1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/code-factory.h"
8 #include "src/codegen.h"
9 #include "src/compiler.h"
10 #include "src/debug.h"
11 #include "src/full-codegen.h"
12 #include "src/liveedit.h"
13 #include "src/macro-assembler.h"
14 #include "src/prettyprinter.h"
15 #include "src/scopeinfo.h"
16 #include "src/scopes.h"
17 #include "src/snapshot.h"
18
19 namespace v8 {
20 namespace internal {
21
Check(Statement * stmt)22 void BreakableStatementChecker::Check(Statement* stmt) {
23 Visit(stmt);
24 }
25
26
Check(Expression * expr)27 void BreakableStatementChecker::Check(Expression* expr) {
28 Visit(expr);
29 }
30
31
VisitVariableDeclaration(VariableDeclaration * decl)32 void BreakableStatementChecker::VisitVariableDeclaration(
33 VariableDeclaration* decl) {
34 }
35
36
VisitFunctionDeclaration(FunctionDeclaration * decl)37 void BreakableStatementChecker::VisitFunctionDeclaration(
38 FunctionDeclaration* decl) {
39 }
40
41
VisitModuleDeclaration(ModuleDeclaration * decl)42 void BreakableStatementChecker::VisitModuleDeclaration(
43 ModuleDeclaration* decl) {
44 }
45
46
VisitImportDeclaration(ImportDeclaration * decl)47 void BreakableStatementChecker::VisitImportDeclaration(
48 ImportDeclaration* decl) {
49 }
50
51
VisitExportDeclaration(ExportDeclaration * decl)52 void BreakableStatementChecker::VisitExportDeclaration(
53 ExportDeclaration* decl) {
54 }
55
56
VisitModuleLiteral(ModuleLiteral * module)57 void BreakableStatementChecker::VisitModuleLiteral(ModuleLiteral* module) {
58 }
59
60
VisitModuleVariable(ModuleVariable * module)61 void BreakableStatementChecker::VisitModuleVariable(ModuleVariable* module) {
62 }
63
64
VisitModulePath(ModulePath * module)65 void BreakableStatementChecker::VisitModulePath(ModulePath* module) {
66 }
67
68
VisitModuleUrl(ModuleUrl * module)69 void BreakableStatementChecker::VisitModuleUrl(ModuleUrl* module) {
70 }
71
72
VisitModuleStatement(ModuleStatement * stmt)73 void BreakableStatementChecker::VisitModuleStatement(ModuleStatement* stmt) {
74 }
75
76
VisitBlock(Block * stmt)77 void BreakableStatementChecker::VisitBlock(Block* stmt) {
78 }
79
80
VisitExpressionStatement(ExpressionStatement * stmt)81 void BreakableStatementChecker::VisitExpressionStatement(
82 ExpressionStatement* stmt) {
83 // Check if expression is breakable.
84 Visit(stmt->expression());
85 }
86
87
VisitEmptyStatement(EmptyStatement * stmt)88 void BreakableStatementChecker::VisitEmptyStatement(EmptyStatement* stmt) {
89 }
90
91
VisitIfStatement(IfStatement * stmt)92 void BreakableStatementChecker::VisitIfStatement(IfStatement* stmt) {
93 // If the condition is breakable the if statement is breakable.
94 Visit(stmt->condition());
95 }
96
97
VisitContinueStatement(ContinueStatement * stmt)98 void BreakableStatementChecker::VisitContinueStatement(
99 ContinueStatement* stmt) {
100 }
101
102
VisitBreakStatement(BreakStatement * stmt)103 void BreakableStatementChecker::VisitBreakStatement(BreakStatement* stmt) {
104 }
105
106
VisitReturnStatement(ReturnStatement * stmt)107 void BreakableStatementChecker::VisitReturnStatement(ReturnStatement* stmt) {
108 // Return is breakable if the expression is.
109 Visit(stmt->expression());
110 }
111
112
VisitWithStatement(WithStatement * stmt)113 void BreakableStatementChecker::VisitWithStatement(WithStatement* stmt) {
114 Visit(stmt->expression());
115 }
116
117
VisitSwitchStatement(SwitchStatement * stmt)118 void BreakableStatementChecker::VisitSwitchStatement(SwitchStatement* stmt) {
119 // Switch statements breakable if the tag expression is.
120 Visit(stmt->tag());
121 }
122
123
VisitDoWhileStatement(DoWhileStatement * stmt)124 void BreakableStatementChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
125 // Mark do while as breakable to avoid adding a break slot in front of it.
126 is_breakable_ = true;
127 }
128
129
VisitWhileStatement(WhileStatement * stmt)130 void BreakableStatementChecker::VisitWhileStatement(WhileStatement* stmt) {
131 // Mark while statements breakable if the condition expression is.
132 Visit(stmt->cond());
133 }
134
135
VisitForStatement(ForStatement * stmt)136 void BreakableStatementChecker::VisitForStatement(ForStatement* stmt) {
137 // Mark for statements breakable if the condition expression is.
138 if (stmt->cond() != NULL) {
139 Visit(stmt->cond());
140 }
141 }
142
143
VisitForInStatement(ForInStatement * stmt)144 void BreakableStatementChecker::VisitForInStatement(ForInStatement* stmt) {
145 // Mark for in statements breakable if the enumerable expression is.
146 Visit(stmt->enumerable());
147 }
148
149
VisitForOfStatement(ForOfStatement * stmt)150 void BreakableStatementChecker::VisitForOfStatement(ForOfStatement* stmt) {
151 // For-of is breakable because of the next() call.
152 is_breakable_ = true;
153 }
154
155
VisitTryCatchStatement(TryCatchStatement * stmt)156 void BreakableStatementChecker::VisitTryCatchStatement(
157 TryCatchStatement* stmt) {
158 // Mark try catch as breakable to avoid adding a break slot in front of it.
159 is_breakable_ = true;
160 }
161
162
VisitTryFinallyStatement(TryFinallyStatement * stmt)163 void BreakableStatementChecker::VisitTryFinallyStatement(
164 TryFinallyStatement* stmt) {
165 // Mark try finally as breakable to avoid adding a break slot in front of it.
166 is_breakable_ = true;
167 }
168
169
VisitDebuggerStatement(DebuggerStatement * stmt)170 void BreakableStatementChecker::VisitDebuggerStatement(
171 DebuggerStatement* stmt) {
172 // The debugger statement is breakable.
173 is_breakable_ = true;
174 }
175
176
VisitCaseClause(CaseClause * clause)177 void BreakableStatementChecker::VisitCaseClause(CaseClause* clause) {
178 }
179
180
VisitFunctionLiteral(FunctionLiteral * expr)181 void BreakableStatementChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
182 }
183
184
VisitClassLiteral(ClassLiteral * expr)185 void BreakableStatementChecker::VisitClassLiteral(ClassLiteral* expr) {
186 if (expr->extends() != NULL) {
187 Visit(expr->extends());
188 }
189 }
190
191
VisitNativeFunctionLiteral(NativeFunctionLiteral * expr)192 void BreakableStatementChecker::VisitNativeFunctionLiteral(
193 NativeFunctionLiteral* expr) {
194 }
195
196
VisitConditional(Conditional * expr)197 void BreakableStatementChecker::VisitConditional(Conditional* expr) {
198 }
199
200
VisitVariableProxy(VariableProxy * expr)201 void BreakableStatementChecker::VisitVariableProxy(VariableProxy* expr) {
202 }
203
204
VisitLiteral(Literal * expr)205 void BreakableStatementChecker::VisitLiteral(Literal* expr) {
206 }
207
208
VisitRegExpLiteral(RegExpLiteral * expr)209 void BreakableStatementChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
210 }
211
212
VisitObjectLiteral(ObjectLiteral * expr)213 void BreakableStatementChecker::VisitObjectLiteral(ObjectLiteral* expr) {
214 }
215
216
VisitArrayLiteral(ArrayLiteral * expr)217 void BreakableStatementChecker::VisitArrayLiteral(ArrayLiteral* expr) {
218 }
219
220
VisitAssignment(Assignment * expr)221 void BreakableStatementChecker::VisitAssignment(Assignment* expr) {
222 // If assigning to a property (including a global property) the assignment is
223 // breakable.
224 VariableProxy* proxy = expr->target()->AsVariableProxy();
225 Property* prop = expr->target()->AsProperty();
226 if (prop != NULL || (proxy != NULL && proxy->var()->IsUnallocated())) {
227 is_breakable_ = true;
228 return;
229 }
230
231 // Otherwise the assignment is breakable if the assigned value is.
