1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the DAGTypeLegalizer class. This is a private interface 11 // shared between the code that implements the SelectionDAG::LegalizeTypes 12 // method. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H 17 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H 18 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/DenseSet.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Target/TargetLowering.h" 25 26 namespace llvm { 27 28 //===----------------------------------------------------------------------===// 29 /// DAGTypeLegalizer - This takes an arbitrary SelectionDAG as input and hacks 30 /// on it until only value types the target machine can handle are left. This 31 /// involves promoting small sizes to large sizes or splitting up large values 32 /// into small values. 33 /// 34 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer { 35 const TargetLowering &TLI; 36 SelectionDAG &DAG; 37 public: 38 // NodeIdFlags - This pass uses the NodeId on the SDNodes to hold information 39 // about the state of the node. The enum has all the values. 40 enum NodeIdFlags { 41 /// ReadyToProcess - All operands have been processed, so this node is ready 42 /// to be handled. 43 ReadyToProcess = 0, 44 45 /// NewNode - This is a new node, not before seen, that was created in the 46 /// process of legalizing some other node. 47 NewNode = -1, 48 49 /// Unanalyzed - This node's ID needs to be set to the number of its 50 /// unprocessed operands. 51 Unanalyzed = -2, 52 53 /// Processed - This is a node that has already been processed. 54 Processed = -3 55 56 // 1+ - This is a node which has this many unprocessed operands. 57 }; 58 private: 59 60 /// ValueTypeActions - This is a bitvector that contains two bits for each 61 /// simple value type, where the two bits correspond to the LegalizeAction 62 /// enum from TargetLowering. This can be queried with "getTypeAction(VT)". 63 TargetLowering::ValueTypeActionImpl ValueTypeActions; 64 65 /// getTypeAction - Return how we should legalize values of this type. getTypeAction(EVT VT)66 TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const { 67 return TLI.getTypeAction(*DAG.getContext(), VT); 68 } 69 70 /// isTypeLegal - Return true if this type is legal on this target. isTypeLegal(EVT VT)71 bool isTypeLegal(EVT VT) const { 72 return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal; 73 } 74 getSetCCResultType(EVT VT)75 EVT getSetCCResultType(EVT VT) const { 76 return TLI.getSetCCResultType(*DAG.getContext(), VT); 77 } 78 79 /// IgnoreNodeResults - Pretend all of this node's results are legal. IgnoreNodeResults(SDNode * N)80 bool IgnoreNodeResults(SDNode *N) const { 81 return N->getOpcode() == ISD::TargetConstant; 82 } 83 84 /// PromotedIntegers - For integer nodes that are below legal width, this map 85 /// indicates what promoted value to use. 86 SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers; 87 88 /// ExpandedIntegers - For integer nodes that need to be expanded this map 89 /// indicates which operands are the expanded version of the input. 90 SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers; 91 92 /// SoftenedFloats - For floating point nodes converted to integers of 93 /// the same size, this map indicates the converted value to use. 94 SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats; 95 96 /// PromotedFloats - For floating point nodes that have a smaller precision 97 /// than the smallest supported precision, this map indicates what promoted 98 /// value to use. 99 SmallDenseMap<SDValue, SDValue, 8> PromotedFloats; 100 101 /// ExpandedFloats - For float nodes that need to be expanded this map 102 /// indicates which operands are the expanded version of the input. 103 SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats; 104 105 /// ScalarizedVectors - For nodes that are <1 x ty>, this map indicates the 106 /// scalar value of type 'ty' to use. 107 SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors; 108 109 /// SplitVectors - For nodes that need to be split this map indicates 110 /// which operands are the expanded version of the input. 111 SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors; 112 113 /// WidenedVectors - For vector nodes that need to be widened, indicates 114 /// the widened value to use. 115 SmallDenseMap<SDValue, SDValue, 8> WidenedVectors; 116 117 /// ReplacedValues - For values that have been replaced with another, 118 /// indicates the replacement value to use. 119 SmallDenseMap<SDValue, SDValue, 8> ReplacedValues; 120 121 /// Worklist - This defines a worklist of nodes to process. In order to be 122 /// pushed onto this worklist, all operands of a node must have already been 123 /// processed. 