1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   bool FPContractable;
49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50 };
51 
MustVisitNullValue(const Expr * E)52 static bool MustVisitNullValue(const Expr *E) {
53   // If a null pointer expression's type is the C++0x nullptr_t, then
54   // it's not necessarily a simple constant and it must be evaluated
55   // for its potential side effects.
56   return E->getType()->isNullPtrType();
57 }
58 
59 class ScalarExprEmitter
60   : public StmtVisitor<ScalarExprEmitter, Value*> {
61   CodeGenFunction &CGF;
62   CGBuilderTy &Builder;
63   bool IgnoreResultAssign;
64   llvm::LLVMContext &VMContext;
65 public:
66 
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69       VMContext(cgf.getLLVMContext()) {
70   }
71 
72   //===--------------------------------------------------------------------===//
73   //                               Utilities
74   //===--------------------------------------------------------------------===//
75 
TestAndClearIgnoreResultAssign()76   bool TestAndClearIgnoreResultAssign() {
77     bool I = IgnoreResultAssign;
78     IgnoreResultAssign = false;
79     return I;
80   }
81 
ConvertType(QualType T)82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85     return CGF.EmitCheckedLValue(E, TCK);
86   }
87 
88   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerKind>> Checks,
89                       const BinOpInfo &Info);
90 
EmitLoadOfLValue(LValue LV,SourceLocation Loc)91   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
92     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
93   }
94 
EmitLValueAlignmentAssumption(const Expr * E,Value * V)95   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
96     const AlignValueAttr *AVAttr = nullptr;
97     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
98       const ValueDecl *VD = DRE->getDecl();
99 
100       if (VD->getType()->isReferenceType()) {
101         if (const auto *TTy =
102             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
103           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
104       } else {
105         // Assumptions for function parameters are emitted at the start of the
106         // function, so there is no need to repeat that here.
107         if (isa<ParmVarDecl>(VD))
108           return;
109 
110         AVAttr = VD->getAttr<AlignValueAttr>();
111       }
112     }
113 
114     if (!AVAttr)
115       if (const auto *TTy =
116           dyn_cast<TypedefType>(E->getType()))
117         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
118 
119     if (!AVAttr)
120       return;
121 
122     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
123     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
124     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
125   }
126 
127   /// EmitLoadOfLValue - Given an expression with complex type that represents a
128   /// value l-value, this method emits the address of the l-value, then loads
129   /// and returns the result.
EmitLoadOfLValue(const Expr * E)130   Value *EmitLoadOfLValue(const Expr *E) {
131     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
132                                 E->getExprLoc());
133 
134     EmitLValueAlignmentAssumption(E, V);
135     return V;
136   }
137 
138   /// EmitConversionToBool - Convert the specified expression value to a
139   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
140   Value *EmitConversionToBool(Value *Src, QualType DstTy);
141 
142   /// \brief Emit a check that a conversion to or from a floating-point type
143   /// does not overflow.
144   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
145                                 Value *Src, QualType SrcType,
146                                 QualType DstType, llvm::Type *DstTy);
147 
148   /// EmitScalarConversion - Emit a conversion from the specified type to the
149   /// specified destination type, both of which are LLVM scalar types.
150   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
151 
152   /// EmitComplexToScalarConversion - Emit a conversion from the specified
153   /// complex type to the specified destination type, where the destination type
154   /// is an LLVM scalar type.
155   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
156                                        QualType SrcTy, QualType DstTy);
157 
158   /// EmitNullValue - Emit a value that corresponds to null for the given type.
159   Value *EmitNullValue(QualType Ty);
160 
161   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)162   Value *EmitFloatToBoolConversion(Value *V) {
163     // Compare against 0.0 for fp scalars.
164     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
165     return Builder.CreateFCmpUNE(V, Zero, "tobool");
166   }
167 
168   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)169   Value *EmitPointerToBoolConversion(Value *V) {
170     Value *Zero = llvm::ConstantPointerNull::get(
171                                       cast<llvm::PointerType>(V->getType()));
172     return Builder.CreateICmpNE(V, Zero, "tobool");
173   }
174 
EmitIntToBoolConversion(Value * V)175   Value *EmitIntToBoolConversion(Value *V) {
176     // Because of the type rules of C, we often end up computing a
177     // logical value, then zero extending it to int, then wanting it
178     // as a logical value again.  Optimize this common case.
179     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
180       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
181         Value *Result = ZI->getOperand(0);
182         // If there aren't any more uses, zap the instruction to save space.
183         // Note that there can be more uses, for example if this
184         // is the result of an assignment.
185         if (ZI->use_empty())
186           ZI->eraseFromParent();
187         return Result;
188       }
189     }
190 
191     return Builder.CreateIsNotNull(V, "tobool");
192   }
193 
194   //===--------------------------------------------------------------------===//
195   //                            Visitor Methods
196   //===--------------------------------------------------------------------===//
197 
Visit(Expr * E)198   Value *Visit(Expr *E) {
199     ApplyDebugLocation DL(CGF, E);
200     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
201   }
202 
VisitStmt(Stmt * S)203   Value *VisitStmt(Stmt *S) {
204     S->dump(CGF.getContext().getSourceManager());
205     llvm_unreachable("Stmt can't have complex result type!");
206   }
207   Value *VisitExpr(Expr *S);
208 
VisitParenExpr(ParenExpr * PE)209   Value *VisitParenExpr(ParenExpr *PE) {
210     return Visit(PE->getSubExpr());
211   }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)212   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
213     return Visit(E->getReplacement());
214   }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)215   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
216     return Visit(GE->getResultExpr());
217   }
218 
219   // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)220   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
221     return Builder.getInt(E->getValue());
222   }
VisitFloatingLiteral(const FloatingLiteral * E)223   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
224     return llvm::ConstantFP::get(VMContext, E->getValue());
225   }
VisitCharacterLiteral(const CharacterLiteral * E)226   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
227     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
228   }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)229   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
230     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
231   }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)232   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
233     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
234   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)235   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
236     return EmitNullValue(E->getType());
237   }
VisitGNUNullExpr(const GNUNullExpr * E)238   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
239     return EmitNullValue(E->getType());
240   }
241   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
242   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)243   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
244     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
245     return Builder.CreateBitCast(V, ConvertType(E->getType()));
246   }
247 
VisitSizeOfPackExpr(SizeOfPackExpr * E)248   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
249     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
250   }
251 
VisitPseudoObjectExpr(PseudoObjectExpr * E)252   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
253     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
254   }
255 
VisitOpaqueValueExpr(OpaqueValueExpr * E)256   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
257     if (E->isGLValue())
258       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
259 
260     // Otherwise, assume the mapping is the scalar directly.
261     return CGF.getOpaqueRValueMapping(E).getScalarVal();
262   }
263 
264   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)265   Value *VisitDeclRefExpr(DeclRefExpr *E) {
266     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
267       if (result.isReference())
268         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
269                                 E->getExprLoc());
270       return result.getValue();
271     }
272     return EmitLoadOfLValue(E);
273   }
274 
VisitObjCSelectorExpr(ObjCSelectorExpr * E)275   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
276     return CGF.EmitObjCSelectorExpr(E);
277   }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)278   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
279     return CGF.EmitObjCProtocolExpr(E);
280   }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)281   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
282     return EmitLoadOfLValue(E);
283   }
VisitObjCMessageExpr(ObjCMessageExpr * E)284   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
285     if (E->getMethodDecl() &&
286         E->getMethodDecl()->getReturnType()->isReferenceType())
287       return EmitLoadOfLValue(E);
288     return CGF.EmitObjCMessageExpr(E).getScalarVal();
289   }
290 
VisitObjCIsaExpr(ObjCIsaExpr * E)291   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
292     LValue LV = CGF.EmitObjCIsaExpr(E);
293     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
294     return V;
295   }
296 
297   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
298   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
299   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
300   Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)301   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)302   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
303     return EmitLoadOfLValue(E);
304   }
305 
306   Value *VisitInitListExpr(InitListExpr *E);
307 
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)308   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
309     return EmitNullValue(E->getType());
310   }
VisitExplicitCastExpr(ExplicitCastExpr * E)311   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
312     if (E->getType()->isVariablyModifiedType())
313       CGF.EmitVariablyModifiedType(E->getType());
314 
315     if (CGDebugInfo *DI = CGF.getDebugInfo())
316       DI->EmitExplicitCastType(E->getType());
317 
318     return VisitCastExpr(E);
319   }
320   Value *VisitCastExpr(CastExpr *E);
321 
VisitCallExpr(const CallExpr * E)322   Value *VisitCallExpr(const CallExpr *E) {
323     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324       return EmitLoadOfLValue(E);
325 
326     Value *V = CGF.EmitCallExpr(E).getScalarVal();
327 
328     EmitLValueAlignmentAssumption(E, V);
329     return V;
330   }
331 
332   Value *VisitStmtExpr(const StmtExpr *E);
333 
334   // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)335   Value *VisitUnaryPostDec(const UnaryOperator *E) {
336     LValue LV = EmitLValue(E->getSubExpr());
337     return EmitScalarPrePostIncDec(E, LV, false, false);
338   }
VisitUnaryPostInc(const UnaryOperator * E)339   Value *VisitUnaryPostInc(const UnaryOperator *E) {
340     LValue LV = EmitLValue(E->getSubExpr());
341     return EmitScalarPrePostIncDec(E, LV, true, false);
342   }
VisitUnaryPreDec(const UnaryOperator * E)343   Value *VisitUnaryPreDec(const UnaryOperator *E) {
344     LValue LV = EmitLValue(E->getSubExpr());
345     return EmitScalarPrePostIncDec(E, LV, false, true);
346   }
VisitUnaryPreInc(const UnaryOperator * E)347   Value *VisitUnaryPreInc(const UnaryOperator *E) {
348     LValue LV = EmitLValue(E->getSubExpr());
349     return EmitScalarPrePostIncDec(E, LV, true, true);
350   }
351 
352   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
353                                                llvm::Value *InVal,
354                                                llvm::Value *NextVal,
355                                                bool IsInc);
356 
357   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
358                                        bool isInc, bool isPre);
359 
360 
VisitUnaryAddrOf(const UnaryOperator * E)361   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
362     if (isa<MemberPointerType>(E->getType())) // never sugared
363       return CGF.CGM.getMemberPointerConstant(E);
364 
365     return EmitLValue(E->getSubExpr()).getAddress();
366   }
VisitUnaryDeref(const UnaryOperator * E)367   Value *VisitUnaryDeref(const UnaryOperator *E) {
368     if (E->getType()->isVoidType())
369       return Visit(E->getSubExpr()); // the actual value should be unused
370     return EmitLoadOfLValue(E);
371   }
VisitUnaryPlus(const UnaryOperator * E)372   Value *VisitUnaryPlus(const UnaryOperator *E) {
373     // This differs from gcc, though, most likely due to a bug in gcc.
374     TestAndClearIgnoreResultAssign();
375     return Visit(E->getSubExpr());
376   }
377   Value *VisitUnaryMinus    (const UnaryOperator *E);
378   Value *VisitUnaryNot      (const UnaryOperator *E);
379   Value *VisitUnaryLNot     (const UnaryOperator *E);
380   Value *VisitUnaryReal     (const UnaryOperator *E);
381   Value *VisitUnaryImag     (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)382   Value *VisitUnaryExtension(const UnaryOperator *E) {
383     return Visit(E->getSubExpr());
384   }
385 
386   // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)387   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
388     return EmitLoadOfLValue(E);
389   }
390 
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)391   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
392     return Visit(DAE->getExpr());
393   }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)394   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
395     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
396     return Visit(DIE->getExpr());
397   }
VisitCXXThisExpr(CXXThisExpr * TE)398   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
399     return CGF.LoadCXXThis();
400   }
401 
VisitExprWithCleanups(ExprWithCleanups * E)402   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
403     CGF.enterFullExpression(E);
404     CodeGenFunction::RunCleanupsScope Scope(CGF);
405     return Visit(E->getSubExpr());
406   }
VisitCXXNewExpr(const CXXNewExpr * E)407   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
408     return CGF.EmitCXXNewExpr(E);
409   }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)410   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
411     CGF.EmitCXXDeleteExpr(E);
412     return nullptr;
413   }
414 
VisitTypeTraitExpr(const TypeTraitExpr * E)415   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
416     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
417   }
418 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)419   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
420     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
421   }
422 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)423   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
424     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
425   }
426 
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)427   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
428     // C++ [expr.pseudo]p1:
429     //   The result shall only be used as the operand for the function call
430     //   operator (), and the result of such a call has type void. The only
431     //   effect is the evaluation of the postfix-expression before the dot or
432     //   arrow.
433     CGF.EmitScalarExpr(E->getBase());
434     return nullptr;
435   }
436 
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)437   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
438     return EmitNullValue(E->getType());
439   }
440 
VisitCXXThrowExpr(const CXXThrowExpr * E)441   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
442     CGF.EmitCXXThrowExpr(E);
443     return nullptr;
444   }
445 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)446   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
447     return Builder.getInt1(E->getValue());
448   }
449 
450   // Binary Operators.
EmitMul(const BinOpInfo & Ops)451   Value *EmitMul(const BinOpInfo &Ops) {
452     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
453       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
454       case LangOptions::SOB_Defined:
455         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
456       case LangOptions::SOB_Undefined:
457         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
458           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
459         // Fall through.