232 Visit(expr->value());
233 }
234
235
VisitYield(Yield * expr)236 void BreakableStatementChecker::VisitYield(Yield* expr) {
237 // Yield is breakable if the expression is.
238 Visit(expr->expression());
239 }
240
241
VisitThrow(Throw * expr)242 void BreakableStatementChecker::VisitThrow(Throw* expr) {
243 // Throw is breakable if the expression is.
244 Visit(expr->exception());
245 }
246
247
VisitProperty(Property * expr)248 void BreakableStatementChecker::VisitProperty(Property* expr) {
249 // Property load is breakable.
250 is_breakable_ = true;
251 }
252
253
VisitCall(Call * expr)254 void BreakableStatementChecker::VisitCall(Call* expr) {
255 // Function calls both through IC and call stub are breakable.
256 is_breakable_ = true;
257 }
258
259
VisitCallNew(CallNew * expr)260 void BreakableStatementChecker::VisitCallNew(CallNew* expr) {
261 // Function calls through new are breakable.
262 is_breakable_ = true;
263 }
264
265
VisitCallRuntime(CallRuntime * expr)266 void BreakableStatementChecker::VisitCallRuntime(CallRuntime* expr) {
267 }
268
269
VisitUnaryOperation(UnaryOperation * expr)270 void BreakableStatementChecker::VisitUnaryOperation(UnaryOperation* expr) {
271 Visit(expr->expression());
272 }
273
274
VisitCountOperation(CountOperation * expr)275 void BreakableStatementChecker::VisitCountOperation(CountOperation* expr) {
276 Visit(expr->expression());
277 }
278
279
VisitBinaryOperation(BinaryOperation * expr)280 void BreakableStatementChecker::VisitBinaryOperation(BinaryOperation* expr) {
281 Visit(expr->left());
282 if (expr->op() != Token::AND &&
283 expr->op() != Token::OR) {
284 Visit(expr->right());
285 }
286 }
287
288
VisitCompareOperation(CompareOperation * expr)289 void BreakableStatementChecker::VisitCompareOperation(CompareOperation* expr) {
290 Visit(expr->left());
291 Visit(expr->right());
292 }
293
294
VisitThisFunction(ThisFunction * expr)295 void BreakableStatementChecker::VisitThisFunction(ThisFunction* expr) {
296 }
297
298
VisitSuperReference(SuperReference * expr)299 void BreakableStatementChecker::VisitSuperReference(SuperReference* expr) {}
300
301
302 #define __ ACCESS_MASM(masm())
303
MakeCode(CompilationInfo * info)304 bool FullCodeGenerator::MakeCode(CompilationInfo* info) {
305 Isolate* isolate = info->isolate();
306
307 TimerEventScope<TimerEventCompileFullCode> timer(info->isolate());
308
309 Handle<Script> script = info->script();
310 if (!script->IsUndefined() && !script->source()->IsUndefined()) {
311 int len = String::cast(script->source())->length();
312 isolate->counters()->total_full_codegen_source_size()->Increment(len);
313 }
314 CodeGenerator::MakeCodePrologue(info, "full");
315 const int kInitialBufferSize = 4 * KB;
316 MacroAssembler masm(info->isolate(), NULL, kInitialBufferSize);
317 if (info->will_serialize()) masm.enable_serializer();
318
319 LOG_CODE_EVENT(isolate,
320 CodeStartLinePosInfoRecordEvent(masm.positions_recorder()));
321
322 FullCodeGenerator cgen(&masm, info);
323 cgen.Generate();
324 if (cgen.HasStackOverflow()) {
325 DCHECK(!isolate->has_pending_exception());
326 return false;
327 }
328 unsigned table_offset = cgen.EmitBackEdgeTable();
329
330 Code::Flags flags = Code::ComputeFlags(Code::FUNCTION);
331 Handle<Code> code = CodeGenerator::MakeCodeEpilogue(&masm, flags, info);
332 code->set_optimizable(info->IsOptimizable() &&
333 !info->function()->dont_optimize() &&
334 info->function()->scope()->AllowsLazyCompilation());
335 cgen.PopulateDeoptimizationData(code);
336 cgen.PopulateTypeFeedbackInfo(code);
337 code->set_has_deoptimization_support(info->HasDeoptimizationSupport());
338 code->set_handler_table(*cgen.handler_table());
339 code->set_compiled_optimizable(info->IsOptimizable());
340 code->set_allow_osr_at_loop_nesting_level(0);
341 code->set_profiler_ticks(0);
342 code->set_back_edge_table_offset(table_offset);
343 CodeGenerator::PrintCode(code, info);
344 info->SetCode(code);
345 void* line_info = masm.positions_recorder()->DetachJITHandlerData();
346 LOG_CODE_EVENT(isolate, CodeEndLinePosInfoRecordEvent(*code, line_info));
347 return true;
348 }
349
350
EmitBackEdgeTable()351 unsigned FullCodeGenerator::EmitBackEdgeTable() {
352 // The back edge table consists of a length (in number of entries)
353 // field, and then a sequence of entries. Each entry is a pair of AST id
354 // and code-relative pc offset.
355 masm()->Align(kPointerSize);
356 unsigned offset = masm()->pc_offset();
357 unsigned length = back_edges_.length();
358 __ dd(length);
359 for (unsigned i = 0; i < length; ++i) {
360 __ dd(back_edges_[i].id.ToInt());
361 __ dd(back_edges_[i].pc);
362 __ dd(back_edges_[i].loop_depth);
363 }
364 return offset;
365 }
366
367
EnsureSlotContainsAllocationSite(int slot)368 void FullCodeGenerator::EnsureSlotContainsAllocationSite(int slot) {
369 Handle<FixedArray> vector = FeedbackVector();
370 if (!vector->get(slot)->IsAllocationSite()) {
371 Handle<AllocationSite> allocation_site =
372 isolate()->factory()->NewAllocationSite();
373 vector->set(slot, *allocation_site);
374 }
375 }
376
377
PopulateDeoptimizationData(Handle<Code> code)378 void FullCodeGenerator::PopulateDeoptimizationData(Handle<Code> code) {
379 // Fill in the deoptimization information.
380 DCHECK(info_->HasDeoptimizationSupport() || bailout_entries_.is_empty());
381 if (!info_->HasDeoptimizationSupport()) return;
382 int length = bailout_entries_.length();
383 Handle<DeoptimizationOutputData> data =
384 DeoptimizationOutputData::New(isolate(), length, TENURED);
385 for (int i = 0; i < length; i++) {
386 data->SetAstId(i, bailout_entries_[i].id);
387 data->SetPcAndState(i, Smi::FromInt(bailout_entries_[i].pc_and_state));
388 }
389 code->set_deoptimization_data(*data);
390 }
391
392
PopulateTypeFeedbackInfo(Handle<Code> code)393 void FullCodeGenerator::PopulateTypeFeedbackInfo(Handle<Code> code) {
394 Handle<TypeFeedbackInfo> info = isolate()->factory()->NewTypeFeedbackInfo();
395 info->set_ic_total_count(ic_total_count_);
396 DCHECK(!isolate()->heap()->InNewSpace(*info));
397 code->set_type_feedback_info(*info);
398 }
399
400
Initialize()401 void FullCodeGenerator::Initialize() {
402 InitializeAstVisitor(info_->zone());
403 // The generation of debug code must match between the snapshot code and the
404 // code that is generated later. This is assumed by the debugger when it is
405 // calculating PC offsets after generating a debug version of code. Therefore
406 // we disable the production of debug code in the full compiler if we are
407 // either generating a snapshot or we booted from a snapshot.
408 generate_debug_code_ = FLAG_debug_code &&
409 !masm_->serializer_enabled() &&
410 !Snapshot::HaveASnapshotToStartFrom();
411 masm_->set_emit_debug_code(generate_debug_code_);
412 masm_->set_predictable_code_size(true);
413 }
414
415
PrepareForBailout(Expression * node,State state)416 void FullCodeGenerator::PrepareForBailout(Expression* node, State state) {
417 PrepareForBailoutForId(node->id(), state);
418 }
419
420
CallLoadIC(ContextualMode contextual_mode,TypeFeedbackId id)421 void FullCodeGenerator::CallLoadIC(ContextualMode contextual_mode,
422 TypeFeedbackId id) {
423 Handle<Code> ic = CodeFactory::LoadIC(isolate(), contextual_mode).code();
424 CallIC(ic, id);
425 }
426
427
CallStoreIC(TypeFeedbackId id)428 void FullCodeGenerator::CallStoreIC(TypeFeedbackId id) {
429 Handle<Code> ic = CodeFactory::StoreIC(isolate(), strict_mode()).code();
430 CallIC(ic, id);
431 }
432
433
RecordJSReturnSite(Call * call)434 void FullCodeGenerator::RecordJSReturnSite(Call* call) {
435 // We record the offset of the function return so we can rebuild the frame
436 // if the function was inlined, i.e., this is the return address in the
437 // inlined function's frame.
