1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the internal per-function state used for llvm translation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
16 
17 #include "CGBuilder.h"
18 #include "CGDebugInfo.h"
19 #include "CGLoopInfo.h"
20 #include "CGValue.h"
21 #include "CodeGenModule.h"
22 #include "CodeGenPGO.h"
23 #include "EHScopeStack.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/CapturedStmt.h"
30 #include "clang/Basic/OpenMPKinds.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Frontend/CodeGenOptions.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Support/Debug.h"
38 
39 namespace llvm {
40 class BasicBlock;
41 class LLVMContext;
42 class MDNode;
43 class Module;
44 class SwitchInst;
45 class Twine;
46 class Value;
47 class CallSite;
48 }
49 
50 namespace clang {
51 class ASTContext;
52 class BlockDecl;
53 class CXXDestructorDecl;
54 class CXXForRangeStmt;
55 class CXXTryStmt;
56 class Decl;
57 class LabelDecl;
58 class EnumConstantDecl;
59 class FunctionDecl;
60 class FunctionProtoType;
61 class LabelStmt;
62 class ObjCContainerDecl;
63 class ObjCInterfaceDecl;
64 class ObjCIvarDecl;
65 class ObjCMethodDecl;
66 class ObjCImplementationDecl;
67 class ObjCPropertyImplDecl;
68 class TargetInfo;
69 class TargetCodeGenInfo;
70 class VarDecl;
71 class ObjCForCollectionStmt;
72 class ObjCAtTryStmt;
73 class ObjCAtThrowStmt;
74 class ObjCAtSynchronizedStmt;
75 class ObjCAutoreleasePoolStmt;
76 
77 namespace CodeGen {
78 class CodeGenTypes;
79 class CGFunctionInfo;
80 class CGRecordLayout;
81 class CGBlockInfo;
82 class CGCXXABI;
83 class BlockFlags;
84 class BlockFieldFlags;
85 
86 /// The kind of evaluation to perform on values of a particular
87 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
88 /// CGExprAgg?
89 ///
90 /// TODO: should vectors maybe be split out into their own thing?
91 enum TypeEvaluationKind {
92   TEK_Scalar,
93   TEK_Complex,
94   TEK_Aggregate
95 };
96 
97 /// CodeGenFunction - This class organizes the per-function state that is used
98 /// while generating LLVM code.
99 class CodeGenFunction : public CodeGenTypeCache {
100   CodeGenFunction(const CodeGenFunction &) = delete;
101   void operator=(const CodeGenFunction &) = delete;
102 
103   friend class CGCXXABI;
104 public:
105   /// A jump destination is an abstract label, branching to which may
106   /// require a jump out through normal cleanups.
107   struct JumpDest {
JumpDestJumpDest108     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
JumpDestJumpDest109     JumpDest(llvm::BasicBlock *Block,
110              EHScopeStack::stable_iterator Depth,
111              unsigned Index)
112       : Block(Block), ScopeDepth(Depth), Index(Index) {}
113 
isValidJumpDest114     bool isValid() const { return Block != nullptr; }
getBlockJumpDest115     llvm::BasicBlock *getBlock() const { return Block; }
getScopeDepthJumpDest116     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
getDestIndexJumpDest117     unsigned getDestIndex() const { return Index; }
118 
119     // This should be used cautiously.
setScopeDepthJumpDest120     void setScopeDepth(EHScopeStack::stable_iterator depth) {
121       ScopeDepth = depth;
122     }
123 
124   private:
125     llvm::BasicBlock *Block;
126     EHScopeStack::stable_iterator ScopeDepth;
127     unsigned Index;
128   };
129 
130   CodeGenModule &CGM;  // Per-module state.
131   const TargetInfo &Target;
132 
133   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
134   LoopInfoStack LoopStack;
135   CGBuilderTy Builder;
136 
137   /// \brief CGBuilder insert helper. This function is called after an
138   /// instruction is created using Builder.
139   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
140                     llvm::BasicBlock *BB,
141                     llvm::BasicBlock::iterator InsertPt) const;
142 
143   /// CurFuncDecl - Holds the Decl for the current outermost
144   /// non-closure context.
145   const Decl *CurFuncDecl;
146   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
147   const Decl *CurCodeDecl;
148   const CGFunctionInfo *CurFnInfo;
149   QualType FnRetTy;
150   llvm::Function *CurFn;
151 
152   /// CurGD - The GlobalDecl for the current function being compiled.
153   GlobalDecl CurGD;
154 
155   /// PrologueCleanupDepth - The cleanup depth enclosing all the
156   /// cleanups associated with the parameters.
157   EHScopeStack::stable_iterator PrologueCleanupDepth;
158 
159   /// ReturnBlock - Unified return block.
160   JumpDest ReturnBlock;
161 
162   /// ReturnValue - The temporary alloca to hold the return value. This is null
163   /// iff the function has no return value.
164   llvm::Value *ReturnValue;
165 
166   /// AllocaInsertPoint - This is an instruction in the entry block before which
167   /// we prefer to insert allocas.
168   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
169 
170   /// \brief API for captured statement code generation.
171   class CGCapturedStmtInfo {
172   public:
173     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
Kind(K)174         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
175     explicit CGCapturedStmtInfo(const CapturedStmt &S,
176                                 CapturedRegionKind K = CR_Default)
Kind(K)177       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
178 
179       RecordDecl::field_iterator Field =
180         S.getCapturedRecordDecl()->field_begin();
181       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
182                                                 E = S.capture_end();
183            I != E; ++I, ++Field) {
184         if (I->capturesThis())
185           CXXThisFieldDecl = *Field;
186         else if (I->capturesVariable())
187           CaptureFields[I->getCapturedVar()] = *Field;
188       }
189     }
190 
191     virtual ~CGCapturedStmtInfo();
192 
getKind()193     CapturedRegionKind getKind() const { return Kind; }
194 
setContextValue(llvm::Value * V)195     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
196     // \brief Retrieve the value of the context parameter.
getContextValue()197     virtual llvm::Value *getContextValue() const { return ThisValue; }
198 
199     /// \brief Lookup the captured field decl for a variable.
lookup(const VarDecl * VD)200     virtual const FieldDecl *lookup(const VarDecl *VD) const {
201       return CaptureFields.lookup(VD);
202     }
203 
isCXXThisExprCaptured()204     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
getThisFieldDecl()205     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
206 
classof(const CGCapturedStmtInfo *)207     static bool classof(const CGCapturedStmtInfo *) {
208       return true;
209     }
210 
211     /// \brief Emit the captured statement body.
EmitBody(CodeGenFunction & CGF,const Stmt * S)212     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
213       RegionCounter Cnt = CGF.getPGORegionCounter(S);
214       Cnt.beginRegion(CGF.Builder);
215       CGF.EmitStmt(S);
216     }
217 
218     /// \brief Get the name of the capture helper.
getHelperName()219     virtual StringRef getHelperName() const { return "__captured_stmt"; }
220 
221   private:
222     /// \brief The kind of captured statement being generated.
223     CapturedRegionKind Kind;
224 
225     /// \brief Keep the map between VarDecl and FieldDecl.
226     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
227 
228     /// \brief The base address of the captured record, passed in as the first
229     /// argument of the parallel region function.
230     llvm::Value *ThisValue;
231 
232     /// \brief Captured 'this' type.
233     FieldDecl *CXXThisFieldDecl;
234   };
235   CGCapturedStmtInfo *CapturedStmtInfo;
236 
237   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
238   /// potentially higher performance penalties.
239   unsigned char BoundsChecking;
240 
241   /// \brief Sanitizers enabled for this function.
242   SanitizerSet SanOpts;
243 
244   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
245   bool IsSanitizerScope;
246 
247   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
248   class SanitizerScope {
249     CodeGenFunction *CGF;
250   public:
251     SanitizerScope(CodeGenFunction *CGF);
252     ~SanitizerScope();
253   };
254 
255   /// In C++, whether we are code generating a thunk.  This controls whether we
256   /// should emit cleanups.
257   bool CurFuncIsThunk;
258 
259   /// In ARC, whether we should autorelease the return value.
260   bool AutoreleaseResult;
261 
262   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
263   /// potentially set the return value.
264   bool SawAsmBlock;
265 
266   /// True if the current function is an outlined SEH helper. This can be a
267   /// finally block or filter expression.
268   bool IsOutlinedSEHHelper;
269 
270   const CodeGen::CGBlockInfo *BlockInfo;
271   llvm::Value *BlockPointer;
272 
273   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
274   FieldDecl *LambdaThisCaptureField;
275 
276   /// \brief A mapping from NRVO variables to the flags used to indicate
277   /// when the NRVO has been applied to this variable.
278   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
279 
280   EHScopeStack EHStack;
281   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
282   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
283 
284   /// Header for data within LifetimeExtendedCleanupStack.
285   struct LifetimeExtendedCleanupHeader {
286     /// The size of the following cleanup object.
287     unsigned Size : 29;
288     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
289     unsigned Kind : 3;
290 
getSizeLifetimeExtendedCleanupHeader291     size_t getSize() const { return size_t(Size); }
getKindLifetimeExtendedCleanupHeader292     CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
293   };
294 
295   /// i32s containing the indexes of the cleanup destinations.
296   llvm::AllocaInst *NormalCleanupDest;
297 
298   unsigned NextCleanupDestIndex;
299 
300   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
301   CGBlockInfo *FirstBlockInfo;
302 
303   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
304   llvm::BasicBlock *EHResumeBlock;
305 
306   /// The exception slot.  All landing pads write the current exception pointer
307   /// into this alloca.
308   llvm::Value *ExceptionSlot;
309 
310   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
311   /// write the current selector value into this alloca.
312   llvm::AllocaInst *EHSelectorSlot;
313 
314   llvm::AllocaInst *AbnormalTerminationSlot;
315 
316   /// The implicit parameter to SEH filter functions of type
317   /// 'EXCEPTION_POINTERS*'.
318   ImplicitParamDecl *SEHPointersDecl;
319 
320   /// Emits a landing pad for the current EH stack.
321   llvm::BasicBlock *EmitLandingPad();
322 
323   llvm::BasicBlock *getInvokeDestImpl();
324 
325   template <class T>
saveValueInCond(T value)326   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
327     return DominatingValue<T>::save(*this, value);
328   }
329 
330 public:
331   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
332   /// rethrows.
333   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
334 
335   /// A class controlling the emission of a finally block.
336   class FinallyInfo {
337     /// Where the catchall's edge through the cleanup should go.
338     JumpDest RethrowDest;
339 
340     /// A function to call to enter the catch.
341     llvm::Constant *BeginCatchFn;
342 
343     /// An i1 variable indicating whether or not the @finally is
344     /// running for an exception.
345     llvm::AllocaInst *ForEHVar;
346 
347     /// An i8* variable into which the exception pointer to rethrow
348     /// has been saved.
349     llvm::AllocaInst *SavedExnVar;
350 
351   public:
352     void enter(CodeGenFunction &CGF, const Stmt *Finally,
353                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
354                llvm::Constant *rethrowFn);
355     void exit(CodeGenFunction &CGF);
356   };
357 
358   /// Returns true inside SEH __try blocks.
isSEHTryScope()359   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
360 
361   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
362   /// current full-expression.  Safe against the possibility that
363   /// we're currently inside a conditionally-evaluated expression.
364   template <class T, class... As>
pushFullExprCleanup(CleanupKind kind,As...A)365   void pushFullExprCleanup(CleanupKind kind, As... A) {
366     // If we're not in a conditional branch, or if none of the
367     // arguments requires saving, then use the unconditional cleanup.
368     if (!isInConditionalBranch())
369       return EHStack.pushCleanup<T>(kind, A...);
370 
371     // Stash values in a tuple so we can guarantee the order of saves.
372     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
373     SavedTuple Saved{saveValueInCond(A)...};
374 
375     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
376     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
377     initFullExprCleanup();
378   }
379 
380   /// \brief Queue a cleanup to be pushed after finishing the current
381   /// full-expression.
382   template <class T, class... As>
pushCleanupAfterFullExpr(CleanupKind Kind,As...A)383   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
384     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
385 
386     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
387 
388     size_t OldSize = LifetimeExtendedCleanupStack.size();
389     LifetimeExtendedCleanupStack.resize(
390         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
391 
392     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
393     new (Buffer) LifetimeExtendedCleanupHeader(Header);
394     new (Buffer + sizeof(Header)) T(A...);
395   }
396 
397   /// Set up the last cleaup that was pushed as a conditional
398   /// full-expression cleanup.
399   void initFullExprCleanup();
400 
401   /// PushDestructorCleanup - Push a cleanup to call the
402   /// complete-object destructor of an object of the given type at the
403   /// given address.  Does nothing if T is not a C++ class type with a
404   /// non-trivial destructor.
405   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
406 
407   /// PushDestructorCleanup - Push a cleanup to call the
408   /// complete-object variant of the given destructor on the object at
409   /// the given address.
410   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
411                              llvm::Value *Addr);
412 
413   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
414   /// process all branch fixups.
415   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
416 
417   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
418   /// The block cannot be reactivated.  Pops it if it's the top of the
419   /// stack.
420   ///
421   /// \param DominatingIP - An instruction which is known to
422   ///   dominate the current IP (if set) and which lies along
423   ///   all paths of execution between the current IP and the
424   ///   the point at which the cleanup comes into scope.