460       case LangOptions::SOB_Trapping:
461         return EmitOverflowCheckedBinOp(Ops);
462       }
463     }
464 
465     if (Ops.Ty->isUnsignedIntegerType() &&
466         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
467       return EmitOverflowCheckedBinOp(Ops);
468 
469     if (Ops.LHS->getType()->isFPOrFPVectorTy())
470       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
471     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
472   }
473   /// Create a binary op that checks for overflow.
474   /// Currently only supports +, - and *.
475   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
476 
477   // Check for undefined division and modulus behaviors.
478   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
479                                                   llvm::Value *Zero,bool isDiv);
480   // Common helper for getting how wide LHS of shift is.
481   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
482   Value *EmitDiv(const BinOpInfo &Ops);
483   Value *EmitRem(const BinOpInfo &Ops);
484   Value *EmitAdd(const BinOpInfo &Ops);
485   Value *EmitSub(const BinOpInfo &Ops);
486   Value *EmitShl(const BinOpInfo &Ops);
487   Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)488   Value *EmitAnd(const BinOpInfo &Ops) {
489     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
490   }
EmitXor(const BinOpInfo & Ops)491   Value *EmitXor(const BinOpInfo &Ops) {
492     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
493   }
EmitOr(const BinOpInfo & Ops)494   Value *EmitOr (const BinOpInfo &Ops) {
495     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
496   }
497 
498   BinOpInfo EmitBinOps(const BinaryOperator *E);
499   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
500                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
501                                   Value *&Result);
502 
503   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
504                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
505 
506   // Binary operators and binary compound assignment operators.
507 #define HANDLEBINOP(OP) \
508   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
509     return Emit ## OP(EmitBinOps(E));                                      \
510   }                                                                        \
511   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
512     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
513   }
514   HANDLEBINOP(Mul)
515   HANDLEBINOP(Div)
516   HANDLEBINOP(Rem)
517   HANDLEBINOP(Add)
518   HANDLEBINOP(Sub)
519   HANDLEBINOP(Shl)
520   HANDLEBINOP(Shr)
521   HANDLEBINOP(And)
522   HANDLEBINOP(Xor)
523   HANDLEBINOP(Or)
524 #undef HANDLEBINOP
525 
526   // Comparisons.
527   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
528                      unsigned SICmpOpc, unsigned FCmpOpc);
529 #define VISITCOMP(CODE, UI, SI, FP) \
530     Value *VisitBin##CODE(const BinaryOperator *E) { \
531       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
532                          llvm::FCmpInst::FP); }
533   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
534   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
535   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
536   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
537   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
538   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
539 #undef VISITCOMP
540 
541   Value *VisitBinAssign     (const BinaryOperator *E);
542 
543   Value *VisitBinLAnd       (const BinaryOperator *E);
544   Value *VisitBinLOr        (const BinaryOperator *E);
545   Value *VisitBinComma      (const BinaryOperator *E);
546 
VisitBinPtrMemD(const Expr * E)547   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)548   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
549 
550   // Other Operators.
551   Value *VisitBlockExpr(const BlockExpr *BE);
552   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
553   Value *VisitChooseExpr(ChooseExpr *CE);
554   Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)555   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
556     return CGF.EmitObjCStringLiteral(E);
557   }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)558   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
559     return CGF.EmitObjCBoxedExpr(E);
560   }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)561   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
562     return CGF.EmitObjCArrayLiteral(E);
563   }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)564   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
565     return CGF.EmitObjCDictionaryLiteral(E);
566   }
567   Value *VisitAsTypeExpr(AsTypeExpr *CE);
568   Value *VisitAtomicExpr(AtomicExpr *AE);
569 };
570 }  // end anonymous namespace.
571 
572 //===----------------------------------------------------------------------===//
573 //                                Utilities
574 //===----------------------------------------------------------------------===//
575 
576 /// EmitConversionToBool - Convert the specified expression value to a
577 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
579   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
580 
581   if (SrcType->isRealFloatingType())
582     return EmitFloatToBoolConversion(Src);
583 
584   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
585     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
586 
587   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
588          "Unknown scalar type to convert");
589 
590   if (isa<llvm::IntegerType>(Src->getType()))
591     return EmitIntToBoolConversion(Src);
592 
593   assert(isa<llvm::PointerType>(Src->getType()));
594   return EmitPointerToBoolConversion(Src);
595 }
596 
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy)597 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
598                                                  QualType OrigSrcType,
599                                                  Value *Src, QualType SrcType,
600                                                  QualType DstType,
601                                                  llvm::Type *DstTy) {
602   CodeGenFunction::SanitizerScope SanScope(&CGF);
603   using llvm::APFloat;
604   using llvm::APSInt;
605 
606   llvm::Type *SrcTy = Src->getType();
607 
608   llvm::Value *Check = nullptr;
609   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
610     // Integer to floating-point. This can fail for unsigned short -> __half
611     // or unsigned __int128 -> float.
612     assert(DstType->isFloatingType());
613     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
614 
615     APFloat LargestFloat =
616       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
617     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
618 
619     bool IsExact;
620     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
621                                       &IsExact) != APFloat::opOK)
622       // The range of representable values of this floating point type includes
623       // all values of this integer type. Don't need an overflow check.
624       return;
625 
626     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
627     if (SrcIsUnsigned)
628       Check = Builder.CreateICmpULE(Src, Max);
629     else {
630       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
631       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
632       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
633       Check = Builder.CreateAnd(GE, LE);
634     }
635   } else {
636     const llvm::fltSemantics &SrcSema =
637       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
638     if (isa<llvm::IntegerType>(DstTy)) {
639       // Floating-point to integer. This has undefined behavior if the source is
640       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
641       // to an integer).
642       unsigned Width = CGF.getContext().getIntWidth(DstType);
643       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
644 
645       APSInt Min = APSInt::getMinValue(Width, Unsigned);
646       APFloat MinSrc(SrcSema, APFloat::uninitialized);
647       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
648           APFloat::opOverflow)
649         // Don't need an overflow check for lower bound. Just check for
650         // -Inf/NaN.
651         MinSrc = APFloat::getInf(SrcSema, true);
652       else
653         // Find the largest value which is too small to represent (before
654         // truncation toward zero).
655         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
656 
657       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
658       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
659       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
660           APFloat::opOverflow)
661         // Don't need an overflow check for upper bound. Just check for
662         // +Inf/NaN.
663         MaxSrc = APFloat::getInf(SrcSema, false);
664       else
665         // Find the smallest value which is too large to represent (before
666         // truncation toward zero).
667         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
668 
669       // If we're converting from __half, convert the range to float to match
670       // the type of src.
671       if (OrigSrcType->isHalfType()) {
672         const llvm::fltSemantics &Sema =
673           CGF.getContext().getFloatTypeSemantics(SrcType);
674         bool IsInexact;
675         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
676         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
677       }
678 
679       llvm::Value *GE =
680         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
681       llvm::Value *LE =
682         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
683       Check = Builder.CreateAnd(GE, LE);
684     } else {
685       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
686       //
687       // Floating-point to floating-point. This has undefined behavior if the
688       // source is not in the range of representable values of the destination
689       // type. The C and C++ standards are spectacularly unclear here. We
690       // diagnose finite out-of-range conversions, but allow infinities and NaNs
691       // to convert to the corresponding value in the smaller type.
692       //
693       // C11 Annex F gives all such conversions defined behavior for IEC 60559
694       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
695       // does not.
696 
697       // Converting from a lower rank to a higher rank can never have
698       // undefined behavior, since higher-rank types must have a superset
699       // of values of lower-rank types.
700       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
701         return;
702 
703       assert(!OrigSrcType->isHalfType() &&
704              "should not check conversion from __half, it has the lowest rank");
705 
706       const llvm::fltSemantics &DstSema =
707         CGF.getContext().getFloatTypeSemantics(DstType);
708       APFloat MinBad = APFloat::getLargest(DstSema, false);
709       APFloat MaxBad = APFloat::getInf(DstSema, false);
710 
711       bool IsInexact;
712       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
713       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
714 
715       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
716         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
717       llvm::Value *GE =
718         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
719       llvm::Value *LE =
720         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
721       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
722     }
723   }
724 
725   // FIXME: Provide a SourceLocation.
726   llvm::Constant *StaticArgs[] = {
727     CGF.EmitCheckTypeDescriptor(OrigSrcType),
728     CGF.EmitCheckTypeDescriptor(DstType)
729   };
730   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
731                 "float_cast_overflow", StaticArgs, OrigSrc);
732 }
733 
734 /// EmitScalarConversion - Emit a conversion from the specified type to the
735 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType)736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
737                                                QualType DstType) {
738   SrcType = CGF.getContext().getCanonicalType(SrcType);
739   DstType = CGF.getContext().getCanonicalType(DstType);
740   if (SrcType == DstType) return Src;
741 
742   if (DstType->isVoidType()) return nullptr;
743 
744   llvm::Value *OrigSrc = Src;
745   QualType OrigSrcType = SrcType;
746   llvm::Type *SrcTy = Src->getType();
747 
748   // Handle conversions to bool first, they are special: comparisons against 0.
749   if (DstType->isBooleanType())
750     return EmitConversionToBool(Src, SrcType);
751 
752   llvm::Type *DstTy = ConvertType(DstType);
753 
754   // Cast from half through float if half isn't a native type.
755   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
756     // Cast to FP using the intrinsic if the half type itself isn't supported.
757     if (DstTy->isFloatingPointTy()) {
758       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
759         return Builder.CreateCall(
760             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
761             Src);
762     } else {
763       // Cast to other types through float, using either the intrinsic or FPExt,
764       // depending on whether the half type itself is supported
765       // (as opposed to operations on half, available with NativeHalfType).
766       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
767         Src = Builder.CreateCall(
768             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
769                                  CGF.CGM.FloatTy),
770             Src);
771       } else {
772         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
773       }
774       SrcType = CGF.getContext().FloatTy;
775       SrcTy = CGF.FloatTy;
776     }
777   }
778 
779   // Ignore conversions like int -> uint.
780   if (SrcTy == DstTy)
781     return Src;
782 
783   // Handle pointer conversions next: pointers can only be converted to/from
784   // other pointers and integers. Check for pointer types in terms of LLVM, as
785   // some native types (like Obj-C id) may map to a pointer type.
786   if (isa<llvm::PointerType>(DstTy)) {
787     // The source value may be an integer, or a pointer.
788     if (isa<llvm::PointerType>(SrcTy))
789       return Builder.CreateBitCast(Src, DstTy, "conv");
790 
791     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
792     // First, convert to the correct width so that we control the kind of
793     // extension.
794     llvm::Type *MiddleTy = CGF.IntPtrTy;
795     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
796     llvm::Value* IntResult =
797         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
798     // Then, cast to pointer.
799     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
800   }
801 
802   if (isa<llvm::PointerType>(SrcTy)) {
803     // Must be an ptr to int cast.
804     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
805     return Builder.CreatePtrToInt(Src, DstTy, "conv");
806   }
807 
808   // A scalar can be splatted to an extended vector of the same element type
809   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
810     // Cast the scalar to element type
811     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
812     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
813 
814     // Splat the element across to all elements
815     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
816     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
817   }
818 
819   // Allow bitcast from vector to integer/fp of the same size.
820   if (isa<llvm::VectorType>(SrcTy) ||
821       isa<llvm::VectorType>(DstTy))
822     return Builder.CreateBitCast(Src, DstTy, "conv");
823 
824   // Finally, we have the arithmetic types: real int/float.
825   Value *Res = nullptr;
826   llvm::Type *ResTy = DstTy;
827 
828   // An overflowing conversion has undefined behavior if either the source type
829   // or the destination type is a floating-point type.
830   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
831       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
832     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
833                              DstTy);
834 
835   // Cast to half through float if half isn't a native type.
836   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
837     // Make sure we cast in a single step if from another FP type.
838     if (SrcTy->isFloatingPointTy()) {
839       // Use the intrinsic if the half type itself isn't supported
840       // (as opposed to operations on half, available with NativeHalfType).
841       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
842         return Builder.CreateCall(
843             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
844       // If the half type is supported, just use an fptrunc.
845       return Builder.CreateFPTrunc(Src, DstTy);
846     }
847     DstTy = CGF.FloatTy;
848   }
849 
850   if (isa<llvm::IntegerType>(SrcTy)) {
851     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
852     if (isa<llvm::IntegerType>(DstTy))
853       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
854     else if (InputSigned)
855       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
856     else
857       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
858   } else if (isa<llvm::IntegerType>(DstTy)) {
859     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
860     if (DstType->isSignedIntegerOrEnumerationType())
861       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
862     else
863       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
864   } else {
865     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
866            "Unknown real conversion");
867     if (DstTy->getTypeID() < SrcTy->getTypeID())
868       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
869     else
870       Res = Builder.CreateFPExt(Src, DstTy, "conv");
871   }
872 
873   if (DstTy != ResTy) {
874     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
875       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
876       Res = Builder.CreateCall(
877         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
878         Res);
879     } else {
880       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
881     }
882   }
883 
884   return Res;
885 }
886 
887 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
888 /// type to the specified destination type, where the destination type is an
889 /// LLVM scalar type.
890 Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy)891 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
892                               QualType SrcTy, QualType DstTy) {
893   // Get the source element type.
894   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
895 
896   // Handle conversions to bool first, they are special: comparisons against 0.
897   if (DstTy->isBooleanType()) {
898     //  Complex != 0  -> (Real != 0) | (Imag != 0)
899     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
900     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
901     return Builder.CreateOr(Src.first, Src.second, "tobool");
902   }
903 
904   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
905   // the imaginary part of the complex value is discarded and the value of the
906   // real part is converted according to the conversion rules for the
907   // corresponding real type.