438 //
439 // The state is ignored. We defensively set it to TOS_REG, which is the
440 // real state of the unoptimized code at the return site.
441 PrepareForBailoutForId(call->ReturnId(), TOS_REG);
442 #ifdef DEBUG
443 // In debug builds, mark the return so we can verify that this function
444 // was called.
445 DCHECK(!call->return_is_recorded_);
446 call->return_is_recorded_ = true;
447 #endif
448 }
449
450
PrepareForBailoutForId(BailoutId id,State state)451 void FullCodeGenerator::PrepareForBailoutForId(BailoutId id, State state) {
452 // There's no need to prepare this code for bailouts from already optimized
453 // code or code that can't be optimized.
454 if (!info_->HasDeoptimizationSupport()) return;
455 unsigned pc_and_state =
456 StateField::encode(state) | PcField::encode(masm_->pc_offset());
457 DCHECK(Smi::IsValid(pc_and_state));
458 #ifdef DEBUG
459 for (int i = 0; i < bailout_entries_.length(); ++i) {
460 DCHECK(bailout_entries_[i].id != id);
461 }
462 #endif
463 BailoutEntry entry = { id, pc_and_state };
464 bailout_entries_.Add(entry, zone());
465 }
466
467
RecordBackEdge(BailoutId ast_id)468 void FullCodeGenerator::RecordBackEdge(BailoutId ast_id) {
469 // The pc offset does not need to be encoded and packed together with a state.
470 DCHECK(masm_->pc_offset() > 0);
471 DCHECK(loop_depth() > 0);
472 uint8_t depth = Min(loop_depth(), Code::kMaxLoopNestingMarker);
473 BackEdgeEntry entry =
474 { ast_id, static_cast<unsigned>(masm_->pc_offset()), depth };
475 back_edges_.Add(entry, zone());
476 }
477
478
ShouldInlineSmiCase(Token::Value op)479 bool FullCodeGenerator::ShouldInlineSmiCase(Token::Value op) {
480 // Inline smi case inside loops, but not division and modulo which
481 // are too complicated and take up too much space.
482 if (op == Token::DIV ||op == Token::MOD) return false;
483 if (FLAG_always_inline_smi_code) return true;
484 return loop_depth_ > 0;
485 }
486
487
Plug(Register reg) const488 void FullCodeGenerator::EffectContext::Plug(Register reg) const {
489 }
490
491
Plug(Register reg) const492 void FullCodeGenerator::AccumulatorValueContext::Plug(Register reg) const {
493 __ Move(result_register(), reg);
494 }
495
496
Plug(Register reg) const497 void FullCodeGenerator::StackValueContext::Plug(Register reg) const {
498 __ Push(reg);
499 }
500
501
Plug(Register reg) const502 void FullCodeGenerator::TestContext::Plug(Register reg) const {
503 // For simplicity we always test the accumulator register.
504 __ Move(result_register(), reg);
505 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
506 codegen()->DoTest(this);
507 }
508
509
PlugTOS() const510 void FullCodeGenerator::EffectContext::PlugTOS() const {
511 __ Drop(1);
512 }
513
514
PlugTOS() const515 void FullCodeGenerator::AccumulatorValueContext::PlugTOS() const {
516 __ Pop(result_register());
517 }
518
519
PlugTOS() const520 void FullCodeGenerator::StackValueContext::PlugTOS() const {
521 }
522
523
PlugTOS() const524 void FullCodeGenerator::TestContext::PlugTOS() const {
525 // For simplicity we always test the accumulator register.
526 __ Pop(result_register());
527 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
528 codegen()->DoTest(this);
529 }
530
531
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const532 void FullCodeGenerator::EffectContext::PrepareTest(
533 Label* materialize_true,
534 Label* materialize_false,
535 Label** if_true,
536 Label** if_false,
537 Label** fall_through) const {
538 // In an effect context, the true and the false case branch to the
539 // same label.
540 *if_true = *if_false = *fall_through = materialize_true;
541 }
542
543
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const544 void FullCodeGenerator::AccumulatorValueContext::PrepareTest(
545 Label* materialize_true,
546 Label* materialize_false,
547 Label** if_true,
548 Label** if_false,
549 Label** fall_through) const {
550 *if_true = *fall_through = materialize_true;
551 *if_false = materialize_false;
552 }
553
554
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const555 void FullCodeGenerator::StackValueContext::PrepareTest(
556 Label* materialize_true,
557 Label* materialize_false,
558 Label** if_true,
559 Label** if_false,
560 Label** fall_through) const {
561 *if_true = *fall_through = materialize_true;
562 *if_false = materialize_false;
563 }
564
565
PrepareTest(Label * materialize_true,Label * materialize_false,Label ** if_true,Label ** if_false,Label ** fall_through) const566 void FullCodeGenerator::TestContext::PrepareTest(
567 Label* materialize_true,
568 Label* materialize_false,
569 Label** if_true,
570 Label** if_false,
571 Label** fall_through) const {
572 *if_true = true_label_;
573 *if_false = false_label_;
574 *fall_through = fall_through_;
575 }
576
577
DoTest(const TestContext * context)578 void FullCodeGenerator::DoTest(const TestContext* context) {
579 DoTest(context->condition(),
580 context->true_label(),
581 context->false_label(),
582 context->fall_through());
583 }
584
585
AllocateModules(ZoneList<Declaration * > * declarations)586 void FullCodeGenerator::AllocateModules(ZoneList<Declaration*>* declarations) {
587 DCHECK(scope_->is_global_scope());
588
589 for (int i = 0; i < declarations->length(); i++) {
590 ModuleDeclaration* declaration = declarations->at(i)->AsModuleDeclaration();
591 if (declaration != NULL) {
592 ModuleLiteral* module = declaration->module()->AsModuleLiteral();
593 if (module != NULL) {
594 Comment cmnt(masm_, "[ Link nested modules");
595 Scope* scope = module->body()->scope();
596 Interface* interface = scope->interface();
597 DCHECK(interface->IsModule() && interface->IsFrozen());
598
599 interface->Allocate(scope->module_var()->index());
600
601 // Set up module context.
602 DCHECK(scope->interface()->Index() >= 0);
603 __ Push(Smi::FromInt(scope->interface()->Index()));
604 __ Push(scope->GetScopeInfo());
605 __ CallRuntime(Runtime::kPushModuleContext, 2);
606 StoreToFrameField(StandardFrameConstants::kContextOffset,
607 context_register());
608
609 AllocateModules(scope->declarations());
610
611 // Pop module context.
612 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
613 // Update local stack frame context field.
614 StoreToFrameField(StandardFrameConstants::kContextOffset,
615 context_register());
616 }
617 }
618 }
619 }
620
621
622 // Modules have their own local scope, represented by their own context.
623 // Module instance objects have an accessor for every export that forwards
624 // access to the respective slot from the module's context. (Exports that are
625 // modules themselves, however, are simple data properties.)
626 //
627 // All modules have a _hosting_ scope/context, which (currently) is the
628 // (innermost) enclosing global scope. To deal with recursion, nested modules
629 // are hosted by the same scope as global ones.
630 //
631 // For every (global or nested) module literal, the hosting context has an
632 // internal slot that points directly to the respective module context. This
633 // enables quick access to (statically resolved) module members by 2-dimensional
634 // access through the hosting context. For example,
635 //
636 // module A {
637 // let x;
638 // module B { let y; }
639 // }
640 // module C { let z; }
641 //
642 // allocates contexts as follows:
643 //
644 // [header| .A | .B | .C | A | C ] (global)
645 // | | |
646 // | | +-- [header| z ] (module)
647 // | |
648 // | +------- [header| y ] (module)
649 // |
650 // +------------ [header| x | B ] (module)
651 //
652 // Here, .A, .B, .C are the internal slots pointing to the hosted module
653 // contexts, whereas A, B, C hold the actual instance objects (note that every
654 // module context also points to the respective instance object through its
655 // extension slot in the header).
656 //
657 // To deal with arbitrary recursion and aliases between modules,
658 // they are created and initialized in several stages. Each stage applies to
659 // all modules in the hosting global scope, including nested ones.