425   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
426                               llvm::Instruction *DominatingIP);
427 
428   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
429   /// Cannot be used to resurrect a deactivated cleanup.
430   ///
431   /// \param DominatingIP - An instruction which is known to
432   ///   dominate the current IP (if set) and which lies along
433   ///   all paths of execution between the current IP and the
434   ///   the point at which the cleanup comes into scope.
435   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
436                             llvm::Instruction *DominatingIP);
437 
438   /// \brief Enters a new scope for capturing cleanups, all of which
439   /// will be executed once the scope is exited.
440   class RunCleanupsScope {
441     EHScopeStack::stable_iterator CleanupStackDepth;
442     size_t LifetimeExtendedCleanupStackSize;
443     bool OldDidCallStackSave;
444   protected:
445     bool PerformCleanup;
446   private:
447 
448     RunCleanupsScope(const RunCleanupsScope &) = delete;
449     void operator=(const RunCleanupsScope &) = delete;
450 
451   protected:
452     CodeGenFunction& CGF;
453 
454   public:
455     /// \brief Enter a new cleanup scope.
RunCleanupsScope(CodeGenFunction & CGF)456     explicit RunCleanupsScope(CodeGenFunction &CGF)
457       : PerformCleanup(true), CGF(CGF)
458     {
459       CleanupStackDepth = CGF.EHStack.stable_begin();
460       LifetimeExtendedCleanupStackSize =
461           CGF.LifetimeExtendedCleanupStack.size();
462       OldDidCallStackSave = CGF.DidCallStackSave;
463       CGF.DidCallStackSave = false;
464     }
465 
466     /// \brief Exit this cleanup scope, emitting any accumulated
467     /// cleanups.
~RunCleanupsScope()468     ~RunCleanupsScope() {
469       if (PerformCleanup) {
470         CGF.DidCallStackSave = OldDidCallStackSave;
471         CGF.PopCleanupBlocks(CleanupStackDepth,
472                              LifetimeExtendedCleanupStackSize);
473       }
474     }
475 
476     /// \brief Determine whether this scope requires any cleanups.
requiresCleanups()477     bool requiresCleanups() const {
478       return CGF.EHStack.stable_begin() != CleanupStackDepth;
479     }
480 
481     /// \brief Force the emission of cleanups now, instead of waiting
482     /// until this object is destroyed.
ForceCleanup()483     void ForceCleanup() {
484       assert(PerformCleanup && "Already forced cleanup");
485       CGF.DidCallStackSave = OldDidCallStackSave;
486       CGF.PopCleanupBlocks(CleanupStackDepth,
487                            LifetimeExtendedCleanupStackSize);
488       PerformCleanup = false;
489     }
490   };
491 
492   class LexicalScope : public RunCleanupsScope {
493     SourceRange Range;
494     SmallVector<const LabelDecl*, 4> Labels;
495     LexicalScope *ParentScope;
496 
497     LexicalScope(const LexicalScope &) = delete;
498     void operator=(const LexicalScope &) = delete;
499 
500   public:
501     /// \brief Enter a new cleanup scope.
LexicalScope(CodeGenFunction & CGF,SourceRange Range)502     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
503       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
504       CGF.CurLexicalScope = this;
505       if (CGDebugInfo *DI = CGF.getDebugInfo())
506         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
507     }
508 
addLabel(const LabelDecl * label)509     void addLabel(const LabelDecl *label) {
510       assert(PerformCleanup && "adding label to dead scope?");
511       Labels.push_back(label);
512     }
513 
514     /// \brief Exit this cleanup scope, emitting any accumulated
515     /// cleanups.
~LexicalScope()516     ~LexicalScope() {
517       if (CGDebugInfo *DI = CGF.getDebugInfo())
518         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
519 
520       // If we should perform a cleanup, force them now.  Note that
521       // this ends the cleanup scope before rescoping any labels.
522       if (PerformCleanup) {
523         ApplyDebugLocation DL(CGF, Range.getEnd());
524         ForceCleanup();
525       }
526     }
527 
528     /// \brief Force the emission of cleanups now, instead of waiting
529     /// until this object is destroyed.
ForceCleanup()530     void ForceCleanup() {
531       CGF.CurLexicalScope = ParentScope;
532       RunCleanupsScope::ForceCleanup();
533 
534       if (!Labels.empty())
535         rescopeLabels();
536     }
537 
538     void rescopeLabels();
539   };
540 
541   /// \brief The scope used to remap some variables as private in the OpenMP
542   /// loop body (or other captured region emitted without outlining), and to
543   /// restore old vars back on exit.
544   class OMPPrivateScope : public RunCleanupsScope {
545     typedef llvm::DenseMap<const VarDecl *, llvm::Value *> VarDeclMapTy;
546     VarDeclMapTy SavedLocals;
547     VarDeclMapTy SavedPrivates;
548 
549   private:
550     OMPPrivateScope(const OMPPrivateScope &) = delete;
551     void operator=(const OMPPrivateScope &) = delete;
552 
553   public:
554     /// \brief Enter a new OpenMP private scope.
OMPPrivateScope(CodeGenFunction & CGF)555     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
556 
557     /// \brief Registers \a LocalVD variable as a private and apply \a
558     /// PrivateGen function for it to generate corresponding private variable.
559     /// \a PrivateGen returns an address of the generated private variable.
560     /// \return true if the variable is registered as private, false if it has
561     /// been privatized already.
562     bool
addPrivate(const VarDecl * LocalVD,const std::function<llvm::Value * ()> & PrivateGen)563     addPrivate(const VarDecl *LocalVD,
564                const std::function<llvm::Value *()> &PrivateGen) {
565       assert(PerformCleanup && "adding private to dead scope");
566       if (SavedLocals.count(LocalVD) > 0) return false;
567       SavedLocals[LocalVD] = CGF.LocalDeclMap.lookup(LocalVD);
568       CGF.LocalDeclMap.erase(LocalVD);
569       SavedPrivates[LocalVD] = PrivateGen();
570       CGF.LocalDeclMap[LocalVD] = SavedLocals[LocalVD];
571       return true;
572     }
573 
574     /// \brief Privatizes local variables previously registered as private.
575     /// Registration is separate from the actual privatization to allow
576     /// initializers use values of the original variables, not the private one.
577     /// This is important, for example, if the private variable is a class
578     /// variable initialized by a constructor that references other private
579     /// variables. But at initialization original variables must be used, not
580     /// private copies.
581     /// \return true if at least one variable was privatized, false otherwise.
Privatize()582     bool Privatize() {
583       for (auto VDPair : SavedPrivates) {
584         CGF.LocalDeclMap[VDPair.first] = VDPair.second;
585       }
586       SavedPrivates.clear();
587       return !SavedLocals.empty();
588     }
589 
ForceCleanup()590     void ForceCleanup() {
591       RunCleanupsScope::ForceCleanup();
592       // Remap vars back to the original values.
593       for (auto I : SavedLocals) {
594         CGF.LocalDeclMap[I.first] = I.second;
595       }
596       SavedLocals.clear();
597     }
598 
599     /// \brief Exit scope - all the mapped variables are restored.
~OMPPrivateScope()600     ~OMPPrivateScope() {
601       if (PerformCleanup)
602         ForceCleanup();
603     }
604   };
605 
606   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
607   /// that have been added.
608   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
609 
610   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
611   /// that have been added, then adds all lifetime-extended cleanups from
612   /// the given position to the stack.
613   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
614                         size_t OldLifetimeExtendedStackSize);
615 
616   void ResolveBranchFixups(llvm::BasicBlock *Target);
617 
618   /// The given basic block lies in the current EH scope, but may be a
619   /// target of a potentially scope-crossing jump; get a stable handle
620   /// to which we can perform this jump later.
getJumpDestInCurrentScope(llvm::BasicBlock * Target)621   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
622     return JumpDest(Target,
623                     EHStack.getInnermostNormalCleanup(),
624                     NextCleanupDestIndex++);
625   }
626 
627   /// The given basic block lies in the current EH scope, but may be a
628   /// target of a potentially scope-crossing jump; get a stable handle
629   /// to which we can perform this jump later.
630   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
631     return getJumpDestInCurrentScope(createBasicBlock(Name));
632   }
633 
634   /// EmitBranchThroughCleanup - Emit a branch from the current insert
635   /// block through the normal cleanup handling code (if any) and then
636   /// on to \arg Dest.
637   void EmitBranchThroughCleanup(JumpDest Dest);
638 
639   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
640   /// specified destination obviously has no cleanups to run.  'false' is always
641   /// a conservatively correct answer for this method.
642   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
643 
644   /// popCatchScope - Pops the catch scope at the top of the EHScope
645   /// stack, emitting any required code (other than the catch handlers
646   /// themselves).
647   void popCatchScope();
648 
649   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
650   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
651 
652   /// An object to manage conditionally-evaluated expressions.
653   class ConditionalEvaluation {
654     llvm::BasicBlock *StartBB;
655 
656   public:
ConditionalEvaluation(CodeGenFunction & CGF)657     ConditionalEvaluation(CodeGenFunction &CGF)
658       : StartBB(CGF.Builder.GetInsertBlock()) {}
659 
begin(CodeGenFunction & CGF)660     void begin(CodeGenFunction &CGF) {
661       assert(CGF.OutermostConditional != this);
662       if (!CGF.OutermostConditional)
663         CGF.OutermostConditional = this;
664     }
665 
end(CodeGenFunction & CGF)666     void end(CodeGenFunction &CGF) {
667       assert(CGF.OutermostConditional != nullptr);
668       if (CGF.OutermostConditional == this)
669         CGF.OutermostConditional = nullptr;
670     }
671 
672     /// Returns a block which will be executed prior to each
673     /// evaluation of the conditional code.
getStartingBlock()674     llvm::BasicBlock *getStartingBlock() const {
675       return StartBB;
676     }
677   };
678 
679   /// isInConditionalBranch - Return true if we're currently emitting
680   /// one branch or the other of a conditional expression.
isInConditionalBranch()681   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
682 
setBeforeOutermostConditional(llvm::Value * value,llvm::Value * addr)683   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
684     assert(isInConditionalBranch());
685     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
686     new llvm::StoreInst(value, addr, &block->back());
687   }
688 
689   /// An RAII object to record that we're evaluating a statement
690   /// expression.
691   class StmtExprEvaluation {
692     CodeGenFunction &CGF;
693 
694     /// We have to save the outermost conditional: cleanups in a
695     /// statement expression aren't conditional just because the
696     /// StmtExpr is.
697     ConditionalEvaluation *SavedOutermostConditional;
698 
699   public:
StmtExprEvaluation(CodeGenFunction & CGF)700     StmtExprEvaluation(CodeGenFunction &CGF)
701       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
702       CGF.OutermostConditional = nullptr;
703     }
704 
~StmtExprEvaluation()705     ~StmtExprEvaluation() {
706       CGF.OutermostConditional = SavedOutermostConditional;
707       CGF.EnsureInsertPoint();
708     }
709   };
710 
711   /// An object which temporarily prevents a value from being
712   /// destroyed by aggressive peephole optimizations that assume that
713   /// all uses of a value have been realized in the IR.
714   class PeepholeProtection {
715     llvm::Instruction *Inst;
716     friend class CodeGenFunction;
717 
718   public:
PeepholeProtection()719     PeepholeProtection() : Inst(nullptr) {}
720   };
721 
722   /// A non-RAII class containing all the information about a bound
723   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
724   /// this which makes individual mappings very simple; using this
725   /// class directly is useful when you have a variable number of
726   /// opaque values or don't want the RAII functionality for some
727   /// reason.
728   class OpaqueValueMappingData {
729     const OpaqueValueExpr *OpaqueValue;
730     bool BoundLValue;
731     CodeGenFunction::PeepholeProtection Protection;
732 
OpaqueValueMappingData(const OpaqueValueExpr * ov,bool boundLValue)733     OpaqueValueMappingData(const OpaqueValueExpr *ov,
734                            bool boundLValue)
735       : OpaqueValue(ov), BoundLValue(boundLValue) {}
736   public:
OpaqueValueMappingData()737     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
738 
shouldBindAsLValue(const Expr * expr)739     static bool shouldBindAsLValue(const Expr *expr) {
740       // gl-values should be bound as l-values for obvious reasons.
741       // Records should be bound as l-values because IR generation
742       // always keeps them in memory.  Expressions of function type
743       // act exactly like l-values but are formally required to be
744       // r-values in C.
745       return expr->isGLValue() ||
746              expr->getType()->isFunctionType() ||
747              hasAggregateEvaluationKind(expr->getType());
748     }
749 
bind(CodeGenFunction & CGF,const OpaqueValueExpr * ov,const Expr * e)750     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
751                                        const OpaqueValueExpr *ov,
752                                        const Expr *e) {
753       if (shouldBindAsLValue(ov))
754         return bind(CGF, ov, CGF.EmitLValue(e));
755       return bind(CGF, ov, CGF.EmitAnyExpr(e));
756     }
757 
bind(CodeGenFunction & CGF,const OpaqueValueExpr * ov,const LValue & lv)758     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
759                                        const OpaqueValueExpr *ov,
760                                        const LValue &lv) {
761       assert(shouldBindAsLValue(ov));
762       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
763       return OpaqueValueMappingData(ov, true);
764     }
765 
bind(CodeGenFunction & CGF,const OpaqueValueExpr * ov,const RValue & rv)766     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
767                                        const OpaqueValueExpr *ov,
768                                        const RValue &rv) {
769       assert(!shouldBindAsLValue(ov));
770       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
771 
772       OpaqueValueMappingData data(ov, false);
773 
774       // Work around an extremely aggressive peephole optimization in
775       // EmitScalarConversion which assumes that all other uses of a
776       // value are extant.