908   return EmitScalarConversion(Src.first, SrcTy, DstTy);
909 }
910 
EmitNullValue(QualType Ty)911 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
912   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
913 }
914 
915 /// \brief Emit a sanitization check for the given "binary" operation (which
916 /// might actually be a unary increment which has been lowered to a binary
917 /// operation). The check passes if all values in \p Checks (which are \c i1),
918 /// are \c true.
EmitBinOpCheck(ArrayRef<std::pair<Value *,SanitizerKind>> Checks,const BinOpInfo & Info)919 void ScalarExprEmitter::EmitBinOpCheck(
920     ArrayRef<std::pair<Value *, SanitizerKind>> Checks, const BinOpInfo &Info) {
921   assert(CGF.IsSanitizerScope);
922   StringRef CheckName;
923   SmallVector<llvm::Constant *, 4> StaticData;
924   SmallVector<llvm::Value *, 2> DynamicData;
925 
926   BinaryOperatorKind Opcode = Info.Opcode;
927   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
928     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
929 
930   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
931   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
932   if (UO && UO->getOpcode() == UO_Minus) {
933     CheckName = "negate_overflow";
934     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
935     DynamicData.push_back(Info.RHS);
936   } else {
937     if (BinaryOperator::isShiftOp(Opcode)) {
938       // Shift LHS negative or too large, or RHS out of bounds.
939       CheckName = "shift_out_of_bounds";
940       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
941       StaticData.push_back(
942         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
943       StaticData.push_back(
944         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
945     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
946       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
947       CheckName = "divrem_overflow";
948       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
949     } else {
950       // Arithmetic overflow (+, -, *).
951       switch (Opcode) {
952       case BO_Add: CheckName = "add_overflow"; break;
953       case BO_Sub: CheckName = "sub_overflow"; break;
954       case BO_Mul: CheckName = "mul_overflow"; break;
955       default: llvm_unreachable("unexpected opcode for bin op check");
956       }
957       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
958     }
959     DynamicData.push_back(Info.LHS);
960     DynamicData.push_back(Info.RHS);
961   }
962 
963   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
964 }
965 
966 //===----------------------------------------------------------------------===//
967 //                            Visitor Methods
968 //===----------------------------------------------------------------------===//
969 
VisitExpr(Expr * E)970 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
971   CGF.ErrorUnsupported(E, "scalar expression");
972   if (E->getType()->isVoidType())
973     return nullptr;
974   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
975 }
976 
VisitShuffleVectorExpr(ShuffleVectorExpr * E)977 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
978   // Vector Mask Case
979   if (E->getNumSubExprs() == 2 ||
980       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
981     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
982     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
983     Value *Mask;
984 
985     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
986     unsigned LHSElts = LTy->getNumElements();
987 
988     if (E->getNumSubExprs() == 3) {
989       Mask = CGF.EmitScalarExpr(E->getExpr(2));
990 
991       // Shuffle LHS & RHS into one input vector.
992       SmallVector<llvm::Constant*, 32> concat;
993       for (unsigned i = 0; i != LHSElts; ++i) {
994         concat.push_back(Builder.getInt32(2*i));
995         concat.push_back(Builder.getInt32(2*i+1));
996       }
997 
998       Value* CV = llvm::ConstantVector::get(concat);
999       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
1000       LHSElts *= 2;
1001     } else {
1002       Mask = RHS;
1003     }
1004 
1005     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1006     llvm::Constant* EltMask;
1007 
1008     EltMask = llvm::ConstantInt::get(MTy->getElementType(),
1009                                      llvm::NextPowerOf2(LHSElts-1)-1);
1010 
1011     // Mask off the high bits of each shuffle index.
1012     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
1013                                                      EltMask);
1014     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1015 
1016     // newv = undef
1017     // mask = mask & maskbits
1018     // for each elt
1019     //   n = extract mask i
1020     //   x = extract val n
1021     //   newv = insert newv, x, i
1022     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1023                                                   MTy->getNumElements());
1024     Value* NewV = llvm::UndefValue::get(RTy);
1025     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1026       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1027       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1028 
1029       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1030       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1031     }
1032     return NewV;
1033   }
1034 
1035   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1036   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1037 
1038   SmallVector<llvm::Constant*, 32> indices;
1039   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1040     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1041     // Check for -1 and output it as undef in the IR.
1042     if (Idx.isSigned() && Idx.isAllOnesValue())
1043       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1044     else
1045       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1046   }
1047 
1048   Value *SV = llvm::ConstantVector::get(indices);
1049   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1050 }
1051 
VisitConvertVectorExpr(ConvertVectorExpr * E)1052 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1053   QualType SrcType = E->getSrcExpr()->getType(),
1054            DstType = E->getType();
1055 
1056   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1057 
1058   SrcType = CGF.getContext().getCanonicalType(SrcType);
1059   DstType = CGF.getContext().getCanonicalType(DstType);
1060   if (SrcType == DstType) return Src;
1061 
1062   assert(SrcType->isVectorType() &&
1063          "ConvertVector source type must be a vector");
1064   assert(DstType->isVectorType() &&
1065          "ConvertVector destination type must be a vector");
1066 
1067   llvm::Type *SrcTy = Src->getType();
1068   llvm::Type *DstTy = ConvertType(DstType);
1069 
1070   // Ignore conversions like int -> uint.
1071   if (SrcTy == DstTy)
1072     return Src;
1073 
1074   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1075            DstEltType = DstType->getAs<VectorType>()->getElementType();
1076 
1077   assert(SrcTy->isVectorTy() &&
1078          "ConvertVector source IR type must be a vector");
1079   assert(DstTy->isVectorTy() &&
1080          "ConvertVector destination IR type must be a vector");
1081 
1082   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1083              *DstEltTy = DstTy->getVectorElementType();
1084 
1085   if (DstEltType->isBooleanType()) {
1086     assert((SrcEltTy->isFloatingPointTy() ||
1087             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1088 
1089     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1090     if (SrcEltTy->isFloatingPointTy()) {
1091       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1092     } else {
1093       return Builder.CreateICmpNE(Src, Zero, "tobool");
1094     }
1095   }
1096 
1097   // We have the arithmetic types: real int/float.
1098   Value *Res = nullptr;
1099 
1100   if (isa<llvm::IntegerType>(SrcEltTy)) {
1101     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1102     if (isa<llvm::IntegerType>(DstEltTy))
1103       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1104     else if (InputSigned)
1105       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1106     else
1107       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1108   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1109     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1110     if (DstEltType->isSignedIntegerOrEnumerationType())
1111       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1112     else
1113       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1114   } else {
1115     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1116            "Unknown real conversion");
1117     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1118       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1119     else
1120       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1121   }
1122 
1123   return Res;
1124 }
1125 
VisitMemberExpr(MemberExpr * E)1126 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1127   llvm::APSInt Value;
1128   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1129     if (E->isArrow())
1130       CGF.EmitScalarExpr(E->getBase());
1131     else
1132       EmitLValue(E->getBase());
1133     return Builder.getInt(Value);
1134   }
1135 
1136   return EmitLoadOfLValue(E);
1137 }
1138 
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1139 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1140   TestAndClearIgnoreResultAssign();
1141 
1142   // Emit subscript expressions in rvalue context's.  For most cases, this just
1143   // loads the lvalue formed by the subscript expr.  However, we have to be
1144   // careful, because the base of a vector subscript is occasionally an rvalue,
1145   // so we can't get it as an lvalue.
1146   if (!E->getBase()->getType()->isVectorType())
1147     return EmitLoadOfLValue(E);
1148 
1149   // Handle the vector case.  The base must be a vector, the index must be an
1150   // integer value.
1151   Value *Base = Visit(E->getBase());
1152   Value *Idx  = Visit(E->getIdx());
1153   QualType IdxTy = E->getIdx()->getType();
1154 
1155   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1156     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1157 
1158   return Builder.CreateExtractElement(Base, Idx, "vecext");
1159 }
1160 
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)1161 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1162                                   unsigned Off, llvm::Type *I32Ty) {
1163   int MV = SVI->getMaskValue(Idx);
1164   if (MV == -1)
1165     return llvm::UndefValue::get(I32Ty);
1166   return llvm::ConstantInt::get(I32Ty, Off+MV);
1167 }
1168 
VisitInitListExpr(InitListExpr * E)1169 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1170   bool Ignore = TestAndClearIgnoreResultAssign();
1171   (void)Ignore;
1172   assert (Ignore == false && "init list ignored");
1173   unsigned NumInitElements = E->getNumInits();
1174 
1175   if (E->hadArrayRangeDesignator())
1176     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1177 
1178   llvm::VectorType *VType =
1179     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1180 
1181   if (!VType) {
1182     if (NumInitElements == 0) {
1183       // C++11 value-initialization for the scalar.
1184       return EmitNullValue(E->getType());
1185     }
1186     // We have a scalar in braces. Just use the first element.
1187     return Visit(E->getInit(0));
1188   }
1189 
1190   unsigned ResElts = VType->getNumElements();
1191 
1192   // Loop over initializers collecting the Value for each, and remembering
1193   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1194   // us to fold the shuffle for the swizzle into the shuffle for the vector
1195   // initializer, since LLVM optimizers generally do not want to touch
1196   // shuffles.
1197   unsigned CurIdx = 0;
1198   bool VIsUndefShuffle = false;
1199   llvm::Value *V = llvm::UndefValue::get(VType);
1200   for (unsigned i = 0; i != NumInitElements; ++i) {
1201     Expr *IE = E->getInit(i);
1202     Value *Init = Visit(IE);
1203     SmallVector<llvm::Constant*, 16> Args;
1204 
1205     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1206 
1207     // Handle scalar elements.  If the scalar initializer is actually one
1208     // element of a different vector of the same width, use shuffle instead of
1209     // extract+insert.
1210     if (!VVT) {
1211       if (isa<ExtVectorElementExpr>(IE)) {
1212         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1213 
1214         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1215           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1216           Value *LHS = nullptr, *RHS = nullptr;
1217           if (CurIdx == 0) {
1218             // insert into undef -> shuffle (src, undef)
1219             Args.push_back(C);
1220             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1221 
1222             LHS = EI->getVectorOperand();
1223             RHS = V;
1224             VIsUndefShuffle = true;
1225           } else if (VIsUndefShuffle) {
1226             // insert into undefshuffle && size match -> shuffle (v, src)
1227             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1228             for (unsigned j = 0; j != CurIdx; ++j)
1229               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1230             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1231             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1232 
1233             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1234             RHS = EI->getVectorOperand();
1235             VIsUndefShuffle = false;
1236           }
1237           if (!Args.empty()) {
1238             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1239             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1240             ++CurIdx;
1241             continue;
1242           }
1243         }
1244       }
1245       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1246                                       "vecinit");
1247       VIsUndefShuffle = false;
1248       ++CurIdx;
1249       continue;
1250     }
1251 
1252     unsigned InitElts = VVT->getNumElements();
1253 
1254     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1255     // input is the same width as the vector being constructed, generate an
1256     // optimized shuffle of the swizzle input into the result.
1257     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1258     if (isa<ExtVectorElementExpr>(IE)) {
1259       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1260       Value *SVOp = SVI->getOperand(0);
1261       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1262 
1263       if (OpTy->getNumElements() == ResElts) {
1264         for (unsigned j = 0; j != CurIdx; ++j) {
1265           // If the current vector initializer is a shuffle with undef, merge
1266           // this shuffle directly into it.
1267           if (VIsUndefShuffle) {
1268             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1269                                       CGF.Int32Ty));
1270           } else {
1271             Args.push_back(Builder.getInt32(j));
1272           }
1273         }
1274         for (unsigned j = 0, je = InitElts; j != je; ++j)
1275           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1276         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1277 
1278         if (VIsUndefShuffle)
1279           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1280 
1281         Init = SVOp;
1282       }
1283     }
1284 
1285     // Extend init to result vector length, and then shuffle its contribution
1286     // to the vector initializer into V.
1287     if (Args.empty()) {
1288       for (unsigned j = 0; j != InitElts; ++j)
1289         Args.push_back(Builder.getInt32(j));
1290       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1291       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1292       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1293                                          Mask, "vext");
1294 
1295       Args.clear();
1296       for (unsigned j = 0; j != CurIdx; ++j)
1297         Args.push_back(Builder.getInt32(j));
1298       for (unsigned j = 0; j != InitElts; ++j)
1299         Args.push_back(Builder.getInt32(j+Offset));
1300       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1301     }
1302 
1303     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1304     // merging subsequent shuffles into this one.
1305     if (CurIdx == 0)
1306       std::swap(V, Init);
1307     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1308     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1309     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1310     CurIdx += InitElts;
1311   }
1312 
1313   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1314   // Emit remaining default initializers.
1315   llvm::Type *EltTy = VType->getElementType();
1316 
1317   // Emit remaining default initializers
1318   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1319     Value *Idx = Builder.getInt32(CurIdx);
1320     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1321     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1322   }
1323   return V;
1324 }
1325 
ShouldNullCheckClassCastValue(const CastExpr * CE)1326 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1327   const Expr *E = CE->getSubExpr();
1328 
1329   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1330     return false;
1331 
1332   if (isa<CXXThisExpr>(E)) {
1333     // We always assume that 'this' is never null.
1334     return false;
1335   }
1336 
1337   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1338     // And that glvalue casts are never null.