660 //
661 // 1. Allocate: for each module _literal_, allocate the module contexts and
662 // respective instance object and wire them up. This happens in the
663 // PushModuleContext runtime function, as generated by AllocateModules
664 // (invoked by VisitDeclarations in the hosting scope).
665 //
666 // 2. Bind: for each module _declaration_ (i.e. literals as well as aliases),
667 // assign the respective instance object to respective local variables. This
668 // happens in VisitModuleDeclaration, and uses the instance objects created
669 // in the previous stage.
670 // For each module _literal_, this phase also constructs a module descriptor
671 // for the next stage. This happens in VisitModuleLiteral.
672 //
673 // 3. Populate: invoke the DeclareModules runtime function to populate each
674 // _instance_ object with accessors for it exports. This is generated by
675 // DeclareModules (invoked by VisitDeclarations in the hosting scope again),
676 // and uses the descriptors generated in the previous stage.
677 //
678 // 4. Initialize: execute the module bodies (and other code) in sequence. This
679 // happens by the separate statements generated for module bodies. To reenter
680 // the module scopes properly, the parser inserted ModuleStatements.
681
VisitDeclarations(ZoneList<Declaration * > * declarations)682 void FullCodeGenerator::VisitDeclarations(
683 ZoneList<Declaration*>* declarations) {
684 Handle<FixedArray> saved_modules = modules_;
685 int saved_module_index = module_index_;
686 ZoneList<Handle<Object> >* saved_globals = globals_;
687 ZoneList<Handle<Object> > inner_globals(10, zone());
688 globals_ = &inner_globals;
689
690 if (scope_->num_modules() != 0) {
691 // This is a scope hosting modules. Allocate a descriptor array to pass
692 // to the runtime for initialization.
693 Comment cmnt(masm_, "[ Allocate modules");
694 DCHECK(scope_->is_global_scope());
695 modules_ =
696 isolate()->factory()->NewFixedArray(scope_->num_modules(), TENURED);
697 module_index_ = 0;
698
699 // Generate code for allocating all modules, including nested ones.
700 // The allocated contexts are stored in internal variables in this scope.
701 AllocateModules(declarations);
702 }
703
704 AstVisitor::VisitDeclarations(declarations);
705
706 if (scope_->num_modules() != 0) {
707 // Initialize modules from descriptor array.
708 DCHECK(module_index_ == modules_->length());
709 DeclareModules(modules_);
710 modules_ = saved_modules;
711 module_index_ = saved_module_index;
712 }
713
714 if (!globals_->is_empty()) {
715 // Invoke the platform-dependent code generator to do the actual
716 // declaration of the global functions and variables.
717 Handle<FixedArray> array =
718 isolate()->factory()->NewFixedArray(globals_->length(), TENURED);
719 for (int i = 0; i < globals_->length(); ++i)
720 array->set(i, *globals_->at(i));
721 DeclareGlobals(array);
722 }
723
724 globals_ = saved_globals;
725 }
726
727
VisitModuleLiteral(ModuleLiteral * module)728 void FullCodeGenerator::VisitModuleLiteral(ModuleLiteral* module) {
729 Block* block = module->body();
730 Scope* saved_scope = scope();
731 scope_ = block->scope();
732 Interface* interface = scope_->interface();
733
734 Comment cmnt(masm_, "[ ModuleLiteral");
735 SetStatementPosition(block);
736
737 DCHECK(!modules_.is_null());
738 DCHECK(module_index_ < modules_->length());
739 int index = module_index_++;
740
741 // Set up module context.
742 DCHECK(interface->Index() >= 0);
743 __ Push(Smi::FromInt(interface->Index()));
744 __ Push(Smi::FromInt(0));
745 __ CallRuntime(Runtime::kPushModuleContext, 2);
746 StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
747
748 {
749 Comment cmnt(masm_, "[ Declarations");
750 VisitDeclarations(scope_->declarations());
751 }
752
753 // Populate the module description.
754 Handle<ModuleInfo> description =
755 ModuleInfo::Create(isolate(), interface, scope_);
756 modules_->set(index, *description);
757
758 scope_ = saved_scope;
759 // Pop module context.
760 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
761 // Update local stack frame context field.
762 StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
763 }
764
765
VisitModuleVariable(ModuleVariable * module)766 void FullCodeGenerator::VisitModuleVariable(ModuleVariable* module) {
767 // Nothing to do.
768 // The instance object is resolved statically through the module's interface.
769 }
770
771
VisitModulePath(ModulePath * module)772 void FullCodeGenerator::VisitModulePath(ModulePath* module) {
773 // Nothing to do.
774 // The instance object is resolved statically through the module's interface.
775 }
776
777
VisitModuleUrl(ModuleUrl * module)778 void FullCodeGenerator::VisitModuleUrl(ModuleUrl* module) {
779 // TODO(rossberg): dummy allocation for now.
780 Scope* scope = module->body()->scope();
781 Interface* interface = scope_->interface();
782
783 DCHECK(interface->IsModule() && interface->IsFrozen());
784 DCHECK(!modules_.is_null());
785 DCHECK(module_index_ < modules_->length());
786 interface->Allocate(scope->module_var()->index());
787 int index = module_index_++;
788
789 Handle<ModuleInfo> description =
790 ModuleInfo::Create(isolate(), interface, scope_);
791 modules_->set(index, *description);
792 }
793
794
DeclareGlobalsFlags()795 int FullCodeGenerator::DeclareGlobalsFlags() {
796 DCHECK(DeclareGlobalsStrictMode::is_valid(strict_mode()));
797 return DeclareGlobalsEvalFlag::encode(is_eval()) |
798 DeclareGlobalsNativeFlag::encode(is_native()) |
799 DeclareGlobalsStrictMode::encode(strict_mode());
800 }
801
802
SetFunctionPosition(FunctionLiteral * fun)803 void FullCodeGenerator::SetFunctionPosition(FunctionLiteral* fun) {
804 CodeGenerator::RecordPositions(masm_, fun->start_position());
805 }
806
807
SetReturnPosition(FunctionLiteral * fun)808 void FullCodeGenerator::SetReturnPosition(FunctionLiteral* fun) {
809 CodeGenerator::RecordPositions(masm_, fun->end_position() - 1);
810 }
811
812
SetStatementPosition(Statement * stmt)813 void FullCodeGenerator::SetStatementPosition(Statement* stmt) {
814 if (!info_->is_debug()) {
815 CodeGenerator::RecordPositions(masm_, stmt->position());
816 } else {
817 // Check if the statement will be breakable without adding a debug break
818 // slot.
819 BreakableStatementChecker checker(zone());
820 checker.Check(stmt);
821 // Record the statement position right here if the statement is not
822 // breakable. For breakable statements the actual recording of the
823 // position will be postponed to the breakable code (typically an IC).
824 bool position_recorded = CodeGenerator::RecordPositions(
825 masm_, stmt->position(), !checker.is_breakable());
826 // If the position recording did record a new position generate a debug
827 // break slot to make the statement breakable.
828 if (position_recorded) {
829 DebugCodegen::GenerateSlot(masm_);
830 }
831 }
832 }
833
834
VisitSuperReference(SuperReference * super)835 void FullCodeGenerator::VisitSuperReference(SuperReference* super) {
836 __ CallRuntime(Runtime::kThrowUnsupportedSuperError, 0);
837 }
838
839
SetExpressionPosition(Expression * expr)840 void FullCodeGenerator::SetExpressionPosition(Expression* expr) {
841 if (!info_->is_debug()) {
842 CodeGenerator::RecordPositions(masm_, expr->position());
843 } else {
844 // Check if the expression will be breakable without adding a debug break
845 // slot.
846 BreakableStatementChecker checker(zone());
847 checker.Check(expr);
848 // Record a statement position right here if the expression is not
849 // breakable. For breakable expressions the actual recording of the
850 // position will be postponed to the breakable code (typically an IC).
851 // NOTE this will record a statement position for something which might
852 // not be a statement. As stepping in the debugger will only stop at
853 // statement positions this is used for e.g. the condition expression of
854 // a do while loop.
855 bool position_recorded = CodeGenerator::RecordPositions(
856 masm_, expr->position(), !checker.is_breakable());
857 // If the position recording did record a new position generate a debug
858 // break slot to make the statement breakable.
859 if (position_recorded) {
860 DebugCodegen::GenerateSlot(masm_);
861 }
862 }
863 }
864
865
SetSourcePosition(int pos)866 void FullCodeGenerator::SetSourcePosition(int pos) {
867 if (pos != RelocInfo::kNoPosition) {
868 masm_->positions_recorder()->RecordPosition(pos);
869 }
870 }
871
872
873 // Lookup table for code generators for special runtime calls which are
874 // generated inline.