777       data.Protection = CGF.protectFromPeepholes(rv);
778 
779       return data;
780     }
781 
isValid()782     bool isValid() const { return OpaqueValue != nullptr; }
clear()783     void clear() { OpaqueValue = nullptr; }
784 
unbind(CodeGenFunction & CGF)785     void unbind(CodeGenFunction &CGF) {
786       assert(OpaqueValue && "no data to unbind!");
787 
788       if (BoundLValue) {
789         CGF.OpaqueLValues.erase(OpaqueValue);
790       } else {
791         CGF.OpaqueRValues.erase(OpaqueValue);
792         CGF.unprotectFromPeepholes(Protection);
793       }
794     }
795   };
796 
797   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
798   class OpaqueValueMapping {
799     CodeGenFunction &CGF;
800     OpaqueValueMappingData Data;
801 
802   public:
shouldBindAsLValue(const Expr * expr)803     static bool shouldBindAsLValue(const Expr *expr) {
804       return OpaqueValueMappingData::shouldBindAsLValue(expr);
805     }
806 
807     /// Build the opaque value mapping for the given conditional
808     /// operator if it's the GNU ?: extension.  This is a common
809     /// enough pattern that the convenience operator is really
810     /// helpful.
811     ///
OpaqueValueMapping(CodeGenFunction & CGF,const AbstractConditionalOperator * op)812     OpaqueValueMapping(CodeGenFunction &CGF,
813                        const AbstractConditionalOperator *op) : CGF(CGF) {
814       if (isa<ConditionalOperator>(op))
815         // Leave Data empty.
816         return;
817 
818       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
819       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
820                                           e->getCommon());
821     }
822 
OpaqueValueMapping(CodeGenFunction & CGF,const OpaqueValueExpr * opaqueValue,LValue lvalue)823     OpaqueValueMapping(CodeGenFunction &CGF,
824                        const OpaqueValueExpr *opaqueValue,
825                        LValue lvalue)
826       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
827     }
828 
OpaqueValueMapping(CodeGenFunction & CGF,const OpaqueValueExpr * opaqueValue,RValue rvalue)829     OpaqueValueMapping(CodeGenFunction &CGF,
830                        const OpaqueValueExpr *opaqueValue,
831                        RValue rvalue)
832       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
833     }
834 
pop()835     void pop() {
836       Data.unbind(CGF);
837       Data.clear();
838     }
839 
~OpaqueValueMapping()840     ~OpaqueValueMapping() {
841       if (Data.isValid()) Data.unbind(CGF);
842     }
843   };
844 
845   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
846   /// number that holds the value.
847   std::pair<llvm::Type *, unsigned>
848   getByRefValueLLVMField(const ValueDecl *VD) const;
849 
850   /// BuildBlockByrefAddress - Computes address location of the
851   /// variable which is declared as __block.
852   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
853                                       const VarDecl *V);
854 private:
855   CGDebugInfo *DebugInfo;
856   bool DisableDebugInfo;
857 
858   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
859   /// calling llvm.stacksave for multiple VLAs in the same scope.
860   bool DidCallStackSave;
861 
862   /// IndirectBranch - The first time an indirect goto is seen we create a block
863   /// with an indirect branch.  Every time we see the address of a label taken,
864   /// we add the label to the indirect goto.  Every subsequent indirect goto is
865   /// codegen'd as a jump to the IndirectBranch's basic block.
866   llvm::IndirectBrInst *IndirectBranch;
867 
868   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
869   /// decls.
870   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
871   DeclMapTy LocalDeclMap;
872 
873   /// Track escaped local variables with auto storage. Used during SEH
874   /// outlining to produce a call to llvm.frameescape.
875   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
876 
877   /// LabelMap - This keeps track of the LLVM basic block for each C label.
878   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
879 
880   // BreakContinueStack - This keeps track of where break and continue
881   // statements should jump to.
882   struct BreakContinue {
BreakContinueBreakContinue883     BreakContinue(JumpDest Break, JumpDest Continue)
884       : BreakBlock(Break), ContinueBlock(Continue) {}
885 
886     JumpDest BreakBlock;
887     JumpDest ContinueBlock;
888   };
889   SmallVector<BreakContinue, 8> BreakContinueStack;
890 
891   CodeGenPGO PGO;
892 
893 public:
894   /// Get a counter for instrumentation of the region associated with the given
895   /// statement.
getPGORegionCounter(const Stmt * S)896   RegionCounter getPGORegionCounter(const Stmt *S) {
897     return RegionCounter(PGO, S);
898   }
899 private:
900 
901   /// SwitchInsn - This is nearest current switch instruction. It is null if
902   /// current context is not in a switch.
903   llvm::SwitchInst *SwitchInsn;
904   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
905   SmallVector<uint64_t, 16> *SwitchWeights;
906 
907   /// CaseRangeBlock - This block holds if condition check for last case
908   /// statement range in current switch instruction.
909   llvm::BasicBlock *CaseRangeBlock;
910 
911   /// OpaqueLValues - Keeps track of the current set of opaque value
912   /// expressions.
913   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
914   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
915 
916   // VLASizeMap - This keeps track of the associated size for each VLA type.
917   // We track this by the size expression rather than the type itself because
918   // in certain situations, like a const qualifier applied to an VLA typedef,
919   // multiple VLA types can share the same size expression.
920   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
921   // enter/leave scopes.
922   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
923 
924   /// A block containing a single 'unreachable' instruction.  Created
925   /// lazily by getUnreachableBlock().
926   llvm::BasicBlock *UnreachableBlock;
927 
928   /// Counts of the number return expressions in the function.
929   unsigned NumReturnExprs;
930 
931   /// Count the number of simple (constant) return expressions in the function.
932   unsigned NumSimpleReturnExprs;
933 
934   /// The last regular (non-return) debug location (breakpoint) in the function.
935   SourceLocation LastStopPoint;
936 
937 public:
938   /// A scope within which we are constructing the fields of an object which
939   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
940   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
941   class FieldConstructionScope {
942   public:
FieldConstructionScope(CodeGenFunction & CGF,llvm::Value * This)943     FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
944         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
945       CGF.CXXDefaultInitExprThis = This;
946     }
~FieldConstructionScope()947     ~FieldConstructionScope() {
948       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
949     }
950 
951   private:
952     CodeGenFunction &CGF;
953     llvm::Value *OldCXXDefaultInitExprThis;
954   };
955 
956   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
957   /// is overridden to be the object under construction.
958   class CXXDefaultInitExprScope {
959   public:
CXXDefaultInitExprScope(CodeGenFunction & CGF)960     CXXDefaultInitExprScope(CodeGenFunction &CGF)
961         : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
962       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
963     }
~CXXDefaultInitExprScope()964     ~CXXDefaultInitExprScope() {
965       CGF.CXXThisValue = OldCXXThisValue;
966     }
967 
968   public:
969     CodeGenFunction &CGF;
970     llvm::Value *OldCXXThisValue;
971   };
972 
973 private:
974   /// CXXThisDecl - When generating code for a C++ member function,
975   /// this will hold the implicit 'this' declaration.
976   ImplicitParamDecl *CXXABIThisDecl;
977   llvm::Value *CXXABIThisValue;
978   llvm::Value *CXXThisValue;
979 
980   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
981   /// this expression.
982   llvm::Value *CXXDefaultInitExprThis;
983 
984   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
985   /// destructor, this will hold the implicit argument (e.g. VTT).
986   ImplicitParamDecl *CXXStructorImplicitParamDecl;
987   llvm::Value *CXXStructorImplicitParamValue;
988 
989   /// OutermostConditional - Points to the outermost active
990   /// conditional control.  This is used so that we know if a
991   /// temporary should be destroyed conditionally.
992   ConditionalEvaluation *OutermostConditional;
993 
994   /// The current lexical scope.
995   LexicalScope *CurLexicalScope;
996 
997   /// The current source location that should be used for exception
998   /// handling code.
999   SourceLocation CurEHLocation;
1000 
1001   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1002   /// type as well as the field number that contains the actual data.
1003   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1004                                               unsigned> > ByRefValueInfo;
1005 
1006   llvm::BasicBlock *TerminateLandingPad;
1007   llvm::BasicBlock *TerminateHandler;
1008   llvm::BasicBlock *TrapBB;
1009 
1010   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1011   /// In the kernel metadata node, reference the kernel function and metadata
1012   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1013   /// - A node for the vec_type_hint(<type>) qualifier contains string
1014   ///   "vec_type_hint", an undefined value of the <type> data type,
1015   ///   and a Boolean that is true if the <type> is integer and signed.
1016   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1017   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1018   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1019   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1020   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1021                                 llvm::Function *Fn);
1022 
1023 public:
1024   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1025   ~CodeGenFunction();
1026 
getTypes()1027   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
getContext()1028   ASTContext &getContext() const { return CGM.getContext(); }
getDebugInfo()1029   CGDebugInfo *getDebugInfo() {
1030     if (DisableDebugInfo)
1031       return nullptr;
1032     return DebugInfo;
1033   }
disableDebugInfo()1034   void disableDebugInfo() { DisableDebugInfo = true; }
enableDebugInfo()1035   void enableDebugInfo() { DisableDebugInfo = false; }
1036 
shouldUseFusedARCCalls()1037   bool shouldUseFusedARCCalls() {
1038     return CGM.getCodeGenOpts().OptimizationLevel == 0;
1039   }
1040 
getLangOpts()1041   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1042 
1043   /// Returns a pointer to the function's exception object and selector slot,
1044   /// which is assigned in every landing pad.
1045   llvm::Value *getExceptionSlot();
1046   llvm::Value *getEHSelectorSlot();
1047 
1048   /// Returns the contents of the function's exception object and selector
1049   /// slots.
1050   llvm::Value *getExceptionFromSlot();
1051   llvm::Value *getSelectorFromSlot();
1052 
1053   llvm::Value *getNormalCleanupDestSlot();
1054 
getUnreachableBlock()1055   llvm::BasicBlock *getUnreachableBlock() {
1056     if (!UnreachableBlock) {
1057       UnreachableBlock = createBasicBlock("unreachable");
1058       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1059     }
1060     return UnreachableBlock;
1061   }
1062 
getInvokeDest()1063   llvm::BasicBlock *getInvokeDest() {
1064     if (!EHStack.requiresLandingPad()) return nullptr;
1065     return getInvokeDestImpl();
1066   }
1067 
currentFunctionUsesSEHTry()1068   bool currentFunctionUsesSEHTry() const {
1069     const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
1070     return FD && FD->usesSEHTry();
1071   }
1072 
getTarget()1073   const TargetInfo &getTarget() const { return Target; }
getLLVMContext()1074   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1075 
1076   //===--------------------------------------------------------------------===//
1077   //                                  Cleanups
1078   //===--------------------------------------------------------------------===//
1079 
1080   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1081 
1082   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1083                                         llvm::Value *arrayEndPointer,
1084                                         QualType elementType,
1085                                         Destroyer *destroyer);
1086   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1087                                       llvm::Value *arrayEnd,
1088                                       QualType elementType,
1089                                       Destroyer *destroyer);
1090 
1091   void pushDestroy(QualType::DestructionKind dtorKind,
1092                    llvm::Value *addr, QualType type);
1093   void pushEHDestroy(QualType::DestructionKind dtorKind,
1094                      llvm::Value *addr, QualType type);
1095   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1096                    Destroyer *destroyer, bool useEHCleanupForArray);
1097   void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1098                                    QualType type, Destroyer *destroyer,
1099                                    bool useEHCleanupForArray);
1100   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1101                                    llvm::Value *CompletePtr,
1102                                    QualType ElementType);
1103   void pushStackRestore(CleanupKind kind, llvm::Value *SPMem);
1104   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1105                    bool useEHCleanupForArray);
1106   llvm::Function *generateDestroyHelper(llvm::Constant *addr, QualType type,
1107                                         Destroyer *destroyer,
1108                                         bool useEHCleanupForArray,
1109                                         const VarDecl *VD);
1110   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1111                         QualType type, Destroyer *destroyer,
1112                         bool checkZeroLength, bool useEHCleanup);
1113 
1114   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1115 
1116   /// Determines whether an EH cleanup is required to destroy a type
1117   /// with the given destruction kind.
needsEHCleanup(QualType::DestructionKind kind)1118   bool needsEHCleanup(QualType::DestructionKind kind) {
1119     switch (kind) {
1120     case QualType::DK_none:
1121       return false;
1122     case QualType::DK_cxx_destructor:
1123     case QualType::DK_objc_weak_lifetime:
1124       return getLangOpts().Exceptions;
1125     case QualType::DK_objc_strong_lifetime:
1126       return getLangOpts().Exceptions &&
1127              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1128     }
1129     llvm_unreachable("bad destruction kind");
1130   }
1131 
getCleanupKind(QualType::DestructionKind kind)1132   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1133     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1134   }
1135 
1136   //===--------------------------------------------------------------------===//
1137   //                                  Objective-C
1138   //===--------------------------------------------------------------------===//
1139 
1140   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1141 
1142   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
1143 
1144   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1145   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1146                           const ObjCPropertyImplDecl *PID);
1147   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1148                               const ObjCPropertyImplDecl *propImpl,
1149                               const ObjCMethodDecl *GetterMothodDecl,
1150                               llvm::Constant *AtomicHelperFn);
1151 
1152   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1153                                   ObjCMethodDecl *MD, bool ctor);
1154 
1155   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1156   /// for the given property.