1339     if (ICE->getValueKind() != VK_RValue)
1340       return false;
1341   }
1342 
1343   return true;
1344 }
1345 
1346 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1347 // have to handle a more broad range of conversions than explicit casts, as they
1348 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1349 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1350   Expr *E = CE->getSubExpr();
1351   QualType DestTy = CE->getType();
1352   CastKind Kind = CE->getCastKind();
1353 
1354   if (!DestTy->isVoidType())
1355     TestAndClearIgnoreResultAssign();
1356 
1357   // Since almost all cast kinds apply to scalars, this switch doesn't have
1358   // a default case, so the compiler will warn on a missing case.  The cases
1359   // are in the same order as in the CastKind enum.
1360   switch (Kind) {
1361   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1362   case CK_BuiltinFnToFnPtr:
1363     llvm_unreachable("builtin functions are handled elsewhere");
1364 
1365   case CK_LValueBitCast:
1366   case CK_ObjCObjectLValueCast: {
1367     Value *V = EmitLValue(E).getAddress();
1368     V = Builder.CreateBitCast(V,
1369                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1370     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
1371                             CE->getExprLoc());
1372   }
1373 
1374   case CK_CPointerToObjCPointerCast:
1375   case CK_BlockPointerToObjCPointerCast:
1376   case CK_AnyPointerToBlockPointerCast:
1377   case CK_BitCast: {
1378     Value *Src = Visit(const_cast<Expr*>(E));
1379     llvm::Type *SrcTy = Src->getType();
1380     llvm::Type *DstTy = ConvertType(DestTy);
1381     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1382         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1383       llvm_unreachable("wrong cast for pointers in different address spaces"
1384                        "(must be an address space cast)!");
1385     }
1386 
1387     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1388       if (auto PT = DestTy->getAs<PointerType>())
1389         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1390                                       /*MayBeNull=*/true);
1391     }
1392 
1393     return Builder.CreateBitCast(Src, DstTy);
1394   }
1395   case CK_AddressSpaceConversion: {
1396     Value *Src = Visit(const_cast<Expr*>(E));
1397     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1398   }
1399   case CK_AtomicToNonAtomic:
1400   case CK_NonAtomicToAtomic:
1401   case CK_NoOp:
1402   case CK_UserDefinedConversion:
1403     return Visit(const_cast<Expr*>(E));
1404 
1405   case CK_BaseToDerived: {
1406     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1407     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1408 
1409     llvm::Value *V = Visit(E);
1410 
1411     llvm::Value *Derived =
1412       CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1413                                    CE->path_begin(), CE->path_end(),
1414                                    ShouldNullCheckClassCastValue(CE));
1415 
1416     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1417     // performed and the object is not of the derived type.
1418     if (CGF.sanitizePerformTypeCheck())
1419       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1420                         Derived, DestTy->getPointeeType());
1421 
1422     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1423       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
1424                                     /*MayBeNull=*/true);
1425 
1426     return Derived;
1427   }
1428   case CK_UncheckedDerivedToBase:
1429   case CK_DerivedToBase: {
1430     const CXXRecordDecl *DerivedClassDecl =
1431       E->getType()->getPointeeCXXRecordDecl();
1432     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1433 
1434     return CGF.GetAddressOfBaseClass(
1435         Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
1436         ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1437   }
1438   case CK_Dynamic: {
1439     Value *V = Visit(const_cast<Expr*>(E));
1440     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1441     return CGF.EmitDynamicCast(V, DCE);
1442   }
1443 
1444   case CK_ArrayToPointerDecay: {
1445     assert(E->getType()->isArrayType() &&
1446            "Array to pointer decay must have array source type!");
1447 
1448     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1449 
1450     // Note that VLA pointers are always decayed, so we don't need to do
1451     // anything here.
1452     if (!E->getType()->isVariableArrayType()) {
1453       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1454       llvm::Type *NewTy = ConvertType(E->getType());
1455       V = CGF.Builder.CreatePointerCast(
1456           V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
1457 
1458       assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
1459              "Expected pointer to array");
1460       V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
1461     }
1462 
1463     // Make sure the array decay ends up being the right type.  This matters if
1464     // the array type was of an incomplete type.
1465     return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
1466   }
1467   case CK_FunctionToPointerDecay:
1468     return EmitLValue(E).getAddress();
1469 
1470   case CK_NullToPointer:
1471     if (MustVisitNullValue(E))
1472       (void) Visit(E);
1473 
1474     return llvm::ConstantPointerNull::get(
1475                                cast<llvm::PointerType>(ConvertType(DestTy)));
1476 
1477   case CK_NullToMemberPointer: {
1478     if (MustVisitNullValue(E))
1479       (void) Visit(E);
1480 
1481     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1482     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1483   }
1484 
1485   case CK_ReinterpretMemberPointer:
1486   case CK_BaseToDerivedMemberPointer:
1487   case CK_DerivedToBaseMemberPointer: {
1488     Value *Src = Visit(E);
1489 
1490     // Note that the AST doesn't distinguish between checked and
1491     // unchecked member pointer conversions, so we always have to
1492     // implement checked conversions here.  This is inefficient when
1493     // actual control flow may be required in order to perform the
1494     // check, which it is for data member pointers (but not member
1495     // function pointers on Itanium and ARM).
1496     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1497   }
1498 
1499   case CK_ARCProduceObject:
1500     return CGF.EmitARCRetainScalarExpr(E);
1501   case CK_ARCConsumeObject:
1502     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1503   case CK_ARCReclaimReturnedObject: {
1504     llvm::Value *value = Visit(E);
1505     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1506     return CGF.EmitObjCConsumeObject(E->getType(), value);
1507   }
1508   case CK_ARCExtendBlockObject:
1509     return CGF.EmitARCExtendBlockObject(E);
1510 
1511   case CK_CopyAndAutoreleaseBlockObject:
1512     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1513 
1514   case CK_FloatingRealToComplex:
1515   case CK_FloatingComplexCast:
1516   case CK_IntegralRealToComplex:
1517   case CK_IntegralComplexCast:
1518   case CK_IntegralComplexToFloatingComplex:
1519   case CK_FloatingComplexToIntegralComplex:
1520   case CK_ConstructorConversion:
1521   case CK_ToUnion:
1522     llvm_unreachable("scalar cast to non-scalar value");
1523 
1524   case CK_LValueToRValue:
1525     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1526     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1527     return Visit(const_cast<Expr*>(E));
1528 
1529   case CK_IntegralToPointer: {
1530     Value *Src = Visit(const_cast<Expr*>(E));
1531 
1532     // First, convert to the correct width so that we control the kind of
1533     // extension.
1534     llvm::Type *MiddleTy = CGF.IntPtrTy;
1535     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1536     llvm::Value* IntResult =
1537       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1538 
1539     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1540   }
1541   case CK_PointerToIntegral:
1542     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1543     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1544 
1545   case CK_ToVoid: {
1546     CGF.EmitIgnoredExpr(E);
1547     return nullptr;
1548   }
1549   case CK_VectorSplat: {
1550     llvm::Type *DstTy = ConvertType(DestTy);
1551     Value *Elt = Visit(const_cast<Expr*>(E));
1552     Elt = EmitScalarConversion(Elt, E->getType(),
1553                                DestTy->getAs<VectorType>()->getElementType());
1554 
1555     // Splat the element across to all elements
1556     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1557     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1558   }
1559 
1560   case CK_IntegralCast:
1561   case CK_IntegralToFloating:
1562   case CK_FloatingToIntegral:
1563   case CK_FloatingCast:
1564     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1565   case CK_IntegralToBoolean:
1566     return EmitIntToBoolConversion(Visit(E));
1567   case CK_PointerToBoolean:
1568     return EmitPointerToBoolConversion(Visit(E));
1569   case CK_FloatingToBoolean:
1570     return EmitFloatToBoolConversion(Visit(E));
1571   case CK_MemberPointerToBoolean: {
1572     llvm::Value *MemPtr = Visit(E);
1573     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1574     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1575   }
1576 
1577   case CK_FloatingComplexToReal:
1578   case CK_IntegralComplexToReal:
1579     return CGF.EmitComplexExpr(E, false, true).first;
1580 
1581   case CK_FloatingComplexToBoolean:
1582   case CK_IntegralComplexToBoolean: {
1583     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1584 
1585     // TODO: kill this function off, inline appropriate case here
1586     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1587   }
1588 
1589   case CK_ZeroToOCLEvent: {
1590     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1591     return llvm::Constant::getNullValue(ConvertType(DestTy));
1592   }
1593 
1594   }
1595 
1596   llvm_unreachable("unknown scalar cast");
1597 }
1598 
VisitStmtExpr(const StmtExpr * E)1599 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1600   CodeGenFunction::StmtExprEvaluation eval(CGF);
1601   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1602                                                 !E->getType()->isVoidType());
1603   if (!RetAlloca)
1604     return nullptr;
1605   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1606                               E->getExprLoc());
1607 }
1608 
1609 //===----------------------------------------------------------------------===//
1610 //                             Unary Operators
1611 //===----------------------------------------------------------------------===//
1612 
1613 llvm::Value *ScalarExprEmitter::
EmitAddConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,llvm::Value * NextVal,bool IsInc)1614 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1615                                 llvm::Value *InVal,
1616                                 llvm::Value *NextVal, bool IsInc) {
1617   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1618   case LangOptions::SOB_Defined:
1619     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1620   case LangOptions::SOB_Undefined:
1621     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1622       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1623     // Fall through.
1624   case LangOptions::SOB_Trapping:
1625     BinOpInfo BinOp;
1626     BinOp.LHS = InVal;
1627     BinOp.RHS = NextVal;
1628     BinOp.Ty = E->getType();
1629     BinOp.Opcode = BO_Add;
1630     BinOp.FPContractable = false;
1631     BinOp.E = E;
1632     return EmitOverflowCheckedBinOp(BinOp);
1633   }
1634   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1635 }
1636 
1637 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1638 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1639                                            bool isInc, bool isPre) {
1640 
1641   QualType type = E->getSubExpr()->getType();
1642   llvm::PHINode *atomicPHI = nullptr;
1643   llvm::Value *value;
1644   llvm::Value *input;
1645 
1646   int amount = (isInc ? 1 : -1);
1647 
1648   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1649     type = atomicTy->getValueType();
1650     if (isInc && type->isBooleanType()) {
1651       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1652       if (isPre) {
1653         Builder.Insert(new llvm::StoreInst(True,
1654               LV.getAddress(), LV.isVolatileQualified(),
1655               LV.getAlignment().getQuantity(),
1656               llvm::SequentiallyConsistent));
1657         return Builder.getTrue();
1658       }
1659       // For atomic bool increment, we just store true and return it for
1660       // preincrement, do an atomic swap with true for postincrement
1661         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1662             LV.getAddress(), True, llvm::SequentiallyConsistent);
1663     }
1664     // Special case for atomic increment / decrement on integers, emit
1665     // atomicrmw instructions.  We skip this if we want to be doing overflow
1666     // checking, and fall into the slow path with the atomic cmpxchg loop.
1667     if (!type->isBooleanType() && type->isIntegerType() &&
1668         !(type->isUnsignedIntegerType() &&
1669           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1670         CGF.getLangOpts().getSignedOverflowBehavior() !=
1671             LangOptions::SOB_Trapping) {
1672       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1673         llvm::AtomicRMWInst::Sub;
1674       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1675         llvm::Instruction::Sub;
1676       llvm::Value *amt = CGF.EmitToMemory(
1677           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1678       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1679           LV.getAddress(), amt, llvm::SequentiallyConsistent);
1680       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1681     }
1682     value = EmitLoadOfLValue(LV, E->getExprLoc());
1683     input = value;
1684     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1685     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1686     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1687     value = CGF.EmitToMemory(value, type);
1688     Builder.CreateBr(opBB);
1689     Builder.SetInsertPoint(opBB);
1690     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1691     atomicPHI->addIncoming(value, startBB);
1692     value = atomicPHI;
1693   } else {
1694     value = EmitLoadOfLValue(LV, E->getExprLoc());
1695     input = value;
1696   }
1697 
1698   // Special case of integer increment that we have to check first: bool++.
1699   // Due to promotion rules, we get:
1700   //   bool++ -> bool = bool + 1
1701   //          -> bool = (int)bool + 1
1702   //          -> bool = ((int)bool + 1 != 0)
1703   // An interesting aspect of this is that increment is always true.
1704   // Decrement does not have this property.
1705   if (isInc && type->isBooleanType()) {
1706     value = Builder.getTrue();
1707 
1708   // Most common case by far: integer increment.
1709   } else if (type->isIntegerType()) {
1710 
1711     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1712 
1713     // Note that signed integer inc/dec with width less than int can't
1714     // overflow because of promotion rules; we're just eliding a few steps here.
1715     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1716                        CGF.IntTy->getIntegerBitWidth();
1717     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1718       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1719     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1720                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1721       BinOpInfo BinOp;
1722       BinOp.LHS = value;
1723       BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1724       BinOp.Ty = E->getType();
1725       BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1726       BinOp.FPContractable = false;
1727       BinOp.E = E;
1728       value = EmitOverflowCheckedBinOp(BinOp);
1729     } else
1730       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1731 
1732   // Next most common: pointer increment.
1733   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1734     QualType type = ptr->getPointeeType();
1735 
1736     // VLA types don't have constant size.
1737     if (const VariableArrayType *vla
1738           = CGF.getContext().getAsVariableArrayType(type)) {
1739       llvm::Value *numElts = CGF.getVLASize(vla).first;
1740       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1741       if (CGF.getLangOpts().isSignedOverflowDefined())
1742         value = Builder.CreateGEP(value, numElts, "vla.inc");
1743       else
1744         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1745 
1746     // Arithmetic on function pointers (!) is just +-1.