875 #define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
876 &FullCodeGenerator::Emit##Name,
877
878 const FullCodeGenerator::InlineFunctionGenerator
879 FullCodeGenerator::kInlineFunctionGenerators[] = {
880 INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
881 };
882 #undef INLINE_FUNCTION_GENERATOR_ADDRESS
883
884
885 FullCodeGenerator::InlineFunctionGenerator
FindInlineFunctionGenerator(Runtime::FunctionId id)886 FullCodeGenerator::FindInlineFunctionGenerator(Runtime::FunctionId id) {
887 int lookup_index =
888 static_cast<int>(id) - static_cast<int>(Runtime::kFirstInlineFunction);
889 DCHECK(lookup_index >= 0);
890 DCHECK(static_cast<size_t>(lookup_index) <
891 arraysize(kInlineFunctionGenerators));
892 return kInlineFunctionGenerators[lookup_index];
893 }
894
895
EmitInlineRuntimeCall(CallRuntime * expr)896 void FullCodeGenerator::EmitInlineRuntimeCall(CallRuntime* expr) {
897 const Runtime::Function* function = expr->function();
898 DCHECK(function != NULL);
899 DCHECK(function->intrinsic_type == Runtime::INLINE);
900 InlineFunctionGenerator generator =
901 FindInlineFunctionGenerator(function->function_id);
902 ((*this).*(generator))(expr);
903 }
904
905
EmitGeneratorNext(CallRuntime * expr)906 void FullCodeGenerator::EmitGeneratorNext(CallRuntime* expr) {
907 ZoneList<Expression*>* args = expr->arguments();
908 DCHECK(args->length() == 2);
909 EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::NEXT);
910 }
911
912
EmitGeneratorThrow(CallRuntime * expr)913 void FullCodeGenerator::EmitGeneratorThrow(CallRuntime* expr) {
914 ZoneList<Expression*>* args = expr->arguments();
915 DCHECK(args->length() == 2);
916 EmitGeneratorResume(args->at(0), args->at(1), JSGeneratorObject::THROW);
917 }
918
919
EmitDebugBreakInOptimizedCode(CallRuntime * expr)920 void FullCodeGenerator::EmitDebugBreakInOptimizedCode(CallRuntime* expr) {
921 context()->Plug(handle(Smi::FromInt(0), isolate()));
922 }
923
924
VisitBinaryOperation(BinaryOperation * expr)925 void FullCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
926 switch (expr->op()) {
927 case Token::COMMA:
928 return VisitComma(expr);
929 case Token::OR:
930 case Token::AND:
931 return VisitLogicalExpression(expr);
932 default:
933 return VisitArithmeticExpression(expr);
934 }
935 }
936
937
VisitInDuplicateContext(Expression * expr)938 void FullCodeGenerator::VisitInDuplicateContext(Expression* expr) {
939 if (context()->IsEffect()) {
940 VisitForEffect(expr);
941 } else if (context()->IsAccumulatorValue()) {
942 VisitForAccumulatorValue(expr);
943 } else if (context()->IsStackValue()) {
944 VisitForStackValue(expr);
945 } else if (context()->IsTest()) {
946 const TestContext* test = TestContext::cast(context());
947 VisitForControl(expr, test->true_label(), test->false_label(),
948 test->fall_through());
949 }
950 }
951
952
VisitComma(BinaryOperation * expr)953 void FullCodeGenerator::VisitComma(BinaryOperation* expr) {
954 Comment cmnt(masm_, "[ Comma");
955 VisitForEffect(expr->left());
956 VisitInDuplicateContext(expr->right());
957 }
958
959
VisitLogicalExpression(BinaryOperation * expr)960 void FullCodeGenerator::VisitLogicalExpression(BinaryOperation* expr) {
961 bool is_logical_and = expr->op() == Token::AND;
962 Comment cmnt(masm_, is_logical_and ? "[ Logical AND" : "[ Logical OR");
963 Expression* left = expr->left();
964 Expression* right = expr->right();
965 BailoutId right_id = expr->RightId();
966 Label done;
967
968 if (context()->IsTest()) {
969 Label eval_right;
970 const TestContext* test = TestContext::cast(context());
971 if (is_logical_and) {
972 VisitForControl(left, &eval_right, test->false_label(), &eval_right);
973 } else {
974 VisitForControl(left, test->true_label(), &eval_right, &eval_right);
975 }
976 PrepareForBailoutForId(right_id, NO_REGISTERS);
977 __ bind(&eval_right);
978
979 } else if (context()->IsAccumulatorValue()) {
980 VisitForAccumulatorValue(left);
981 // We want the value in the accumulator for the test, and on the stack in
982 // case we need it.
983 __ Push(result_register());
984 Label discard, restore;
985 if (is_logical_and) {
986 DoTest(left, &discard, &restore, &restore);
987 } else {
988 DoTest(left, &restore, &discard, &restore);
989 }
990 __ bind(&restore);
991 __ Pop(result_register());
992 __ jmp(&done);
993 __ bind(&discard);
994 __ Drop(1);
995 PrepareForBailoutForId(right_id, NO_REGISTERS);
996
997 } else if (context()->IsStackValue()) {
998 VisitForAccumulatorValue(left);
999 // We want the value in the accumulator for the test, and on the stack in
1000 // case we need it.
1001 __ Push(result_register());
1002 Label discard;
1003 if (is_logical_and) {
1004 DoTest(left, &discard, &done, &discard);
1005 } else {
1006 DoTest(left, &done, &discard, &discard);
1007 }
1008 __ bind(&discard);
1009 __ Drop(1);
1010 PrepareForBailoutForId(right_id, NO_REGISTERS);
1011
1012 } else {
1013 DCHECK(context()->IsEffect());
1014 Label eval_right;
1015 if (is_logical_and) {
1016 VisitForControl(left, &eval_right, &done, &eval_right);
1017 } else {
1018 VisitForControl(left, &done, &eval_right, &eval_right);
1019 }
1020 PrepareForBailoutForId(right_id, NO_REGISTERS);
1021 __ bind(&eval_right);
1022 }
1023
1024 VisitInDuplicateContext(right);
1025 __ bind(&done);
1026 }
1027
1028
VisitArithmeticExpression(BinaryOperation * expr)1029 void FullCodeGenerator::VisitArithmeticExpression(BinaryOperation* expr) {
1030 Token::Value op = expr->op();
1031 Comment cmnt(masm_, "[ ArithmeticExpression");
1032 Expression* left = expr->left();
1033 Expression* right = expr->right();
1034 OverwriteMode mode =
1035 left->ResultOverwriteAllowed()
1036 ? OVERWRITE_LEFT
1037 : (right->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE);
1038
1039 VisitForStackValue(left);
1040 VisitForAccumulatorValue(right);
1041
1042 SetSourcePosition(expr->position());
1043 if (ShouldInlineSmiCase(op)) {
1044 EmitInlineSmiBinaryOp(expr, op, mode, left, right);
1045 } else {
1046 EmitBinaryOp(expr, op, mode);
1047 }
1048 }
1049
1050
VisitBlock(Block * stmt)1051 void FullCodeGenerator::VisitBlock(Block* stmt) {
1052 Comment cmnt(masm_, "[ Block");
1053 NestedBlock nested_block(this, stmt);
1054 SetStatementPosition(stmt);
1055
1056 Scope* saved_scope = scope();
1057 // Push a block context when entering a block with block scoped variables.
1058 if (stmt->scope() == NULL) {
1059 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
1060 } else {
1061 scope_ = stmt->scope();
1062 DCHECK(!scope_->is_module_scope());
1063 { Comment cmnt(masm_, "[ Extend block context");
1064 __ Push(scope_->GetScopeInfo());
1065 PushFunctionArgumentForContextAllocation();
1066 __ CallRuntime(Runtime::kPushBlockContext, 2);
1067
1068 // Replace the context stored in the frame.
1069 StoreToFrameField(StandardFrameConstants::kContextOffset,
1070 context_register());
1071 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
1072 }
1073 { Comment cmnt(masm_, "[ Declarations");
1074 VisitDeclarations(scope_->declarations());
1075 PrepareForBailoutForId(stmt->DeclsId(), NO_REGISTERS);
1076 }
1077 }
1078
1079 VisitStatements(stmt->statements());
1080 scope_ = saved_scope;
1081 __ bind(nested_block.break_label());
1082
1083 // Pop block context if necessary.
