 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
958 }
959 DynamicData.push_back(Info.LHS);
960 DynamicData.push_back(Info.RHS);
961 }
962
963 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
964 }
965
966 //===----------------------------------------------------------------------===//
967 // Visitor Methods
968 //===----------------------------------------------------------------------===//
969
VisitExpr(Expr * E)970 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
971 CGF.ErrorUnsupported(E, "scalar expression");
972 if (E->getType()->isVoidType())
973 return nullptr;
974 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
975 }
976
VisitShuffleVectorExpr(ShuffleVectorExpr * E)977 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
978 // Vector Mask Case
979 if (E->getNumSubExprs() == 2 ||
980 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
981 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
982 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
983 Value *Mask;
984
985 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
986 unsigned LHSElts = LTy->getNumElements();
987
988 if (E->getNumSubExprs() == 3) {
989 Mask = CGF.EmitScalarExpr(E->getExpr(2));
990
991 // Shuffle LHS & RHS into one input vector.
992 SmallVector<llvm::Constant*, 32> concat;
993 for (unsigned i = 0; i != LHSElts; ++i) {
994 concat.push_back(Builder.getInt32(2*i));
995 concat.push_back(Builder.getInt32(2*i+1));
996 }
997
998 Value* CV = llvm::ConstantVector::get(concat);
999 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1000 LHSElts *= 2;
1001 } else {
1002 Mask = RHS;
1003 }
1004
1005 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1006 llvm::Constant* EltMask;
1007
1008 EltMask = llvm::ConstantInt::get(MTy->getElementType(),
1009 llvm::NextPowerOf2(LHSElts-1)-1);
1010
1011 // Mask off the high bits of each shuffle index.
1012 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
1013 EltMask);
1014 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1015
1016 // newv = undef
1017 // mask = mask & maskbits
1018 // for each elt
1019 // n = extract mask i
1020 // x = extract val n
1021 // newv = insert newv, x, i
1022 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1023 MTy->getNumElements());
1024 Value* NewV = llvm::UndefValue::get(RTy);
1025 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1026 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1027 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1028
1029 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1030 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1031 }
1032 return NewV;
1033 }
1034
1035 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1036 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1037
1038 SmallVector<llvm::Constant*, 32> indices;
1039 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1040 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1041 // Check for -1 and output it as undef in the IR.
1042 if (Idx.isSigned() && Idx.isAllOnesValue())
1043 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1044 else
1045 indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1046 }
1047
1048 Value *SV = llvm::ConstantVector::get(indices);
1049 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1050 }
1051
VisitConvertVectorExpr(ConvertVectorExpr * E)1052 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1053 QualType SrcType = E->getSrcExpr()->getType(),
1054 DstType = E->getType();
1055
1056 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
1057
1058 SrcType = CGF.getContext().getCanonicalType(SrcType);
1059 DstType = CGF.getContext().getCanonicalType(DstType);
1060 if (SrcType == DstType) return Src;
1061
1062 assert(SrcType->isVectorType() &&
1063 "ConvertVector source type must be a vector");
1064 assert(DstType->isVectorType() &&
1065 "ConvertVector destination type must be a vector");
1066
1067 llvm::Type *SrcTy = Src->getType();
1068 llvm::Type *DstTy = ConvertType(DstType);
1069
1070 // Ignore conversions like int -> uint.
1071 if (SrcTy == DstTy)
1072 return Src;
1073
1074 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1075 DstEltType = DstType->getAs<VectorType>()->getElementType();
1076
1077 assert(SrcTy->isVectorTy() &&
1078 "ConvertVector source IR type must be a vector");
1079 assert(DstTy->isVectorTy() &&
1080 "ConvertVector destination IR type must be a vector");
1081
1082 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1083 *DstEltTy = DstTy->getVectorElementType();
1084
1085 if (DstEltType->isBooleanType()) {
1086 assert((SrcEltTy->isFloatingPointTy() ||
1087 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1088
1089 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1090 if (SrcEltTy->isFloatingPointTy()) {
1091 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1092 } else {
1093 return Builder.CreateICmpNE(Src, Zero, "tobool");
1094 }
1095 }
1096
1097 // We have the arithmetic types: real int/float.
1098 Value *Res = nullptr;
1099
1100 if (isa<llvm::IntegerType>(SrcEltTy)) {
1101 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1102 if (isa<llvm::IntegerType>(DstEltTy))
1103 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1104 else if (InputSigned)
1105 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1106 else
1107 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1108 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1109 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1110 if (DstEltType->isSignedIntegerOrEnumerationType())
1111 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1112 else
1113 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1114 } else {
1115 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1116 "Unknown real conversion");
1117 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1118 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1119 else
1120 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1121 }
1122
1123 return Res;
1124 }
1125
VisitMemberExpr(MemberExpr * E)1126 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1127 llvm::APSInt Value;
1128 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1129 if (E->isArrow())
1130 CGF.EmitScalarExpr(E->getBase());
1131 else
1132 EmitLValue(E->getBase());
1133 return Builder.getInt(Value);
1134 }
1135
1136 return EmitLoadOfLValue(E);
1137 }
1138
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1139 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1140 TestAndClearIgnoreResultAssign();
1141
1142 // Emit subscript expressions in rvalue context's. For most cases, this just
1143 // loads the lvalue formed by the subscript expr. However, we have to be
1144 // careful, because the base of a vector subscript is occasionally an rvalue,
1145 // so we can't get it as an lvalue.
1146 if (!E->getBase()->getType()->isVectorType())
1147 return EmitLoadOfLValue(E);
1148
1149 // Handle the vector case. The base must be a vector, the index must be an
1150 // integer value.
1151 Value *Base = Visit(E->getBase());
1152 Value *Idx = Visit(E->getIdx());
1153 QualType IdxTy = E->getIdx()->getType();
1154
1155 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1156 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1157
1158 return Builder.CreateExtractElement(Base, Idx, "vecext");
1159 }
1160
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)1161 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1162 unsigned Off, llvm::Type *I32Ty) {
1163 int MV = SVI->getMaskValue(Idx);
1164 if (MV == -1)
1165 return llvm::UndefValue::get(I32Ty);
1166 return llvm::ConstantInt::get(I32Ty, Off+MV);
1167 }
1168
VisitInitListExpr(InitListExpr * E)1169 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1170 bool Ignore = TestAndClearIgnoreResultAssign();
1171 (void)Ignore;
1172 assert (Ignore == false && "init list ignored");
1173 unsigned NumInitElements = E->getNumInits();
1174
1175 if (E->hadArrayRangeDesignator())
1176 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1177
1178 llvm::VectorType *VType =
1179 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1180
1181 if (!VType) {
1182 if (NumInitElements == 0) {
1183 // C++11 value-initialization for the scalar.
1184 return EmitNullValue(E->getType());
1185 }
1186 // We have a scalar in braces. Just use the first element.
1187 return Visit(E->getInit(0));
1188 }
1189
1190 unsigned ResElts = VType->getNumElements();
1191
1192 // Loop over initializers collecting the Value for each, and remembering
1193 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1194 // us to fold the shuffle for the swizzle into the shuffle for the vector
1195 // initializer, since LLVM optimizers generally do not want to touch
1196 // shuffles.
1197 unsigned CurIdx = 0;
1198 bool VIsUndefShuffle = false;
1199 llvm::Value *V = llvm::UndefValue::get(VType);
1200 for (unsigned i = 0; i != NumInitElements; ++i) {
1201 Expr *IE = E->getInit(i);
1202 Value *Init = Visit(IE);
1203 SmallVector<llvm::Constant*, 16> Args;
1204
1205 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1206
1207 // Handle scalar elements. If the scalar initializer is actually one
1208 // element of a different vector of the same width, use shuffle instead of
1209 // extract+insert.
1210 if (!VVT) {
1211 if (isa<ExtVectorElementExpr>(IE)) {
1212 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1213
1214 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1215 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1216 Value *LHS = nullptr, *RHS = nullptr;
1217 if (CurIdx == 0) {
1218 // insert into undef -> shuffle (src, undef)
1219 Args.push_back(C);
1220 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1221
1222 LHS = EI->getVectorOperand();
1223 RHS = V;
1224 VIsUndefShuffle = true;
1225 } else if (VIsUndefShuffle) {
1226 // insert into undefshuffle && size match -> shuffle (v, src)
1227 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1228 for (unsigned j = 0; j != CurIdx; ++j)
1229 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1230 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1231 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1232
1233 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1234 RHS = EI->getVectorOperand();
1235 VIsUndefShuffle = false;
1236 }
1237 if (!Args.empty()) {
1238 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1239 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1240 ++CurIdx;
1241 continue;
1242 }
1243 }
1244 }
1245 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1246 "vecinit");
1247 VIsUndefShuffle = false;
1248 ++CurIdx;
1249 continue;
1250 }
1251
1252 unsigned InitElts = VVT->getNumElements();
1253
1254 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1255 // input is the same width as the vector being constructed, generate an
1256 // optimized shuffle of the swizzle input into the result.
1257 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1258 if (isa<ExtVectorElementExpr>(IE)) {
1259 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1260 Value *SVOp = SVI->getOperand(0);
1261 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1262
1263 if (OpTy->getNumElements() == ResElts) {
1264 for (unsigned j = 0; j != CurIdx; ++j) {
1265 // If the current vector initializer is a shuffle with undef, merge
1266 // this shuffle directly into it.
1267 if (VIsUndefShuffle) {
1268 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1269 CGF.Int32Ty));
1270 } else {
1271 Args.push_back(Builder.getInt32(j));
1272 }
1273 }
1274 for (unsigned j = 0, je = InitElts; j != je; ++j)
1275 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1276 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1277
1278 if (VIsUndefShuffle)
1279 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1280
1281 Init = SVOp;
1282 }
1283 }
1284
1285 // Extend init to result vector length, and then shuffle its contribution
1286 // to the vector initializer into V.