1747     } else if (type->isFunctionType()) {
1748       llvm::Value *amt = Builder.getInt32(amount);
1749 
1750       value = CGF.EmitCastToVoidPtr(value);
1751       if (CGF.getLangOpts().isSignedOverflowDefined())
1752         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1753       else
1754         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1755       value = Builder.CreateBitCast(value, input->getType());
1756 
1757     // For everything else, we can just do a simple increment.
1758     } else {
1759       llvm::Value *amt = Builder.getInt32(amount);
1760       if (CGF.getLangOpts().isSignedOverflowDefined())
1761         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1762       else
1763         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1764     }
1765 
1766   // Vector increment/decrement.
1767   } else if (type->isVectorType()) {
1768     if (type->hasIntegerRepresentation()) {
1769       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1770 
1771       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1772     } else {
1773       value = Builder.CreateFAdd(
1774                   value,
1775                   llvm::ConstantFP::get(value->getType(), amount),
1776                   isInc ? "inc" : "dec");
1777     }
1778 
1779   // Floating point.
1780   } else if (type->isRealFloatingType()) {
1781     // Add the inc/dec to the real part.
1782     llvm::Value *amt;
1783 
1784     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1785       // Another special case: half FP increment should be done via float
1786       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1787         value = Builder.CreateCall(
1788             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1789                                  CGF.CGM.FloatTy),
1790             input, "incdec.conv");
1791       } else {
1792         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1793       }
1794     }
1795 
1796     if (value->getType()->isFloatTy())
1797       amt = llvm::ConstantFP::get(VMContext,
1798                                   llvm::APFloat(static_cast<float>(amount)));
1799     else if (value->getType()->isDoubleTy())
1800       amt = llvm::ConstantFP::get(VMContext,
1801                                   llvm::APFloat(static_cast<double>(amount)));
1802     else {
1803       // Remaining types are either Half or LongDouble.  Convert from float.
1804       llvm::APFloat F(static_cast<float>(amount));
1805       bool ignored;
1806       // Don't use getFloatTypeSemantics because Half isn't
1807       // necessarily represented using the "half" LLVM type.
1808       F.convert(value->getType()->isHalfTy()
1809                     ? CGF.getTarget().getHalfFormat()
1810                     : CGF.getTarget().getLongDoubleFormat(),
1811                 llvm::APFloat::rmTowardZero, &ignored);
1812       amt = llvm::ConstantFP::get(VMContext, F);
1813     }
1814     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1815 
1816     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1817       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1818         value = Builder.CreateCall(
1819             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1820                                  CGF.CGM.FloatTy),
1821             value, "incdec.conv");
1822       } else {
1823         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1824       }
1825     }
1826 
1827   // Objective-C pointer types.
1828   } else {
1829     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1830     value = CGF.EmitCastToVoidPtr(value);
1831 
1832     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1833     if (!isInc) size = -size;
1834     llvm::Value *sizeValue =
1835       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1836 
1837     if (CGF.getLangOpts().isSignedOverflowDefined())
1838       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1839     else
1840       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1841     value = Builder.CreateBitCast(value, input->getType());
1842   }
1843 
1844   if (atomicPHI) {
1845     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1846     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1847     auto Pair = CGF.EmitAtomicCompareExchange(
1848         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1849     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1850     llvm::Value *success = Pair.second;
1851     atomicPHI->addIncoming(old, opBB);
1852     Builder.CreateCondBr(success, contBB, opBB);
1853     Builder.SetInsertPoint(contBB);
1854     return isPre ? value : input;
1855   }
1856 
1857   // Store the updated result through the lvalue.
1858   if (LV.isBitField())
1859     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1860   else
1861     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1862 
1863   // If this is a postinc, return the value read from memory, otherwise use the
1864   // updated value.
1865   return isPre ? value : input;
1866 }
1867 
1868 
1869 
VisitUnaryMinus(const UnaryOperator * E)1870 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1871   TestAndClearIgnoreResultAssign();
1872   // Emit unary minus with EmitSub so we handle overflow cases etc.
1873   BinOpInfo BinOp;
1874   BinOp.RHS = Visit(E->getSubExpr());
1875 
1876   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1877     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1878   else
1879     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1880   BinOp.Ty = E->getType();
1881   BinOp.Opcode = BO_Sub;
1882   BinOp.FPContractable = false;
1883   BinOp.E = E;
1884   return EmitSub(BinOp);
1885 }
1886 
VisitUnaryNot(const UnaryOperator * E)1887 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1888   TestAndClearIgnoreResultAssign();
1889   Value *Op = Visit(E->getSubExpr());
1890   return Builder.CreateNot(Op, "neg");
1891 }
1892 
VisitUnaryLNot(const UnaryOperator * E)1893 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1894   // Perform vector logical not on comparison with zero vector.
1895   if (E->getType()->isExtVectorType()) {
1896     Value *Oper = Visit(E->getSubExpr());
1897     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1898     Value *Result;
1899     if (Oper->getType()->isFPOrFPVectorTy())
1900       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1901     else
1902       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1903     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1904   }
1905 
1906   // Compare operand to zero.
1907   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1908 
1909   // Invert value.
1910   // TODO: Could dynamically modify easy computations here.  For example, if
1911   // the operand is an icmp ne, turn into icmp eq.
1912   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1913 
1914   // ZExt result to the expr type.
1915   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1916 }
1917 
VisitOffsetOfExpr(OffsetOfExpr * E)1918 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1919   // Try folding the offsetof to a constant.
1920   llvm::APSInt Value;
1921   if (E->EvaluateAsInt(Value, CGF.getContext()))
1922     return Builder.getInt(Value);
1923 
1924   // Loop over the components of the offsetof to compute the value.
1925   unsigned n = E->getNumComponents();
1926   llvm::Type* ResultType = ConvertType(E->getType());
1927   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1928   QualType CurrentType = E->getTypeSourceInfo()->getType();
1929   for (unsigned i = 0; i != n; ++i) {
1930     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1931     llvm::Value *Offset = nullptr;
1932     switch (ON.getKind()) {
1933     case OffsetOfExpr::OffsetOfNode::Array: {
1934       // Compute the index
1935       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1936       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1937       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1938       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1939 
1940       // Save the element type
1941       CurrentType =
1942           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1943 
1944       // Compute the element size
1945       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1946           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1947 
1948       // Multiply out to compute the result
1949       Offset = Builder.CreateMul(Idx, ElemSize);
1950       break;
1951     }
1952 
1953     case OffsetOfExpr::OffsetOfNode::Field: {
1954       FieldDecl *MemberDecl = ON.getField();
1955       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1956       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1957 
1958       // Compute the index of the field in its parent.
1959       unsigned i = 0;
1960       // FIXME: It would be nice if we didn't have to loop here!
1961       for (RecordDecl::field_iterator Field = RD->field_begin(),
1962                                       FieldEnd = RD->field_end();
1963            Field != FieldEnd; ++Field, ++i) {
1964         if (*Field == MemberDecl)
1965           break;
1966       }
1967       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1968 
1969       // Compute the offset to the field
1970       int64_t OffsetInt = RL.getFieldOffset(i) /
1971                           CGF.getContext().getCharWidth();
1972       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1973 
1974       // Save the element type.
1975       CurrentType = MemberDecl->getType();
1976       break;
1977     }
1978 
1979     case OffsetOfExpr::OffsetOfNode::Identifier:
1980       llvm_unreachable("dependent __builtin_offsetof");
1981 
1982     case OffsetOfExpr::OffsetOfNode::Base: {
1983       if (ON.getBase()->isVirtual()) {
1984         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1985         continue;
1986       }
1987 
1988       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1989       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1990 
1991       // Save the element type.
1992       CurrentType = ON.getBase()->getType();
1993 
1994       // Compute the offset to the base.
1995       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1996       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1997       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1998       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1999       break;
2000     }
2001     }
2002     Result = Builder.CreateAdd(Result, Offset);
2003   }
2004   return Result;
2005 }
2006 
2007 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2008 /// argument of the sizeof expression as an integer.
2009 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)2010 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2011                               const UnaryExprOrTypeTraitExpr *E) {
2012   QualType TypeToSize = E->getTypeOfArgument();
2013   if (E->getKind() == UETT_SizeOf) {
2014     if (const VariableArrayType *VAT =
2015           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2016       if (E->isArgumentType()) {
2017         // sizeof(type) - make sure to emit the VLA size.
2018         CGF.EmitVariablyModifiedType(TypeToSize);
2019       } else {
2020         // C99 6.5.3.4p2: If the argument is an expression of type
2021         // VLA, it is evaluated.
2022         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2023       }
2024 
2025       QualType eltType;
2026       llvm::Value *numElts;
2027       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2028 
2029       llvm::Value *size = numElts;
2030 
2031       // Scale the number of non-VLA elements by the non-VLA element size.
2032       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2033       if (!eltSize.isOne())
2034         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2035 
2036       return size;
2037     }
2038   }
2039 
2040   // If this isn't sizeof(vla), the result must be constant; use the constant
2041   // folding logic so we don't have to duplicate it here.
2042   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2043 }
2044 
VisitUnaryReal(const UnaryOperator * E)2045 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2046   Expr *Op = E->getSubExpr();
2047   if (Op->getType()->isAnyComplexType()) {
2048     // If it's an l-value, load through the appropriate subobject l-value.
2049     // Note that we have to ask E because Op might be an l-value that
2050     // this won't work for, e.g. an Obj-C property.
2051     if (E->isGLValue())
2052       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2053                                   E->getExprLoc()).getScalarVal();
2054 
2055     // Otherwise, calculate and project.
2056     return CGF.EmitComplexExpr(Op, false, true).first;
2057   }
2058 
2059   return Visit(Op);
2060 }
2061 
VisitUnaryImag(const UnaryOperator * E)2062 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2063   Expr *Op = E->getSubExpr();
2064   if (Op->getType()->isAnyComplexType()) {
2065     // If it's an l-value, load through the appropriate subobject l-value.
2066     // Note that we have to ask E because Op might be an l-value that
2067     // this won't work for, e.g. an Obj-C property.
2068     if (Op->isGLValue())
2069       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2070                                   E->getExprLoc()).getScalarVal();
2071 
2072     // Otherwise, calculate and project.
2073     return CGF.EmitComplexExpr(Op, true, false).second;
2074   }
2075 
2076   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2077   // effects are evaluated, but not the actual value.
2078   if (Op->isGLValue())
2079     CGF.EmitLValue(Op);
2080   else
2081     CGF.EmitScalarExpr(Op, true);
2082   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2083 }
2084 
2085 //===----------------------------------------------------------------------===//
2086 //                           Binary Operators
2087 //===----------------------------------------------------------------------===//
2088 
EmitBinOps(const BinaryOperator * E)2089 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2090   TestAndClearIgnoreResultAssign();
2091   BinOpInfo Result;
2092   Result.LHS = Visit(E->getLHS());
2093   Result.RHS = Visit(E->getRHS());
2094   Result.Ty  = E->getType();
2095   Result.Opcode = E->getOpcode();
2096   Result.FPContractable = E->isFPContractable();
2097   Result.E = E;
2098   return Result;
2099 }
2100 
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)2101 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2102                                               const CompoundAssignOperator *E,
2103                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2104                                                    Value *&Result) {
2105   QualType LHSTy = E->getLHS()->getType();
2106   BinOpInfo OpInfo;
2107 
2108   if (E->getComputationResultType()->isAnyComplexType())
2109     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2110 
2111   // Emit the RHS first.  __block variables need to have the rhs evaluated
2112   // first, plus this should improve codegen a little.
2113   OpInfo.RHS = Visit(E->getRHS());
2114   OpInfo.Ty = E->getComputationResultType();
2115   OpInfo.Opcode = E->getOpcode();
2116   OpInfo.FPContractable = false;
2117   OpInfo.E = E;
2118   // Load/convert the LHS.
2119   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2120 
2121   llvm::PHINode *atomicPHI = nullptr;
2122   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2123     QualType type = atomicTy->getValueType();
2124     if (!type->isBooleanType() && type->isIntegerType() &&
2125         !(type->isUnsignedIntegerType() &&
2126           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2127         CGF.getLangOpts().getSignedOverflowBehavior() !=
2128             LangOptions::SOB_Trapping) {
2129       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2130       switch (OpInfo.Opcode) {
2131         // We don't have atomicrmw operands for *, %, /, <<, >>
2132         case BO_MulAssign: case BO_DivAssign:
2133         case BO_RemAssign:
2134         case BO_ShlAssign:
2135         case BO_ShrAssign:
2136           break;
2137         case BO_AddAssign:
2138           aop = llvm::AtomicRMWInst::Add;
2139           break;
2140         case BO_SubAssign:
2141           aop = llvm::AtomicRMWInst::Sub;
2142           break;
2143         case BO_AndAssign:
2144           aop = llvm::AtomicRMWInst::And;
2145           break;
2146         case BO_XorAssign:
2147           aop = llvm::AtomicRMWInst::Xor;
2148           break;
2149         case BO_OrAssign:
2150           aop = llvm::AtomicRMWInst::Or;
2151           break;
2152         default:
2153           llvm_unreachable("Invalid compound assignment type");
2154       }
2155       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2156         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
2157               E->getRHS()->getType(), LHSTy), LHSTy);
2158         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
2159             llvm::SequentiallyConsistent);
2160         return LHSLV;
2161       }
2162     }
2163     // FIXME: For floating point types, we should be saving and restoring the
2164     // floating point environment in the loop.
