1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_ 18 #define ART_COMPILER_UTILS_ASSEMBLER_H_ 19 20 #include <vector> 21 22 #include "arch/instruction_set.h" 23 #include "base/logging.h" 24 #include "base/macros.h" 25 #include "arm/constants_arm.h" 26 #include "managed_register.h" 27 #include "memory_region.h" 28 #include "mips/constants_mips.h" 29 #include "offsets.h" 30 #include "x86/constants_x86.h" 31 #include "x86_64/constants_x86_64.h" 32 #include "dwarf/debug_frame_opcode_writer.h" 33 34 namespace art { 35 36 class Assembler; 37 class AssemblerBuffer; 38 class AssemblerFixup; 39 40 namespace arm { 41 class ArmAssembler; 42 class Arm32Assembler; 43 class Thumb2Assembler; 44 } 45 namespace arm64 { 46 class Arm64Assembler; 47 } 48 namespace mips { 49 class MipsAssembler; 50 } 51 namespace mips64 { 52 class Mips64Assembler; 53 } 54 namespace x86 { 55 class X86Assembler; 56 } 57 namespace x86_64 { 58 class X86_64Assembler; 59 } 60 61 class ExternalLabel { 62 public: ExternalLabel(const char * name_in,uintptr_t address_in)63 ExternalLabel(const char* name_in, uintptr_t address_in) 64 : name_(name_in), address_(address_in) { 65 DCHECK(name_in != nullptr); 66 } 67 name()68 const char* name() const { return name_; } address()69 uintptr_t address() const { 70 return address_; 71 } 72 73 private: 74 const char* name_; 75 const uintptr_t address_; 76 }; 77 78 class Label { 79 public: Label()80 Label() : position_(0) {} 81 ~Label()82 ~Label() { 83 // Assert if label is being destroyed with unresolved branches pending. 84 CHECK(!IsLinked()); 85 } 86 87 // Returns the position for bound and linked labels. Cannot be used 88 // for unused labels. Position()89 int Position() const { 90 CHECK(!IsUnused()); 91 return IsBound() ? -position_ - sizeof(void*) : position_ - sizeof(void*); 92 } 93 LinkPosition()94 int LinkPosition() const { 95 CHECK(IsLinked()); 96 return position_ - sizeof(void*); 97 } 98 IsBound()99 bool IsBound() const { return position_ < 0; } IsUnused()100 bool IsUnused() const { return position_ == 0; } IsLinked()101 bool IsLinked() const { return position_ > 0; } 102 103 private: 104 int position_; 105 Reinitialize()106 void Reinitialize() { 107 position_ = 0; 108 } 109 BindTo(int position)110 void BindTo(int position) { 111 CHECK(!IsBound()); 112 position_ = -position - sizeof(void*); 113 CHECK(IsBound()); 114 } 115 LinkTo(int position)116 void LinkTo(int position) { 117 CHECK(!IsBound()); 118 position_ = position + sizeof(void*); 119 CHECK(IsLinked()); 120 } 121 122 friend class arm::ArmAssembler; 123 friend class arm::Arm32Assembler; 124 friend class arm::Thumb2Assembler; 125 friend class arm64::Arm64Assembler; 126 friend class mips::MipsAssembler; 127 friend class mips64::Mips64Assembler; 128 friend class x86::X86Assembler; 129 friend class x86_64::X86_64Assembler; 130 131 DISALLOW_COPY_AND_ASSIGN(Label); 132 }; 133 134 135 // Assembler fixups are positions in generated code that require processing 136 // after the code has been copied to executable memory. This includes building 137 // relocation information. 138 class AssemblerFixup { 139 public: 140 virtual void Process(const MemoryRegion& region, int position) = 0; ~AssemblerFixup()141 virtual ~AssemblerFixup() {} 142 143 private: 144 AssemblerFixup* previous_; 145 int position_; 146 previous()147 AssemblerFixup* previous() const { return previous_; } set_previous(AssemblerFixup * previous_in)148 void set_previous(AssemblerFixup* previous_in) { previous_ = previous_in; } 149 position()150 int position() const { return position_; } set_position(int position_in)151 void set_position(int position_in) { position_ = position_in; } 152 153 friend class AssemblerBuffer; 154 }; 155 156 // Parent of all queued slow paths, emitted during finalization 157 class SlowPath { 158 public: SlowPath()159 SlowPath() : next_(nullptr) {} ~SlowPath()160 virtual ~SlowPath() {} 161 Continuation()162 Label* Continuation() { return &continuation_; } Entry()163 Label* Entry() { return &entry_; } 164 // Generate code for slow path 165 virtual void Emit(Assembler *sp_asm) = 0; 166 167 protected: 168 // Entry branched to by fast path 169 Label entry_; 170 // Optional continuation that is branched to at the end of the slow path 171 Label continuation_; 172 // Next in linked list of slow paths 173 SlowPath *next_; 174 175 private: 176 friend class AssemblerBuffer; 177 