1287 if (Args.empty()) {
1288 for (unsigned j = 0; j != InitElts; ++j)
1289 Args.push_back(Builder.getInt32(j));
1290 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1291 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1292 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1293 Mask, "vext");
1294
1295 Args.clear();
1296 for (unsigned j = 0; j != CurIdx; ++j)
1297 Args.push_back(Builder.getInt32(j));
1298 for (unsigned j = 0; j != InitElts; ++j)
1299 Args.push_back(Builder.getInt32(j+Offset));
1300 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1301 }
1302
1303 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1304 // merging subsequent shuffles into this one.
1305 if (CurIdx == 0)
1306 std::swap(V, Init);
1307 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1308 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1309 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1310 CurIdx += InitElts;
1311 }
1312
1313 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1314 // Emit remaining default initializers.
1315 llvm::Type *EltTy = VType->getElementType();
1316
1317 // Emit remaining default initializers
1318 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1319 Value *Idx = Builder.getInt32(CurIdx);
1320 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1321 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1322 }
1323 return V;
1324 }
1325
ShouldNullCheckClassCastValue(const CastExpr * CE)1326 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1327 const Expr *E = CE->getSubExpr();
1328
1329 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1330 return false;
1331
1332 if (isa<CXXThisExpr>(E)) {
1333 // We always assume that 'this' is never null.
1334 return false;
1335 }
1336
1337 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1338 // And that glvalue casts are never null.
1339 if (ICE->getValueKind() != VK_RValue)
1340 return false;
1341 }
1342
1343 return true;
1344 }
1345
1346 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1347 // have to handle a more broad range of conversions than explicit casts, as they
1348 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1349 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1350 Expr *E = CE->getSubExpr();
1351 QualType DestTy = CE->getType();
1352 CastKind Kind = CE->getCastKind();
1353
1354 if (!DestTy->isVoidType())
1355 TestAndClearIgnoreResultAssign();
1356
1357 // Since almost all cast kinds apply to scalars, this switch doesn't have
1358 // a default case, so the compiler will warn on a missing case. The cases
1359 // are in the same order as in the CastKind enum.
1360 switch (Kind) {
1361 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1362 case CK_BuiltinFnToFnPtr:
1363 llvm_unreachable("builtin functions are handled elsewhere");
1364
1365 case CK_LValueBitCast:
1366 case CK_ObjCObjectLValueCast: {
1367 Value *V = EmitLValue(E).getAddress();
1368 V = Builder.CreateBitCast(V,
1369 ConvertType(CGF.getContext().getPointerType(DestTy)));
1370 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
1371 CE->getExprLoc());
1372 }
1373
1374 case CK_CPointerToObjCPointerCast:
1375 case CK_BlockPointerToObjCPointerCast:
1376 case CK_AnyPointerToBlockPointerCast:
1377 case CK_BitCast: {
1378 Value *Src = Visit(const_cast<Expr*>(E));
1379 llvm::Type *SrcTy = Src->getType();
1380 llvm::Type *DstTy = ConvertType(DestTy);
1381 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1382 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1383 llvm_unreachable("wrong cast for pointers in different address spaces"
1384 "(must be an address space cast)!");
1385 }
1386
1387 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1388 if (auto PT = DestTy->getAs<PointerType>())
1389 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1390 /*MayBeNull=*/true);
1391 }
1392
1393 return Builder.CreateBitCast(Src, DstTy);
1394 }
1395 case CK_AddressSpaceConversion: {
1396 Value *Src = Visit(const_cast<Expr*>(E));
1397 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1398 }
1399 case CK_AtomicToNonAtomic:
1400 case CK_NonAtomicToAtomic:
1401 case CK_NoOp:
1402 case CK_UserDefinedConversion:
1403 return Visit(const_cast<Expr*>(E));
1404
1405 case CK_BaseToDerived: {
1406 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1407 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1408
1409 llvm::Value *V = Visit(E);
1410
1411 llvm::Value *Derived =
1412 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1413 CE->path_begin(), CE->path_end(),
1414 ShouldNullCheckClassCastValue(CE));
1415
1416 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1417 // performed and the object is not of the derived type.
1418 if (CGF.sanitizePerformTypeCheck())
1419 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1420 Derived, DestTy->getPointeeType());
1421
1422 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1423 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
1424 /*MayBeNull=*/true);
1425
1426 return Derived;
1427 }
1428 case CK_UncheckedDerivedToBase:
1429 case CK_DerivedToBase: {
1430 const CXXRecordDecl *DerivedClassDecl =
1431 E->getType()->getPointeeCXXRecordDecl();
1432 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1433
1434 return CGF.GetAddressOfBaseClass(
1435 Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
1436 ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1437 }
1438 case CK_Dynamic: {
1439 Value *V = Visit(const_cast<Expr*>(E));
1440 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1441 return CGF.EmitDynamicCast(V, DCE);
1442 }
1443
1444 case CK_ArrayToPointerDecay: {
1445 assert(E->getType()->isArrayType() &&
1446 "Array to pointer decay must have array source type!");
1447
1448 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
1449
1450 // Note that VLA pointers are always decayed, so we don't need to do
1451 // anything here.
1452 if (!E->getType()->isVariableArrayType()) {
1453 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1454 llvm::Type *NewTy = ConvertType(E->getType());
1455 V = CGF.Builder.CreatePointerCast(
1456 V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
1457
1458 assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
1459 "Expected pointer to array");
1460 V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
1461 }
1462
1463 // Make sure the array decay ends up being the right type. This matters if
1464 // the array type was of an incomplete type.
1465 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
1466 }
1467 case CK_FunctionToPointerDecay:
1468 return EmitLValue(E).getAddress();
1469
1470 case CK_NullToPointer:
1471 if (MustVisitNullValue(E))
1472 (void) Visit(E);
1473
1474 return llvm::ConstantPointerNull::get(
1475 cast<llvm::PointerType>(ConvertType(DestTy)));
1476
1477 case CK_NullToMemberPointer: {
1478 if (MustVisitNullValue(E))
1479 (void) Visit(E);
1480
1481 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1482 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1483 }
1484
1485 case CK_ReinterpretMemberPointer:
1486 case CK_BaseToDerivedMemberPointer:
1487 case CK_DerivedToBaseMemberPointer: {
1488 Value *Src = Visit(E);
1489
1490 // Note that the AST doesn't distinguish between checked and
1491 // unchecked member pointer conversions, so we always have to
1492 // implement checked conversions here. This is inefficient when
1493 // actual control flow may be required in order to perform the
1494 // check, which it is for data member pointers (but not member
1495 // function pointers on Itanium and ARM).
1496 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1497 }
1498
1499 case CK_ARCProduceObject:
1500 return CGF.EmitARCRetainScalarExpr(E);
1501 case CK_ARCConsumeObject:
1502 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1503 case CK_ARCReclaimReturnedObject: {
1504 llvm::Value *value = Visit(E);
1505 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1506 return CGF.EmitObjCConsumeObject(E->getType(), value);
1507 }
1508 case CK_ARCExtendBlockObject:
1509 return CGF.EmitARCExtendBlockObject(E);
1510
1511 case CK_CopyAndAutoreleaseBlockObject:
1512 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1513
1514 case CK_FloatingRealToComplex:
1515 case CK_FloatingComplexCast:
1516 case CK_IntegralRealToComplex:
1517 case CK_IntegralComplexCast:
1518 case CK_IntegralComplexToFloatingComplex:
1519 case CK_FloatingComplexToIntegralComplex:
1520 case CK_ConstructorConversion:
1521 case CK_ToUnion:
1522 llvm_unreachable("scalar cast to non-scalar value");
1523
1524 case CK_LValueToRValue:
1525 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1526 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1527 return Visit(const_cast<Expr*>(E));
1528
1529 case CK_IntegralToPointer: {
1530 Value *Src = Visit(const_cast<Expr*>(E));
1531
1532 // First, convert to the correct width so that we control the kind of
1533 // extension.
1534 llvm::Type *MiddleTy = CGF.IntPtrTy;
1535 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1536 llvm::Value* IntResult =
1537 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1538
1539 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1540 }
1541 case CK_PointerToIntegral:
1542 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1543 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1544
1545 case CK_ToVoid: {
1546 CGF.EmitIgnoredExpr(E);
1547 return nullptr;
1548 }
1549 case CK_VectorSplat: {
1550 llvm::Type *DstTy = ConvertType(DestTy);
1551 Value *Elt = Visit(const_cast<Expr*>(E));
1552 Elt = EmitScalarConversion(Elt, E->getType(),
1553 DestTy->getAs<VectorType>()->getElementType());
1554
1555 // Splat the element across to all elements
1556 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1557 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1558 }
1559
1560 case CK_IntegralCast:
1561 case CK_IntegralToFloating:
1562 case CK_FloatingToIntegral:
1563 case CK_FloatingCast:
1564 return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1565 case CK_IntegralToBoolean:
1566 return EmitIntToBoolConversion(Visit(E));
1567 case CK_PointerToBoolean:
1568 return EmitPointerToBoolConversion(Visit(E));
1569 case CK_FloatingToBoolean:
1570 return EmitFloatToBoolConversion(Visit(E));
1571 case CK_MemberPointerToBoolean: {
1572 llvm::Value *MemPtr = Visit(E);
1573 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1574 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1575 }
1576
1577 case CK_FloatingComplexToReal:
1578 case CK_IntegralComplexToReal:
1579 return CGF.EmitComplexExpr(E, false, true).first;
1580
1581 case CK_FloatingComplexToBoolean:
1582 case CK_IntegralComplexToBoolean: {
1583 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1584
1585 // TODO: kill this function off, inline appropriate case here
1586 return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1587 }
1588
1589 case CK_ZeroToOCLEvent: {
1590 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1591 return llvm::Constant::getNullValue(ConvertType(DestTy));
1592 }
1593
1594 }
1595
1596 llvm_unreachable("unknown scalar cast");
1597 }
1598
VisitStmtExpr(const StmtExpr * E)1599 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1600 CodeGenFunction::StmtExprEvaluation eval(CGF);
1601 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1602 !E->getType()->isVoidType());
1603 if (!RetAlloca)
1604 return nullptr;
1605 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1606 E->getExprLoc());
1607 }
1608
1609 //===----------------------------------------------------------------------===//
1610 // Unary Operators
1611 //===----------------------------------------------------------------------===//
1612
1613 llvm::Value *ScalarExprEmitter::
EmitAddConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,llvm::Value * NextVal,bool IsInc)1614 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1615 llvm::Value *InVal,
1616 llvm::Value *NextVal, bool IsInc) {
1617 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1618 case LangOptions::SOB_Defined:
1619 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1620 case LangOptions::SOB_Undefined:
1621 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1622 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1623 // Fall through.