124 SmallVector<SDNode*, 128> Worklist; 125 126 public: DAGTypeLegalizer(SelectionDAG & dag)127 explicit DAGTypeLegalizer(SelectionDAG &dag) 128 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 129 ValueTypeActions(TLI.getValueTypeActions()) { 130 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 131 "Too many value types for ValueTypeActions to hold!"); 132 } 133 134 /// run - This is the main entry point for the type legalizer. This does a 135 /// top-down traversal of the dag, legalizing types as it goes. Returns 136 /// "true" if it made any changes. 137 bool run(); 138 NoteDeletion(SDNode * Old,SDNode * New)139 void NoteDeletion(SDNode *Old, SDNode *New) { 140 ExpungeNode(Old); 141 ExpungeNode(New); 142 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) 143 ReplacedValues[SDValue(Old, i)] = SDValue(New, i); 144 } 145 getDAG()146 SelectionDAG &getDAG() const { return DAG; } 147 148 private: 149 SDNode *AnalyzeNewNode(SDNode *N); 150 void AnalyzeNewValue(SDValue &Val); 151 void ExpungeNode(SDNode *N); 152 void PerformExpensiveChecks(); 153 void RemapValue(SDValue &N); 154 155 // Common routines. 156 SDValue BitConvertToInteger(SDValue Op); 157 SDValue BitConvertVectorToIntegerVector(SDValue Op); 158 SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT); 159 bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult); 160 bool CustomWidenLowerNode(SDNode *N, EVT VT); 161 162 /// DisintegrateMERGE_VALUES - Replace each result of the given MERGE_VALUES 163 /// node with the corresponding input operand, except for the result 'ResNo', 164 /// for which the corresponding input operand is returned. 165 SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo); 166 167 SDValue GetVectorElementPointer(SDValue VecPtr, EVT EltVT, SDValue Index); 168 SDValue JoinIntegers(SDValue Lo, SDValue Hi); 169 SDValue LibCallify(RTLIB::Libcall LC, SDNode *N, bool isSigned); 170 171 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 172 SDNode *Node, bool isSigned); 173 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 174 175 SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT); 176 void ReplaceValueWith(SDValue From, SDValue To); 177 void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi); 178 void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT, 179 SDValue &Lo, SDValue &Hi); 180 181 //===--------------------------------------------------------------------===// 182 // Integer Promotion Support: LegalizeIntegerTypes.cpp 183 //===--------------------------------------------------------------------===// 184 185 /// GetPromotedInteger - Given a processed operand Op which was promoted to a 186 /// larger integer type, this returns the promoted value. The low bits of the 187 /// promoted value corresponding to the original type are exactly equal to Op. 188 /// The extra bits contain rubbish, so the promoted value may need to be zero- 189 /// or sign-extended from the original type before it is usable (the helpers 190 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you). 191 /// For example, if Op is an i16 and was promoted to an i32, then this method 192 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper 193 /// 16 bits of which contain rubbish. GetPromotedInteger(SDValue Op)194 SDValue GetPromotedInteger(SDValue Op) { 195 SDValue &PromotedOp = PromotedIntegers[Op]; 196 RemapValue(PromotedOp); 197 assert(PromotedOp.getNode() && "Operand wasn't promoted?"); 198 return PromotedOp; 199 } 200 void SetPromotedInteger(SDValue Op, SDValue Result); 201 202 /// SExtPromotedInteger - Get a promoted operand and sign extend it to the 203 /// final size. SExtPromotedInteger(SDValue Op)204 SDValue SExtPromotedInteger(SDValue Op) { 205 EVT OldVT = Op.getValueType(); 206 SDLoc dl(Op); 207 Op = GetPromotedInteger(Op); 208 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op, 209 DAG.getValueType(OldVT)); 210 } 211 212 /// ZExtPromotedInteger - Get a promoted operand and zero extend it to the 213 /// final size. ZExtPromotedInteger(SDValue Op)214 SDValue ZExtPromotedInteger(SDValue Op) { 215 EVT OldVT = Op.getValueType(); 216 SDLoc dl(Op); 217 Op = GetPromotedInteger(Op); 218 return DAG.getZeroExtendInReg(Op, dl, OldVT.getScalarType()); 219 } 220 221 // Integer Result Promotion. 222 void PromoteIntegerResult(SDNode *N, unsigned ResNo); 223 SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 224 SDValue PromoteIntRes_AssertSext(SDNode *N); 225 SDValue PromoteIntRes_AssertZext(SDNode *N); 226 SDValue PromoteIntRes_Atomic0(AtomicSDNode *N); 227 SDValue PromoteIntRes_Atomic1(AtomicSDNode *N); 228 SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo); 229 SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N); 230 SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N); 231 SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N); 232 SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N); 233 SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N); 234 SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N); 235 SDValue PromoteIntRes_BITCAST(SDNode *N); 