1157   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1158                           const ObjCPropertyImplDecl *PID);
1159   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1160                               const ObjCPropertyImplDecl *propImpl,
1161                               llvm::Constant *AtomicHelperFn);
1162   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1163   bool IvarTypeWithAggrGCObjects(QualType Ty);
1164 
1165   //===--------------------------------------------------------------------===//
1166   //                                  Block Bits
1167   //===--------------------------------------------------------------------===//
1168 
1169   llvm::Value *EmitBlockLiteral(const BlockExpr *);
1170   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1171   static void destroyBlockInfos(CGBlockInfo *info);
1172   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1173                                            const CGBlockInfo &Info,
1174                                            llvm::StructType *,
1175                                            llvm::Constant *BlockVarLayout);
1176 
1177   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1178                                         const CGBlockInfo &Info,
1179                                         const DeclMapTy &ldm,
1180                                         bool IsLambdaConversionToBlock);
1181 
1182   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1183   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1184   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1185                                              const ObjCPropertyImplDecl *PID);
1186   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1187                                              const ObjCPropertyImplDecl *PID);
1188   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1189 
1190   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1191 
1192   class AutoVarEmission;
1193 
1194   void emitByrefStructureInit(const AutoVarEmission &emission);
1195   void enterByrefCleanup(const AutoVarEmission &emission);
1196 
LoadBlockStruct()1197   llvm::Value *LoadBlockStruct() {
1198     assert(BlockPointer && "no block pointer set!");
1199     return BlockPointer;
1200   }
1201 
1202   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1203   void AllocateBlockDecl(const DeclRefExpr *E);
1204   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1205   llvm::Type *BuildByRefType(const VarDecl *var);
1206 
1207   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1208                     const CGFunctionInfo &FnInfo);
1209   /// \brief Emit code for the start of a function.
1210   /// \param Loc       The location to be associated with the function.
1211   /// \param StartLoc  The location of the function body.
1212   void StartFunction(GlobalDecl GD,
1213                      QualType RetTy,
1214                      llvm::Function *Fn,
1215                      const CGFunctionInfo &FnInfo,
1216                      const FunctionArgList &Args,
1217                      SourceLocation Loc = SourceLocation(),
1218                      SourceLocation StartLoc = SourceLocation());
1219 
1220   void EmitConstructorBody(FunctionArgList &Args);
1221   void EmitDestructorBody(FunctionArgList &Args);
1222   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1223   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
1224   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, RegionCounter &Cnt);
1225 
1226   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
1227                                   CallArgList &CallArgs);
1228   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1229   void EmitLambdaBlockInvokeBody();
1230   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1231   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1232   void EmitAsanPrologueOrEpilogue(bool Prologue);
1233 
1234   /// \brief Emit the unified return block, trying to avoid its emission when
1235   /// possible.
1236   /// \return The debug location of the user written return statement if the
1237   /// return block is is avoided.
1238   llvm::DebugLoc EmitReturnBlock();
1239 
1240   /// FinishFunction - Complete IR generation of the current function. It is
1241   /// legal to call this function even if there is no current insertion point.
1242   void FinishFunction(SourceLocation EndLoc=SourceLocation());
1243 
1244   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
1245                   const CGFunctionInfo &FnInfo);
1246 
1247   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
1248 
1249   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
1250   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
1251                          llvm::Value *Callee);
1252 
1253   /// GenerateThunk - Generate a thunk for the given method.
1254   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1255                      GlobalDecl GD, const ThunkInfo &Thunk);
1256 
1257   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1258                             GlobalDecl GD, const ThunkInfo &Thunk);
1259 
1260   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1261                         FunctionArgList &Args);
1262 
1263   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1264                                ArrayRef<VarDecl *> ArrayIndexes);
1265 
1266   /// InitializeVTablePointer - Initialize the vtable pointer of the given
1267   /// subobject.
1268   ///
1269   void InitializeVTablePointer(BaseSubobject Base,
1270                                const CXXRecordDecl *NearestVBase,
1271                                CharUnits OffsetFromNearestVBase,
1272                                const CXXRecordDecl *VTableClass);
1273 
1274   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1275   void InitializeVTablePointers(BaseSubobject Base,
1276                                 const CXXRecordDecl *NearestVBase,
1277                                 CharUnits OffsetFromNearestVBase,
1278                                 bool BaseIsNonVirtualPrimaryBase,
1279                                 const CXXRecordDecl *VTableClass,
1280                                 VisitedVirtualBasesSetTy& VBases);
1281 
1282   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1283 
1284   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1285   /// to by This.
1286   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1287 
1288   /// \brief Derived is the presumed address of an object of type T after a
1289   /// cast. If T is a polymorphic class type, emit a check that the virtual
1290   /// table for Derived belongs to a class derived from T.
1291   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
1292                                  bool MayBeNull);
1293 
1294   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
1295   /// If vptr CFI is enabled, emit a check that VTable is valid.
1296   void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable);
1297 
1298   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
1299   /// RD using llvm.bitset.test.
1300   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable);
1301 
1302   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
1303   /// expr can be devirtualized.
1304   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
1305                                          const CXXMethodDecl *MD);
1306 
1307   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1308   /// given phase of destruction for a destructor.  The end result
1309   /// should call destructors on members and base classes in reverse
1310   /// order of their construction.
1311   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1312 
1313   /// ShouldInstrumentFunction - Return true if the current function should be
1314   /// instrumented with __cyg_profile_func_* calls
1315   bool ShouldInstrumentFunction();
1316 
1317   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1318   /// instrumentation function with the current function and the call site, if
1319   /// function instrumentation is enabled.
1320   void EmitFunctionInstrumentation(const char *Fn);
1321 
1322   /// EmitMCountInstrumentation - Emit call to .mcount.
1323   void EmitMCountInstrumentation();
1324 
1325   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1326   /// arguments for the given function. This is also responsible for naming the
1327   /// LLVM function arguments.
1328   void EmitFunctionProlog(const CGFunctionInfo &FI,
1329                           llvm::Function *Fn,
1330                           const FunctionArgList &Args);
1331 
1332   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1333   /// given temporary.
1334   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
1335                           SourceLocation EndLoc);
1336 
1337   /// EmitStartEHSpec - Emit the start of the exception spec.
1338   void EmitStartEHSpec(const Decl *D);
1339 
1340   /// EmitEndEHSpec - Emit the end of the exception spec.
1341   void EmitEndEHSpec(const Decl *D);
1342 
1343   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1344   llvm::BasicBlock *getTerminateLandingPad();
1345 
1346   /// getTerminateHandler - Return a handler (not a landing pad, just
1347   /// a catch handler) that just calls terminate.  This is used when
1348   /// a terminate scope encloses a try.
1349   llvm::BasicBlock *getTerminateHandler();
1350 
1351   llvm::Type *ConvertTypeForMem(QualType T);
1352   llvm::Type *ConvertType(QualType T);
ConvertType(const TypeDecl * T)1353   llvm::Type *ConvertType(const TypeDecl *T) {
1354     return ConvertType(getContext().getTypeDeclType(T));
1355   }
1356 
1357   /// LoadObjCSelf - Load the value of self. This function is only valid while
1358   /// generating code for an Objective-C method.
1359   llvm::Value *LoadObjCSelf();
1360 
1361   /// TypeOfSelfObject - Return type of object that this self represents.
1362   QualType TypeOfSelfObject();
1363 
1364   /// hasAggregateLLVMType - Return true if the specified AST type will map into
1365   /// an aggregate LLVM type or is void.
1366   static TypeEvaluationKind getEvaluationKind(QualType T);
1367 
hasScalarEvaluationKind(QualType T)1368   static bool hasScalarEvaluationKind(QualType T) {
1369     return getEvaluationKind(T) == TEK_Scalar;
1370   }
1371 
hasAggregateEvaluationKind(QualType T)1372   static bool hasAggregateEvaluationKind(QualType T) {
1373     return getEvaluationKind(T) == TEK_Aggregate;
1374   }
1375 
1376   /// createBasicBlock - Create an LLVM basic block.
1377   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1378                                      llvm::Function *parent = nullptr,
1379                                      llvm::BasicBlock *before = nullptr) {
1380 #ifdef NDEBUG
1381     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1382 #else
1383     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1384 #endif
1385   }
1386 
1387   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1388   /// label maps to.
1389   JumpDest getJumpDestForLabel(const LabelDecl *S);
1390 
1391   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1392   /// another basic block, simplify it. This assumes that no other code could
1393   /// potentially reference the basic block.
1394   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1395 
1396   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1397   /// adding a fall-through branch from the current insert block if
1398   /// necessary. It is legal to call this function even if there is no current
1399   /// insertion point.
1400   ///
1401   /// IsFinished - If true, indicates that the caller has finished emitting
1402   /// branches to the given block and does not expect to emit code into it. This
1403   /// means the block can be ignored if it is unreachable.
1404   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1405 
1406   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1407   /// near its uses, and leave the insertion point in it.
1408   void EmitBlockAfterUses(llvm::BasicBlock *BB);
1409 
1410   /// EmitBranch - Emit a branch to the specified basic block from the current
1411   /// insert block, taking care to avoid creation of branches from dummy
1412   /// blocks. It is legal to call this function even if there is no current
1413   /// insertion point.
1414   ///
1415   /// This function clears the current insertion point. The caller should follow
1416   /// calls to this function with calls to Emit*Block prior to generation new
1417   /// code.
1418   void EmitBranch(llvm::BasicBlock *Block);
1419 
1420   /// HaveInsertPoint - True if an insertion point is defined. If not, this
1421   /// indicates that the current code being emitted is unreachable.
HaveInsertPoint()1422   bool HaveInsertPoint() const {
1423     return Builder.GetInsertBlock() != nullptr;
1424   }
1425 
1426   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1427   /// emitted IR has a place to go. Note that by definition, if this function
1428   /// creates a block then that block is unreachable; callers may do better to
1429   /// detect when no insertion point is defined and simply skip IR generation.
EnsureInsertPoint()1430   void EnsureInsertPoint() {
1431     if (!HaveInsertPoint())
1432       EmitBlock(createBasicBlock());
1433   }
1434 
1435   /// ErrorUnsupported - Print out an error that codegen doesn't support the
1436   /// specified stmt yet.
1437   void ErrorUnsupported(const Stmt *S, const char *Type);
1438 
1439   //===--------------------------------------------------------------------===//
1440   //                                  Helpers
1441   //===--------------------------------------------------------------------===//
1442 
1443   LValue MakeAddrLValue(llvm::Value *V, QualType T,
1444                         CharUnits Alignment = CharUnits()) {
1445     return LValue::MakeAddr(V, T, Alignment, getContext(),
1446                             CGM.getTBAAInfo(T));
1447   }
1448 
1449   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
1450 
1451   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1452   /// block. The caller is responsible for setting an appropriate alignment on
1453   /// the alloca.
1454   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1455                                      const Twine &Name = "tmp");
1456 
1457   /// InitTempAlloca - Provide an initial value for the given alloca.
1458   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1459 
1460   /// CreateIRTemp - Create a temporary IR object of the given type, with
1461   /// appropriate alignment. This routine should only be used when an temporary
1462   /// value needs to be stored into an alloca (for example, to avoid explicit
1463   /// PHI construction), but the type is the IR type, not the type appropriate
1464   /// for storing in memory.
1465   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1466 
1467   /// CreateMemTemp - Create a temporary memory object of the given type, with
1468   /// appropriate alignment.
1469   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1470 
1471   /// CreateAggTemp - Create a temporary memory object for the given
1472   /// aggregate type.
1473   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1474     CharUnits Alignment = getContext().getTypeAlignInChars(T);
1475     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1476                                  T.getQualifiers(),
1477                                  AggValueSlot::IsNotDestructed,
1478                                  AggValueSlot::DoesNotNeedGCBarriers,
1479                                  AggValueSlot::IsNotAliased);
1480   }
1481 
1482   /// CreateInAllocaTmp - Create a temporary memory object for the given
1483   /// aggregate type.
1484   AggValueSlot CreateInAllocaTmp(QualType T, const Twine &Name = "inalloca");
1485 
1486   /// Emit a cast to void* in the appropriate address space.
1487   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1488 
1489   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1490   /// expression and compare the result against zero, returning an Int1Ty value.
1491   llvm::Value *EvaluateExprAsBool(const Expr *E);
1492 
1493   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1494   void EmitIgnoredExpr(const Expr *E);
1495 
1496   /// EmitAnyExpr - Emit code to compute the specified expression which can have
1497   /// any type.  The result is returned as an RValue struct.  If this is an
1498   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1499   /// the result should be returned.
1500   ///
1501   /// \param ignoreResult True if the resulting value isn't used.
1502   RValue EmitAnyExpr(const Expr *E,
1503                      AggValueSlot aggSlot = AggValueSlot::ignored(),
1504                      bool ignoreResult = false);
1505 
1506   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1507   // or the value of the expression, depending on how va_list is defined.
1508   llvm::Value *EmitVAListRef(const Expr *E);
1509 
1510   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1511   /// always be accessible even if no aggregate location is provided.