1624 case LangOptions::SOB_Trapping:
1625 BinOpInfo BinOp;
1626 BinOp.LHS = InVal;
1627 BinOp.RHS = NextVal;
1628 BinOp.Ty = E->getType();
1629 BinOp.Opcode = BO_Add;
1630 BinOp.FPContractable = false;
1631 BinOp.E = E;
1632 return EmitOverflowCheckedBinOp(BinOp);
1633 }
1634 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1635 }
1636
1637 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1638 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1639 bool isInc, bool isPre) {
1640
1641 QualType type = E->getSubExpr()->getType();
1642 llvm::PHINode *atomicPHI = nullptr;
1643 llvm::Value *value;
1644 llvm::Value *input;
1645
1646 int amount = (isInc ? 1 : -1);
1647
1648 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1649 type = atomicTy->getValueType();
1650 if (isInc && type->isBooleanType()) {
1651 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1652 if (isPre) {
1653 Builder.Insert(new llvm::StoreInst(True,
1654 LV.getAddress(), LV.isVolatileQualified(),
1655 LV.getAlignment().getQuantity(),
1656 llvm::SequentiallyConsistent));
1657 return Builder.getTrue();
1658 }
1659 // For atomic bool increment, we just store true and return it for
1660 // preincrement, do an atomic swap with true for postincrement
1661 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1662 LV.getAddress(), True, llvm::SequentiallyConsistent);
1663 }
1664 // Special case for atomic increment / decrement on integers, emit
1665 // atomicrmw instructions. We skip this if we want to be doing overflow
1666 // checking, and fall into the slow path with the atomic cmpxchg loop.
1667 if (!type->isBooleanType() && type->isIntegerType() &&
1668 !(type->isUnsignedIntegerType() &&
1669 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1670 CGF.getLangOpts().getSignedOverflowBehavior() !=
1671 LangOptions::SOB_Trapping) {
1672 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1673 llvm::AtomicRMWInst::Sub;
1674 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1675 llvm::Instruction::Sub;
1676 llvm::Value *amt = CGF.EmitToMemory(
1677 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1678 llvm::Value *old = Builder.CreateAtomicRMW(aop,
1679 LV.getAddress(), amt, llvm::SequentiallyConsistent);
1680 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1681 }
1682 value = EmitLoadOfLValue(LV, E->getExprLoc());
1683 input = value;
1684 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1685 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1686 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1687 value = CGF.EmitToMemory(value, type);
1688 Builder.CreateBr(opBB);
1689 Builder.SetInsertPoint(opBB);
1690 atomicPHI = Builder.CreatePHI(value->getType(), 2);
1691 atomicPHI->addIncoming(value, startBB);
1692 value = atomicPHI;
1693 } else {
1694 value = EmitLoadOfLValue(LV, E->getExprLoc());
1695 input = value;
1696 }
1697
1698 // Special case of integer increment that we have to check first: bool++.
1699 // Due to promotion rules, we get:
1700 // bool++ -> bool = bool + 1
1701 // -> bool = (int)bool + 1
1702 // -> bool = ((int)bool + 1 != 0)
1703 // An interesting aspect of this is that increment is always true.
1704 // Decrement does not have this property.
1705 if (isInc && type->isBooleanType()) {
1706 value = Builder.getTrue();
1707
1708 // Most common case by far: integer increment.
1709 } else if (type->isIntegerType()) {
1710
1711 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1712
1713 // Note that signed integer inc/dec with width less than int can't
1714 // overflow because of promotion rules; we're just eliding a few steps here.
1715 bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1716 CGF.IntTy->getIntegerBitWidth();
1717 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1718 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1719 } else if (CanOverflow && type->isUnsignedIntegerType() &&
1720 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1721 BinOpInfo BinOp;
1722 BinOp.LHS = value;
1723 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1724 BinOp.Ty = E->getType();
1725 BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1726 BinOp.FPContractable = false;
1727 BinOp.E = E;
1728 value = EmitOverflowCheckedBinOp(BinOp);
1729 } else
1730 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1731
1732 // Next most common: pointer increment.
1733 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1734 QualType type = ptr->getPointeeType();
1735
1736 // VLA types don't have constant size.
1737 if (const VariableArrayType *vla
1738 = CGF.getContext().getAsVariableArrayType(type)) {
1739 llvm::Value *numElts = CGF.getVLASize(vla).first;
1740 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1741 if (CGF.getLangOpts().isSignedOverflowDefined())
1742 value = Builder.CreateGEP(value, numElts, "vla.inc");
1743 else
1744 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1745
1746 // Arithmetic on function pointers (!) is just +-1.
1747 } else if (type->isFunctionType()) {
1748 llvm::Value *amt = Builder.getInt32(amount);
1749
1750 value = CGF.EmitCastToVoidPtr(value);
1751 if (CGF.getLangOpts().isSignedOverflowDefined())
1752 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1753 else
1754 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1755 value = Builder.CreateBitCast(value, input->getType());
1756
1757 // For everything else, we can just do a simple increment.
1758 } else {
1759 llvm::Value *amt = Builder.getInt32(amount);
1760 if (CGF.getLangOpts().isSignedOverflowDefined())
1761 value = Builder.CreateGEP(value, amt, "incdec.ptr");
1762 else
1763 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1764 }
1765
1766 // Vector increment/decrement.
1767 } else if (type->isVectorType()) {
1768 if (type->hasIntegerRepresentation()) {
1769 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1770
1771 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1772 } else {
1773 value = Builder.CreateFAdd(
1774 value,
1775 llvm::ConstantFP::get(value->getType(), amount),
1776 isInc ? "inc" : "dec");
1777 }
1778
1779 // Floating point.
1780 } else if (type->isRealFloatingType()) {
1781 // Add the inc/dec to the real part.
1782 llvm::Value *amt;
1783
1784 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1785 // Another special case: half FP increment should be done via float
1786 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1787 value = Builder.CreateCall(
1788 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1789 CGF.CGM.FloatTy),
1790 input, "incdec.conv");
1791 } else {
1792 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1793 }
1794 }
1795
1796 if (value->getType()->isFloatTy())
1797 amt = llvm::ConstantFP::get(VMContext,
1798 llvm::APFloat(static_cast<float>(amount)));
1799 else if (value->getType()->isDoubleTy())
1800 amt = llvm::ConstantFP::get(VMContext,
1801 llvm::APFloat(static_cast<double>(amount)));
1802 else {
1803 // Remaining types are either Half or LongDouble. Convert from float.
1804 llvm::APFloat F(static_cast<float>(amount));
1805 bool ignored;
1806 // Don't use getFloatTypeSemantics because Half isn't
1807 // necessarily represented using the "half" LLVM type.
1808 F.convert(value->getType()->isHalfTy()
1809 ? CGF.getTarget().getHalfFormat()
1810 : CGF.getTarget().getLongDoubleFormat(),
1811 llvm::APFloat::rmTowardZero, &ignored);
1812 amt = llvm::ConstantFP::get(VMContext, F);
1813 }
1814 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1815
1816 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1817 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1818 value = Builder.CreateCall(
1819 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1820 CGF.CGM.FloatTy),
1821 value, "incdec.conv");
1822 } else {
1823 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1824 }
1825 }
1826
1827 // Objective-C pointer types.
1828 } else {
1829 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1830 value = CGF.EmitCastToVoidPtr(value);
1831
1832 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1833 if (!isInc) size = -size;
1834 llvm::Value *sizeValue =
1835 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1836
1837 if (CGF.getLangOpts().isSignedOverflowDefined())
1838 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1839 else
1840 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1841 value = Builder.CreateBitCast(value, input->getType());
1842 }
1843
1844 if (atomicPHI) {
1845 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1846 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1847 auto Pair = CGF.EmitAtomicCompareExchange(
1848 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1849 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1850 llvm::Value *success = Pair.second;
1851 atomicPHI->addIncoming(old, opBB);
1852 Builder.CreateCondBr(success, contBB, opBB);
1853 Builder.SetInsertPoint(contBB);
1854 return isPre ? value : input;
1855 }
1856
1857 // Store the updated result through the lvalue.
1858 if (LV.isBitField())
1859 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1860 else
1861 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1862
1863 // If this is a postinc, return the value read from memory, otherwise use the
1864 // updated value.
1865 return isPre ? value : input;
1866 }
1867
1868
1869
VisitUnaryMinus(const UnaryOperator * E)1870 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1871 TestAndClearIgnoreResultAssign();
1872 // Emit unary minus with EmitSub so we handle overflow cases etc.
1873 BinOpInfo BinOp;
1874 BinOp.RHS = Visit(E->getSubExpr());
1875
1876 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1877 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1878 else
1879 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1880 BinOp.Ty = E->getType();
1881 BinOp.Opcode = BO_Sub;
1882 BinOp.FPContractable = false;
1883 BinOp.E = E;
1884 return EmitSub(BinOp);
1885 }
1886
VisitUnaryNot(const UnaryOperator * E)1887 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1888 TestAndClearIgnoreResultAssign();
1889 Value *Op = Visit(E->getSubExpr());
1890 return Builder.CreateNot(Op, "neg");
1891 }
1892
VisitUnaryLNot(const UnaryOperator * E)1893 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1894 // Perform vector logical not on comparison with zero vector.
1895 if (E->getType()->isExtVectorType()) {
1896 Value *Oper = Visit(E->getSubExpr());
1897 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1898 Value *Result;
1899 if (Oper->getType()->isFPOrFPVectorTy())
1900 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1901 else
1902 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1903 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1904 }
1905
1906 // Compare operand to zero.
1907 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1908
1909 // Invert value.