236 SDValue PromoteIntRes_BSWAP(SDNode *N); 237 SDValue PromoteIntRes_BUILD_PAIR(SDNode *N); 238 SDValue PromoteIntRes_Constant(SDNode *N); 239 SDValue PromoteIntRes_CONVERT_RNDSAT(SDNode *N); 240 SDValue PromoteIntRes_CTLZ(SDNode *N); 241 SDValue PromoteIntRes_CTPOP(SDNode *N); 242 SDValue PromoteIntRes_CTTZ(SDNode *N); 243 SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N); 244 SDValue PromoteIntRes_FP_TO_XINT(SDNode *N); 245 SDValue PromoteIntRes_FP_TO_FP16(SDNode *N); 246 SDValue PromoteIntRes_INT_EXTEND(SDNode *N); 247 SDValue PromoteIntRes_LOAD(LoadSDNode *N); 248 SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N); 249 SDValue PromoteIntRes_Overflow(SDNode *N); 250 SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo); 251 SDValue PromoteIntRes_SDIV(SDNode *N); 252 SDValue PromoteIntRes_SELECT(SDNode *N); 253 SDValue PromoteIntRes_VSELECT(SDNode *N); 254 SDValue PromoteIntRes_SELECT_CC(SDNode *N); 255 SDValue PromoteIntRes_SETCC(SDNode *N); 256 SDValue PromoteIntRes_SHL(SDNode *N); 257 SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N); 258 SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N); 259 SDValue PromoteIntRes_SRA(SDNode *N); 260 SDValue PromoteIntRes_SRL(SDNode *N); 261 SDValue PromoteIntRes_TRUNCATE(SDNode *N); 262 SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo); 263 SDValue PromoteIntRes_UDIV(SDNode *N); 264 SDValue PromoteIntRes_UNDEF(SDNode *N); 265 SDValue PromoteIntRes_VAARG(SDNode *N); 266 SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo); 267 268 // Integer Operand Promotion. 269 bool PromoteIntegerOperand(SDNode *N, unsigned OperandNo); 270 SDValue PromoteIntOp_ANY_EXTEND(SDNode *N); 271 SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N); 272 SDValue PromoteIntOp_BITCAST(SDNode *N); 273 SDValue PromoteIntOp_BUILD_PAIR(SDNode *N); 274 SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo); 275 SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo); 276 SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N); 277 SDValue PromoteIntOp_CONVERT_RNDSAT(SDNode *N); 278 SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo); 279 SDValue PromoteIntOp_EXTRACT_ELEMENT(SDNode *N); 280 SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N); 281 SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N); 282 SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N); 283 SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo); 284 SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo); 285 SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo); 286 SDValue PromoteIntOp_VSETCC(SDNode *N, unsigned OpNo); 287 SDValue PromoteIntOp_Shift(SDNode *N); 288 SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N); 289 SDValue PromoteIntOp_SINT_TO_FP(SDNode *N); 290 SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo); 291 SDValue PromoteIntOp_TRUNCATE(SDNode *N); 292 SDValue PromoteIntOp_UINT_TO_FP(SDNode *N); 293 SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); 294 SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); 295 SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo); 296 297 void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); 298 299 //===--------------------------------------------------------------------===// 300 // Integer Expansion Support: LegalizeIntegerTypes.cpp 301 //===--------------------------------------------------------------------===// 302 303 /// GetExpandedInteger - Given a processed operand Op which was expanded into 304 /// two integers of half the size, this returns the two halves. The low bits 305 /// of Op are exactly equal to the bits of Lo; the high bits exactly equal Hi. 306 /// For example, if Op is an i64 which was expanded into two i32's, then this 307 /// method returns the two i32's, with Lo being equal to the lower 32 bits of 308 /// Op, and Hi being equal to the upper 32 bits. 309 void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi); 310 void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi); 311 312 // Integer Result Expansion. 313 void ExpandIntegerResult(SDNode *N, unsigned ResNo); 314 void ExpandIntRes_MERGE_VALUES (SDNode *N, unsigned ResNo, 315 SDValue &Lo, SDValue &Hi); 316 void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 317 void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi); 318 void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); 319 void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi); 320 void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi); 321 void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi); 322 void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi); 323 void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi); 324 void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 325 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi); 326 void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi); 327 