1084 if (stmt->scope() != NULL) {
1085 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1086 // Update local stack frame context field.
1087 StoreToFrameField(StandardFrameConstants::kContextOffset,
1088 context_register());
1089 }
1090 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1091 }
1092
1093
VisitModuleStatement(ModuleStatement * stmt)1094 void FullCodeGenerator::VisitModuleStatement(ModuleStatement* stmt) {
1095 Comment cmnt(masm_, "[ Module context");
1096
1097 __ Push(Smi::FromInt(stmt->proxy()->interface()->Index()));
1098 __ Push(Smi::FromInt(0));
1099 __ CallRuntime(Runtime::kPushModuleContext, 2);
1100 StoreToFrameField(
1101 StandardFrameConstants::kContextOffset, context_register());
1102
1103 Scope* saved_scope = scope_;
1104 scope_ = stmt->body()->scope();
1105 VisitStatements(stmt->body()->statements());
1106 scope_ = saved_scope;
1107 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1108 // Update local stack frame context field.
1109 StoreToFrameField(StandardFrameConstants::kContextOffset,
1110 context_register());
1111 }
1112
1113
VisitExpressionStatement(ExpressionStatement * stmt)1114 void FullCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
1115 Comment cmnt(masm_, "[ ExpressionStatement");
1116 SetStatementPosition(stmt);
1117 VisitForEffect(stmt->expression());
1118 }
1119
1120
VisitEmptyStatement(EmptyStatement * stmt)1121 void FullCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
1122 Comment cmnt(masm_, "[ EmptyStatement");
1123 SetStatementPosition(stmt);
1124 }
1125
1126
VisitIfStatement(IfStatement * stmt)1127 void FullCodeGenerator::VisitIfStatement(IfStatement* stmt) {
1128 Comment cmnt(masm_, "[ IfStatement");
1129 SetStatementPosition(stmt);
1130 Label then_part, else_part, done;
1131
1132 if (stmt->HasElseStatement()) {
1133 VisitForControl(stmt->condition(), &then_part, &else_part, &then_part);
1134 PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
1135 __ bind(&then_part);
1136 Visit(stmt->then_statement());
1137 __ jmp(&done);
1138
1139 PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
1140 __ bind(&else_part);
1141 Visit(stmt->else_statement());
1142 } else {
1143 VisitForControl(stmt->condition(), &then_part, &done, &then_part);
1144 PrepareForBailoutForId(stmt->ThenId(), NO_REGISTERS);
1145 __ bind(&then_part);
1146 Visit(stmt->then_statement());
1147
1148 PrepareForBailoutForId(stmt->ElseId(), NO_REGISTERS);
1149 }
1150 __ bind(&done);
1151 PrepareForBailoutForId(stmt->IfId(), NO_REGISTERS);
1152 }
1153
1154
VisitContinueStatement(ContinueStatement * stmt)1155 void FullCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
1156 Comment cmnt(masm_, "[ ContinueStatement");
1157 SetStatementPosition(stmt);
1158 NestedStatement* current = nesting_stack_;
1159 int stack_depth = 0;
1160 int context_length = 0;
1161 // When continuing, we clobber the unpredictable value in the accumulator
1162 // with one that's safe for GC. If we hit an exit from the try block of
1163 // try...finally on our way out, we will unconditionally preserve the
1164 // accumulator on the stack.
1165 ClearAccumulator();
1166 while (!current->IsContinueTarget(stmt->target())) {
1167 current = current->Exit(&stack_depth, &context_length);
1168 }
1169 __ Drop(stack_depth);
1170 if (context_length > 0) {
1171 while (context_length > 0) {
1172 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1173 --context_length;
1174 }
1175 StoreToFrameField(StandardFrameConstants::kContextOffset,
1176 context_register());
1177 }
1178
1179 __ jmp(current->AsIteration()->continue_label());
1180 }
1181
1182
VisitBreakStatement(BreakStatement * stmt)1183 void FullCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
1184 Comment cmnt(masm_, "[ BreakStatement");
1185 SetStatementPosition(stmt);
1186 NestedStatement* current = nesting_stack_;
1187 int stack_depth = 0;
1188 int context_length = 0;
1189 // When breaking, we clobber the unpredictable value in the accumulator
1190 // with one that's safe for GC. If we hit an exit from the try block of
1191 // try...finally on our way out, we will unconditionally preserve the
1192 // accumulator on the stack.
1193 ClearAccumulator();
1194 while (!current->IsBreakTarget(stmt->target())) {
1195 current = current->Exit(&stack_depth, &context_length);
1196 }
1197 __ Drop(stack_depth);
1198 if (context_length > 0) {
1199 while (context_length > 0) {
1200 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1201 --context_length;
1202 }
1203 StoreToFrameField(StandardFrameConstants::kContextOffset,
1204 context_register());
1205 }
1206
1207 __ jmp(current->AsBreakable()->break_label());
1208 }
1209
1210
EmitUnwindBeforeReturn()1211 void FullCodeGenerator::EmitUnwindBeforeReturn() {
1212 NestedStatement* current = nesting_stack_;
1213 int stack_depth = 0;
1214 int context_length = 0;
1215 while (current != NULL) {
1216 current = current->Exit(&stack_depth, &context_length);
1217 }
1218 __ Drop(stack_depth);
1219 }
1220
1221
VisitReturnStatement(ReturnStatement * stmt)1222 void FullCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
1223 Comment cmnt(masm_, "[ ReturnStatement");
1224 SetStatementPosition(stmt);
1225 Expression* expr = stmt->expression();
1226 VisitForAccumulatorValue(expr);
1227 EmitUnwindBeforeReturn();
1228 EmitReturnSequence();
1229 }
1230
1231
VisitWithStatement(WithStatement * stmt)1232 void FullCodeGenerator::VisitWithStatement(WithStatement* stmt) {
1233 Comment cmnt(masm_, "[ WithStatement");
1234 SetStatementPosition(stmt);
1235
1236 VisitForStackValue(stmt->expression());
1237 PushFunctionArgumentForContextAllocation();
1238 __ CallRuntime(Runtime::kPushWithContext, 2);
1239 StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
1240
1241 Scope* saved_scope = scope();
1242 scope_ = stmt->scope();
1243 { WithOrCatch body(this);
1244 Visit(stmt->statement());
1245 }
1246 scope_ = saved_scope;
1247
1248 // Pop context.
1249 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1250 // Update local stack frame context field.
1251 StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
1252 }
1253
1254
VisitDoWhileStatement(DoWhileStatement * stmt)1255 void FullCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
1256 Comment cmnt(masm_, "[ DoWhileStatement");
1257 SetStatementPosition(stmt);
1258 Label body, book_keeping;
1259
1260 Iteration loop_statement(this, stmt);
1261 increment_loop_depth();
1262
1263 __ bind(&body);
1264 Visit(stmt->body());
1265
1266 // Record the position of the do while condition and make sure it is
1267 // possible to break on the condition.
1268 __ bind(loop_statement.continue_label());
1269 PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
1270 SetExpressionPosition(stmt->cond());
1271 VisitForControl(stmt->cond(),
1272 &book_keeping,
1273 loop_statement.break_label(),
1274 &book_keeping);
1275
1276 // Check stack before looping.
1277 PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
1278 __ bind(&book_keeping);
1279 EmitBackEdgeBookkeeping(stmt, &body);
1280 __ jmp(&body);
1281
1282 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1283 __ bind(loop_statement.break_label());
1284 decrement_loop_depth();
1285 }
1286
1287
VisitWhileStatement(WhileStatement * stmt)1288 void FullCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
1289 Comment cmnt(masm_, "[ WhileStatement");
1290 Label loop, body;
1291
1292 Iteration loop_statement(this, stmt);
1293 increment_loop_depth();
1294
1295 __ bind(&loop);
1296
1297 SetExpressionPosition(stmt->cond());
1298 VisitForControl(stmt->cond(),
1299 &body,
1300 loop_statement.break_label(),
1301 &body);
1302
1303 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1304 __ bind(&body);
1305 Visit(stmt->body());
1306
1307 __ bind(loop_statement.continue_label());
1308
1309 // Check stack before looping.
1310 EmitBackEdgeBookkeeping(stmt, &loop);
1311 __ jmp(&loop);
1312
1313 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1314 __ bind(loop_statement.break_label());
1315 decrement_loop_depth();
1316 }
1317
1318
VisitForStatement(ForStatement * stmt)1319 void FullCodeGenerator::VisitForStatement(ForStatement* stmt) {
1320 Comment cmnt(masm_, "[ ForStatement");
1321 Label test, body;
1322
1323 Iteration loop_statement(this, stmt);
1324
1325 // Set statement position for a break slot before entering the for-body.