2165     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2166     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2167     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2168     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2169     Builder.CreateBr(opBB);
2170     Builder.SetInsertPoint(opBB);
2171     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2172     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2173     OpInfo.LHS = atomicPHI;
2174   }
2175   else
2176     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2177 
2178   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2179                                     E->getComputationLHSType());
2180 
2181   // Expand the binary operator.
2182   Result = (this->*Func)(OpInfo);
2183 
2184   // Convert the result back to the LHS type.
2185   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2186 
2187   if (atomicPHI) {
2188     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2189     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2190     auto Pair = CGF.EmitAtomicCompareExchange(
2191         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2192     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2193     llvm::Value *success = Pair.second;
2194     atomicPHI->addIncoming(old, opBB);
2195     Builder.CreateCondBr(success, contBB, opBB);
2196     Builder.SetInsertPoint(contBB);
2197     return LHSLV;
2198   }
2199 
2200   // Store the result value into the LHS lvalue. Bit-fields are handled
2201   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2202   // 'An assignment expression has the value of the left operand after the
2203   // assignment...'.
2204   if (LHSLV.isBitField())
2205     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2206   else
2207     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2208 
2209   return LHSLV;
2210 }
2211 
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))2212 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2213                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2214   bool Ignore = TestAndClearIgnoreResultAssign();
2215   Value *RHS;
2216   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2217 
2218   // If the result is clearly ignored, return now.
2219   if (Ignore)
2220     return nullptr;
2221 
2222   // The result of an assignment in C is the assigned r-value.
2223   if (!CGF.getLangOpts().CPlusPlus)
2224     return RHS;
2225 
2226   // If the lvalue is non-volatile, return the computed value of the assignment.
2227   if (!LHS.isVolatileQualified())
2228     return RHS;
2229 
2230   // Otherwise, reload the value.
2231   return EmitLoadOfLValue(LHS, E->getExprLoc());
2232 }
2233 
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)2234 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2235     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2236   SmallVector<std::pair<llvm::Value *, SanitizerKind>, 2> Checks;
2237 
2238   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2239     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2240                                     SanitizerKind::IntegerDivideByZero));
2241   }
2242 
2243   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2244       Ops.Ty->hasSignedIntegerRepresentation()) {
2245     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2246 
2247     llvm::Value *IntMin =
2248       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2249     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2250 
2251     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2252     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2253     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2254     Checks.push_back(
2255         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2256   }
2257 
2258   if (Checks.size() > 0)
2259     EmitBinOpCheck(Checks, Ops);
2260 }
2261 
EmitDiv(const BinOpInfo & Ops)2262 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2263   {
2264     CodeGenFunction::SanitizerScope SanScope(&CGF);
2265     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2266          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2267         Ops.Ty->isIntegerType()) {
2268       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2269       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2270     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2271                Ops.Ty->isRealFloatingType()) {
2272       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2273       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2274       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2275                      Ops);
2276     }
2277   }
2278 
2279   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2280     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2281     if (CGF.getLangOpts().OpenCL) {
2282       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2283       llvm::Type *ValTy = Val->getType();
2284       if (ValTy->isFloatTy() ||
2285           (isa<llvm::VectorType>(ValTy) &&
2286            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2287         CGF.SetFPAccuracy(Val, 2.5);
2288     }
2289     return Val;
2290   }
2291   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2292     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2293   else
2294     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2295 }
2296 
EmitRem(const BinOpInfo & Ops)2297 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2298   // Rem in C can't be a floating point type: C99 6.5.5p2.
2299   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2300     CodeGenFunction::SanitizerScope SanScope(&CGF);
2301     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2302 
2303     if (Ops.Ty->isIntegerType())
2304       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2305   }
2306 
2307   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2308     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2309   else
2310     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2311 }
2312 
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)2313 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2314   unsigned IID;
2315   unsigned OpID = 0;
2316 
2317   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2318   switch (Ops.Opcode) {
2319   case BO_Add:
2320   case BO_AddAssign:
2321     OpID = 1;
2322     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2323                      llvm::Intrinsic::uadd_with_overflow;
2324     break;
2325   case BO_Sub:
2326   case BO_SubAssign:
2327     OpID = 2;
2328     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2329                      llvm::Intrinsic::usub_with_overflow;
2330     break;
2331   case BO_Mul:
2332   case BO_MulAssign:
2333     OpID = 3;
2334     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2335                      llvm::Intrinsic::umul_with_overflow;
2336     break;
2337   default:
2338     llvm_unreachable("Unsupported operation for overflow detection");
2339   }
2340   OpID <<= 1;
2341   if (isSigned)
2342     OpID |= 1;
2343 
2344   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2345 
2346   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2347 
2348   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2349   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2350   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2351 
2352   // Handle overflow with llvm.trap if no custom handler has been specified.
2353   const std::string *handlerName =
2354     &CGF.getLangOpts().OverflowHandler;
2355   if (handlerName->empty()) {
2356     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2357     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2358     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2359       CodeGenFunction::SanitizerScope SanScope(&CGF);
2360       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2361       SanitizerKind Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2362                               : SanitizerKind::UnsignedIntegerOverflow;
2363       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2364     } else
2365       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2366     return result;
2367   }
2368 
2369   // Branch in case of overflow.
2370   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2371   llvm::Function::iterator insertPt = initialBB;
2372   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2373                                                       std::next(insertPt));
2374   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2375 
2376   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2377 
2378   // If an overflow handler is set, then we want to call it and then use its
2379   // result, if it returns.
2380   Builder.SetInsertPoint(overflowBB);
2381 
2382   // Get the overflow handler.
2383   llvm::Type *Int8Ty = CGF.Int8Ty;
2384   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2385   llvm::FunctionType *handlerTy =
2386       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2387   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2388 
2389   // Sign extend the args to 64-bit, so that we can use the same handler for
2390   // all types of overflow.
2391   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2392   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2393 
2394   // Call the handler with the two arguments, the operation, and the size of
2395   // the result.
2396   llvm::Value *handlerArgs[] = {
2397     lhs,
2398     rhs,
2399     Builder.getInt8(OpID),
2400     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2401   };
2402   llvm::Value *handlerResult =
2403     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2404 
2405   // Truncate the result back to the desired size.
2406   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2407   Builder.CreateBr(continueBB);
2408 
2409   Builder.SetInsertPoint(continueBB);
2410   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2411   phi->addIncoming(result, initialBB);
2412   phi->addIncoming(handlerResult, overflowBB);
2413 
2414   return phi;
2415 }
2416 
2417 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)2418 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2419                                     const BinOpInfo &op,
2420                                     bool isSubtraction) {
2421   // Must have binary (not unary) expr here.  Unary pointer
2422   // increment/decrement doesn't use this path.
2423   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2424 
2425   Value *pointer = op.LHS;
2426   Expr *pointerOperand = expr->getLHS();
2427   Value *index = op.RHS;
2428   Expr *indexOperand = expr->getRHS();
2429 
2430   // In a subtraction, the LHS is always the pointer.
2431   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2432     std::swap(pointer, index);
2433     std::swap(pointerOperand, indexOperand);
2434   }
2435 
2436   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2437   if (width != CGF.PointerWidthInBits) {
2438     // Zero-extend or sign-extend the pointer value according to
2439     // whether the index is signed or not.
2440     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2441     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2442                                       "idx.ext");
2443   }
2444 
2445   // If this is subtraction, negate the index.
2446   if (isSubtraction)
2447     index = CGF.Builder.CreateNeg(index, "idx.neg");
2448 
2449   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2450     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2451                         /*Accessed*/ false);
2452 
2453   const PointerType *pointerType
2454     = pointerOperand->getType()->getAs<PointerType>();
2455   if (!pointerType) {
2456     QualType objectType = pointerOperand->getType()
2457                                         ->castAs<ObjCObjectPointerType>()
2458                                         ->getPointeeType();
2459     llvm::Value *objectSize
2460       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2461 
2462     index = CGF.Builder.CreateMul(index, objectSize);
2463 
2464     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2465     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2466     return CGF.Builder.CreateBitCast(result, pointer->getType());
2467   }
2468 
2469   QualType elementType = pointerType->getPointeeType();
2470   if (const VariableArrayType *vla
2471         = CGF.getContext().getAsVariableArrayType(elementType)) {
2472     // The element count here is the total number of non-VLA elements.
2473     llvm::Value *numElements = CGF.getVLASize(vla).first;
2474 
2475     // Effectively, the multiply by the VLA size is part of the GEP.
2476     // GEP indexes are signed, and scaling an index isn't permitted to
2477     // signed-overflow, so we use the same semantics for our explicit
2478     // multiply.  We suppress this if overflow is not undefined behavior.
2479     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2480       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2481       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2482     } else {
2483       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2484       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2485     }
2486     return pointer;
2487   }
2488 
2489   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2490   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2491   // future proof.
2492   if (elementType->isVoidType() || elementType->isFunctionType()) {
2493     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2494     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2495     return CGF.Builder.CreateBitCast(result, pointer->getType());
2496   }
2497 
2498   if (CGF.getLangOpts().isSignedOverflowDefined())
2499     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2500 
2501   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2502 }
2503 
2504 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2505 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2506 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2507 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2508 // efficient operations.
buildFMulAdd(llvm::BinaryOperator * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)2509 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2510                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2511                            bool negMul, bool negAdd) {
2512   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2513 
2514   Value *MulOp0 = MulOp->getOperand(0);
2515   Value *MulOp1 = MulOp->getOperand(1);
2516   if (negMul) {
2517     MulOp0 =
2518       Builder.CreateFSub(
2519         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2520         "neg");
2521   } else if (negAdd) {
2522     Addend =
2523       Builder.CreateFSub(
2524         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2525         "neg");
2526   }
2527 
2528   Value *FMulAdd =
2529     Builder.CreateCall3(
2530       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2531                            MulOp0, MulOp1, Addend);
2532    MulOp->eraseFromParent();
2533 
2534    return FMulAdd;
2535 }
2536 
2537 // Check whether it would be legal to emit an fmuladd intrinsic call to
2538 // represent op and if so, build the fmuladd.
2539 //
2540 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2541 // Does NOT check the type of the operation - it's assumed that this function
2542 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)2543 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2544                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2545                          bool isSub=false) {
2546 
2547   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2548           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2549          "Only fadd/fsub can be the root of an fmuladd.");
2550 
2551   // Check whether this op is marked as fusable.
2552   if (!op.FPContractable)
2553     return nullptr;
2554 
2555   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2556   // either disabled, or handled entirely by the LLVM backend).
2557   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2558     return nullptr;
2559 
2560   // We have a potentially fusable op. Look for a mul on one of the operands.
2561   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2562     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2563       assert(LHSBinOp->getNumUses() == 0 &&
2564              "Operations with multiple uses shouldn't be contracted.");
2565       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2566     }
2567   } else if (llvm::BinaryOperator* RHSBinOp =
2568                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2569     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2570       assert(RHSBinOp->getNumUses() == 0 &&
2571              "Operations with multiple uses shouldn't be contracted.");
2572       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2573     }
2574   }
2575 
2576   return nullptr;
2577 }
2578 
EmitAdd(const BinOpInfo & op)2579 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2580   if (op.LHS->getType()->isPointerTy() ||
2581       op.RHS->getType()->isPointerTy())
2582     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2583 
2584   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2585     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2586     case LangOptions::SOB_Defined:
2587       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2588     case LangOptions::SOB_Undefined:
2589       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2590         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2591       // Fall through.
2592     case LangOptions::SOB_Trapping:
2593       return EmitOverflowCheckedBinOp(op);
2594     }
2595   }
2596 
2597   if (op.Ty->isUnsignedIntegerType() &&
2598       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2599     return EmitOverflowCheckedBinOp(op);
2600 
2601   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2602     // Try to form an fmuladd.
2603     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2604       return FMulAdd;
2605 
2606     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2607   }
2608 
2609   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2610 }
2611 
EmitSub(const BinOpInfo & op)2612 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2613   // The LHS is always a pointer if either side is.
2614   if (!op.LHS->getType()->isPointerTy()) {
2615     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2616       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2617       case LangOptions::SOB_Defined:
2618         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2619       case LangOptions::SOB_Undefined:
2620         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2621           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2622         // Fall through.
2623       case LangOptions::SOB_Trapping:
2624         return EmitOverflowCheckedBinOp(op);
2625       }
2626     }
2627 
2628     if (op.Ty->isUnsignedIntegerType() &&
2629         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2630       return EmitOverflowCheckedBinOp(op);
2631 
2632     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2633       // Try to form an fmuladd.
2634       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2635         return FMulAdd;
2636       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2637     }
2638 
2639     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2640   }
2641 
2642   // If the RHS is not a pointer, then we have normal pointer
2643   // arithmetic.
2644   if (!op.RHS->getType()->isPointerTy())
2645     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2646 
2647   // Otherwise, this is a pointer subtraction.
2648 
2649   // Do the raw subtraction part.
2650   llvm::Value *LHS
2651     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2652   llvm::Value *RHS
2653     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2654   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2655 
2656   // Okay, figure out the element size.
2657   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2658   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2659 
2660   llvm::Value *divisor = nullptr;
2661 
2662   // For a variable-length array, this is going to be non-constant.
2663   if (const VariableArrayType *vla
2664         = CGF.getContext().getAsVariableArrayType(elementType)) {
2665     llvm::Value *numElements;
2666     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2667 
2668     divisor = numElements;
2669 
2670     // Scale the number of non-VLA elements by the non-VLA element size.
2671     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2672     if (!eltSize.isOne())
2673       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2674 
2675   // For everything elese, we can just compute it, safe in the
2676   // assumption that Sema won't let anything through that we can't
2677   // safely compute the size of.