void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 328 void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi); 329 void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi); 330 331 void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi); 332 void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi); 333 void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi); 334 void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi); 335 void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi); 336 void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi); 337 void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 338 void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi); 339 void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 340 void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi); 341 void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi); 342 343 void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); 344 void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); 345 void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi); 346 347 void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); 348 349 void ExpandShiftByConstant(SDNode *N, unsigned Amt, 350 SDValue &Lo, SDValue &Hi); 351 bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); 352 bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); 353 354 // Integer Operand Expansion. 355 bool ExpandIntegerOperand(SDNode *N, unsigned OperandNo); 356 SDValue ExpandIntOp_BITCAST(SDNode *N); 357 SDValue ExpandIntOp_BR_CC(SDNode *N); 358 SDValue ExpandIntOp_BUILD_VECTOR(SDNode *N); 359 SDValue ExpandIntOp_EXTRACT_ELEMENT(SDNode *N); 360 SDValue ExpandIntOp_SELECT_CC(SDNode *N); 361 SDValue ExpandIntOp_SETCC(SDNode *N); 362 SDValue ExpandIntOp_Shift(SDNode *N); 363 SDValue ExpandIntOp_SINT_TO_FP(SDNode *N); 364 SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo); 365 SDValue ExpandIntOp_TRUNCATE(SDNode *N); 366 SDValue ExpandIntOp_UINT_TO_FP(SDNode *N); 367 SDValue ExpandIntOp_RETURNADDR(SDNode *N); 368 SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N); 369 370 void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, 371 ISD::CondCode &CCCode, SDLoc dl); 372 373 //===--------------------------------------------------------------------===// 374 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp 375 //===--------------------------------------------------------------------===// 376 377 /// GetSoftenedFloat - Given a processed operand Op which was converted to an 378 /// integer of the same size, this returns the integer. The integer contains 379 /// exactly the same bits as Op - only the type changed. For example, if Op 380 /// is an f32 which was softened to an i32, then this method returns an i32, 381 /// the bits of which coincide with those of Op. GetSoftenedFloat(SDValue Op)382 SDValue GetSoftenedFloat(SDValue Op) { 383 SDValue &SoftenedOp = SoftenedFloats[Op]; 384 RemapValue(SoftenedOp); 385 assert(SoftenedOp.getNode() && "Operand wasn't converted to integer?"); 386 return SoftenedOp; 387 } 388 void SetSoftenedFloat(SDValue Op, SDValue Result); 389 390 // Result Float to Integer Conversion. 391 void SoftenFloatResult(SDNode *N, unsigned OpNo); 392 SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 393 SDValue SoftenFloatRes_BITCAST(SDNode *N); 394 SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N); 395 SDValue SoftenFloatRes_ConstantFP(ConstantFPSDNode *N); 396 SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N); 397 SDValue SoftenFloatRes_FABS(SDNode *N); 398 SDValue SoftenFloatRes_FMINNUM(SDNode *N); 399 SDValue SoftenFloatRes_FMAXNUM(SDNode *N); 400 SDValue SoftenFloatRes_FADD(SDNode *N); 401 SDValue SoftenFloatRes_FCEIL(SDNode *N); 402 SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N); 403 SDValue SoftenFloatRes_FCOS(SDNode *N); 404 SDValue SoftenFloatRes_FDIV(SDNode *N); 405 SDValue SoftenFloatRes_FEXP(SDNode *N); 406 SDValue SoftenFloatRes_FEXP2(SDNode *N); 407 SDValue SoftenFloatRes_FFLOOR(SDNode *N); 408 SDValue SoftenFloatRes_FLOG(SDNode *N); 409 SDValue SoftenFloatRes_FLOG2(SDNode *N); 410 SDValue SoftenFloatRes_FLOG10(SDNode *N); 411 SDValue SoftenFloatRes_FMA(SDNode *N); 412 SDValue SoftenFloatRes_FMUL(SDNode *N); 413 SDValue SoftenFloatRes_FNEARBYINT(SDNode *N); 414 SDValue SoftenFloatRes_FNEG(SDNode *N); 415 SDValue SoftenFloatRes_FP_EXTEND(SDNode *N); 416 SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N); 417 SDValue SoftenFloatRes_FP_ROUND(SDNode *N); 418 SDValue SoftenFloatRes_FPOW(SDNode *N); 419 SDValue SoftenFloatRes_FPOWI(SDNode *N); 420 SDValue SoftenFloatRes_FREM(SDNode *N); 421 SDValue SoftenFloatRes_FRINT(SDNode *N); 422 SDValue SoftenFloatRes_FROUND(SDNode *N); 423 SDValue SoftenFloatRes_FSIN(SDNode *N); 424 SDValue SoftenFloatRes_FSQRT(SDNode *N); 425 SDValue SoftenFloatRes_FSUB(SDNode *N); 426 SDValue SoftenFloatRes_FTRUNC(SDNode *N); 427 SDValue SoftenFloatRes_LOAD(SDNode *N); 428 SDValue SoftenFloatRes_SELECT(SDNode *N); 429 SDValue SoftenFloatRes_SELECT_CC(SDNode *N); 430 SDValue SoftenFloatRes_UNDEF(SDNode *N); 431 SDValue SoftenFloatRes_VAARG(SDNode *N); 432 SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N); 433 434 // Operand Float to Integer Conversion. 