1326 SetStatementPosition(stmt);
1327
1328 if (stmt->init() != NULL) {
1329 Visit(stmt->init());
1330 }
1331
1332 increment_loop_depth();
1333 // Emit the test at the bottom of the loop (even if empty).
1334 __ jmp(&test);
1335
1336 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1337 __ bind(&body);
1338 Visit(stmt->body());
1339
1340 PrepareForBailoutForId(stmt->ContinueId(), NO_REGISTERS);
1341 __ bind(loop_statement.continue_label());
1342 if (stmt->next() != NULL) {
1343 Visit(stmt->next());
1344 }
1345
1346 // Emit the statement position here as this is where the for
1347 // statement code starts.
1348 SetStatementPosition(stmt);
1349
1350 // Check stack before looping.
1351 EmitBackEdgeBookkeeping(stmt, &body);
1352
1353 __ bind(&test);
1354 if (stmt->cond() != NULL) {
1355 VisitForControl(stmt->cond(),
1356 &body,
1357 loop_statement.break_label(),
1358 loop_statement.break_label());
1359 } else {
1360 __ jmp(&body);
1361 }
1362
1363 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1364 __ bind(loop_statement.break_label());
1365 decrement_loop_depth();
1366 }
1367
1368
VisitTryCatchStatement(TryCatchStatement * stmt)1369 void FullCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
1370 Comment cmnt(masm_, "[ TryCatchStatement");
1371 SetStatementPosition(stmt);
1372 // The try block adds a handler to the exception handler chain before
1373 // entering, and removes it again when exiting normally. If an exception
1374 // is thrown during execution of the try block, the handler is consumed
1375 // and control is passed to the catch block with the exception in the
1376 // result register.
1377
1378 Label try_entry, handler_entry, exit;
1379 __ jmp(&try_entry);
1380 __ bind(&handler_entry);
1381 handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
1382 // Exception handler code, the exception is in the result register.
1383 // Extend the context before executing the catch block.
1384 { Comment cmnt(masm_, "[ Extend catch context");
1385 __ Push(stmt->variable()->name());
1386 __ Push(result_register());
1387 PushFunctionArgumentForContextAllocation();
1388 __ CallRuntime(Runtime::kPushCatchContext, 3);
1389 StoreToFrameField(StandardFrameConstants::kContextOffset,
1390 context_register());
1391 }
1392
1393 Scope* saved_scope = scope();
1394 scope_ = stmt->scope();
1395 DCHECK(scope_->declarations()->is_empty());
1396 { WithOrCatch catch_body(this);
1397 Visit(stmt->catch_block());
1398 }
1399 // Restore the context.
1400 LoadContextField(context_register(), Context::PREVIOUS_INDEX);
1401 StoreToFrameField(StandardFrameConstants::kContextOffset, context_register());
1402 scope_ = saved_scope;
1403 __ jmp(&exit);
1404
1405 // Try block code. Sets up the exception handler chain.
1406 __ bind(&try_entry);
1407 __ PushTryHandler(StackHandler::CATCH, stmt->index());
1408 { TryCatch try_body(this);
1409 Visit(stmt->try_block());
1410 }
1411 __ PopTryHandler();
1412 __ bind(&exit);
1413 }
1414
1415
VisitTryFinallyStatement(TryFinallyStatement * stmt)1416 void FullCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
1417 Comment cmnt(masm_, "[ TryFinallyStatement");
1418 SetStatementPosition(stmt);
1419 // Try finally is compiled by setting up a try-handler on the stack while
1420 // executing the try body, and removing it again afterwards.
1421 //
1422 // The try-finally construct can enter the finally block in three ways:
1423 // 1. By exiting the try-block normally. This removes the try-handler and
1424 // calls the finally block code before continuing.
1425 // 2. By exiting the try-block with a function-local control flow transfer
1426 // (break/continue/return). The site of the, e.g., break removes the
1427 // try handler and calls the finally block code before continuing
1428 // its outward control transfer.
1429 // 3. By exiting the try-block with a thrown exception.
1430 // This can happen in nested function calls. It traverses the try-handler
1431 // chain and consumes the try-handler entry before jumping to the
1432 // handler code. The handler code then calls the finally-block before
1433 // rethrowing the exception.
1434 //
1435 // The finally block must assume a return address on top of the stack
1436 // (or in the link register on ARM chips) and a value (return value or
1437 // exception) in the result register (rax/eax/r0), both of which must
1438 // be preserved. The return address isn't GC-safe, so it should be
1439 // cooked before GC.
1440 Label try_entry, handler_entry, finally_entry;
1441
1442 // Jump to try-handler setup and try-block code.
1443 __ jmp(&try_entry);
1444 __ bind(&handler_entry);
1445 handler_table()->set(stmt->index(), Smi::FromInt(handler_entry.pos()));
1446 // Exception handler code. This code is only executed when an exception
1447 // is thrown. The exception is in the result register, and must be
1448 // preserved by the finally block. Call the finally block and then
1449 // rethrow the exception if it returns.
1450 __ Call(&finally_entry);
1451 __ Push(result_register());
1452 __ CallRuntime(Runtime::kReThrow, 1);
1453
1454 // Finally block implementation.
1455 __ bind(&finally_entry);
1456 EnterFinallyBlock();
1457 { Finally finally_body(this);
1458 Visit(stmt->finally_block());
1459 }
1460 ExitFinallyBlock(); // Return to the calling code.
1461
1462 // Set up try handler.
1463 __ bind(&try_entry);
1464 __ PushTryHandler(StackHandler::FINALLY, stmt->index());
1465 { TryFinally try_body(this, &finally_entry);
1466 Visit(stmt->try_block());
1467 }
1468 __ PopTryHandler();
1469 // Execute the finally block on the way out. Clobber the unpredictable
1470 // value in the result register with one that's safe for GC because the
1471 // finally block will unconditionally preserve the result register on the
1472 // stack.
1473 ClearAccumulator();
1474 __ Call(&finally_entry);
1475 }
1476
1477
VisitDebuggerStatement(DebuggerStatement * stmt)1478 void FullCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
1479 Comment cmnt(masm_, "[ DebuggerStatement");
1480 SetStatementPosition(stmt);
1481
1482 __ DebugBreak();
1483 // Ignore the return value.
1484
1485 PrepareForBailoutForId(stmt->DebugBreakId(), NO_REGISTERS);
1486 }
1487
1488
VisitCaseClause(CaseClause * clause)1489 void FullCodeGenerator::VisitCaseClause(CaseClause* clause) {
1490 UNREACHABLE();
1491 }
1492
1493
VisitConditional(Conditional * expr)1494 void FullCodeGenerator::VisitConditional(Conditional* expr) {
1495 Comment cmnt(masm_, "[ Conditional");
1496 Label true_case, false_case, done;
1497 VisitForControl(expr->condition(), &true_case, &false_case, &true_case);
1498
1499 PrepareForBailoutForId(expr->ThenId(), NO_REGISTERS);
1500 __ bind(&true_case);
1501 SetExpressionPosition(expr->then_expression());
1502 if (context()->IsTest()) {
1503 const TestContext* for_test = TestContext::cast(context());
1504 VisitForControl(expr->then_expression(),
1505 for_test->true_label(),
1506 for_test->false_label(),
1507 NULL);
1508 } else {
1509 VisitInDuplicateContext(expr->then_expression());
1510 __ jmp(&done);
1511 }
1512
1513 PrepareForBailoutForId(expr->ElseId(), NO_REGISTERS);
1514 __ bind(&false_case);
1515 SetExpressionPosition(expr->else_expression());
1516 VisitInDuplicateContext(expr->else_expression());
1517 // If control flow falls through Visit, merge it with true case here.
1518 if (!context()->IsTest()) {
1519 __ bind(&done);
1520 }
1521 }
1522
1523
VisitLiteral(Literal * expr)1524 void FullCodeGenerator::VisitLiteral(Literal* expr) {
1525 Comment cmnt(masm_, "[ Literal");
1526 context()->Plug(expr->value());
1527 }
1528
1529
VisitFunctionLiteral(FunctionLiteral * expr)1530 void FullCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
1531 Comment cmnt(masm_, "[ FunctionLiteral");
1532
1533 // Build the function boilerplate and instantiate it.