1512   RValue EmitAnyExprToTemp(const Expr *E);
1513 
1514   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1515   /// arbitrary expression into the given memory location.
1516   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1517                         Qualifiers Quals, bool IsInitializer);
1518 
1519   void EmitAnyExprToExn(const Expr *E, llvm::Value *Addr);
1520 
1521   /// EmitExprAsInit - Emits the code necessary to initialize a
1522   /// location in memory with the given initializer.
1523   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1524                       bool capturedByInit);
1525 
1526   /// hasVolatileMember - returns true if aggregate type has a volatile
1527   /// member.
hasVolatileMember(QualType T)1528   bool hasVolatileMember(QualType T) {
1529     if (const RecordType *RT = T->getAs<RecordType>()) {
1530       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1531       return RD->hasVolatileMember();
1532     }
1533     return false;
1534   }
1535   /// EmitAggregateCopy - Emit an aggregate assignment.
1536   ///
1537   /// The difference to EmitAggregateCopy is that tail padding is not copied.
1538   /// This is required for correctness when assigning non-POD structures in C++.
EmitAggregateAssign(llvm::Value * DestPtr,llvm::Value * SrcPtr,QualType EltTy)1539   void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1540                            QualType EltTy) {
1541     bool IsVolatile = hasVolatileMember(EltTy);
1542     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1543                       true);
1544   }
1545 
EmitAggregateCopyCtor(llvm::Value * DestPtr,llvm::Value * SrcPtr,QualType DestTy,QualType SrcTy)1546   void EmitAggregateCopyCtor(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1547                            QualType DestTy, QualType SrcTy) {
1548     CharUnits DestTypeAlign = getContext().getTypeAlignInChars(DestTy);
1549     CharUnits SrcTypeAlign = getContext().getTypeAlignInChars(SrcTy);
1550     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
1551                       std::min(DestTypeAlign, SrcTypeAlign),
1552                       /*IsAssignment=*/false);
1553   }
1554 
1555   /// EmitAggregateCopy - Emit an aggregate copy.
1556   ///
1557   /// \param isVolatile - True iff either the source or the destination is
1558   /// volatile.
1559   /// \param isAssignment - If false, allow padding to be copied.  This often
1560   /// yields more efficient.
1561   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1562                          QualType EltTy, bool isVolatile=false,
1563                          CharUnits Alignment = CharUnits::Zero(),
1564                          bool isAssignment = false);
1565 
1566   /// StartBlock - Start new block named N. If insert block is a dummy block
1567   /// then reuse it.
1568   void StartBlock(const char *N);
1569 
1570   /// GetAddrOfLocalVar - Return the address of a local variable.
GetAddrOfLocalVar(const VarDecl * VD)1571   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1572     llvm::Value *Res = LocalDeclMap[VD];
1573     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1574     return Res;
1575   }
1576 
1577   /// getOpaqueLValueMapping - Given an opaque value expression (which
1578   /// must be mapped to an l-value), return its mapping.
getOpaqueLValueMapping(const OpaqueValueExpr * e)1579   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1580     assert(OpaqueValueMapping::shouldBindAsLValue(e));
1581 
1582     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1583       it = OpaqueLValues.find(e);
1584     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1585     return it->second;
1586   }
1587 
1588   /// getOpaqueRValueMapping - Given an opaque value expression (which
1589   /// must be mapped to an r-value), return its mapping.
getOpaqueRValueMapping(const OpaqueValueExpr * e)1590   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1591     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1592 
1593     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1594       it = OpaqueRValues.find(e);
1595     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1596     return it->second;
1597   }
1598 
1599   /// getAccessedFieldNo - Given an encoded value and a result number, return
1600   /// the input field number being accessed.
1601   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1602 
1603   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1604   llvm::BasicBlock *GetIndirectGotoBlock();
1605 
1606   /// EmitNullInitialization - Generate code to set a value of the given type to
1607   /// null, If the type contains data member pointers, they will be initialized
1608   /// to -1 in accordance with the Itanium C++ ABI.
1609   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1610 
1611   // EmitVAArg - Generate code to get an argument from the passed in pointer
1612   // and update it accordingly. The return value is a pointer to the argument.
1613   // FIXME: We should be able to get rid of this method and use the va_arg
1614   // instruction in LLVM instead once it works well enough.
1615   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1616 
1617   /// emitArrayLength - Compute the length of an array, even if it's a
1618   /// VLA, and drill down to the base element type.
1619   llvm::Value *emitArrayLength(const ArrayType *arrayType,
1620                                QualType &baseType,
1621                                llvm::Value *&addr);
1622 
1623   /// EmitVLASize - Capture all the sizes for the VLA expressions in
1624   /// the given variably-modified type and store them in the VLASizeMap.
1625   ///
1626   /// This function can be called with a null (unreachable) insert point.
1627   void EmitVariablyModifiedType(QualType Ty);
1628 
1629   /// getVLASize - Returns an LLVM value that corresponds to the size,
1630   /// in non-variably-sized elements, of a variable length array type,
1631   /// plus that largest non-variably-sized element type.  Assumes that
1632   /// the type has already been emitted with EmitVariablyModifiedType.
1633   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1634   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1635 
1636   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1637   /// generating code for an C++ member function.
LoadCXXThis()1638   llvm::Value *LoadCXXThis() {
1639     assert(CXXThisValue && "no 'this' value for this function");
1640     return CXXThisValue;
1641   }
1642 
1643   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1644   /// virtual bases.
1645   // FIXME: Every place that calls LoadCXXVTT is something
1646   // that needs to be abstracted properly.
LoadCXXVTT()1647   llvm::Value *LoadCXXVTT() {
1648     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1649     return CXXStructorImplicitParamValue;
1650   }
1651 
1652   /// LoadCXXStructorImplicitParam - Load the implicit parameter
1653   /// for a constructor/destructor.
LoadCXXStructorImplicitParam()1654   llvm::Value *LoadCXXStructorImplicitParam() {
1655     assert(CXXStructorImplicitParamValue &&
1656            "no implicit argument value for this function");
1657     return CXXStructorImplicitParamValue;
1658   }
1659 
1660   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1661   /// complete class to the given direct base.
1662   llvm::Value *
1663   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1664                                         const CXXRecordDecl *Derived,
1665                                         const CXXRecordDecl *Base,
1666                                         bool BaseIsVirtual);
1667 
1668   /// GetAddressOfBaseClass - This function will add the necessary delta to the
1669   /// load of 'this' and returns address of the base class.
1670   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1671                                      const CXXRecordDecl *Derived,
1672                                      CastExpr::path_const_iterator PathBegin,
1673                                      CastExpr::path_const_iterator PathEnd,
1674                                      bool NullCheckValue, SourceLocation Loc);
1675 
1676   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1677                                         const CXXRecordDecl *Derived,
1678                                         CastExpr::path_const_iterator PathBegin,
1679                                         CastExpr::path_const_iterator PathEnd,
1680                                         bool NullCheckValue);
1681 
1682   /// GetVTTParameter - Return the VTT parameter that should be passed to a
1683   /// base constructor/destructor with virtual bases.
1684   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1685   /// to ItaniumCXXABI.cpp together with all the references to VTT.
1686   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1687                                bool Delegating);
1688 
1689   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1690                                       CXXCtorType CtorType,
1691                                       const FunctionArgList &Args,
1692                                       SourceLocation Loc);
1693   // It's important not to confuse this and the previous function. Delegating
1694   // constructors are the C++0x feature. The constructor delegate optimization
1695   // is used to reduce duplication in the base and complete consturctors where
1696   // they are substantially the same.
1697   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1698                                         const FunctionArgList &Args);
1699   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1700                               bool ForVirtualBase, bool Delegating,
1701                               llvm::Value *This, const CXXConstructExpr *E);
1702 
1703   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1704                               llvm::Value *This, llvm::Value *Src,
1705                               const CXXConstructExpr *E);
1706 
1707   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1708                                   const ConstantArrayType *ArrayTy,
1709                                   llvm::Value *ArrayPtr,
1710                                   const CXXConstructExpr *E,
1711                                   bool ZeroInitialization = false);
1712 
1713   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1714                                   llvm::Value *NumElements,
1715                                   llvm::Value *ArrayPtr,
1716                                   const CXXConstructExpr *E,
1717                                   bool ZeroInitialization = false);
1718 
1719   static Destroyer destroyCXXObject;
1720 
1721   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1722                              bool ForVirtualBase, bool Delegating,
1723                              llvm::Value *This);
1724 
1725   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1726                                llvm::Type *ElementTy, llvm::Value *NewPtr,
1727                                llvm::Value *NumElements,
1728                                llvm::Value *AllocSizeWithoutCookie);
1729 
1730   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1731                         llvm::Value *Ptr);
1732 
1733   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1734   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1735 
1736   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1737                       QualType DeleteTy);
1738 
1739   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1740                                   const Expr *Arg, bool IsDelete);
1741 
1742   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1743   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1744   llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1745 
1746   /// \brief Situations in which we might emit a check for the suitability of a
1747   ///        pointer or glvalue.
1748   enum TypeCheckKind {
1749     /// Checking the operand of a load. Must be suitably sized and aligned.
1750     TCK_Load,
1751     /// Checking the destination of a store. Must be suitably sized and aligned.
1752     TCK_Store,
1753     /// Checking the bound value in a reference binding. Must be suitably sized
1754     /// and aligned, but is not required to refer to an object (until the
1755     /// reference is used), per core issue 453.
1756     TCK_ReferenceBinding,
1757     /// Checking the object expression in a non-static data member access. Must
1758     /// be an object within its lifetime.
1759     TCK_MemberAccess,
1760     /// Checking the 'this' pointer for a call to a non-static member function.
1761     /// Must be an object within its lifetime.
1762     TCK_MemberCall,
1763     /// Checking the 'this' pointer for a constructor call.
1764     TCK_ConstructorCall,
1765     /// Checking the operand of a static_cast to a derived pointer type. Must be
1766     /// null or an object within its lifetime.
1767     TCK_DowncastPointer,
1768     /// Checking the operand of a static_cast to a derived reference type. Must
1769     /// be an object within its lifetime.
1770     TCK_DowncastReference,
1771     /// Checking the operand of a cast to a base object. Must be suitably sized
1772     /// and aligned.
1773     TCK_Upcast,
1774     /// Checking the operand of a cast to a virtual base object. Must be an
1775     /// object within its lifetime.
1776     TCK_UpcastToVirtualBase
1777   };
1778 
1779   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
1780   /// calls to EmitTypeCheck can be skipped.
1781   bool sanitizePerformTypeCheck() const;
1782 
1783   /// \brief Emit a check that \p V is the address of storage of the
1784   /// appropriate size and alignment for an object of type \p Type.
1785   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1786                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
1787                      bool SkipNullCheck = false);
1788 
1789   /// \brief Emit a check that \p Base points into an array object, which
1790   /// we can access at index \p Index. \p Accessed should be \c false if we
1791   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1792   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1793                        QualType IndexType, bool Accessed);
1794 
1795   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1796                                        bool isInc, bool isPre);
1797   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1798                                          bool isInc, bool isPre);
1799 
1800   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
1801                                llvm::Value *OffsetValue = nullptr) {
1802     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
1803                                       OffsetValue);
1804   }
1805 
1806   //===--------------------------------------------------------------------===//
1807   //                            Declaration Emission
1808   //===--------------------------------------------------------------------===//
1809 
1810   /// EmitDecl - Emit a declaration.
1811   ///
1812   /// This function can be called with a null (unreachable) insert point.
1813   void EmitDecl(const Decl &D);
1814 
1815   /// EmitVarDecl - Emit a local variable declaration.
1816   ///
1817   /// This function can be called with a null (unreachable) insert point.
1818   void EmitVarDecl(const VarDecl &D);
1819 
1820   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
1821                       bool capturedByInit);
1822   void EmitScalarInit(llvm::Value *init, LValue lvalue);
1823 
1824   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1825                              llvm::Value *Address);
1826 
1827   /// \brief Determine whether the given initializer is trivial in the sense
1828   /// that it requires no code to be generated.
1829   bool isTrivialInitializer(const Expr *Init);
1830 
1831   /// EmitAutoVarDecl - Emit an auto variable declaration.
1832   ///
1833   /// This function can be called with a null (unreachable) insert point.
1834   void EmitAutoVarDecl(const VarDecl &D);
1835 
1836   class AutoVarEmission {
1837     friend class CodeGenFunction;
1838 
1839     const VarDecl *Variable;
1840 
1841     /// The alignment of the variable.
1842     CharUnits Alignment;
1843 
1844     /// The address of the alloca.  Null if the variable was emitted
1845     /// as a global constant.
1846     llvm::Value *Address;
1847 
1848     llvm::Value *NRVOFlag;
1849 
1850     /// True if the variable is a __block variable.
1851     bool IsByRef;
1852 
1853     /// True if the variable is of aggregate type and has a constant
1854     /// initializer.
1855     bool IsConstantAggregate;
1856 
1857     /// Non-null if we should use lifetime annotations.