2678   } else {
2679     CharUnits elementSize;
2680     // Handle GCC extension for pointer arithmetic on void* and
2681     // function pointer types.
2682     if (elementType->isVoidType() || elementType->isFunctionType())
2683       elementSize = CharUnits::One();
2684     else
2685       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2686 
2687     // Don't even emit the divide for element size of 1.
2688     if (elementSize.isOne())
2689       return diffInChars;
2690 
2691     divisor = CGF.CGM.getSize(elementSize);
2692   }
2693 
2694   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2695   // pointer difference in C is only defined in the case where both operands
2696   // are pointing to elements of an array.
2697   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2698 }
2699 
GetWidthMinusOneValue(Value * LHS,Value * RHS)2700 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2701   llvm::IntegerType *Ty;
2702   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2703     Ty = cast<llvm::IntegerType>(VT->getElementType());
2704   else
2705     Ty = cast<llvm::IntegerType>(LHS->getType());
2706   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2707 }
2708 
EmitShl(const BinOpInfo & Ops)2709 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2710   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2711   // RHS to the same size as the LHS.
2712   Value *RHS = Ops.RHS;
2713   if (Ops.LHS->getType() != RHS->getType())
2714     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2715 
2716   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2717                       Ops.Ty->hasSignedIntegerRepresentation();
2718   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2719   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2720   if (CGF.getLangOpts().OpenCL)
2721     RHS =
2722         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2723   else if ((SanitizeBase || SanitizeExponent) &&
2724            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2725     CodeGenFunction::SanitizerScope SanScope(&CGF);
2726     SmallVector<std::pair<Value *, SanitizerKind>, 2> Checks;
2727     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2728     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2729 
2730     if (SanitizeExponent) {
2731       Checks.push_back(
2732           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2733     }
2734 
2735     if (SanitizeBase) {
2736       // Check whether we are shifting any non-zero bits off the top of the
2737       // integer. We only emit this check if exponent is valid - otherwise
2738       // instructions below will have undefined behavior themselves.
2739       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2740       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2741       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2742       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2743       CGF.EmitBlock(CheckShiftBase);
2744       llvm::Value *BitsShiftedOff =
2745         Builder.CreateLShr(Ops.LHS,
2746                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2747                                              /*NUW*/true, /*NSW*/true),
2748                            "shl.check");
2749       if (CGF.getLangOpts().CPlusPlus) {
2750         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2751         // Under C++11's rules, shifting a 1 bit into the sign bit is
2752         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2753         // define signed left shifts, so we use the C99 and C++11 rules there).
2754         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2755         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2756       }
2757       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2758       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2759       CGF.EmitBlock(Cont);
2760       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2761       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2762       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2763       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2764     }
2765 
2766     assert(!Checks.empty());
2767     EmitBinOpCheck(Checks, Ops);
2768   }
2769 
2770   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2771 }
2772 
EmitShr(const BinOpInfo & Ops)2773 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2774   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2775   // RHS to the same size as the LHS.
2776   Value *RHS = Ops.RHS;
2777   if (Ops.LHS->getType() != RHS->getType())
2778     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2779 
2780   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2781   if (CGF.getLangOpts().OpenCL)
2782     RHS =
2783         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2784   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2785            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2786     CodeGenFunction::SanitizerScope SanScope(&CGF);
2787     llvm::Value *Valid =
2788         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2789     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2790   }
2791 
2792   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2793     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2794   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2795 }
2796 
2797 enum IntrinsicType { VCMPEQ, VCMPGT };
2798 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2799 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2800                                         BuiltinType::Kind ElemKind) {
2801   switch (ElemKind) {
2802   default: llvm_unreachable("unexpected element type");
2803   case BuiltinType::Char_U:
2804   case BuiltinType::UChar:
2805     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2806                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2807   case BuiltinType::Char_S:
2808   case BuiltinType::SChar:
2809     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2810                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2811   case BuiltinType::UShort:
2812     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2813                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2814   case BuiltinType::Short:
2815     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2816                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2817   case BuiltinType::UInt:
2818   case BuiltinType::ULong:
2819     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2820                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2821   case BuiltinType::Int:
2822   case BuiltinType::Long:
2823     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2824                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2825   case BuiltinType::Float:
2826     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2827                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2828   }
2829 }
2830 
EmitCompare(const BinaryOperator * E,unsigned UICmpOpc,unsigned SICmpOpc,unsigned FCmpOpc)2831 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2832                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2833   TestAndClearIgnoreResultAssign();
2834   Value *Result;
2835   QualType LHSTy = E->getLHS()->getType();
2836   QualType RHSTy = E->getRHS()->getType();
2837   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2838     assert(E->getOpcode() == BO_EQ ||
2839            E->getOpcode() == BO_NE);
2840     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2841     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2842     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2843                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2844   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2845     Value *LHS = Visit(E->getLHS());
2846     Value *RHS = Visit(E->getRHS());
2847 
2848     // If AltiVec, the comparison results in a numeric type, so we use
2849     // intrinsics comparing vectors and giving 0 or 1 as a result
2850     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2851       // constants for mapping CR6 register bits to predicate result
2852       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2853 
2854       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2855 
2856       // in several cases vector arguments order will be reversed
2857       Value *FirstVecArg = LHS,
2858             *SecondVecArg = RHS;
2859 
2860       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2861       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2862       BuiltinType::Kind ElementKind = BTy->getKind();
2863 
2864       switch(E->getOpcode()) {
2865       default: llvm_unreachable("is not a comparison operation");
2866       case BO_EQ:
2867         CR6 = CR6_LT;
2868         ID = GetIntrinsic(VCMPEQ, ElementKind);
2869         break;
2870       case BO_NE:
2871         CR6 = CR6_EQ;
2872         ID = GetIntrinsic(VCMPEQ, ElementKind);
2873         break;
2874       case BO_LT:
2875         CR6 = CR6_LT;
2876         ID = GetIntrinsic(VCMPGT, ElementKind);
2877         std::swap(FirstVecArg, SecondVecArg);
2878         break;
2879       case BO_GT:
2880         CR6 = CR6_LT;
2881         ID = GetIntrinsic(VCMPGT, ElementKind);
2882         break;
2883       case BO_LE:
2884         if (ElementKind == BuiltinType::Float) {
2885           CR6 = CR6_LT;
2886           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2887           std::swap(FirstVecArg, SecondVecArg);
2888         }
2889         else {
2890           CR6 = CR6_EQ;
2891           ID = GetIntrinsic(VCMPGT, ElementKind);
2892         }
2893         break;
2894       case BO_GE:
2895         if (ElementKind == BuiltinType::Float) {
2896           CR6 = CR6_LT;
2897           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2898         }
2899         else {
2900           CR6 = CR6_EQ;
2901           ID = GetIntrinsic(VCMPGT, ElementKind);
2902           std::swap(FirstVecArg, SecondVecArg);
2903         }
2904         break;
2905       }
2906 
2907       Value *CR6Param = Builder.getInt32(CR6);
2908       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2909       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2910       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2911     }
2912 
2913     if (LHS->getType()->isFPOrFPVectorTy()) {
2914       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2915                                   LHS, RHS, "cmp");
2916     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2917       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2918                                   LHS, RHS, "cmp");
2919     } else {
2920       // Unsigned integers and pointers.
2921       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2922                                   LHS, RHS, "cmp");
2923     }
2924 
2925     // If this is a vector comparison, sign extend the result to the appropriate
2926     // vector integer type and return it (don't convert to bool).
2927     if (LHSTy->isVectorType())
2928       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2929 
2930   } else {
2931     // Complex Comparison: can only be an equality comparison.
2932     CodeGenFunction::ComplexPairTy LHS, RHS;
2933     QualType CETy;
2934     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2935       LHS = CGF.EmitComplexExpr(E->getLHS());
2936       CETy = CTy->getElementType();
2937     } else {
2938       LHS.first = Visit(E->getLHS());
2939       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2940       CETy = LHSTy;
2941     }
2942     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2943       RHS = CGF.EmitComplexExpr(E->getRHS());
2944       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2945                                                      CTy->getElementType()) &&
2946              "The element types must always match.");
2947       (void)CTy;
2948     } else {
2949       RHS.first = Visit(E->getRHS());
2950       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2951       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2952              "The element types must always match.");
2953     }
2954 
2955     Value *ResultR, *ResultI;
2956     if (CETy->isRealFloatingType()) {
2957       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2958                                    LHS.first, RHS.first, "cmp.r");
2959       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2960                                    LHS.second, RHS.second, "cmp.i");
2961     } else {
2962       // Complex comparisons can only be equality comparisons.  As such, signed
2963       // and unsigned opcodes are the same.
2964       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2965                                    LHS.first, RHS.first, "cmp.r");
2966       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2967                                    LHS.second, RHS.second, "cmp.i");
2968     }
2969 
2970     if (E->getOpcode() == BO_EQ) {
2971       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2972     } else {
2973       assert(E->getOpcode() == BO_NE &&
2974              "Complex comparison other than == or != ?");
2975       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2976     }
2977   }
2978 
2979   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2980 }
2981 
VisitBinAssign(const BinaryOperator * E)2982 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2983   bool Ignore = TestAndClearIgnoreResultAssign();
2984 
2985   Value *RHS;
2986   LValue LHS;
2987 
2988   switch (E->getLHS()->getType().getObjCLifetime()) {
2989   case Qualifiers::OCL_Strong:
2990     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2991     break;
2992 
2993   case Qualifiers::OCL_Autoreleasing:
2994     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2995     break;
2996 
2997   case Qualifiers::OCL_Weak:
2998     RHS = Visit(E->getRHS());
2999     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3000     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3001     break;
3002 
3003   // No reason to do any of these differently.
3004   case Qualifiers::OCL_None:
3005   case Qualifiers::OCL_ExplicitNone:
3006     // __block variables need to have the rhs evaluated first, plus
3007     // this should improve codegen just a little.
3008     RHS = Visit(E->getRHS());
3009     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3010 
3011     // Store the value into the LHS.  Bit-fields are handled specially
3012     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3013     // 'An assignment expression has the value of the left operand after
3014     // the assignment...'.
3015     if (LHS.isBitField())
3016       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3017     else
3018       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3019   }
3020 
3021   // If the result is clearly ignored, return now.
3022   if (Ignore)
3023     return nullptr;
3024 
3025   // The result of an assignment in C is the assigned r-value.
3026   if (!CGF.getLangOpts().CPlusPlus)
3027     return RHS;
3028 
3029   // If the lvalue is non-volatile, return the computed value of the assignment.
3030   if (!LHS.isVolatileQualified())
3031     return RHS;
3032 
3033   // Otherwise, reload the value.
3034   return EmitLoadOfLValue(LHS, E->getExprLoc());
3035 }
3036 
VisitBinLAnd(const BinaryOperator * E)3037 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3038   RegionCounter Cnt = CGF.getPGORegionCounter(E);
3039 
3040   // Perform vector logical and on comparisons with zero vectors.
3041   if (E->getType()->isVectorType()) {
3042     Cnt.beginRegion(Builder);
3043 
3044     Value *LHS = Visit(E->getLHS());
3045     Value *RHS = Visit(E->getRHS());
3046     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3047     if (LHS->getType()->isFPOrFPVectorTy()) {
3048       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3049       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3050     } else {
3051       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3052       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3053     }
3054     Value *And = Builder.CreateAnd(LHS, RHS);
3055     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3056   }
3057 
3058   llvm::Type *ResTy = ConvertType(E->getType());
3059 
3060   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3061   // If we have 1 && X, just emit X without inserting the control flow.
3062   bool LHSCondVal;
3063   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3064     if (LHSCondVal) { // If we have 1 && X, just emit X.
3065       Cnt.beginRegion(Builder);
3066 
3067       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3068       // ZExt result to int or bool.
3069       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3070     }
3071 
3072     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3073     if (!CGF.ContainsLabel(E->getRHS()))
3074       return llvm::Constant::getNullValue(ResTy);
3075   }
3076 
3077   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3078   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3079 
3080   CodeGenFunction::ConditionalEvaluation eval(CGF);
3081 
3082   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3083   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount());
3084 
3085   // Any edges into the ContBlock are now from an (indeterminate number of)
3086   // edges from this first condition.  All of these values will be false.  Start
3087   // setting up the PHI node in the Cont Block for this.
3088   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3089                                             "", ContBlock);
3090   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3091        PI != PE; ++PI)
3092     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3093 
3094   eval.begin(CGF);
3095   CGF.EmitBlock(RHSBlock);
3096   Cnt.beginRegion(Builder);
3097   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3098   eval.end(CGF);
3099 
3100   // Reaquire the RHS block, as there may be subblocks inserted.
3101   RHSBlock = Builder.GetInsertBlock();
3102 
3103   // Emit an unconditional branch from this block to ContBlock.
3104   {
3105     // There is no need to emit line number for unconditional branch.
3106     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3107     CGF.EmitBlock(ContBlock);
3108   }
3109   // Insert an entry into the phi node for the edge with the value of RHSCond.
3110   PN->addIncoming(RHSCond, RHSBlock);
3111 
3112   // ZExt result to int.
3113   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3114 }
3115 
VisitBinLOr(const BinaryOperator * E)3116 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3117   RegionCounter Cnt = CGF.getPGORegionCounter(E);
3118 
3119   // Perform vector logical or on comparisons with zero vectors.
