1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/QR>
12 
householder(const MatrixType & m)13 template<typename MatrixType> void householder(const MatrixType& m)
14 {
15   typedef typename MatrixType::Index Index;
16   static bool even = true;
17   even = !even;
18   /* this test covers the following files:
19      Householder.h
20   */
21   Index rows = m.rows();
22   Index cols = m.cols();
23 
24   typedef typename MatrixType::Scalar Scalar;
25   typedef typename NumTraits<Scalar>::Real RealScalar;
26   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
27   typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType;
28   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
29   typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType;
30   typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
31 
32   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType;
33 
34   Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp((std::max)(rows,cols));
35   Scalar* tmp = &_tmp.coeffRef(0,0);
36 
37   Scalar beta;
38   RealScalar alpha;
39   EssentialVectorType essential;
40 
41   VectorType v1 = VectorType::Random(rows), v2;
42   v2 = v1;
43   v1.makeHouseholder(essential, beta, alpha);
44   v1.applyHouseholderOnTheLeft(essential,beta,tmp);
45   VERIFY_IS_APPROX(v1.norm(), v2.norm());
46   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm());
47   v1 = VectorType::Random(rows);
48   v2 = v1;
49   v1.applyHouseholderOnTheLeft(essential,beta,tmp);
50   VERIFY_IS_APPROX(v1.norm(), v2.norm());
51 
52   MatrixType m1(rows, cols),
53              m2(rows, cols);
54 
55   v1 = VectorType::Random(rows);
56   if(even) v1.tail(rows-1).setZero();
57   m1.colwise() = v1;
58   m2 = m1;
59   m1.col(0).makeHouseholder(essential, beta, alpha);
60   m1.applyHouseholderOnTheLeft(essential,beta,tmp);
61   VERIFY_IS_APPROX(m1.norm(), m2.norm());
62   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm());
63   VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0,0)), numext::real(m1(0,0)));
64   VERIFY_IS_APPROX(numext::real(m1(0,0)), alpha);
65 
66   v1 = VectorType::Random(rows);
67   if(even) v1.tail(rows-1).setZero();
68   SquareMatrixType m3(rows,rows), m4(rows,rows);
69   m3.rowwise() = v1.transpose();
70   m4 = m3;
71   m3.row(0).makeHouseholder(essential, beta, alpha);
72   m3.applyHouseholderOnTheRight(essential,beta,tmp);
73   VERIFY_IS_APPROX(m3.norm(), m4.norm());
74   if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm());
75   VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0,0)), numext::real(m3(0,0)));
76   VERIFY_IS_APPROX(numext::real(m3(0,0)), alpha);
77 
78   // test householder sequence on the left with a shift
79 
80   Index shift = internal::random<Index>(0, std::max<Index>(rows-2,0));
81   Index brows = rows - shift;
82   m1.setRandom(rows, cols);
83   HBlockMatrixType hbm = m1.block(shift,0,brows,cols);
84   HouseholderQR<HBlockMatrixType> qr(hbm);
85   m2 = m1;
86   m2.block(shift,0,brows,cols) = qr.matrixQR();
87   HCoeffsVectorType hc = qr.hCoeffs().conjugate();
88   HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc);
89   hseq.setLength(hc.size()).setShift(shift);
90   VERIFY(hseq.length() == hc.size());
91   VERIFY(hseq.shift() == shift);
92 
93   MatrixType m5 = m2;
94   m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero();
95   VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly
96   m3 = hseq;
97   VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying
98 
99   SquareMatrixType hseq_mat = hseq;
100   SquareMatrixType hseq_mat_conj = hseq.conjugate();
101   SquareMatrixType hseq_mat_adj = hseq.adjoint();
102   SquareMatrixType hseq_mat_trans = hseq.transpose();
103   SquareMatrixType m6 = SquareMatrixType::Random(rows, rows);
104   VERIFY_IS_APPROX(hseq_mat.adjoint(),    hseq_mat_adj);
105   VERIFY_IS_APPROX(hseq_mat.conjugate(),  hseq_mat_conj);
106   VERIFY_IS_APPROX(hseq_mat.transpose(),  hseq_mat_trans);
107   VERIFY_IS_APPROX(hseq_mat * m6,             hseq_mat * m6);
108   VERIFY_IS_APPROX(hseq_mat.adjoint() * m6,   hseq_mat_adj * m6);
109   VERIFY_IS_APPROX(hseq_mat.conjugate() * m6, hseq_mat_conj * m6);
110   VERIFY_IS_APPROX(hseq_mat.transpose() * m6, hseq_mat_trans * m6);
111   VERIFY_IS_APPROX(m6 * hseq_mat,             m6 * hseq_mat);
112   VERIFY_IS_APPROX(m6 * hseq_mat.adjoint(),   m6 * hseq_mat_adj);
113   VERIFY_IS_APPROX(m6 * hseq_mat.conjugate(), m6 * hseq_mat_conj);
114   VERIFY_IS_APPROX(m6 * hseq_mat.transpose(), m6 * hseq_mat_trans);
115 
116   // test householder sequence on the right with a shift
117 
118   TMatrixType tm2 = m2.transpose();
119   HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc);
120   rhseq.setLength(hc.size()).setShift(shift);
121   VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly
122   m3 = rhseq;
123   VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying
124 }
125 
test_householder()126 void test_householder()
127 {
128   for(int i = 0; i < g_repeat; i++) {
129     CALL_SUBTEST_1( householder(Matrix<double,2,2>()) );
130     CALL_SUBTEST_2( householder(Matrix<float,2,3>()) );
131     CALL_SUBTEST_3( householder(Matrix<double,3,5>()) );
132     CALL_SUBTEST_4( householder(Matrix<float,4,4>()) );
133     CALL_SUBTEST_5( householder(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
134     CALL_SUBTEST_6( householder(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
135     CALL_SUBTEST_7( householder(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
136     CALL_SUBTEST_8( householder(Matrix<double,1,1>()) );
137   }
138 }
139