435 bool SoftenFloatOperand(SDNode *N, unsigned OpNo); 436 SDValue SoftenFloatOp_BITCAST(SDNode *N); 437 SDValue SoftenFloatOp_BR_CC(SDNode *N); 438 SDValue SoftenFloatOp_FP_EXTEND(SDNode *N); 439 SDValue SoftenFloatOp_FP_ROUND(SDNode *N); 440 SDValue SoftenFloatOp_FP_TO_SINT(SDNode *N); 441 SDValue SoftenFloatOp_FP_TO_UINT(SDNode *N); 442 SDValue SoftenFloatOp_SELECT_CC(SDNode *N); 443 SDValue SoftenFloatOp_SETCC(SDNode *N); 444 SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo); 445 446 //===--------------------------------------------------------------------===// 447 // Float Expansion Support: LegalizeFloatTypes.cpp 448 //===--------------------------------------------------------------------===// 449 450 /// GetExpandedFloat - Given a processed operand Op which was expanded into 451 /// two floating point values of half the size, this returns the two halves. 452 /// The low bits of Op are exactly equal to the bits of Lo; the high bits 453 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded 454 /// into two f64's, then this method returns the two f64's, with Lo being 455 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits. 456 void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi); 457 void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi); 458 459 // Float Result Expansion. 460 void ExpandFloatResult(SDNode *N, unsigned ResNo); 461 void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi); 462 void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi); 463 void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi); 464 void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi); 465 void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi); 466 void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi); 467 void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi); 468 void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi); 469 void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 470 void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi); 471 void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi); 472 void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi); 473 void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi); 474 void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi); 475 void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi); 476 void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi); 477 void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi); 478 void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi); 479 void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi); 480 void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 481 void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi); 482 void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi); 483 void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi); 484 void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi); 485 void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi); 486 void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi); 487 void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi); 488 void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi); 489 void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi); 490 void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); 491 void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi); 492 493 // Float Operand Expansion. 494 bool ExpandFloatOperand(SDNode *N, unsigned OperandNo); 495 SDValue ExpandFloatOp_BR_CC(SDNode *N); 496 SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N); 497 SDValue ExpandFloatOp_FP_ROUND(SDNode *N); 498 SDValue ExpandFloatOp_FP_TO_SINT(SDNode *N); 499 SDValue ExpandFloatOp_FP_TO_UINT(SDNode *N); 500 SDValue ExpandFloatOp_SELECT_CC(SDNode *N); 501 SDValue ExpandFloatOp_SETCC(SDNode *N); 502 SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo); 503 504 void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, 505 ISD::CondCode &CCCode, SDLoc dl); 506 507 508 //===--------------------------------------------------------------------===// 509 // Float promotion support: LegalizeFloatTypes.cpp 510 //===--------------------------------------------------------------------===// 511 GetPromotedFloat(SDValue Op)512 SDValue GetPromotedFloat(SDValue Op) { 513 SDValue &PromotedOp = PromotedFloats[Op]; 514 RemapValue(PromotedOp); 515 assert(PromotedOp.getNode() && "Operand wasn't promoted?"); 516 return PromotedOp; 517 } 518 void SetPromotedFloat(SDValue Op, SDValue Result); 519 520 void PromoteFloatResult(SDNode *N, unsigned