1858     llvm::Value *SizeForLifetimeMarkers;
1859 
1860     struct Invalid {};
AutoVarEmission(Invalid)1861     AutoVarEmission(Invalid) : Variable(nullptr) {}
1862 
AutoVarEmission(const VarDecl & variable)1863     AutoVarEmission(const VarDecl &variable)
1864       : Variable(&variable), Address(nullptr), NRVOFlag(nullptr),
1865         IsByRef(false), IsConstantAggregate(false),
1866         SizeForLifetimeMarkers(nullptr) {}
1867 
wasEmittedAsGlobal()1868     bool wasEmittedAsGlobal() const { return Address == nullptr; }
1869 
1870   public:
invalid()1871     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1872 
useLifetimeMarkers()1873     bool useLifetimeMarkers() const {
1874       return SizeForLifetimeMarkers != nullptr;
1875     }
getSizeForLifetimeMarkers()1876     llvm::Value *getSizeForLifetimeMarkers() const {
1877       assert(useLifetimeMarkers());
1878       return SizeForLifetimeMarkers;
1879     }
1880 
1881     /// Returns the raw, allocated address, which is not necessarily
1882     /// the address of the object itself.
getAllocatedAddress()1883     llvm::Value *getAllocatedAddress() const {
1884       return Address;
1885     }
1886 
1887     /// Returns the address of the object within this declaration.
1888     /// Note that this does not chase the forwarding pointer for
1889     /// __block decls.
getObjectAddress(CodeGenFunction & CGF)1890     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1891       if (!IsByRef) return Address;
1892 
1893       auto F = CGF.getByRefValueLLVMField(Variable);
1894       return CGF.Builder.CreateStructGEP(F.first, Address, F.second,
1895                                          Variable->getNameAsString());
1896     }
1897   };
1898   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1899   void EmitAutoVarInit(const AutoVarEmission &emission);
1900   void EmitAutoVarCleanups(const AutoVarEmission &emission);
1901   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1902                               QualType::DestructionKind dtorKind);
1903 
1904   void EmitStaticVarDecl(const VarDecl &D,
1905                          llvm::GlobalValue::LinkageTypes Linkage);
1906 
1907   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1908   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, bool ArgIsPointer,
1909                     unsigned ArgNo);
1910 
1911   /// protectFromPeepholes - Protect a value that we're intending to
1912   /// store to the side, but which will probably be used later, from
1913   /// aggressive peepholing optimizations that might delete it.
1914   ///
1915   /// Pass the result to unprotectFromPeepholes to declare that
1916   /// protection is no longer required.
1917   ///
1918   /// There's no particular reason why this shouldn't apply to
1919   /// l-values, it's just that no existing peepholes work on pointers.
1920   PeepholeProtection protectFromPeepholes(RValue rvalue);
1921   void unprotectFromPeepholes(PeepholeProtection protection);
1922 
1923   //===--------------------------------------------------------------------===//
1924   //                             Statement Emission
1925   //===--------------------------------------------------------------------===//
1926 
1927   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1928   void EmitStopPoint(const Stmt *S);
1929 
1930   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1931   /// this function even if there is no current insertion point.
1932   ///
1933   /// This function may clear the current insertion point; callers should use
1934   /// EnsureInsertPoint if they wish to subsequently generate code without first
1935   /// calling EmitBlock, EmitBranch, or EmitStmt.
1936   void EmitStmt(const Stmt *S);
1937 
1938   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1939   /// necessarily require an insertion point or debug information; typically
1940   /// because the statement amounts to a jump or a container of other
1941   /// statements.
1942   ///
1943   /// \return True if the statement was handled.
1944   bool EmitSimpleStmt(const Stmt *S);
1945 
1946   llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1947                                 AggValueSlot AVS = AggValueSlot::ignored());
1948   llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1949                                             bool GetLast = false,
1950                                             AggValueSlot AVS =
1951                                                 AggValueSlot::ignored());
1952 
1953   /// EmitLabel - Emit the block for the given label. It is legal to call this
1954   /// function even if there is no current insertion point.
1955   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1956 
1957   void EmitLabelStmt(const LabelStmt &S);
1958   void EmitAttributedStmt(const AttributedStmt &S);
1959   void EmitGotoStmt(const GotoStmt &S);
1960   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1961   void EmitIfStmt(const IfStmt &S);
1962 
1963   void EmitCondBrHints(llvm::LLVMContext &Context, llvm::BranchInst *CondBr,
1964                        ArrayRef<const Attr *> Attrs);
1965   void EmitWhileStmt(const WhileStmt &S,
1966                      ArrayRef<const Attr *> Attrs = None);
1967   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
1968   void EmitForStmt(const ForStmt &S,
1969                    ArrayRef<const Attr *> Attrs = None);
1970   void EmitReturnStmt(const ReturnStmt &S);
1971   void EmitDeclStmt(const DeclStmt &S);
1972   void EmitBreakStmt(const BreakStmt &S);
1973   void EmitContinueStmt(const ContinueStmt &S);
1974   void EmitSwitchStmt(const SwitchStmt &S);
1975   void EmitDefaultStmt(const DefaultStmt &S);
1976   void EmitCaseStmt(const CaseStmt &S);
1977   void EmitCaseStmtRange(const CaseStmt &S);
1978   void EmitAsmStmt(const AsmStmt &S);
1979 
1980   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1981   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1982   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1983   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1984   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1985 
1986   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1987   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1988 
1989   void EmitCXXTryStmt(const CXXTryStmt &S);
1990   void EmitSEHTryStmt(const SEHTryStmt &S);
1991   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
1992   void EnterSEHTryStmt(const SEHTryStmt &S);
1993   void ExitSEHTryStmt(const SEHTryStmt &S);
1994 
1995   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, StringRef Name,
1996                               QualType RetTy, FunctionArgList &Args,
1997                               const Stmt *OutlinedStmt);
1998 
1999   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
2000                                             const SEHExceptStmt &Except);
2001 
2002   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
2003                                              const SEHFinallyStmt &Finally);
2004 
2005   void EmitSEHExceptionCodeSave();
2006   llvm::Value *EmitSEHExceptionCode();
2007   llvm::Value *EmitSEHExceptionInfo();
2008   llvm::Value *EmitSEHAbnormalTermination();
2009 
2010   /// Scan the outlined statement for captures from the parent function. For
2011   /// each capture, mark the capture as escaped and emit a call to
2012   /// llvm.framerecover. Insert the framerecover result into the LocalDeclMap.
2013   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
2014                           llvm::Value *ParentFP);
2015 
2016   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
2017                            ArrayRef<const Attr *> Attrs = None);
2018 
2019   LValue InitCapturedStruct(const CapturedStmt &S);
2020   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
2021   void GenerateCapturedStmtFunctionProlog(const CapturedStmt &S);
2022   llvm::Function *GenerateCapturedStmtFunctionEpilog(const CapturedStmt &S);
2023   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
2024   llvm::Value *GenerateCapturedStmtArgument(const CapturedStmt &S);
2025   /// \brief Perform element by element copying of arrays with type \a
2026   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
2027   /// generated by \a CopyGen.
2028   ///
2029   /// \param DestAddr Address of the destination array.
2030   /// \param SrcAddr Address of the source array.
2031   /// \param OriginalType Type of destination and source arrays.
2032   /// \param CopyGen Copying procedure that copies value of single array element
2033   /// to another single array element.
2034   void EmitOMPAggregateAssign(
2035       llvm::Value *DestAddr, llvm::Value *SrcAddr, QualType OriginalType,
2036       const llvm::function_ref<void(llvm::Value *, llvm::Value *)> &CopyGen);
2037   /// \brief Emit proper copying of data from one variable to another.
2038   ///
2039   /// \param OriginalType Original type of the copied variables.
2040   /// \param DestAddr Destination address.
2041   /// \param SrcAddr Source address.
2042   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
2043   /// type of the base array element).
2044   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
2045   /// the base array element).
2046   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
2047   /// DestVD.
2048   void EmitOMPCopy(CodeGenFunction &CGF, QualType OriginalType,
2049                    llvm::Value *DestAddr, llvm::Value *SrcAddr,
2050                    const VarDecl *DestVD, const VarDecl *SrcVD,
2051                    const Expr *Copy);
2052   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
2053   /// \a X = \a E \a BO \a E.
2054   ///
2055   /// \param X Value to be updated.
2056   /// \param E Update value.
2057   /// \param BO Binary operation for update operation.
2058   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
2059   /// expression, false otherwise.
2060   /// \param AO Atomic ordering of the generated atomic instructions.
2061   /// \param CommonGen Code generator for complex expressions that cannot be
2062   /// expressed through atomicrmw instruction.
2063   void EmitOMPAtomicSimpleUpdateExpr(
2064       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
2065       llvm::AtomicOrdering AO, SourceLocation Loc,
2066       const llvm::function_ref<RValue(RValue)> &CommonGen);
2067   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
2068                                  OMPPrivateScope &PrivateScope);
2069   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
2070                             OMPPrivateScope &PrivateScope);
2071   /// \brief Emit code for copyin clause in \a D directive. The next code is
2072   /// generated at the start of outlined functions for directives:
2073   /// \code
2074   /// threadprivate_var1 = master_threadprivate_var1;
2075   /// operator=(threadprivate_var2, master_threadprivate_var2);
2076   /// ...
2077   /// __kmpc_barrier(&loc, global_tid);
2078   /// \endcode
2079   ///
2080   /// \param D OpenMP directive possibly with 'copyin' clause(s).
2081   /// \returns true if at least one copyin variable is found, false otherwise.
2082   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
2083   /// \brief Emit initial code for lastprivate variables. If some variable is
2084   /// not also firstprivate, then the default initialization is used. Otherwise
2085   /// initialization of this variable is performed by EmitOMPFirstprivateClause
2086   /// method.
2087   ///
2088   /// \param D Directive that may have 'lastprivate' directives.
2089   /// \param PrivateScope Private scope for capturing lastprivate variables for
2090   /// proper codegen in internal captured statement.
2091   ///
2092   /// \returns true if there is at least one lastprivate variable, false
2093   /// otherwise.
2094   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
2095                                     OMPPrivateScope &PrivateScope);
2096   /// \brief Emit final copying of lastprivate values to original variables at
2097   /// the end of the worksharing or simd directive.
2098   ///
2099   /// \param D Directive that has at least one 'lastprivate' directives.
2100   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
2101   /// it is the last iteration of the loop code in associated directive, or to
2102   /// 'i1 false' otherwise.
2103   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
2104                                      llvm::Value *IsLastIterCond);
2105   /// \brief Emit initial code for reduction variables. Creates reduction copies
2106   /// and initializes them with the values according to OpenMP standard.
2107   ///
2108   /// \param D Directive (possibly) with the 'reduction' clause.
2109   /// \param PrivateScope Private scope for capturing reduction variables for
2110   /// proper codegen in internal captured statement.
2111   ///
2112   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
2113                                   OMPPrivateScope &PrivateScope);
2114   /// \brief Emit final update of reduction values to original variables at
2115   /// the end of the directive.
2116   ///
2117   /// \param D Directive that has at least one 'reduction' directives.
2118   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
2119 
2120   void EmitOMPParallelDirective(const OMPParallelDirective &S);
2121   void EmitOMPSimdDirective(const OMPSimdDirective &S);
2122   void EmitOMPForDirective(const OMPForDirective &S);
2123   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
2124   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
2125   void EmitOMPSectionDirective(const OMPSectionDirective &S);
2126   void EmitOMPSingleDirective(const OMPSingleDirective &S);
2127   void EmitOMPMasterDirective(const OMPMasterDirective &S);
2128   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
2129   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
2130   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
2131   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
2132   void EmitOMPTaskDirective(const OMPTaskDirective &S);
2133   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
2134   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
2135   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
2136   void EmitOMPFlushDirective(const OMPFlushDirective &S);
2137   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
2138   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
2139   void EmitOMPTargetDirective(const OMPTargetDirective &S);
2140   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
2141 
2142   void
2143   EmitOMPInnerLoop(const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
2144                    const Expr *IncExpr,
2145                    const llvm::function_ref<void(CodeGenFunction &)> &BodyGen);
2146 
2147 private:
2148 
2149   /// Helpers for the OpenMP loop directives.
2150   void EmitOMPLoopBody(const OMPLoopDirective &Directive,
2151                        bool SeparateIter = false);
2152   void EmitOMPSimdFinal(const OMPLoopDirective &S);
2153   /// \brief Emit code for the worksharing loop-based directive.
2154   /// \return true, if this construct has any lastprivate clause, false -
2155   /// otherwise.
2156   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
2157   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
2158                            const OMPLoopDirective &S,
2159                            OMPPrivateScope &LoopScope, llvm::Value *LB,
2160                            llvm::Value *UB, llvm::Value *ST, llvm::Value *IL,
2161                            llvm::Value *Chunk);
2162 
2163 public:
2164 
2165   //===--------------------------------------------------------------------===//
2166   //                         LValue Expression Emission
2167   //===--------------------------------------------------------------------===//
2168 
2169   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2170   RValue GetUndefRValue(QualType Ty);
2171 
2172   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2173   /// and issue an ErrorUnsupported style diagnostic (using the
2174   /// provided Name).
2175   RValue EmitUnsupportedRValue(const Expr *E,
2176                                const char *Name);
2177 
2178   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2179   /// an ErrorUnsupported style diagnostic (using the provided Name).
2180   LValue EmitUnsupportedLValue(const Expr *E,
2181                                const char *Name);
2182 
2183   /// EmitLValue - Emit code to compute a designator that specifies the location
2184   /// of the expression.
2185   ///
2186   /// This can return one of two things: a simple address or a bitfield
2187   /// reference.  In either case, the LLVM Value* in the LValue structure is
2188   /// guaranteed to be an LLVM pointer type.