1534 Handle<SharedFunctionInfo> function_info =
1535 Compiler::BuildFunctionInfo(expr, script(), info_);
1536 if (function_info.is_null()) {
1537 SetStackOverflow();
1538 return;
1539 }
1540 EmitNewClosure(function_info, expr->pretenure());
1541 }
1542
1543
VisitClassLiteral(ClassLiteral * expr)1544 void FullCodeGenerator::VisitClassLiteral(ClassLiteral* expr) {
1545 // TODO(arv): Implement
1546 Comment cmnt(masm_, "[ ClassLiteral");
1547 if (expr->extends() != NULL) {
1548 VisitForEffect(expr->extends());
1549 }
1550 context()->Plug(isolate()->factory()->undefined_value());
1551 }
1552
1553
VisitNativeFunctionLiteral(NativeFunctionLiteral * expr)1554 void FullCodeGenerator::VisitNativeFunctionLiteral(
1555 NativeFunctionLiteral* expr) {
1556 Comment cmnt(masm_, "[ NativeFunctionLiteral");
1557
1558 // Compute the function template for the native function.
1559 Handle<String> name = expr->name();
1560 v8::Handle<v8::FunctionTemplate> fun_template =
1561 expr->extension()->GetNativeFunctionTemplate(
1562 reinterpret_cast<v8::Isolate*>(isolate()), v8::Utils::ToLocal(name));
1563 DCHECK(!fun_template.IsEmpty());
1564
1565 // Instantiate the function and create a shared function info from it.
1566 Handle<JSFunction> fun = Utils::OpenHandle(*fun_template->GetFunction());
1567 const int literals = fun->NumberOfLiterals();
1568 Handle<Code> code = Handle<Code>(fun->shared()->code());
1569 Handle<Code> construct_stub = Handle<Code>(fun->shared()->construct_stub());
1570 Handle<SharedFunctionInfo> shared =
1571 isolate()->factory()->NewSharedFunctionInfo(
1572 name, literals, FunctionKind::kNormalFunction, code,
1573 Handle<ScopeInfo>(fun->shared()->scope_info()),
1574 Handle<TypeFeedbackVector>(fun->shared()->feedback_vector()));
1575 shared->set_construct_stub(*construct_stub);
1576
1577 // Copy the function data to the shared function info.
1578 shared->set_function_data(fun->shared()->function_data());
1579 int parameters = fun->shared()->formal_parameter_count();
1580 shared->set_formal_parameter_count(parameters);
1581
1582 EmitNewClosure(shared, false);
1583 }
1584
1585
VisitThrow(Throw * expr)1586 void FullCodeGenerator::VisitThrow(Throw* expr) {
1587 Comment cmnt(masm_, "[ Throw");
1588 VisitForStackValue(expr->exception());
1589 __ CallRuntime(Runtime::kThrow, 1);
1590 // Never returns here.
1591 }
1592
1593
Exit(int * stack_depth,int * context_length)1594 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryCatch::Exit(
1595 int* stack_depth,
1596 int* context_length) {
1597 // The macros used here must preserve the result register.
1598 __ Drop(*stack_depth);
1599 __ PopTryHandler();
1600 *stack_depth = 0;
1601 return previous_;
1602 }
1603
1604
TryLiteralCompare(CompareOperation * expr)1605 bool FullCodeGenerator::TryLiteralCompare(CompareOperation* expr) {
1606 Expression* sub_expr;
1607 Handle<String> check;
1608 if (expr->IsLiteralCompareTypeof(&sub_expr, &check)) {
1609 EmitLiteralCompareTypeof(expr, sub_expr, check);
1610 return true;
1611 }
1612
1613 if (expr->IsLiteralCompareUndefined(&sub_expr, isolate())) {
1614 EmitLiteralCompareNil(expr, sub_expr, kUndefinedValue);
1615 return true;
1616 }
1617
1618 if (expr->IsLiteralCompareNull(&sub_expr)) {
1619 EmitLiteralCompareNil(expr, sub_expr, kNullValue);
1620 return true;
1621 }
1622
1623 return false;
1624 }
1625
1626
Patch(Isolate * isolate,Code * unoptimized)1627 void BackEdgeTable::Patch(Isolate* isolate, Code* unoptimized) {
1628 DisallowHeapAllocation no_gc;
1629 Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
1630
1631 // Increment loop nesting level by one and iterate over the back edge table
1632 // to find the matching loops to patch the interrupt
1633 // call to an unconditional call to the replacement code.
1634 int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level() + 1;
1635 if (loop_nesting_level > Code::kMaxLoopNestingMarker) return;
1636
1637 BackEdgeTable back_edges(unoptimized, &no_gc);
1638 for (uint32_t i = 0; i < back_edges.length(); i++) {
1639 if (static_cast<int>(back_edges.loop_depth(i)) == loop_nesting_level) {
1640 DCHECK_EQ(INTERRUPT, GetBackEdgeState(isolate,
1641 unoptimized,
1642 back_edges.pc(i)));
1643 PatchAt(unoptimized, back_edges.pc(i), ON_STACK_REPLACEMENT, patch);
1644 }
1645 }
1646
1647 unoptimized->set_allow_osr_at_loop_nesting_level(loop_nesting_level);
1648 DCHECK(Verify(isolate, unoptimized));
1649 }
1650
1651
Revert(Isolate * isolate,Code * unoptimized)1652 void BackEdgeTable::Revert(Isolate* isolate, Code* unoptimized) {
1653 DisallowHeapAllocation no_gc;
1654 Code* patch = isolate->builtins()->builtin(Builtins::kInterruptCheck);
1655
1656 // Iterate over the back edge table and revert the patched interrupt calls.
1657 int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
1658
1659 BackEdgeTable back_edges(unoptimized, &no_gc);
1660 for (uint32_t i = 0; i < back_edges.length(); i++) {
1661 if (static_cast<int>(back_edges.loop_depth(i)) <= loop_nesting_level) {
1662 DCHECK_NE(INTERRUPT, GetBackEdgeState(isolate,
1663 unoptimized,
1664 back_edges.pc(i)));
1665 PatchAt(unoptimized, back_edges.pc(i), INTERRUPT, patch);
1666 }
1667 }
1668
1669 unoptimized->set_allow_osr_at_loop_nesting_level(0);
1670 // Assert that none of the back edges are patched anymore.
1671 DCHECK(Verify(isolate, unoptimized));
1672 }
1673
1674
AddStackCheck(Handle<Code> code,uint32_t pc_offset)1675 void BackEdgeTable::AddStackCheck(Handle<Code> code, uint32_t pc_offset) {
1676 DisallowHeapAllocation no_gc;
1677 Isolate* isolate = code->GetIsolate();
1678 Address pc = code->instruction_start() + pc_offset;
1679 Code* patch = isolate->builtins()->builtin(Builtins::kOsrAfterStackCheck);
1680 PatchAt(*code, pc, OSR_AFTER_STACK_CHECK, patch);
1681 }
1682
1683
RemoveStackCheck(Handle<Code> code,uint32_t pc_offset)1684 void BackEdgeTable::RemoveStackCheck(Handle<Code> code, uint32_t pc_offset) {
1685 DisallowHeapAllocation no_gc;
1686 Isolate* isolate = code->GetIsolate();
1687 Address pc = code->instruction_start() + pc_offset;
1688
1689 if (OSR_AFTER_STACK_CHECK == GetBackEdgeState(isolate, *code, pc)) {
1690 Code* patch = isolate->builtins()->builtin(Builtins::kOnStackReplacement);
1691 PatchAt(*code, pc, ON_STACK_REPLACEMENT, patch);
1692 }
1693 }
1694
1695
1696 #ifdef DEBUG
Verify(Isolate * isolate,Code * unoptimized)1697 bool BackEdgeTable::Verify(Isolate* isolate, Code* unoptimized) {
1698 DisallowHeapAllocation no_gc;
1699 int loop_nesting_level = unoptimized->allow_osr_at_loop_nesting_level();
1700 BackEdgeTable back_edges(unoptimized, &no_gc);
1701 for (uint32_t i = 0; i < back_edges.length(); i++) {
1702 uint32_t loop_depth = back_edges.loop_depth(i);
1703 CHECK_LE(static_cast<int>(loop_depth), Code::kMaxLoopNestingMarker);
1704 // Assert that all back edges for shallower loops (and only those)
1705 // have already been patched.
1706 CHECK_EQ((static_cast<int>(loop_depth) <= loop_nesting_level),
1707 GetBackEdgeState(isolate,
1708 unoptimized,
1709 back_edges.pc(i)) != INTERRUPT);
1710 }
1711 return true;
1712 }
1713 #endif // DEBUG
1714
1715
1716 #undef __
1717
1718
1719 } } // namespace v8::internal
1720