ResNo); 521 SDValue PromoteFloatRes_BITCAST(SDNode *N); 522 SDValue PromoteFloatRes_BinOp(SDNode *N); 523 SDValue PromoteFloatRes_ConstantFP(SDNode *N); 524 SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N); 525 SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N); 526 SDValue PromoteFloatRes_FMAD(SDNode *N); 527 SDValue PromoteFloatRes_FPOWI(SDNode *N); 528 SDValue PromoteFloatRes_FP_ROUND(SDNode *N); 529 SDValue PromoteFloatRes_LOAD(SDNode *N); 530 SDValue PromoteFloatRes_SELECT(SDNode *N); 531 SDValue PromoteFloatRes_SELECT_CC(SDNode *N); 532 SDValue PromoteFloatRes_UnaryOp(SDNode *N); 533 SDValue PromoteFloatRes_UNDEF(SDNode *N); 534 SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N); 535 536 bool PromoteFloatOperand(SDNode *N, unsigned ResNo); 537 SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo); 538 SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo); 539 SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo); 540 SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo); 541 SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo); 542 SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo); 543 SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo); 544 545 //===--------------------------------------------------------------------===// 546 // Scalarization Support: LegalizeVectorTypes.cpp 547 //===--------------------------------------------------------------------===// 548 549 /// GetScalarizedVector - Given a processed one-element vector Op which was 550 /// scalarized to its element type, this returns the element. For example, 551 /// if Op is a v1i32, Op = < i32 val >, this method returns val, an i32. GetScalarizedVector(SDValue Op)552 SDValue GetScalarizedVector(SDValue Op) { 553 SDValue &ScalarizedOp = ScalarizedVectors[Op]; 554 RemapValue(ScalarizedOp); 555 assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?"); 556 return ScalarizedOp; 557 } 558 void SetScalarizedVector(SDValue Op, SDValue Result); 559 560 // Vector Result Scalarization: <1 x ty> -> ty. 561 void ScalarizeVectorResult(SDNode *N, unsigned OpNo); 562 SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 563 SDValue ScalarizeVecRes_BinOp(SDNode *N); 564 SDValue ScalarizeVecRes_TernaryOp(SDNode *N); 565 SDValue ScalarizeVecRes_UnaryOp(SDNode *N); 566 SDValue ScalarizeVecRes_InregOp(SDNode *N); 567 568 SDValue ScalarizeVecRes_BITCAST(SDNode *N); 569 SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N); 570 SDValue ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N); 571 SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N); 572 SDValue ScalarizeVecRes_FP_ROUND(SDNode *N); 573 SDValue ScalarizeVecRes_FPOWI(SDNode *N); 574 SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N); 575 SDValue ScalarizeVecRes_LOAD(LoadSDNode *N); 576 SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N); 577 SDValue ScalarizeVecRes_SIGN_EXTEND_INREG(SDNode *N); 578 SDValue ScalarizeVecRes_VSELECT(SDNode *N); 579 SDValue ScalarizeVecRes_SELECT(SDNode *N); 580 SDValue ScalarizeVecRes_SELECT_CC(SDNode *N); 581 SDValue ScalarizeVecRes_SETCC(SDNode *N); 582 SDValue ScalarizeVecRes_UNDEF(SDNode *N); 583 SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N); 584 SDValue ScalarizeVecRes_VSETCC(SDNode *N); 585 586 // Vector Operand Scalarization: <1 x ty> -> ty. 587 bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo); 588 SDValue ScalarizeVecOp_BITCAST(SDNode *N); 589 SDValue ScalarizeVecOp_UnaryOp(SDNode *N); 590 SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N); 591 SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 592 SDValue ScalarizeVecOp_VSELECT(SDNode *N); 593 SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo); 594 SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo); 595 596 //===--------------------------------------------------------------------===// 597 // Vector Splitting Support: LegalizeVectorTypes.cpp 598 //===--------------------------------------------------------------------===// 599 600 /// GetSplitVector - Given a processed vector Op which was split into vectors 601 /// of half the size, this method returns the halves. The first elements of 602 /// Op coincide with the elements of Lo; the remaining elements of Op coincide 603 /// with the elements of Hi: Op is what you would get by concatenating Lo and 604 /// Hi. For example, if Op is a v8i32 that was split into two v4i32's, then 605 /// this method returns the two v4i32's, with Lo corresponding to the first 4 606 /// elements of Op, and Hi to the last 4 elements. 607 void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi); 608 void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi); 609 610 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>. 