1910 // TODO: Could dynamically modify easy computations here. For example, if
1911 // the operand is an icmp ne, turn into icmp eq.
1912 BoolVal = Builder.CreateNot(BoolVal, "lnot");
1913
1914 // ZExt result to the expr type.
1915 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1916 }
1917
VisitOffsetOfExpr(OffsetOfExpr * E)1918 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1919 // Try folding the offsetof to a constant.
1920 llvm::APSInt Value;
1921 if (E->EvaluateAsInt(Value, CGF.getContext()))
1922 return Builder.getInt(Value);
1923
1924 // Loop over the components of the offsetof to compute the value.
1925 unsigned n = E->getNumComponents();
1926 llvm::Type* ResultType = ConvertType(E->getType());
1927 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1928 QualType CurrentType = E->getTypeSourceInfo()->getType();
1929 for (unsigned i = 0; i != n; ++i) {
1930 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1931 llvm::Value *Offset = nullptr;
1932 switch (ON.getKind()) {
1933 case OffsetOfExpr::OffsetOfNode::Array: {
1934 // Compute the index
1935 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1936 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1937 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1938 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1939
1940 // Save the element type
1941 CurrentType =
1942 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1943
1944 // Compute the element size
1945 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1946 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1947
1948 // Multiply out to compute the result
1949 Offset = Builder.CreateMul(Idx, ElemSize);
1950 break;
1951 }
1952
1953 case OffsetOfExpr::OffsetOfNode::Field: {
1954 FieldDecl *MemberDecl = ON.getField();
1955 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1956 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1957
1958 // Compute the index of the field in its parent.
1959 unsigned i = 0;
1960 // FIXME: It would be nice if we didn't have to loop here!
1961 for (RecordDecl::field_iterator Field = RD->field_begin(),
1962 FieldEnd = RD->field_end();
1963 Field != FieldEnd; ++Field, ++i) {
1964 if (*Field == MemberDecl)
1965 break;
1966 }
1967 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1968
1969 // Compute the offset to the field
1970 int64_t OffsetInt = RL.getFieldOffset(i) /
1971 CGF.getContext().getCharWidth();
1972 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1973
1974 // Save the element type.
1975 CurrentType = MemberDecl->getType();
1976 break;
1977 }
1978
1979 case OffsetOfExpr::OffsetOfNode::Identifier:
1980 llvm_unreachable("dependent __builtin_offsetof");
1981
1982 case OffsetOfExpr::OffsetOfNode::Base: {
1983 if (ON.getBase()->isVirtual()) {
1984 CGF.ErrorUnsupported(E, "virtual base in offsetof");
1985 continue;
1986 }
1987
1988 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1989 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1990
1991 // Save the element type.
1992 CurrentType = ON.getBase()->getType();
1993
1994 // Compute the offset to the base.
1995 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1996 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1997 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1998 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1999 break;
2000 }
2001 }
2002 Result = Builder.CreateAdd(Result, Offset);
2003 }
2004 return Result;
2005 }
2006
2007 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2008 /// argument of the sizeof expression as an integer.
2009 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)2010 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2011 const UnaryExprOrTypeTraitExpr *E) {
2012 QualType TypeToSize = E->getTypeOfArgument();
2013 if (E->getKind() == UETT_SizeOf) {
2014 if (const VariableArrayType *VAT =
2015 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2016 if (E->isArgumentType()) {
2017 // sizeof(type) - make sure to emit the VLA size.
2018 CGF.EmitVariablyModifiedType(TypeToSize);
2019 } else {
2020 // C99 6.5.3.4p2: If the argument is an expression of type
2021 // VLA, it is evaluated.
2022 CGF.EmitIgnoredExpr(E->getArgumentExpr());
2023 }
2024
2025 QualType eltType;
2026 llvm::Value *numElts;
2027 std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2028
2029 llvm::Value *size = numElts;
2030
2031 // Scale the number of non-VLA elements by the non-VLA element size.
2032 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2033 if (!eltSize.isOne())
2034 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2035
2036 return size;
2037 }
2038 }
2039
2040 // If this isn't sizeof(vla), the result must be constant; use the constant
2041 // folding logic so we don't have to duplicate it here.
2042 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2043 }
2044
VisitUnaryReal(const UnaryOperator * E)2045 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2046 Expr *Op = E->getSubExpr();
2047 if (Op->getType()->isAnyComplexType()) {
2048 // If it's an l-value, load through the appropriate subobject l-value.
2049 // Note that we have to ask E because Op might be an l-value that
2050 // this won't work for, e.g. an Obj-C property.
2051 if (E->isGLValue())
2052 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2053 E->getExprLoc()).getScalarVal();
2054
2055 // Otherwise, calculate and project.
2056 return CGF.EmitComplexExpr(Op, false, true).first;
2057 }
2058
2059 return Visit(Op);
2060 }
2061
VisitUnaryImag(const UnaryOperator * E)2062 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2063 Expr *Op = E->getSubExpr();
2064 if (Op->getType()->isAnyComplexType()) {
2065 // If it's an l-value, load through the appropriate subobject l-value.
2066 // Note that we have to ask E because Op might be an l-value that
2067 // this won't work for, e.g. an Obj-C property.
2068 if (Op->isGLValue())
2069 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2070 E->getExprLoc()).getScalarVal();
2071
2072 // Otherwise, calculate and project.
2073 return CGF.EmitComplexExpr(Op, true, false).second;
2074 }
2075
2076 // __imag on a scalar returns zero. Emit the subexpr to ensure side
2077 // effects are evaluated, but not the actual value.
2078 if (Op->isGLValue())
2079 CGF.EmitLValue(Op);
2080 else
2081 CGF.EmitScalarExpr(Op, true);
2082 return llvm::Constant::getNullValue(ConvertType(E->getType()));
2083 }
2084
2085 //===----------------------------------------------------------------------===//
2086 // Binary Operators
2087 //===----------------------------------------------------------------------===//
2088
EmitBinOps(const BinaryOperator * E)2089 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2090 TestAndClearIgnoreResultAssign();
2091 BinOpInfo Result;
2092 Result.LHS = Visit(E->getLHS());
2093 Result.RHS = Visit(E->getRHS());
2094 Result.Ty = E->getType();
2095 Result.Opcode = E->getOpcode();
2096 Result.FPContractable = E->isFPContractable();
2097 Result.E = E;
2098 return Result;
2099 }
2100
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)2101 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2102 const CompoundAssignOperator *E,
2103 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2104 Value *&Result) {
2105 QualType LHSTy = E->getLHS()->getType();
2106 BinOpInfo OpInfo;
2107
2108 if (E->getComputationResultType()->isAnyComplexType())
2109 return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2110
2111 // Emit the RHS first. __block variables need to have the rhs evaluated
2112 // first, plus this should improve codegen a little.
2113 OpInfo.RHS = Visit(E->getRHS());
2114 OpInfo.Ty = E->getComputationResultType();
2115 OpInfo.Opcode = E->getOpcode();
2116 OpInfo.FPContractable = false;
2117 OpInfo.E = E;
2118 // Load/convert the LHS.
2119 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2120
2121 llvm::PHINode *atomicPHI = nullptr;
2122 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2123 QualType type = atomicTy->getValueType();
2124 if (!type->isBooleanType() && type->isIntegerType() &&
2125 !(type->isUnsignedIntegerType() &&
2126 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2127 CGF.getLangOpts().getSignedOverflowBehavior() !=
2128 LangOptions::SOB_Trapping) {
2129 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2130 switch (OpInfo.Opcode) {
2131 // We don't have atomicrmw operands for *, %, /, <<, >>
2132 case BO_MulAssign: case BO_DivAssign:
2133 case BO_RemAssign:
2134 case BO_ShlAssign:
2135 case BO_ShrAssign:
2136 break;
2137 case BO_AddAssign:
2138 aop = llvm::AtomicRMWInst::Add;
2139 break;
2140 case BO_SubAssign:
2141 aop = llvm::AtomicRMWInst::Sub;
2142 break;
2143 case BO_AndAssign:
2144 aop = llvm::AtomicRMWInst::And;
2145 break;
2146 case BO_XorAssign:
2147 aop = llvm::AtomicRMWInst::Xor;
2148 break;
2149 case BO_OrAssign:
2150 aop = llvm::AtomicRMWInst::Or;
2151 break;
2152 default:
2153 llvm_unreachable("Invalid compound assignment type");
2154 }
2155 if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2156 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
2157 E->getRHS()->getType(), LHSTy), LHSTy);
2158 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
2159 llvm::SequentiallyConsistent);
2160 return LHSLV;
2161 }
2162 }
2163 // FIXME: For floating point types, we should be saving and restoring the
2164 // floating point environment in the loop.
2165 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2166 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2167 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2168 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2169 Builder.CreateBr(opBB);
2170 Builder.SetInsertPoint(opBB);
2171 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2172 atomicPHI->addIncoming(OpInfo.LHS, startBB);
2173 OpInfo.LHS = atomicPHI;
2174 }
2175 else
2176 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2177
2178 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2179 E->getComputationLHSType());
2180
2181 // Expand the binary operator.
2182 Result = (this->*Func)(OpInfo);
2183
2184 // Convert the result back to the LHS type.
2185 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2186
2187 if (atomicPHI) {
2188 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2189 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2190 auto Pair = CGF.EmitAtomicCompareExchange(
2191 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2192 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2193 llvm::Value *success = Pair.second;
2194 atomicPHI->addIncoming(old, opBB);
2195 Builder.CreateCondBr(success, contBB, opBB);
2196 Builder.SetInsertPoint(contBB);
2197 return LHSLV;
2198 }
2199
2200 // Store the result value into the LHS lvalue. Bit-fields are handled
2201 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2202 // 'An assignment expression has the value of the left operand after the
2203 // assignment...'.
2204 if (LHSLV.isBitField())
2205 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2206 else
2207 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2208
2209 return LHSLV;
2210 }
2211
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))2212 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2213 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2214 bool Ignore = TestAndClearIgnoreResultAssign();
2215 Value *RHS;
2216 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2217
2218 // If the result is clearly ignored, return now.