2189   ///
2190   /// If this returns a bitfield reference, nothing about the pointee type of
2191   /// the LLVM value is known: For example, it may not be a pointer to an
2192   /// integer.
2193   ///
2194   /// If this returns a normal address, and if the lvalue's C type is fixed
2195   /// size, this method guarantees that the returned pointer type will point to
2196   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2197   /// variable length type, this is not possible.
2198   ///
2199   LValue EmitLValue(const Expr *E);
2200 
2201   /// \brief Same as EmitLValue but additionally we generate checking code to
2202   /// guard against undefined behavior.  This is only suitable when we know
2203   /// that the address will be used to access the object.
2204   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2205 
2206   RValue convertTempToRValue(llvm::Value *addr, QualType type,
2207                              SourceLocation Loc);
2208 
2209   void EmitAtomicInit(Expr *E, LValue lvalue);
2210 
2211   bool LValueIsSuitableForInlineAtomic(LValue Src);
2212   bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
2213 
2214   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
2215                         AggValueSlot Slot = AggValueSlot::ignored());
2216 
2217   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
2218                         llvm::AtomicOrdering AO, bool IsVolatile = false,
2219                         AggValueSlot slot = AggValueSlot::ignored());
2220 
2221   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
2222 
2223   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
2224                        bool IsVolatile, bool isInit);
2225 
2226   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
2227       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
2228       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
2229       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
2230       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
2231 
2232   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
2233                         const std::function<RValue(RValue)> &UpdateOp,
2234                         bool IsVolatile);
2235 
2236   /// EmitToMemory - Change a scalar value from its value
2237   /// representation to its in-memory representation.
2238   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2239 
2240   /// EmitFromMemory - Change a scalar value from its memory
2241   /// representation to its value representation.
2242   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2243 
2244   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2245   /// care to appropriately convert from the memory representation to
2246   /// the LLVM value representation.
2247   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2248                                 unsigned Alignment, QualType Ty,
2249                                 SourceLocation Loc,
2250                                 llvm::MDNode *TBAAInfo = nullptr,
2251                                 QualType TBAABaseTy = QualType(),
2252                                 uint64_t TBAAOffset = 0);
2253 
2254   /// EmitLoadOfScalar - Load a scalar value from an address, taking
2255   /// care to appropriately convert from the memory representation to
2256   /// the LLVM value representation.  The l-value must be a simple
2257   /// l-value.
2258   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
2259 
2260   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2261   /// care to appropriately convert from the memory representation to
2262   /// the LLVM value representation.
2263   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2264                          bool Volatile, unsigned Alignment, QualType Ty,
2265                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
2266                          QualType TBAABaseTy = QualType(),
2267                          uint64_t TBAAOffset = 0);
2268 
2269   /// EmitStoreOfScalar - Store a scalar value to an address, taking
2270   /// care to appropriately convert from the memory representation to
2271   /// the LLVM value representation.  The l-value must be a simple
2272   /// l-value.  The isInit flag indicates whether this is an initialization.
2273   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2274   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2275 
2276   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2277   /// this method emits the address of the lvalue, then loads the result as an
2278   /// rvalue, returning the rvalue.
2279   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
2280   RValue EmitLoadOfExtVectorElementLValue(LValue V);
2281   RValue EmitLoadOfBitfieldLValue(LValue LV);
2282   RValue EmitLoadOfGlobalRegLValue(LValue LV);
2283 
2284   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2285   /// lvalue, where both are guaranteed to the have the same type, and that type
2286   /// is 'Ty'.
2287   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
2288   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2289   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
2290 
2291   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
2292   /// as EmitStoreThroughLValue.
2293   ///
2294   /// \param Result [out] - If non-null, this will be set to a Value* for the
2295   /// bit-field contents after the store, appropriate for use as the result of
2296   /// an assignment to the bit-field.
2297   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2298                                       llvm::Value **Result=nullptr);
2299 
2300   /// Emit an l-value for an assignment (simple or compound) of complex type.
2301   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2302   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2303   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
2304                                              llvm::Value *&Result);
2305 
2306   // Note: only available for agg return types
2307   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2308   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2309   // Note: only available for agg return types
2310   LValue EmitCallExprLValue(const CallExpr *E);
2311   // Note: only available for agg return types
2312   LValue EmitVAArgExprLValue(const VAArgExpr *E);
2313   LValue EmitDeclRefLValue(const DeclRefExpr *E);
2314   LValue EmitReadRegister(const VarDecl *VD);
2315   LValue EmitStringLiteralLValue(const StringLiteral *E);
2316   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2317   LValue EmitPredefinedLValue(const PredefinedExpr *E);
2318   LValue EmitUnaryOpLValue(const UnaryOperator *E);
2319   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2320                                 bool Accessed = false);
2321   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2322   LValue EmitMemberExpr(const MemberExpr *E);
2323   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2324   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2325   LValue EmitInitListLValue(const InitListExpr *E);
2326   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2327   LValue EmitCastLValue(const CastExpr *E);
2328   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2329   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2330 
2331   llvm::Value *EmitExtVectorElementLValue(LValue V);
2332 
2333   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
2334 
2335   class ConstantEmission {
2336     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
ConstantEmission(llvm::Constant * C,bool isReference)2337     ConstantEmission(llvm::Constant *C, bool isReference)
2338       : ValueAndIsReference(C, isReference) {}
2339   public:
ConstantEmission()2340     ConstantEmission() {}
forReference(llvm::Constant * C)2341     static ConstantEmission forReference(llvm::Constant *C) {
2342       return ConstantEmission(C, true);
2343     }
forValue(llvm::Constant * C)2344     static ConstantEmission forValue(llvm::Constant *C) {
2345       return ConstantEmission(C, false);
2346     }
2347 
2348     explicit operator bool() const {
2349       return ValueAndIsReference.getOpaqueValue() != nullptr;
2350     }
2351 
isReference()2352     bool isReference() const { return ValueAndIsReference.getInt(); }
getReferenceLValue(CodeGenFunction & CGF,Expr * refExpr)2353     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2354       assert(isReference());
2355       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2356                                             refExpr->getType());
2357     }
2358 
getValue()2359     llvm::Constant *getValue() const {
2360       assert(!isReference());
2361       return ValueAndIsReference.getPointer();
2362     }
2363   };
2364 
2365   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2366 
2367   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2368                                 AggValueSlot slot = AggValueSlot::ignored());
2369   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2370 
2371   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2372                               const ObjCIvarDecl *Ivar);
2373   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2374   LValue EmitLValueForLambdaField(const FieldDecl *Field);
2375 
2376   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2377   /// if the Field is a reference, this will return the address of the reference
2378   /// and not the address of the value stored in the reference.
2379   LValue EmitLValueForFieldInitialization(LValue Base,
2380                                           const FieldDecl* Field);
2381 
2382   LValue EmitLValueForIvar(QualType ObjectTy,
2383                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
2384                            unsigned CVRQualifiers);
2385 
2386   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2387   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2388   LValue EmitLambdaLValue(const LambdaExpr *E);
2389   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2390   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2391 
2392   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2393   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2394   LValue EmitStmtExprLValue(const StmtExpr *E);
2395   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2396   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2397   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2398 
2399   //===--------------------------------------------------------------------===//
2400   //                         Scalar Expression Emission
2401   //===--------------------------------------------------------------------===//
2402 
2403   /// EmitCall - Generate a call of the given function, expecting the given
2404   /// result type, and using the given argument list which specifies both the
2405   /// LLVM arguments and the types they were derived from.
2406   ///
2407   /// \param TargetDecl - If given, the decl of the function in a direct call;
2408   /// used to set attributes on the call (noreturn, etc.).
2409   RValue EmitCall(const CGFunctionInfo &FnInfo,
2410                   llvm::Value *Callee,
2411                   ReturnValueSlot ReturnValue,
2412                   const CallArgList &Args,
2413                   const Decl *TargetDecl = nullptr,
2414                   llvm::Instruction **callOrInvoke = nullptr);
2415 
2416   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
2417                   ReturnValueSlot ReturnValue,
2418                   const Decl *TargetDecl = nullptr,
2419                   llvm::Value *Chain = nullptr);
2420   RValue EmitCallExpr(const CallExpr *E,
2421                       ReturnValueSlot ReturnValue = ReturnValueSlot());
2422 
2423   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2424                                   const Twine &name = "");
2425   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2426                                   ArrayRef<llvm::Value*> args,
2427                                   const Twine &name = "");
2428   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2429                                           const Twine &name = "");
2430   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2431                                           ArrayRef<llvm::Value*> args,
2432                                           const Twine &name = "");
2433 
2434   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2435                                   ArrayRef<llvm::Value *> Args,
2436                                   const Twine &Name = "");
2437   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2438                                   const Twine &Name = "");
2439   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2440                                          ArrayRef<llvm::Value*> args,
2441                                          const Twine &name = "");
2442   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2443                                          const Twine &name = "");
2444   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2445                                        ArrayRef<llvm::Value*> args);
2446 
2447   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2448                                          NestedNameSpecifier *Qual,
2449                                          llvm::Type *Ty);
2450 
2451   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2452                                                    CXXDtorType Type,
2453                                                    const CXXRecordDecl *RD);
2454 
2455   RValue
2456   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2457                               ReturnValueSlot ReturnValue, llvm::Value *This,
2458                               llvm::Value *ImplicitParam,
2459                               QualType ImplicitParamTy, const CallExpr *E);
2460   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
2461                              ReturnValueSlot ReturnValue, llvm::Value *This,
2462                              llvm::Value *ImplicitParam,
2463                              QualType ImplicitParamTy, const CallExpr *E,
2464                              StructorType Type);
2465   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2466                                ReturnValueSlot ReturnValue);
2467   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
2468                                                const CXXMethodDecl *MD,
2469                                                ReturnValueSlot ReturnValue,
2470                                                bool HasQualifier,
2471                                                NestedNameSpecifier *Qualifier,
2472                                                bool IsArrow, const Expr *Base);
2473   // Compute the object pointer.
2474   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2475                                       ReturnValueSlot ReturnValue);
2476 
2477   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2478                                        const CXXMethodDecl *MD,
2479                                        ReturnValueSlot ReturnValue);
2480 
2481   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2482                                 ReturnValueSlot ReturnValue);
2483 
2484 
2485   RValue EmitBuiltinExpr(const FunctionDecl *FD,
2486                          unsigned BuiltinID, const CallExpr *E,
2487                          ReturnValueSlot ReturnValue);
2488 
2489   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2490 
2491   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2492   /// is unhandled by the current target.
2493   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2494 
2495   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
2496                                              const llvm::CmpInst::Predicate Fp,
2497                                              const llvm::CmpInst::Predicate Ip,
2498                                              const llvm::Twine &Name = "");
2499   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2500 
2501   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
2502                                          unsigned LLVMIntrinsic,
2503                                          unsigned AltLLVMIntrinsic,
2504                                          const char *NameHint,
2505                                          unsigned Modifier,
2506                                          const CallExpr *E,
2507                                          SmallVectorImpl<llvm::Value *> &Ops,
2508                                          llvm::Value *Align = nullptr);
2509   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2510                                           unsigned Modifier, llvm::Type *ArgTy,
2511                                           const CallExpr *E);
2512   llvm::Value *EmitNeonCall(llvm::Function *F,
2513                             SmallVectorImpl<llvm::Value*> &O,
2514                             const char *name,
2515                             unsigned shift = 0, bool rightshift = false);
2516   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2517   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2518                                    bool negateForRightShift);
2519   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
2520                                  llvm::Type *Ty, bool usgn, const char *name);
2521   // Helper functions for EmitAArch64BuiltinExpr.
2522   llvm::Value *vectorWrapScalar8(llvm::Value *Op);
2523   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
2524   llvm::Value *emitVectorWrappedScalar8Intrinsic(
2525       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2526   llvm::Value *emitVectorWrappedScalar16Intrinsic(
2527       unsigned Int, SmallVectorImpl<llvm::Value *> &Ops, const char *Name);
2528   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2529   llvm::Value *EmitNeon64Call(llvm::Function *F,
2530                               llvm::SmallVectorImpl<llvm::Value *> &O,
2531                               const char *name);
2532 
2533   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2534   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2535   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2536   llvm::Value *EmitR600BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2537   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2538 
2539   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2540   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2541   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2542   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2543   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2544   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2545                                 const ObjCMethodDecl *MethodWithObjects);
2546   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2547   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2548                              ReturnValueSlot Return = ReturnValueSlot());
2549 
2550   /// Retrieves the default cleanup kind for an ARC cleanup.
2551   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
getARCCleanupKind()2552   CleanupKind getARCCleanupKind() {
2553     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2554              ? NormalAndEHCleanup : NormalCleanup;
2555   }
2556 
2557   // ARC primitives.