3120   if (E->getType()->isVectorType()) {
3121     Cnt.beginRegion(Builder);
3122 
3123     Value *LHS = Visit(E->getLHS());
3124     Value *RHS = Visit(E->getRHS());
3125     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3126     if (LHS->getType()->isFPOrFPVectorTy()) {
3127       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3128       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3129     } else {
3130       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3131       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3132     }
3133     Value *Or = Builder.CreateOr(LHS, RHS);
3134     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3135   }
3136 
3137   llvm::Type *ResTy = ConvertType(E->getType());
3138 
3139   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3140   // If we have 0 || X, just emit X without inserting the control flow.
3141   bool LHSCondVal;
3142   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3143     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3144       Cnt.beginRegion(Builder);
3145 
3146       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3147       // ZExt result to int or bool.
3148       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3149     }
3150 
3151     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3152     if (!CGF.ContainsLabel(E->getRHS()))
3153       return llvm::ConstantInt::get(ResTy, 1);
3154   }
3155 
3156   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3157   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3158 
3159   CodeGenFunction::ConditionalEvaluation eval(CGF);
3160 
3161   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3162   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3163                            Cnt.getParentCount() - Cnt.getCount());
3164 
3165   // Any edges into the ContBlock are now from an (indeterminate number of)
3166   // edges from this first condition.  All of these values will be true.  Start
3167   // setting up the PHI node in the Cont Block for this.
3168   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3169                                             "", ContBlock);
3170   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3171        PI != PE; ++PI)
3172     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3173 
3174   eval.begin(CGF);
3175 
3176   // Emit the RHS condition as a bool value.
3177   CGF.EmitBlock(RHSBlock);
3178   Cnt.beginRegion(Builder);
3179   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3180 
3181   eval.end(CGF);
3182 
3183   // Reaquire the RHS block, as there may be subblocks inserted.
3184   RHSBlock = Builder.GetInsertBlock();
3185 
3186   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3187   // into the phi node for the edge with the value of RHSCond.
3188   CGF.EmitBlock(ContBlock);
3189   PN->addIncoming(RHSCond, RHSBlock);
3190 
3191   // ZExt result to int.
3192   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3193 }
3194 
VisitBinComma(const BinaryOperator * E)3195 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3196   CGF.EmitIgnoredExpr(E->getLHS());
3197   CGF.EnsureInsertPoint();
3198   return Visit(E->getRHS());
3199 }
3200 
3201 //===----------------------------------------------------------------------===//
3202 //                             Other Operators
3203 //===----------------------------------------------------------------------===//
3204 
3205 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3206 /// expression is cheap enough and side-effect-free enough to evaluate
3207 /// unconditionally instead of conditionally.  This is used to convert control
3208 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)3209 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3210                                                    CodeGenFunction &CGF) {
3211   // Anything that is an integer or floating point constant is fine.
3212   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3213 
3214   // Even non-volatile automatic variables can't be evaluated unconditionally.
3215   // Referencing a thread_local may cause non-trivial initialization work to
3216   // occur. If we're inside a lambda and one of the variables is from the scope
3217   // outside the lambda, that function may have returned already. Reading its
3218   // locals is a bad idea. Also, these reads may introduce races there didn't
3219   // exist in the source-level program.
3220 }
3221 
3222 
3223 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)3224 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3225   TestAndClearIgnoreResultAssign();
3226 
3227   // Bind the common expression if necessary.
3228   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3229   RegionCounter Cnt = CGF.getPGORegionCounter(E);
3230 
3231   Expr *condExpr = E->getCond();
3232   Expr *lhsExpr = E->getTrueExpr();
3233   Expr *rhsExpr = E->getFalseExpr();
3234 
3235   // If the condition constant folds and can be elided, try to avoid emitting
3236   // the condition and the dead arm.
3237   bool CondExprBool;
3238   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3239     Expr *live = lhsExpr, *dead = rhsExpr;
3240     if (!CondExprBool) std::swap(live, dead);
3241 
3242     // If the dead side doesn't have labels we need, just emit the Live part.
3243     if (!CGF.ContainsLabel(dead)) {
3244       if (CondExprBool)
3245         Cnt.beginRegion(Builder);
3246       Value *Result = Visit(live);
3247 
3248       // If the live part is a throw expression, it acts like it has a void
3249       // type, so evaluating it returns a null Value*.  However, a conditional
3250       // with non-void type must return a non-null Value*.
3251       if (!Result && !E->getType()->isVoidType())
3252         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3253 
3254       return Result;
3255     }
3256   }
3257 
3258   // OpenCL: If the condition is a vector, we can treat this condition like
3259   // the select function.
3260   if (CGF.getLangOpts().OpenCL
3261       && condExpr->getType()->isVectorType()) {
3262     Cnt.beginRegion(Builder);
3263 
3264     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3265     llvm::Value *LHS = Visit(lhsExpr);
3266     llvm::Value *RHS = Visit(rhsExpr);
3267 
3268     llvm::Type *condType = ConvertType(condExpr->getType());
3269     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3270 
3271     unsigned numElem = vecTy->getNumElements();
3272     llvm::Type *elemType = vecTy->getElementType();
3273 
3274     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3275     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3276     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3277                                           llvm::VectorType::get(elemType,
3278                                                                 numElem),
3279                                           "sext");
3280     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3281 
3282     // Cast float to int to perform ANDs if necessary.
3283     llvm::Value *RHSTmp = RHS;
3284     llvm::Value *LHSTmp = LHS;
3285     bool wasCast = false;
3286     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3287     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3288       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3289       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3290       wasCast = true;
3291     }
3292 
3293     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3294     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3295     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3296     if (wasCast)
3297       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3298 
3299     return tmp5;
3300   }
3301 
3302   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3303   // select instead of as control flow.  We can only do this if it is cheap and
3304   // safe to evaluate the LHS and RHS unconditionally.
3305   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3306       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3307     Cnt.beginRegion(Builder);
3308 
3309     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3310     llvm::Value *LHS = Visit(lhsExpr);
3311     llvm::Value *RHS = Visit(rhsExpr);
3312     if (!LHS) {
3313       // If the conditional has void type, make sure we return a null Value*.
3314       assert(!RHS && "LHS and RHS types must match");
3315       return nullptr;
3316     }
3317     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3318   }
3319 
3320   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3321   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3322   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3323 
3324   CodeGenFunction::ConditionalEvaluation eval(CGF);
3325   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount());
3326 
3327   CGF.EmitBlock(LHSBlock);
3328   Cnt.beginRegion(Builder);
3329   eval.begin(CGF);
3330   Value *LHS = Visit(lhsExpr);
3331   eval.end(CGF);
3332 
3333   LHSBlock = Builder.GetInsertBlock();
3334   Builder.CreateBr(ContBlock);
3335 
3336   CGF.EmitBlock(RHSBlock);
3337   eval.begin(CGF);
3338   Value *RHS = Visit(rhsExpr);
3339   eval.end(CGF);
3340 
3341   RHSBlock = Builder.GetInsertBlock();
3342   CGF.EmitBlock(ContBlock);
3343 
3344   // If the LHS or RHS is a throw expression, it will be legitimately null.
3345   if (!LHS)
3346     return RHS;
3347   if (!RHS)
3348     return LHS;
3349 
3350   // Create a PHI node for the real part.
3351   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3352   PN->addIncoming(LHS, LHSBlock);
3353   PN->addIncoming(RHS, RHSBlock);
3354   return PN;
3355 }
3356 
VisitChooseExpr(ChooseExpr * E)3357 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3358   return Visit(E->getChosenSubExpr());
3359 }
3360 
VisitVAArgExpr(VAArgExpr * VE)3361 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3362   QualType Ty = VE->getType();
3363 
3364   if (Ty->isVariablyModifiedType())
3365     CGF.EmitVariablyModifiedType(Ty);
3366 
3367   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3368   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3369   llvm::Type *ArgTy = ConvertType(VE->getType());
3370 
3371   // If EmitVAArg fails, we fall back to the LLVM instruction.
3372   if (!ArgPtr)
3373     return Builder.CreateVAArg(ArgValue, ArgTy);
3374 
3375   // FIXME Volatility.
3376   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3377 
3378   // If EmitVAArg promoted the type, we must truncate it.
3379   if (ArgTy != Val->getType()) {
3380     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3381       Val = Builder.CreateIntToPtr(Val, ArgTy);
3382     else
3383       Val = Builder.CreateTrunc(Val, ArgTy);
3384   }
3385 
3386   return Val;
3387 }
3388 
VisitBlockExpr(const BlockExpr * block)3389 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3390   return CGF.EmitBlockLiteral(block);
3391 }
3392 
VisitAsTypeExpr(AsTypeExpr * E)3393 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3394   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3395   llvm::Type *DstTy = ConvertType(E->getType());
3396 
3397   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3398   // a shuffle vector instead of a bitcast.
3399   llvm::Type *SrcTy = Src->getType();
3400   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3401     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3402     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3403     if ((numElementsDst == 3 && numElementsSrc == 4)
3404         || (numElementsDst == 4 && numElementsSrc == 3)) {
3405 
3406 
3407       // In the case of going from int4->float3, a bitcast is needed before
3408       // doing a shuffle.
3409       llvm::Type *srcElemTy =
3410       cast<llvm::VectorType>(SrcTy)->getElementType();
3411       llvm::Type *dstElemTy =
3412       cast<llvm::VectorType>(DstTy)->getElementType();
3413 
3414       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3415           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3416         // Create a float type of the same size as the source or destination.
3417         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3418                                                                  numElementsSrc);
3419 
3420         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3421       }
3422 
3423       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3424 
3425       SmallVector<llvm::Constant*, 3> Args;
3426       Args.push_back(Builder.getInt32(0));
3427       Args.push_back(Builder.getInt32(1));
3428       Args.push_back(Builder.getInt32(2));
3429 
3430       if (numElementsDst == 4)
3431         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3432 
3433       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3434 
3435       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3436     }
3437   }
3438 
3439   return Builder.CreateBitCast(Src, DstTy, "astype");
3440 }
3441 
VisitAtomicExpr(AtomicExpr * E)3442 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3443   return CGF.EmitAtomicExpr(E).getScalarVal();
3444 }
3445 
3446 //===----------------------------------------------------------------------===//
3447 //                         Entry Point into this File
3448 //===----------------------------------------------------------------------===//
3449 
3450 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3451 /// type, ignoring the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)3452 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3453   assert(E && hasScalarEvaluationKind(E->getType()) &&
3454          "Invalid scalar expression to emit");
3455 
3456   return ScalarExprEmitter(*this, IgnoreResultAssign)
3457       .Visit(const_cast<Expr *>(E));
3458 }
3459 
3460 /// EmitScalarConversion - Emit a conversion from the specified type to the
3461 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy)3462 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3463                                              QualType DstTy) {
3464   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3465          "Invalid scalar expression to emit");
3466   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3467 }
3468 
3469 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3470 /// type to the specified destination type, where the destination type is an
3471 /// LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy)3472 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3473                                                       QualType SrcTy,
3474                                                       QualType DstTy) {
3475   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3476          "Invalid complex -> scalar conversion");
3477   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3478                                                                 DstTy);
3479 }
3480 
3481 
3482 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)3483 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3484                         bool isInc, bool isPre) {
3485   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3486 }
3487 
EmitObjCIsaExpr(const ObjCIsaExpr * E)3488 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3489   llvm::Value *V;
3490   // object->isa or (*object).isa
3491   // Generate code as for: *(Class*)object
3492   // build Class* type
3493   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3494 
3495   Expr *BaseExpr = E->getBase();
3496   if (BaseExpr->isRValue()) {
3497     V = CreateMemTemp(E->getType(), "resval");
3498     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3499     Builder.CreateStore(Src, V);
3500     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3501       MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
3502   } else {
3503     if (E->isArrow())
3504       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3505     else
3506       V = EmitLValue(BaseExpr).getAddress();
3507   }
3508 
3509   // build Class* type
3510   ClassPtrTy = ClassPtrTy->getPointerTo();
3511   V = Builder.CreateBitCast(V, ClassPtrTy);
3512   return MakeNaturalAlignAddrLValue(V, E->getType());
3513 }
3514 
3515 
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)3516 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3517                                             const CompoundAssignOperator *E) {
3518   ScalarExprEmitter Scalar(*this);
3519   Value *Result = nullptr;
3520   switch (E->getOpcode()) {
3521 #define COMPOUND_OP(Op)                                                       \
3522     case BO_##Op##Assign:                                                     \
3523       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3524                                              Result)
3525   COMPOUND_OP(Mul);
3526   COMPOUND_OP(Div);
3527   COMPOUND_OP(Rem);
3528   COMPOUND_OP(Add);
3529   COMPOUND_OP(Sub);
3530   COMPOUND_OP(Shl);
3531   COMPOUND_OP(Shr);
3532   COMPOUND_OP(And);
3533   COMPOUND_OP(Xor);
3534   COMPOUND_OP(Or);
3535 #undef COMPOUND_OP
3536 
3537   case BO_PtrMemD:
3538   case BO_PtrMemI:
3539   case BO_Mul:
3540   case BO_Div:
3541   case BO_Rem:
3542   case BO_Add:
3543   case BO_Sub:
3544   case BO_Shl:
3545   case BO_Shr:
3546   case BO_LT:
3547   case BO_GT:
3548   case BO_LE:
3549   case BO_GE:
3550   case BO_EQ:
3551   case BO_NE:
3552   case BO_And:
3553   case BO_Xor:
3554   case BO_Or:
3555   case BO_LAnd:
3556   case BO_LOr:
3557   case BO_Assign:
3558   case BO_Comma:
3559     llvm_unreachable("Not valid compound assignment operators");
3560   }
3561 
3562   llvm_unreachable("Unhandled compound assignment operator");
3563 }
3564