2219 if (Ignore)
2220 return nullptr;
2221
2222 // The result of an assignment in C is the assigned r-value.
2223 if (!CGF.getLangOpts().CPlusPlus)
2224 return RHS;
2225
2226 // If the lvalue is non-volatile, return the computed value of the assignment.
2227 if (!LHS.isVolatileQualified())
2228 return RHS;
2229
2230 // Otherwise, reload the value.
2231 return EmitLoadOfLValue(LHS, E->getExprLoc());
2232 }
2233
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)2234 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2235 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2236 SmallVector<std::pair<llvm::Value *, SanitizerKind>, 2> Checks;
2237
2238 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2239 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2240 SanitizerKind::IntegerDivideByZero));
2241 }
2242
2243 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2244 Ops.Ty->hasSignedIntegerRepresentation()) {
2245 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2246
2247 llvm::Value *IntMin =
2248 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2249 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2250
2251 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2252 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2253 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2254 Checks.push_back(
2255 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2256 }
2257
2258 if (Checks.size() > 0)
2259 EmitBinOpCheck(Checks, Ops);
2260 }
2261
EmitDiv(const BinOpInfo & Ops)2262 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2263 {
2264 CodeGenFunction::SanitizerScope SanScope(&CGF);
2265 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2266 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2267 Ops.Ty->isIntegerType()) {
2268 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2269 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2270 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2271 Ops.Ty->isRealFloatingType()) {
2272 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2273 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2274 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2275 Ops);
2276 }
2277 }
2278
2279 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2280 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2281 if (CGF.getLangOpts().OpenCL) {
2282 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2283 llvm::Type *ValTy = Val->getType();
2284 if (ValTy->isFloatTy() ||
2285 (isa<llvm::VectorType>(ValTy) &&
2286 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2287 CGF.SetFPAccuracy(Val, 2.5);
2288 }
2289 return Val;
2290 }
2291 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2292 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2293 else
2294 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2295 }
2296
EmitRem(const BinOpInfo & Ops)2297 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2298 // Rem in C can't be a floating point type: C99 6.5.5p2.
2299 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2300 CodeGenFunction::SanitizerScope SanScope(&CGF);
2301 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2302
2303 if (Ops.Ty->isIntegerType())
2304 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2305 }
2306
2307 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2308 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2309 else
2310 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2311 }
2312
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)2313 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2314 unsigned IID;
2315 unsigned OpID = 0;
2316
2317 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2318 switch (Ops.Opcode) {
2319 case BO_Add:
2320 case BO_AddAssign:
2321 OpID = 1;
2322 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2323 llvm::Intrinsic::uadd_with_overflow;
2324 break;
2325 case BO_Sub:
2326 case BO_SubAssign:
2327 OpID = 2;
2328 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2329 llvm::Intrinsic::usub_with_overflow;
2330 break;
2331 case BO_Mul:
2332 case BO_MulAssign:
2333 OpID = 3;
2334 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2335 llvm::Intrinsic::umul_with_overflow;
2336 break;
2337 default:
2338 llvm_unreachable("Unsupported operation for overflow detection");
2339 }
2340 OpID <<= 1;
2341 if (isSigned)
2342 OpID |= 1;
2343
2344 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2345
2346 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2347
2348 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2349 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2350 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2351
2352 // Handle overflow with llvm.trap if no custom handler has been specified.
2353 const std::string *handlerName =
2354 &CGF.getLangOpts().OverflowHandler;
2355 if (handlerName->empty()) {
2356 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2357 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2358 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2359 CodeGenFunction::SanitizerScope SanScope(&CGF);
2360 llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2361 SanitizerKind Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2362 : SanitizerKind::UnsignedIntegerOverflow;
2363 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2364 } else
2365 CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2366 return result;
2367 }
2368
2369 // Branch in case of overflow.
2370 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2371 llvm::Function::iterator insertPt = initialBB;
2372 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2373 std::next(insertPt));
2374 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2375
2376 Builder.CreateCondBr(overflow, overflowBB, continueBB);
2377
2378 // If an overflow handler is set, then we want to call it and then use its
2379 // result, if it returns.
2380 Builder.SetInsertPoint(overflowBB);
2381
2382 // Get the overflow handler.
2383 llvm::Type *Int8Ty = CGF.Int8Ty;
2384 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2385 llvm::FunctionType *handlerTy =
2386 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2387 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2388
2389 // Sign extend the args to 64-bit, so that we can use the same handler for
2390 // all types of overflow.
2391 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2392 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2393
2394 // Call the handler with the two arguments, the operation, and the size of
2395 // the result.
2396 llvm::Value *handlerArgs[] = {
2397 lhs,
2398 rhs,
2399 Builder.getInt8(OpID),
2400 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2401 };
2402 llvm::Value *handlerResult =
2403 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2404
2405 // Truncate the result back to the desired size.
2406 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2407 Builder.CreateBr(continueBB);
2408
2409 Builder.SetInsertPoint(continueBB);
2410 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2411 phi->addIncoming(result, initialBB);
2412 phi->addIncoming(handlerResult, overflowBB);
2413
2414 return phi;
2415 }
2416
2417 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)2418 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2419 const BinOpInfo &op,
2420 bool isSubtraction) {
2421 // Must have binary (not unary) expr here. Unary pointer
2422 // increment/decrement doesn't use this path.
2423 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2424
2425 Value *pointer = op.LHS;
2426 Expr *pointerOperand = expr->getLHS();
2427 Value *index = op.RHS;
2428 Expr *indexOperand = expr->getRHS();
2429
2430 // In a subtraction, the LHS is always the pointer.
2431 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2432 std::swap(pointer, index);
2433 std::swap(pointerOperand, indexOperand);
2434 }
2435
2436 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2437 if (width != CGF.PointerWidthInBits) {
2438 // Zero-extend or sign-extend the pointer value according to
2439 // whether the index is signed or not.
2440 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2441 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2442 "idx.ext");
2443 }
2444
2445 // If this is subtraction, negate the index.
2446 if (isSubtraction)
2447 index = CGF.Builder.CreateNeg(index, "idx.neg");
2448
2449 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2450 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2451 /*Accessed*/ false);
2452
2453 const PointerType *pointerType
2454 = pointerOperand->getType()->getAs<PointerType>();
2455 if (!pointerType) {
2456 QualType objectType = pointerOperand->getType()
2457 ->castAs<ObjCObjectPointerType>()
2458 ->getPointeeType();
2459 llvm::Value *objectSize
2460 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2461
2462 index = CGF.Builder.CreateMul(index, objectSize);
2463
2464 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2465 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2466 return CGF.Builder.CreateBitCast(result, pointer->getType());
2467 }
2468
2469 QualType elementType = pointerType->getPointeeType();
2470 if (const VariableArrayType *vla
2471 = CGF.getContext().getAsVariableArrayType(elementType)) {
2472 // The element count here is the total number of non-VLA elements.
2473 llvm::Value *numElements = CGF.getVLASize(vla).first;
2474
2475 // Effectively, the multiply by the VLA size is part of the GEP.
2476 // GEP indexes are signed, and scaling an index isn't permitted to
2477 // signed-overflow, so we use the same semantics for our explicit
2478 // multiply. We suppress this if overflow is not undefined behavior.
2479 if (CGF.getLangOpts().isSignedOverflowDefined()) {
2480 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2481 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2482 } else {
2483 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2484 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2485 }
2486 return pointer;
2487 }
2488
2489 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2490 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2491 // future proof.
2492 if (elementType->isVoidType() || elementType->isFunctionType()) {
2493 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2494 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2495 return CGF.Builder.CreateBitCast(result, pointer->getType());
2496 }
2497
2498 if (CGF.getLangOpts().isSignedOverflowDefined())
2499 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2500
2501 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2502 }
2503
2504 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2505 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2506 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2507 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2508 // efficient operations.
buildFMulAdd(llvm::BinaryOperator * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)2509 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2510 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2511 bool negMul, bool negAdd) {
2512 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2513
2514 Value *MulOp0 = MulOp->getOperand(0);
2515 Value *MulOp1 = MulOp->getOperand(1);
2516 if (negMul) {
2517 MulOp0 =
2518 Builder.CreateFSub(
2519 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2520 "neg");
2521 } else if (negAdd) {
2522 Addend =
2523 Builder.CreateFSub(
2524 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2525 "neg");
2526 }
2527
2528 Value *FMulAdd =
2529 Builder.CreateCall3(
2530 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2531 MulOp0, MulOp1, Addend);
2532 MulOp->eraseFromParent();
2533
2534 return FMulAdd;
2535 }
2536
2537 // Check whether it would be legal to emit an fmuladd intrinsic call to
2538 // represent op and if so, build the fmuladd.
2539 //
2540 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2541 // Does NOT check the type of the operation - it's assumed that this function
2542 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)2543 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2544 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2545 bool isSub=false) {
2546
2547 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2548 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2549 "Only fadd/fsub can be the root of an fmuladd.");
2550
2551 // Check whether this op is marked as fusable.
2552 if (!op.FPContractable)
2553 return nullptr;
2554
2555 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2556 // either disabled, or handled entirely by the LLVM backend).
2557 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2558 return nullptr;
2559
2560 // We have a potentially fusable op. Look for a mul on one of the operands.
2561 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2562 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2563 assert(LHSBinOp->getNumUses() == 0 &&
2564 "Operations with multiple uses shouldn't be contracted.");
2565 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2566 }
2567 } else if (llvm::BinaryOperator* RHSBinOp =
2568 dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2569 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2570 assert(RHSBinOp->getNumUses() == 0 &&
2571 "Operations with multiple uses shouldn't be contracted.");
2572 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2573 }
2574 }
2575
2576 return nullptr;
2577 }
2578
EmitAdd(const BinOpInfo & op)2579 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2580 if (op.LHS->getType()->isPointerTy() ||
2581 op.RHS->getType()->isPointerTy())
2582 return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2583
2584 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2585 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2586 case LangOptions::SOB_Defined:
2587 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2588 case LangOptions::SOB_Undefined:
2589 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2590 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2591 // Fall through.