611 void SplitVectorResult(SDNode *N, unsigned OpNo); 612 void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi); 613 void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); 614 void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); 615 void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi); 616 void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi); 617 618 void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi); 619 void SplitVecRes_BUILD_PAIR(SDNode *N, SDValue &Lo, SDValue &Hi); 620 void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 621 void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi); 622 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 623 void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 624 void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi); 625 void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); 626 void SplitVecRes_LOAD(LoadSDNode *N, SDValue &Lo, SDValue &Hi); 627 void SplitVecRes_MLOAD(MaskedLoadSDNode *N, SDValue &Lo, SDValue &Hi); 628 void SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 629 void SplitVecRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi); 630 void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi); 631 void SplitVecRes_UNDEF(SDNode *N, SDValue &Lo, SDValue &Hi); 632 void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo, 633 SDValue &Hi); 634 635 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>. 636 bool SplitVectorOperand(SDNode *N, unsigned OpNo); 637 SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo); 638 SDValue SplitVecOp_UnaryOp(SDNode *N); 639 SDValue SplitVecOp_TruncateHelper(SDNode *N); 640 641 SDValue SplitVecOp_BITCAST(SDNode *N); 642 SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N); 643 SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 644 SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); 645 SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); 646 SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N); 647 SDValue SplitVecOp_VSETCC(SDNode *N); 648 SDValue SplitVecOp_FP_ROUND(SDNode *N); 649 650 //===--------------------------------------------------------------------===// 651 // Vector Widening Support: LegalizeVectorTypes.cpp 652 //===--------------------------------------------------------------------===// 653 654 /// GetWidenedVector - Given a processed vector Op which was widened into a 655 /// larger vector, this method returns the larger vector. The elements of 656 /// the returned vector consist of the elements of Op followed by elements 657 /// containing rubbish. For example, if Op is a v2i32 that was widened to a 658 /// v4i32, then this method returns a v4i32 for which the first two elements 659 /// are the same as those of Op, while the last two elements contain rubbish. GetWidenedVector(SDValue Op)660 SDValue GetWidenedVector(SDValue Op) { 661 SDValue &WidenedOp = WidenedVectors[Op]; 662 RemapValue(WidenedOp); 663 assert(WidenedOp.getNode() && "Operand wasn't widened?"); 664 return WidenedOp; 665 } 666 void SetWidenedVector(SDValue Op, SDValue Result); 667 668 // Widen Vector Result Promotion. 669 void WidenVectorResult(SDNode *N, unsigned ResNo); 670 SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo); 671 SDValue WidenVecRes_BITCAST(SDNode* N); 672 SDValue WidenVecRes_BUILD_VECTOR(SDNode* N); 673 SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N); 674 SDValue WidenVecRes_CONVERT_RNDSAT(SDNode* N); 675 SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N); 676 SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N); 677 SDValue WidenVecRes_LOAD(SDNode* N); 678 SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N); 679 SDValue WidenVecRes_SCALAR_TO_VECTOR(SDNode* N); 680 SDValue WidenVecRes_SIGN_EXTEND_INREG(SDNode* N); 681 SDValue WidenVecRes_SELECT(SDNode* N); 682 SDValue WidenVecRes_SELECT_CC(SDNode* N); 683 SDValue WidenVecRes_SETCC(SDNode* N); 684 SDValue WidenVecRes_UNDEF(SDNode *N); 685 SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N); 686 SDValue WidenVecRes_VSETCC(SDNode* N); 687 688 SDValue WidenVecRes_Ternary(SDNode *N); 689 SDValue WidenVecRes_Binary(SDNode *N); 690 SDValue WidenVecRes_BinaryCanTrap(SDNode *N); 691 SDValue WidenVecRes_Convert(SDNode *N); 692 SDValue WidenVecRes_POWI(SDNode *N); 693 SDValue WidenVecRes_Shift(SDNode *N); 694 SDValue WidenVecRes_Unary(SDNode *N); 695 SDValue WidenVecRes_InregOp(SDNode *N); 696 697 // Widen Vector Operand. 698 bool WidenVectorOperand(SDNode *N, unsigned OpNo); 699 SDValue WidenVecOp_BITCAST(SDNode *N); 700 SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N); 701 SDValue WidenVecOp_EXTEND(SDNode *N); 702 SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 703 SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N); 704 SDValue WidenVecOp_STORE(SDNode* N); 705 SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo); 706 SDValue WidenVecOp_SETCC(SDNode* N); 707 708 SDValue WidenVecOp_Convert(SDNode *N); 709 710 //===--------------------------------------------------------------------===// 711 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp 712 //===--------------------------------------------------------------------===// 713 714 /// Helper GenWidenVectorLoads - Helper function to generate a set of 715 /// loads to load a vector with a resulting wider type. It takes 716 /// LdChain: list of chains for the load to be generated. 