2558   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2559   void EmitARCDestroyWeak(llvm::Value *addr);
2560   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2561   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2562   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2563                                 bool ignored);
2564   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2565   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2566   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2567   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2568   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2569                                   bool resultIgnored);
2570   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2571                                       bool resultIgnored);
2572   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2573   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2574   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2575   void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2576   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2577   llvm::Value *EmitARCAutorelease(llvm::Value *value);
2578   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2579   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2580   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2581 
2582   std::pair<LValue,llvm::Value*>
2583   EmitARCStoreAutoreleasing(const BinaryOperator *e);
2584   std::pair<LValue,llvm::Value*>
2585   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2586 
2587   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2588 
2589   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2590   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2591   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2592 
2593   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2594   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2595   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2596 
2597   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
2598 
2599   static Destroyer destroyARCStrongImprecise;
2600   static Destroyer destroyARCStrongPrecise;
2601   static Destroyer destroyARCWeak;
2602 
2603   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2604   llvm::Value *EmitObjCAutoreleasePoolPush();
2605   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2606   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2607   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2608 
2609   /// \brief Emits a reference binding to the passed in expression.
2610   RValue EmitReferenceBindingToExpr(const Expr *E);
2611 
2612   //===--------------------------------------------------------------------===//
2613   //                           Expression Emission
2614   //===--------------------------------------------------------------------===//
2615 
2616   // Expressions are broken into three classes: scalar, complex, aggregate.
2617 
2618   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2619   /// scalar type, returning the result.
2620   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2621 
2622   /// EmitScalarConversion - Emit a conversion from the specified type to the
2623   /// specified destination type, both of which are LLVM scalar types.
2624   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2625                                     QualType DstTy);
2626 
2627   /// EmitComplexToScalarConversion - Emit a conversion from the specified
2628   /// complex type to the specified destination type, where the destination type
2629   /// is an LLVM scalar type.
2630   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2631                                              QualType DstTy);
2632 
2633 
2634   /// EmitAggExpr - Emit the computation of the specified expression
2635   /// of aggregate type.  The result is computed into the given slot,
2636   /// which may be null to indicate that the value is not needed.
2637   void EmitAggExpr(const Expr *E, AggValueSlot AS);
2638 
2639   /// EmitAggExprToLValue - Emit the computation of the specified expression of
2640   /// aggregate type into a temporary LValue.
2641   LValue EmitAggExprToLValue(const Expr *E);
2642 
2643   /// EmitGCMemmoveCollectable - Emit special API for structs with object
2644   /// pointers.
2645   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2646                                 QualType Ty);
2647 
2648   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2649   /// make sure it survives garbage collection until this point.
2650   void EmitExtendGCLifetime(llvm::Value *object);
2651 
2652   /// EmitComplexExpr - Emit the computation of the specified expression of
2653   /// complex type, returning the result.
2654   ComplexPairTy EmitComplexExpr(const Expr *E,
2655                                 bool IgnoreReal = false,
2656                                 bool IgnoreImag = false);
2657 
2658   /// EmitComplexExprIntoLValue - Emit the given expression of complex
2659   /// type and place its result into the specified l-value.
2660   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2661 
2662   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2663   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2664 
2665   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2666   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
2667 
2668   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2669   /// global variable that has already been created for it.  If the initializer
2670   /// has a different type than GV does, this may free GV and return a different
2671   /// one.  Otherwise it just returns GV.
2672   llvm::GlobalVariable *
2673   AddInitializerToStaticVarDecl(const VarDecl &D,
2674                                 llvm::GlobalVariable *GV);
2675 
2676 
2677   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2678   /// variable with global storage.
2679   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2680                                 bool PerformInit);
2681 
2682   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
2683                                    llvm::Constant *Addr);
2684 
2685   /// Call atexit() with a function that passes the given argument to
2686   /// the given function.
2687   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
2688                                     llvm::Constant *addr);
2689 
2690   /// Emit code in this function to perform a guarded variable
2691   /// initialization.  Guarded initializations are used when it's not
2692   /// possible to prove that an initialization will be done exactly
2693   /// once, e.g. with a static local variable or a static data member
2694   /// of a class template.
2695   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2696                           bool PerformInit);
2697 
2698   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2699   /// variables.
2700   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2701                                  ArrayRef<llvm::Function *> CXXThreadLocals,
2702                                  llvm::GlobalVariable *Guard = nullptr);
2703 
2704   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2705   /// variables.
2706   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2707                                   const std::vector<std::pair<llvm::WeakVH,
2708                                   llvm::Constant*> > &DtorsAndObjects);
2709 
2710   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2711                                         const VarDecl *D,
2712                                         llvm::GlobalVariable *Addr,
2713                                         bool PerformInit);
2714 
2715   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2716 
2717   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2718                                   const Expr *Exp);
2719 
enterFullExpression(const ExprWithCleanups * E)2720   void enterFullExpression(const ExprWithCleanups *E) {
2721     if (E->getNumObjects() == 0) return;
2722     enterNonTrivialFullExpression(E);
2723   }
2724   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2725 
2726   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2727 
2728   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2729 
2730   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = nullptr);
2731 
2732   //===--------------------------------------------------------------------===//
2733   //                         Annotations Emission
2734   //===--------------------------------------------------------------------===//
2735 
2736   /// Emit an annotation call (intrinsic or builtin).
2737   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2738                                   llvm::Value *AnnotatedVal,
2739                                   StringRef AnnotationStr,
2740                                   SourceLocation Location);
2741 
2742   /// Emit local annotations for the local variable V, declared by D.
2743   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2744 
2745   /// Emit field annotations for the given field & value. Returns the
2746   /// annotation result.
2747   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2748 
2749   //===--------------------------------------------------------------------===//
2750   //                             Internal Helpers
2751   //===--------------------------------------------------------------------===//
2752 
2753   /// ContainsLabel - Return true if the statement contains a label in it.  If
2754   /// this statement is not executed normally, it not containing a label means
2755   /// that we can just remove the code.
2756   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2757 
2758   /// containsBreak - Return true if the statement contains a break out of it.
2759   /// If the statement (recursively) contains a switch or loop with a break
2760   /// inside of it, this is fine.
2761   static bool containsBreak(const Stmt *S);
2762 
2763   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2764   /// to a constant, or if it does but contains a label, return false.  If it
2765   /// constant folds return true and set the boolean result in Result.
2766   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2767 
2768   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2769   /// to a constant, or if it does but contains a label, return false.  If it
2770   /// constant folds return true and set the folded value.
2771   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2772 
2773   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2774   /// if statement) to the specified blocks.  Based on the condition, this might
2775   /// try to simplify the codegen of the conditional based on the branch.
2776   /// TrueCount should be the number of times we expect the condition to
2777   /// evaluate to true based on PGO data.
2778   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2779                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
2780 
2781   /// \brief Emit a description of a type in a format suitable for passing to
2782   /// a runtime sanitizer handler.
2783   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2784 
2785   /// \brief Convert a value into a format suitable for passing to a runtime
2786   /// sanitizer handler.
2787   llvm::Value *EmitCheckValue(llvm::Value *V);
2788 
2789   /// \brief Emit a description of a source location in a format suitable for
2790   /// passing to a runtime sanitizer handler.
2791   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2792 
2793   /// \brief Create a basic block that will call a handler function in a
2794   /// sanitizer runtime with the provided arguments, and create a conditional
2795   /// branch to it.
2796   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
2797                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2798                  ArrayRef<llvm::Value *> DynamicArgs);
2799 
2800   /// \brief Create a basic block that will call the trap intrinsic, and emit a
2801   /// conditional branch to it, for the -ftrapv checks.
2802   void EmitTrapCheck(llvm::Value *Checked);
2803 
2804   /// EmitCallArg - Emit a single call argument.
2805   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2806 
2807   /// EmitDelegateCallArg - We are performing a delegate call; that
2808   /// is, the current function is delegating to another one.  Produce
2809   /// a r-value suitable for passing the given parameter.
2810   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
2811                            SourceLocation loc);
2812 
2813   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2814   /// point operation, expressed as the maximum relative error in ulp.
2815   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2816 
2817 private:
2818   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2819   void EmitReturnOfRValue(RValue RV, QualType Ty);
2820 
2821   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
2822 
2823   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
2824   DeferredReplacements;
2825 
2826   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2827   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2828   ///
2829   /// \param AI - The first function argument of the expansion.
2830   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
2831                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
2832 
2833   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
2834   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
2835   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
2836   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
2837                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
2838                         unsigned &IRCallArgPos);
2839 
2840   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2841                             const Expr *InputExpr, std::string &ConstraintStr);
2842 
2843   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2844                                   LValue InputValue, QualType InputType,
2845                                   std::string &ConstraintStr,
2846                                   SourceLocation Loc);
2847 
2848 public:
2849   /// EmitCallArgs - Emit call arguments for a function.
2850   template <typename T>
2851   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
2852                     CallExpr::const_arg_iterator ArgBeg,
2853                     CallExpr::const_arg_iterator ArgEnd,
2854                     const FunctionDecl *CalleeDecl = nullptr,
2855                     unsigned ParamsToSkip = 0) {
2856     SmallVector<QualType, 16> ArgTypes;
2857     CallExpr::const_arg_iterator Arg = ArgBeg;
2858 
2859     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
2860            "Can't skip parameters if type info is not provided");
2861     if (CallArgTypeInfo) {
2862       // First, use the argument types that the type info knows about
2863       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
2864                 E = CallArgTypeInfo->param_type_end();
2865            I != E; ++I, ++Arg) {
2866         assert(Arg != ArgEnd && "Running over edge of argument list!");
2867         assert(
2868             ((*I)->isVariablyModifiedType() ||
2869              getContext()
2870                      .getCanonicalType((*I).getNonReferenceType())
2871                      .getTypePtr() ==
2872                  getContext().getCanonicalType(Arg->getType()).getTypePtr()) &&
2873             "type mismatch in call argument!");
2874         ArgTypes.push_back(*I);
2875       }
2876     }
2877 
2878     // Either we've emitted all the call args, or we have a call to variadic
2879     // function.
2880     assert(
2881         (Arg == ArgEnd || !CallArgTypeInfo || CallArgTypeInfo->isVariadic()) &&
2882         "Extra arguments in non-variadic function!");
2883 
2884     // If we still have any arguments, emit them using the type of the argument.
2885     for (; Arg != ArgEnd; ++Arg)
2886       ArgTypes.push_back(getVarArgType(*Arg));
2887 
2888     EmitCallArgs(Args, ArgTypes, ArgBeg, ArgEnd, CalleeDecl, ParamsToSkip);
2889   }
2890 
2891   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
2892                     CallExpr::const_arg_iterator ArgBeg,
2893                     CallExpr::const_arg_iterator ArgEnd,
2894                     const FunctionDecl *CalleeDecl = nullptr,
2895                     unsigned ParamsToSkip = 0);
2896 
2897 private:
2898   QualType getVarArgType(const Expr *Arg);
2899 
getTargetHooks()2900   const TargetCodeGenInfo &getTargetHooks() const {
2901     return CGM.getTargetCodeGenInfo();
2902   }
2903 
2904   void EmitDeclMetadata();
2905 
2906   CodeGenModule::ByrefHelpers *
2907   buildByrefHelpers(llvm::StructType &byrefType,
2908                     const AutoVarEmission &emission);
2909 
2910   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2911 
2912   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2913   /// value and compute our best estimate of the alignment of the pointee.
2914   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2915 
2916   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
2917 };
2918 
2919 /// Helper class with most of the code for saving a value for a
2920 /// conditional expression cleanup.
2921 struct DominatingLLVMValue {
2922   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2923 
2924   /// Answer whether the given value needs extra work to be saved.
needsSavingDominatingLLVMValue2925   static bool needsSaving(llvm::Value *value) {
2926     // If it's not an instruction, we don't need to save.
2927     if (!isa<llvm::Instruction>(value)) return false;
2928 
2929     // If it's an instruction in the entry block, we don't need to save.
2930     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2931     return (block != &block->getParent()->getEntryBlock());
2932   }
2933 
2934   /// Try to save the given value.
saveDominatingLLVMValue2935   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2936     if (!needsSaving(value)) return saved_type(value, false);
2937 
2938     // Otherwise we need an alloca.
2939     llvm::Value *alloca =
2940       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2941     CGF.Builder.CreateStore(value, alloca);
2942 
2943     return saved_type(alloca, true);
2944   }
2945 
restoreDominatingLLVMValue2946   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2947     if (!value.getInt()) return value.getPointer();
2948     return CGF.Builder.CreateLoad(value.getPointer());
2949   }
2950 };
2951 
2952 /// A partial specialization of DominatingValue for llvm::Values that
2953 /// might be llvm::Instructions.
2954 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2955   typedef T *type;
2956   static type restore(CodeGenFunction &CGF, saved_type value) {
2957     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2958   }
2959 };
2960 
2961 /// A specialization of DominatingValue for RValue.
2962 template <> struct DominatingValue<RValue> {
2963   typedef RValue type;
2964   class saved_type {
2965     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2966                 AggregateAddress, ComplexAddress };
2967 
2968     llvm::Value *Value;
2969     Kind K;
2970     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2971 
2972   public:
2973     static bool needsSaving(RValue value);
2974     static saved_type save(CodeGenFunction &CGF, RValue value);
2975     RValue restore(CodeGenFunction &CGF);
2976 
2977     // implementations in CGExprCXX.cpp
2978   };
2979 
2980   static bool needsSaving(type value) {
2981     return saved_type::needsSaving(value);
2982   }
2983   static saved_type save(CodeGenFunction &CGF, type value) {
2984     return saved_type::save(CGF, value);
2985   }
2986   static type restore(CodeGenFunction &CGF, saved_type value) {
2987     return value.restore(CGF);
2988   }
2989 };
2990 
2991 }  // end namespace CodeGen
2992 }  // end namespace clang
2993 
2994 #endif
2995