2592 case LangOptions::SOB_Trapping:
2593 return EmitOverflowCheckedBinOp(op);
2594 }
2595 }
2596
2597 if (op.Ty->isUnsignedIntegerType() &&
2598 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2599 return EmitOverflowCheckedBinOp(op);
2600
2601 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2602 // Try to form an fmuladd.
2603 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2604 return FMulAdd;
2605
2606 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2607 }
2608
2609 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2610 }
2611
EmitSub(const BinOpInfo & op)2612 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2613 // The LHS is always a pointer if either side is.
2614 if (!op.LHS->getType()->isPointerTy()) {
2615 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2616 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2617 case LangOptions::SOB_Defined:
2618 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2619 case LangOptions::SOB_Undefined:
2620 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2621 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2622 // Fall through.
2623 case LangOptions::SOB_Trapping:
2624 return EmitOverflowCheckedBinOp(op);
2625 }
2626 }
2627
2628 if (op.Ty->isUnsignedIntegerType() &&
2629 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2630 return EmitOverflowCheckedBinOp(op);
2631
2632 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2633 // Try to form an fmuladd.
2634 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2635 return FMulAdd;
2636 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2637 }
2638
2639 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2640 }
2641
2642 // If the RHS is not a pointer, then we have normal pointer
2643 // arithmetic.
2644 if (!op.RHS->getType()->isPointerTy())
2645 return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2646
2647 // Otherwise, this is a pointer subtraction.
2648
2649 // Do the raw subtraction part.
2650 llvm::Value *LHS
2651 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2652 llvm::Value *RHS
2653 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2654 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2655
2656 // Okay, figure out the element size.
2657 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2658 QualType elementType = expr->getLHS()->getType()->getPointeeType();
2659
2660 llvm::Value *divisor = nullptr;
2661
2662 // For a variable-length array, this is going to be non-constant.
2663 if (const VariableArrayType *vla
2664 = CGF.getContext().getAsVariableArrayType(elementType)) {
2665 llvm::Value *numElements;
2666 std::tie(numElements, elementType) = CGF.getVLASize(vla);
2667
2668 divisor = numElements;
2669
2670 // Scale the number of non-VLA elements by the non-VLA element size.
2671 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2672 if (!eltSize.isOne())
2673 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2674
2675 // For everything elese, we can just compute it, safe in the
2676 // assumption that Sema won't let anything through that we can't
2677 // safely compute the size of.
2678 } else {
2679 CharUnits elementSize;
2680 // Handle GCC extension for pointer arithmetic on void* and
2681 // function pointer types.
2682 if (elementType->isVoidType() || elementType->isFunctionType())
2683 elementSize = CharUnits::One();
2684 else
2685 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2686
2687 // Don't even emit the divide for element size of 1.
2688 if (elementSize.isOne())
2689 return diffInChars;
2690
2691 divisor = CGF.CGM.getSize(elementSize);
2692 }
2693
2694 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2695 // pointer difference in C is only defined in the case where both operands
2696 // are pointing to elements of an array.
2697 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2698 }
2699
GetWidthMinusOneValue(Value * LHS,Value * RHS)2700 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2701 llvm::IntegerType *Ty;
2702 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2703 Ty = cast<llvm::IntegerType>(VT->getElementType());
2704 else
2705 Ty = cast<llvm::IntegerType>(LHS->getType());
2706 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2707 }
2708
EmitShl(const BinOpInfo & Ops)2709 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2710 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2711 // RHS to the same size as the LHS.
2712 Value *RHS = Ops.RHS;
2713 if (Ops.LHS->getType() != RHS->getType())
2714 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2715
2716 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2717 Ops.Ty->hasSignedIntegerRepresentation();
2718 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2719 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2720 if (CGF.getLangOpts().OpenCL)
2721 RHS =
2722 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2723 else if ((SanitizeBase || SanitizeExponent) &&
2724 isa<llvm::IntegerType>(Ops.LHS->getType())) {
2725 CodeGenFunction::SanitizerScope SanScope(&CGF);
2726 SmallVector<std::pair<Value *, SanitizerKind>, 2> Checks;
2727 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2728 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2729
2730 if (SanitizeExponent) {
2731 Checks.push_back(
2732 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2733 }
2734
2735 if (SanitizeBase) {
2736 // Check whether we are shifting any non-zero bits off the top of the
2737 // integer. We only emit this check if exponent is valid - otherwise
2738 // instructions below will have undefined behavior themselves.
2739 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2740 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2741 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2742 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2743 CGF.EmitBlock(CheckShiftBase);
2744 llvm::Value *BitsShiftedOff =
2745 Builder.CreateLShr(Ops.LHS,
2746 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2747 /*NUW*/true, /*NSW*/true),
2748 "shl.check");
2749 if (CGF.getLangOpts().CPlusPlus) {
2750 // In C99, we are not permitted to shift a 1 bit into the sign bit.
2751 // Under C++11's rules, shifting a 1 bit into the sign bit is
2752 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2753 // define signed left shifts, so we use the C99 and C++11 rules there).
2754 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2755 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2756 }
2757 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2758 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2759 CGF.EmitBlock(Cont);
2760 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2761 BaseCheck->addIncoming(Builder.getTrue(), Orig);
2762 BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2763 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2764 }
2765
2766 assert(!Checks.empty());
2767 EmitBinOpCheck(Checks, Ops);
2768 }
2769
2770 return Builder.CreateShl(Ops.LHS, RHS, "shl");
2771 }
2772
EmitShr(const BinOpInfo & Ops)2773 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2774 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2775 // RHS to the same size as the LHS.
2776 Value *RHS = Ops.RHS;
2777 if (Ops.LHS->getType() != RHS->getType())
2778 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2779
2780 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2781 if (CGF.getLangOpts().OpenCL)
2782 RHS =
2783 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2784 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2785 isa<llvm::IntegerType>(Ops.LHS->getType())) {
2786 CodeGenFunction::SanitizerScope SanScope(&CGF);
2787 llvm::Value *Valid =
2788 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2789 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2790 }
2791
2792 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2793 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2794 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2795 }
2796
2797 enum IntrinsicType { VCMPEQ, VCMPGT };
2798 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2799 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2800 BuiltinType::Kind ElemKind) {
2801 switch (ElemKind) {
2802 default: llvm_unreachable("unexpected element type");
2803 case BuiltinType::Char_U:
2804 case BuiltinType::UChar:
2805 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2806 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2807 case BuiltinType::Char_S:
2808 case BuiltinType::SChar:
2809 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2810 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2811 case BuiltinType::UShort:
2812 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2813 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2814 case BuiltinType::Short:
2815 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2816 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2817 case BuiltinType::UInt:
2818 case BuiltinType::ULong:
2819 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2820 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2821 case BuiltinType::Int:
2822 case BuiltinType::Long:
2823 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2824 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2825 case BuiltinType::Float:
2826 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2827 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2828 }
2829 }
2830
EmitCompare(const BinaryOperator * E,unsigned UICmpOpc,unsigned SICmpOpc,unsigned FCmpOpc)2831 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2832 unsigned SICmpOpc, unsigned FCmpOpc) {
2833 TestAndClearIgnoreResultAssign();
2834 Value *Result;
2835 QualType LHSTy = E->getLHS()->getType();
2836 QualType RHSTy = E->getRHS()->getType();
2837 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2838 assert(E->getOpcode() == BO_EQ ||
2839 E->getOpcode() == BO_NE);
2840 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2841 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2842 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2843 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2844 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2845 Value *LHS = Visit(E->getLHS());
2846 Value *RHS = Visit(E->getRHS());
2847
2848 // If AltiVec, the comparison results in a numeric type, so we use
2849 // intrinsics comparing vectors and giving 0 or 1 as a result
2850 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2851 // constants for mapping CR6 register bits to predicate result
2852 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2853
2854 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2855
2856 // in several cases vector arguments order will be reversed
2857 Value *FirstVecArg = LHS,
2858 *SecondVecArg = RHS;
2859
2860 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2861 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2862 BuiltinType::Kind ElementKind = BTy->getKind();
2863
2864 switch(E->getOpcode()) {
2865 default: llvm_unreachable("is not a comparison operation");
2866 case BO_EQ:
2867 CR6 = CR6_LT;
2868 ID = GetIntrinsic(VCMPEQ, ElementKind);
2869 break;
2870 case BO_NE:
2871 CR6 = CR6_EQ;
2872 ID = GetIntrinsic(VCMPEQ, ElementKind);
2873 break;
2874 case BO_LT:
2875 CR6 = CR6_LT;
2876 ID = GetIntrinsic(VCMPGT, ElementKind);
2877 std::swap(FirstVecArg, SecondVecArg);
2878 break;
2879 case BO_GT:
2880 CR6 = CR6_LT;
2881 ID = GetIntrinsic(VCMPGT, ElementKind);
2882 break;
2883 case BO_LE:
2884 if (ElementKind == BuiltinType::Float) {
2885 CR6 = CR6_LT;
2886 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2887 std::swap(FirstVecArg, SecondVecArg);
2888 }
2889 else {
2890 CR6 = CR6_EQ;
2891 ID = GetIntrinsic(VCMPGT, ElementKind);
2892 }
2893 break;
2894 case BO_GE:
2895 if (ElementKind == BuiltinType::Float) {
2896 CR6 = CR6_LT;
2897 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2898 }
2899 else {
2900 CR6 = CR6_EQ;
2901 ID = GetIntrinsic(VCMPGT, ElementKind);
2902 std::swap(FirstVecArg, SecondVecArg);
2903 }
2904 break;
2905 }
2906
2907 Value *CR6Param = Builder.getInt32(CR6);
2908 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2909 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2910 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2911 }
2912
2913 if (LHS->getType()->isFPOrFPVectorTy()) {
2914 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2915 LHS, RHS, "cmp");
2916 } else if (LHSTy->hasSignedIntegerRepresentation()) {
2917 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2918 LHS, RHS, "cmp");
2919 } else {
2920 // Unsigned integers and pointers.
2921 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2922 LHS, RHS, "cmp");
2923 }
2924
2925 // If this is a vector comparison, sign extend the result to the appropriate
2926 // vector integer type and return it (don't convert to bool).