717 /// Ld: load to widen 718 SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain, 719 LoadSDNode *LD); 720 721 /// GenWidenVectorExtLoads - Helper function to generate a set of extension 722 /// loads to load a ector with a resulting wider type. It takes 723 /// LdChain: list of chains for the load to be generated. 724 /// Ld: load to widen 725 /// ExtType: extension element type 726 SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain, 727 LoadSDNode *LD, ISD::LoadExtType ExtType); 728 729 /// Helper genWidenVectorStores - Helper function to generate a set of 730 /// stores to store a widen vector into non-widen memory 731 /// StChain: list of chains for the stores we have generated 732 /// ST: store of a widen value 733 void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST); 734 735 /// Helper genWidenVectorTruncStores - Helper function to generate a set of 736 /// stores to store a truncate widen vector into non-widen memory 737 /// StChain: list of chains for the stores we have generated 738 /// ST: store of a widen value 739 void GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain, 740 StoreSDNode *ST); 741 742 /// Modifies a vector input (widen or narrows) to a vector of NVT. The 743 /// input vector must have the same element type as NVT. 744 SDValue ModifyToType(SDValue InOp, EVT WidenVT); 745 746 747 //===--------------------------------------------------------------------===// 748 // Generic Splitting: LegalizeTypesGeneric.cpp 749 //===--------------------------------------------------------------------===// 750 751 // Legalization methods which only use that the illegal type is split into two 752 // not necessarily identical types. As such they can be used for splitting 753 // vectors and expanding integers and floats. 754 GetSplitOp(SDValue Op,SDValue & Lo,SDValue & Hi)755 void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) { 756 if (Op.getValueType().isVector()) 757 GetSplitVector(Op, Lo, Hi); 758 else if (Op.getValueType().isInteger()) 759 GetExpandedInteger(Op, Lo, Hi); 760 else 761 GetExpandedFloat(Op, Lo, Hi); 762 } 763 764 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and 765 /// high parts of the given value. 766 void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi); 767 768 // Generic Result Splitting. 769 void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo, 770 SDValue &Lo, SDValue &Hi); 771 void SplitRes_SELECT (SDNode *N, SDValue &Lo, SDValue &Hi); 772 void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi); 773 void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi); 774 775 //===--------------------------------------------------------------------===// 776 // Generic Expansion: LegalizeTypesGeneric.cpp 777 //===--------------------------------------------------------------------===// 778 779 // Legalization methods which only use that the illegal type is split into two 780 // identical types of half the size, and that the Lo/Hi part is stored first 781 // in memory on little/big-endian machines, followed by the Hi/Lo part. As 782 // such they can be used for expanding integers and floats. 783 GetExpandedOp(SDValue Op,SDValue & Lo,SDValue & Hi)784 void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) { 785 if (Op.getValueType().isInteger()) 786 GetExpandedInteger(Op, Lo, Hi); 787 else 788 GetExpandedFloat(Op, Lo, Hi); 789 } 790 791 792 /// This function will split the integer \p Op into \p NumElements 793 /// operations of type \p EltVT and store them in \p Ops. 794 void IntegerToVector(SDValue Op, unsigned NumElements, 795 SmallVectorImpl<SDValue> &Ops, EVT EltVT); 796 797 // Generic Result Expansion. 798 void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo, 799 SDValue &Lo, SDValue &Hi); 800 void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi); 801 void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi); 802 void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi); 803 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); 804 void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi); 805 void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi); 806 807 // Generic Operand Expansion. 808 SDValue ExpandOp_BITCAST (SDNode *N); 809 SDValue ExpandOp_BUILD_VECTOR (SDNode *N); 810 SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N); 811 SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N); 812 SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N); 813 SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo); 814 }; 815 816 } // end namespace llvm. 817 818 #endif 819