2927 if (LHSTy->isVectorType())
2928 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2929
2930 } else {
2931 // Complex Comparison: can only be an equality comparison.
2932 CodeGenFunction::ComplexPairTy LHS, RHS;
2933 QualType CETy;
2934 if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2935 LHS = CGF.EmitComplexExpr(E->getLHS());
2936 CETy = CTy->getElementType();
2937 } else {
2938 LHS.first = Visit(E->getLHS());
2939 LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2940 CETy = LHSTy;
2941 }
2942 if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2943 RHS = CGF.EmitComplexExpr(E->getRHS());
2944 assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2945 CTy->getElementType()) &&
2946 "The element types must always match.");
2947 (void)CTy;
2948 } else {
2949 RHS.first = Visit(E->getRHS());
2950 RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2951 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2952 "The element types must always match.");
2953 }
2954
2955 Value *ResultR, *ResultI;
2956 if (CETy->isRealFloatingType()) {
2957 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2958 LHS.first, RHS.first, "cmp.r");
2959 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2960 LHS.second, RHS.second, "cmp.i");
2961 } else {
2962 // Complex comparisons can only be equality comparisons. As such, signed
2963 // and unsigned opcodes are the same.
2964 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2965 LHS.first, RHS.first, "cmp.r");
2966 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2967 LHS.second, RHS.second, "cmp.i");
2968 }
2969
2970 if (E->getOpcode() == BO_EQ) {
2971 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2972 } else {
2973 assert(E->getOpcode() == BO_NE &&
2974 "Complex comparison other than == or != ?");
2975 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2976 }
2977 }
2978
2979 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2980 }
2981
VisitBinAssign(const BinaryOperator * E)2982 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2983 bool Ignore = TestAndClearIgnoreResultAssign();
2984
2985 Value *RHS;
2986 LValue LHS;
2987
2988 switch (E->getLHS()->getType().getObjCLifetime()) {
2989 case Qualifiers::OCL_Strong:
2990 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2991 break;
2992
2993 case Qualifiers::OCL_Autoreleasing:
2994 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2995 break;
2996
2997 case Qualifiers::OCL_Weak:
2998 RHS = Visit(E->getRHS());
2999 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3000 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3001 break;
3002
3003 // No reason to do any of these differently.
3004 case Qualifiers::OCL_None:
3005 case Qualifiers::OCL_ExplicitNone:
3006 // __block variables need to have the rhs evaluated first, plus
3007 // this should improve codegen just a little.
3008 RHS = Visit(E->getRHS());
3009 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3010
3011 // Store the value into the LHS. Bit-fields are handled specially
3012 // because the result is altered by the store, i.e., [C99 6.5.16p1]
3013 // 'An assignment expression has the value of the left operand after
3014 // the assignment...'.
3015 if (LHS.isBitField())
3016 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3017 else
3018 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3019 }
3020
3021 // If the result is clearly ignored, return now.
3022 if (Ignore)
3023 return nullptr;
3024
3025 // The result of an assignment in C is the assigned r-value.
3026 if (!CGF.getLangOpts().CPlusPlus)
3027 return RHS;
3028
3029 // If the lvalue is non-volatile, return the computed value of the assignment.
3030 if (!LHS.isVolatileQualified())
3031 return RHS;
3032
3033 // Otherwise, reload the value.
3034 return EmitLoadOfLValue(LHS, E->getExprLoc());
3035 }
3036
VisitBinLAnd(const BinaryOperator * E)3037 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3038 RegionCounter Cnt = CGF.getPGORegionCounter(E);
3039
3040 // Perform vector logical and on comparisons with zero vectors.
3041 if (E->getType()->isVectorType()) {
3042 Cnt.beginRegion(Builder);
3043
3044 Value *LHS = Visit(E->getLHS());
3045 Value *RHS = Visit(E->getRHS());
3046 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3047 if (LHS->getType()->isFPOrFPVectorTy()) {
3048 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3049 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3050 } else {
3051 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3052 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3053 }
3054 Value *And = Builder.CreateAnd(LHS, RHS);
3055 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3056 }
3057
3058 llvm::Type *ResTy = ConvertType(E->getType());
3059
3060 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3061 // If we have 1 && X, just emit X without inserting the control flow.
3062 bool LHSCondVal;
3063 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3064 if (LHSCondVal) { // If we have 1 && X, just emit X.
3065 Cnt.beginRegion(Builder);
3066
3067 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3068 // ZExt result to int or bool.
3069 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3070 }
3071
3072 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3073 if (!CGF.ContainsLabel(E->getRHS()))
3074 return llvm::Constant::getNullValue(ResTy);
3075 }
3076
3077 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3078 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
3079
3080 CodeGenFunction::ConditionalEvaluation eval(CGF);
3081
3082 // Branch on the LHS first. If it is false, go to the failure (cont) block.
3083 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount());
3084
3085 // Any edges into the ContBlock are now from an (indeterminate number of)
3086 // edges from this first condition. All of these values will be false. Start
3087 // setting up the PHI node in the Cont Block for this.
3088 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3089 "", ContBlock);
3090 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3091 PI != PE; ++PI)
3092 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3093
3094 eval.begin(CGF);
3095 CGF.EmitBlock(RHSBlock);
3096 Cnt.beginRegion(Builder);
3097 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3098 eval.end(CGF);
3099
3100 // Reaquire the RHS block, as there may be subblocks inserted.
3101 RHSBlock = Builder.GetInsertBlock();
3102
3103 // Emit an unconditional branch from this block to ContBlock.
3104 {
3105 // There is no need to emit line number for unconditional branch.
3106 auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3107 CGF.EmitBlock(ContBlock);
3108 }
3109 // Insert an entry into the phi node for the edge with the value of RHSCond.
3110 PN->addIncoming(RHSCond, RHSBlock);
3111
3112 // ZExt result to int.
3113 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3114 }
3115
VisitBinLOr(const BinaryOperator * E)3116 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3117 RegionCounter Cnt = CGF.getPGORegionCounter(E);
3118
3119 // Perform vector logical or on comparisons with zero vectors.
3120 if (E->getType()->isVectorType()) {
3121 Cnt.beginRegion(Builder);
3122
3123 Value *LHS = Visit(E->getLHS());
3124 Value *RHS = Visit(E->getRHS());
3125 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3126 if (LHS->getType()->isFPOrFPVectorTy()) {
3127 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3128 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3129 } else {
3130 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3131 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3132 }
3133 Value *Or = Builder.CreateOr(LHS, RHS);
3134 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3135 }
3136
3137 llvm::Type *ResTy = ConvertType(E->getType());
3138
3139 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3140 // If we have 0 || X, just emit X without inserting the control flow.
3141 bool LHSCondVal;
3142 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3143 if (!LHSCondVal) { // If we have 0 || X, just emit X.
3144 Cnt.beginRegion(Builder);
3145
3146 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3147 // ZExt result to int or bool.
3148 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3149 }
3150
3151 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3152 if (!CGF.ContainsLabel(E->getRHS()))
3153 return llvm::ConstantInt::get(ResTy, 1);
3154 }
3155
3156 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3157 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3158
3159 CodeGenFunction::ConditionalEvaluation eval(CGF);
3160
3161 // Branch on the LHS first. If it is true, go to the success (cont) block.
3162 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3163 Cnt.getParentCount() - Cnt.getCount());
3164
3165 // Any edges into the ContBlock are now from an (indeterminate number of)
3166 // edges from this first condition. All of these values will be true. Start
3167 // setting up the PHI node in the Cont Block for this.
3168 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3169 "", ContBlock);
3170 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3171 PI != PE; ++PI)
3172 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3173
3174 eval.begin(CGF);
3175
3176 // Emit the RHS condition as a bool value.
3177 CGF.EmitBlock(RHSBlock);
3178 Cnt.beginRegion(Builder);
3179 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3180
3181 eval.end(CGF);
3182
3183 // Reaquire the RHS block, as there may be subblocks inserted.
3184 RHSBlock = Builder.GetInsertBlock();
3185
3186 // Emit an unconditional branch from this block to ContBlock. Insert an entry
3187 // into the phi node for the edge with the value of RHSCond.
3188 CGF.EmitBlock(ContBlock);
3189 PN->addIncoming(RHSCond, RHSBlock);
3190
3191 // ZExt result to int.
3192 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3193 }
3194
VisitBinComma(const BinaryOperator * E)3195 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3196 CGF.EmitIgnoredExpr(E->getLHS());
3197 CGF.EnsureInsertPoint();
3198 return Visit(E->getRHS());
3199 }
3200
3201 //===----------------------------------------------------------------------===//
3202 // Other Operators
3203 //===----------------------------------------------------------------------===//
3204
3205 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3206 /// expression is cheap enough and side-effect-free enough to evaluate
3207 /// unconditionally instead of conditionally. This is used to convert control
3208 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)3209 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3210 CodeGenFunction &CGF) {
3211 // Anything that is an integer or floating point constant is fine.
3212 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3213
3214 // Even non-volatile automatic variables can't be evaluated unconditionally.
3215 // Referencing a thread_local may cause non-trivial initialization work to
3216 // occur. If we're inside a lambda and one of the variables is from the scope
3217 // outside the lambda, that function may have returned already. Reading its
3218 // locals is a bad idea. Also, these reads may introduce races there didn't
3219 // exist in the source-level program.
3220 }
3221
3222
3223 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)3224 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3225 TestAndClearIgnoreResultAssign();
3226
3227 // Bind the common expression if necessary.
3228 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3229 RegionCounter Cnt = CGF.getPGORegionCounter(E);
3230
3231 Expr *condExpr = E->getCond();
3232 Expr *lhsExpr = E->getTrueExpr();
3233 Expr *rhsExpr = E->getFalseExpr();
3234
3235 // If the condition constant folds and can be elided, try to avoid emitting
3236 // the condition and the dead arm.
3237 bool CondExprBool;
3238 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3239 Expr *live = lhsExpr, *dead = rhsExpr;
3240 if (!CondExprBool) std::swap(live, dead);
3241
3242 // If the dead side doesn't have labels we need, just emit the Live part.
3243 if (!CGF.ContainsLabel(dead)) {
3244 if (CondExprBool)
3245 Cnt.beginRegion(Builder);
3246 Value *Result = Visit(live);
3247
3248 // If the live part is a throw expression, it acts like it has a void
3249 // type, so evaluating it returns a null Value*. However, a conditional
3250 // with non-void type must return a non-null Value*.
3251 if (!Result && !E->getType()->isVoidType())
3252 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3253
3254 return Result;
3255 }
3256 }
3257
3258 // OpenCL: If the condition is a vector, we can treat this condition like
3259 // the select function.
3260 if (CGF.getLangOpts().OpenCL
3261 && condExpr->getType()->isVectorType()) {
3262 Cnt.beginRegion(Builder);
3263
3264 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3265 llvm::Value *LHS = Visit(lhsExpr);
3266 llvm::Value *RHS = Visit(rhsExpr);
3267
3268 llvm::Type *condType = ConvertType(condExpr->getType());
3269 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3270
3271 unsigned numElem = vecTy->getNumElements();
3272 llvm::Type *elemType = vecTy->getElementType();
3273
3274 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3275 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3276 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3277 llvm::VectorType::get(elemType,
3278 numElem),
3279 "sext");
3280 llvm::Value *tmp2 = Builder.CreateNot(tmp);
3281
3282 // Cast float to int to perform ANDs if necessary.
3283 llvm::Value *RHSTmp = RHS;
3284 llvm::Value *LHSTmp = LHS;
3285 bool wasCast = false;
3286 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3287 if (rhsVTy->getElementType()->isFloatingPointTy()) {
3288 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3289 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3290 wasCast = true;
3291 }
3292
3293 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3294 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3295 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3296 if (wasCast)
3297 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3298
3299 return tmp5;
3300 }
3301
3302 // If this is a really simple expression (like x ? 4 : 5), emit this as a
3303 // select instead of as control flow. We can only do this if it is cheap and
3304 // safe to evaluate the LHS and RHS unconditionally.
3305 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3306 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3307 Cnt.beginRegion(Builder);
3308
3309 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3310 llvm::Value *LHS = Visit(lhsExpr);
3311 llvm::Value *RHS = Visit(rhsExpr);
3312 if (!LHS) {
3313 // If the conditional has void type, make sure we return a null Value*.
3314 assert(!RHS && "LHS and RHS types must match");
3315 return nullptr;
3316 }
3317 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3318 }
3319
3320 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3321 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3322 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3323
3324 CodeGenFunction::ConditionalEvaluation eval(CGF);
3325 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount());
3326
3327 CGF.EmitBlock(LHSBlock);
3328 Cnt.beginRegion(Builder);
3329 eval.begin(CGF);
3330 Value *LHS = Visit(lhsExpr);
3331 eval.end(CGF);
3332
3333 LHSBlock = Builder.GetInsertBlock();
3334 Builder.CreateBr(ContBlock);
3335
3336 CGF.EmitBlock(RHSBlock);
3337 eval.begin(CGF);
3338 Value *RHS = Visit(rhsExpr);
3339 eval.end(CGF);
3340
3341 RHSBlock = Builder.GetInsertBlock();
3342 CGF.EmitBlock(ContBlock);
3343
3344 // If the LHS or RHS is a throw expression, it will be legitimately null.
3345 if (!LHS)
3346 return RHS;
3347 if (!RHS)
3348 return LHS;
3349
3350 // Create a PHI node for the real part.
3351 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3352 PN->addIncoming(LHS, LHSBlock);
3353 PN->addIncoming(RHS, RHSBlock);
3354 return PN;
3355 }
3356
VisitChooseExpr(ChooseExpr * E)3357 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3358 return Visit(E->getChosenSubExpr());
3359 }
3360
VisitVAArgExpr(VAArgExpr * VE)3361 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3362 QualType Ty = VE->getType();
3363
3364 if (Ty->isVariablyModifiedType())
3365 CGF.EmitVariablyModifiedType(Ty);
3366
3367 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3368 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3369 llvm::Type *ArgTy = ConvertType(VE->getType());
3370
3371 // If EmitVAArg fails, we fall back to the LLVM instruction.
3372 if (!ArgPtr)
3373 return Builder.CreateVAArg(ArgValue, ArgTy);
3374
3375 // FIXME Volatility.
3376 llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3377
3378 // If EmitVAArg promoted the type, we must truncate it.
3379 if (ArgTy != Val->getType()) {
3380 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3381 Val = Builder.CreateIntToPtr(Val, ArgTy);
3382 else
3383 Val = Builder.CreateTrunc(Val, ArgTy);
3384 }
3385
3386 return Val;
3387 }
3388
VisitBlockExpr(const BlockExpr * block)3389 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3390 return CGF.EmitBlockLiteral(block);
3391 }
3392
VisitAsTypeExpr(AsTypeExpr * E)3393 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3394 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
3395 llvm::Type *DstTy = ConvertType(E->getType());
3396
3397 // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3398 // a shuffle vector instead of a bitcast.
3399 llvm::Type *SrcTy = Src->getType();
3400 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3401 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3402 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3403 if ((numElementsDst == 3 && numElementsSrc == 4)
3404 || (numElementsDst == 4 && numElementsSrc == 3)) {
3405
3406
3407 // In the case of going from int4->float3, a bitcast is needed before
3408 // doing a shuffle.
3409 llvm::Type *srcElemTy =
3410 cast<llvm::VectorType>(SrcTy)->getElementType();
3411 llvm::Type *dstElemTy =
3412 cast<llvm::VectorType>(DstTy)->getElementType();
3413
3414 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3415 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3416 // Create a float type of the same size as the source or destination.
3417 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3418 numElementsSrc);
3419
3420 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3421 }
3422
3423 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3424
3425 SmallVector<llvm::Constant*, 3> Args;
3426 Args.push_back(Builder.getInt32(0));
3427 Args.push_back(Builder.getInt32(1));
3428 Args.push_back(Builder.getInt32(2));
3429
3430 if (numElementsDst == 4)
3431 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3432
3433 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3434
3435 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3436 }
3437 }
3438
3439 return Builder.CreateBitCast(Src, DstTy, "astype");
3440 }
3441
VisitAtomicExpr(AtomicExpr * E)3442 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3443 return CGF.EmitAtomicExpr(E).getScalarVal();
3444 }
3445
3446 //===----------------------------------------------------------------------===//
3447 // Entry Point into this File
3448 //===----------------------------------------------------------------------===//
3449
3450 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3451 /// type, ignoring the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)3452 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3453 assert(E && hasScalarEvaluationKind(E->getType()) &&
3454 "Invalid scalar expression to emit");
3455
3456 return ScalarExprEmitter(*this, IgnoreResultAssign)
3457 .Visit(const_cast<Expr *>(E));
3458 }
3459
3460 /// EmitScalarConversion - Emit a conversion from the specified type to the
3461 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy)3462 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3463 QualType DstTy) {
3464 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3465 "Invalid scalar expression to emit");
3466 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3467 }
3468
3469 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3470 /// type to the specified destination type, where the destination type is an
3471 /// LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy)3472 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3473 QualType SrcTy,
3474 QualType DstTy) {
3475 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3476 "Invalid complex -> scalar conversion");
3477 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3478 DstTy);
3479 }
3480
3481
3482 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)3483 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3484 bool isInc, bool isPre) {
3485 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3486 }
3487
EmitObjCIsaExpr(const ObjCIsaExpr * E)3488 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3489 llvm::Value *V;
3490 // object->isa or (*object).isa
3491 // Generate code as for: *(Class*)object
3492 // build Class* type
3493 llvm::Type *ClassPtrTy = ConvertType(E->getType());
3494
3495 Expr *BaseExpr = E->getBase();
3496 if (BaseExpr->isRValue()) {
3497 V = CreateMemTemp(E->getType(), "resval");
3498 llvm::Value *Src = EmitScalarExpr(BaseExpr);
3499 Builder.CreateStore(Src, V);
3500 V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3501 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
3502 } else {
3503 if (E->isArrow())
3504 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3505 else
3506 V = EmitLValue(BaseExpr).getAddress();
3507 }
3508
3509 // build Class* type
3510 ClassPtrTy = ClassPtrTy->getPointerTo();
3511 V = Builder.CreateBitCast(V, ClassPtrTy);
3512 return MakeNaturalAlignAddrLValue(V, E->getType());
3513 }
3514
3515
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)3516 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3517 const CompoundAssignOperator *E) {
3518 ScalarExprEmitter Scalar(*this);
3519 Value *Result = nullptr;
3520 switch (E->getOpcode()) {
3521 #define COMPOUND_OP(Op) \
3522 case BO_##Op##Assign: \
3523 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3524 Result)
3525 COMPOUND_OP(Mul);
3526 COMPOUND_OP(Div);
3527 COMPOUND_OP(Rem);
3528 COMPOUND_OP(Add);
3529 COMPOUND_OP(Sub);
3530 COMPOUND_OP(Shl);
3531 COMPOUND_OP(Shr);
3532 COMPOUND_OP(And);
3533 COMPOUND_OP(Xor);
3534 COMPOUND_OP(Or);
3535 #undef COMPOUND_OP
3536
3537 case BO_PtrMemD:
3538 case BO_PtrMemI:
3539 case BO_Mul:
3540 case BO_Div:
3541 case BO_Rem:
3542 case BO_Add:
3543 case BO_Sub:
3544 case BO_Shl:
3545 case BO_Shr:
3546 case BO_LT:
3547 case BO_GT:
3548 case BO_LE:
3549 case BO_GE:
3550 case BO_EQ:
3551 case BO_NE:
3552 case BO_And:
3553 case BO_Xor:
3554 case BO_Or:
3555 case BO_LAnd:
3556 case BO_LOr:
3557 case BO_Assign:
3558 case BO_Comma:
3559 llvm_unreachable("Not valid compound assignment operators");
3560 }
3561
3562 llvm_unreachable("Unhandled compound assignment operator");
3563 }
3564