DISALLOW_COPY_AND_ASSIGN(SlowPath); 178 }; 179 180 class AssemblerBuffer { 181 public: 182 AssemblerBuffer(); 183 ~AssemblerBuffer(); 184 185 // Basic support for emitting, loading, and storing. Emit(T value)186 template<typename T> void Emit(T value) { 187 CHECK(HasEnsuredCapacity()); 188 *reinterpret_cast<T*>(cursor_) = value; 189 cursor_ += sizeof(T); 190 } 191 Load(size_t position)192 template<typename T> T Load(size_t position) { 193 CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); 194 return *reinterpret_cast<T*>(contents_ + position); 195 } 196 Store(size_t position,T value)197 template<typename T> void Store(size_t position, T value) { 198 CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); 199 *reinterpret_cast<T*>(contents_ + position) = value; 200 } 201 Move(size_t newposition,size_t oldposition)202 void Move(size_t newposition, size_t oldposition) { 203 CHECK(HasEnsuredCapacity()); 204 // Move the contents of the buffer from oldposition to 205 // newposition by nbytes. 206 size_t nbytes = Size() - oldposition; 207 memmove(contents_ + newposition, contents_ + oldposition, nbytes); 208 cursor_ += newposition - oldposition; 209 } 210 211 // Emit a fixup at the current location. EmitFixup(AssemblerFixup * fixup)212 void EmitFixup(AssemblerFixup* fixup) { 213 fixup->set_previous(fixup_); 214 fixup->set_position(Size()); 215 fixup_ = fixup; 216 } 217 EnqueueSlowPath(SlowPath * slowpath)218 void EnqueueSlowPath(SlowPath* slowpath) { 219 if (slow_path_ == nullptr) { 220 slow_path_ = slowpath; 221 } else { 222 SlowPath* cur = slow_path_; 223 for ( ; cur->next_ != nullptr ; cur = cur->next_) {} 224 cur->next_ = slowpath; 225 } 226 } 227 EmitSlowPaths(Assembler * sp_asm)228 void EmitSlowPaths(Assembler* sp_asm) { 229 SlowPath* cur = slow_path_; 230 SlowPath* next = nullptr; 231 slow_path_ = nullptr; 232 for ( ; cur != nullptr ; cur = next) { 233 cur->Emit(sp_asm); 234 next = cur->next_; 235 delete cur; 236 } 237 } 238 239 // Get the size of the emitted code. Size()240 size_t Size() const { 241 CHECK_GE(cursor_, contents_); 242 return cursor_ - contents_; 243 } 244 contents()245 uint8_t* contents() const { return contents_; } 246 247 // Copy the assembled instructions into the specified memory block 248 // and apply all fixups. 249 void FinalizeInstructions(const MemoryRegion& region); 250 251 // To emit an instruction to the assembler buffer, the EnsureCapacity helper 252 // must be used to guarantee that the underlying data area is big enough to 253 // hold the emitted instruction. Usage: 254 // 255 // AssemblerBuffer buffer; 256 // AssemblerBuffer::EnsureCapacity ensured(&buffer); 257 // ... emit bytes for single instruction ... 258 259 #ifndef NDEBUG 260 261 class EnsureCapacity { 262 public: EnsureCapacity(AssemblerBuffer * buffer)263 explicit EnsureCapacity(AssemblerBuffer* buffer) { 264 if (buffer->cursor() >= buffer->limit()) { 265 buffer->ExtendCapacity(); 266 } 267 // In debug mode, we save the assembler buffer along with the gap 268 // size before we start emitting to the buffer. This allows us to 269 // check that any single generated instruction doesn't overflow the 270 // limit implied by the minimum gap size. 271 buffer_ = buffer; 272 gap_ = ComputeGap(); 273 // Make sure that extending the capacity leaves a big enough gap 274 // for any kind of instruction. 275 CHECK_GE(gap_, kMinimumGap); 276 // Mark the buffer as having ensured the capacity. 277 CHECK(!buffer->HasEnsuredCapacity()); // Cannot nest. 278 buffer->has_ensured_capacity_ = true; 279 } 280 ~EnsureCapacity()281 ~EnsureCapacity() { 282 // Unmark the buffer, so we cannot emit after this. 283 buffer_->has_ensured_capacity_ = false; 284 // Make sure the generated instruction doesn't take up more 285 // space than the minimum gap. 286 int delta = gap_ - ComputeGap(); 287 CHECK_LE(delta, kMinimumGap); 288 } 289 290 private: 291 AssemblerBuffer* buffer_; 292 int gap_; 293 ComputeGap()294 int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } 295 }; 296 297 bool has_ensured_capacity_; HasEnsuredCapacity()298 bool HasEnsuredCapacity() const { return has_ensured_capacity_; } 299 300 #else 301 302 class EnsureCapacity { 303 public: EnsureCapacity(AssemblerBuffer * buffer)304 explicit EnsureCapacity(AssemblerBuffer* buffer) { 305 if (buffer->cursor() >= buffer->limit()) buffer->ExtendCapacity(); 306 } 307 }; 308 309 // When building the C++ tests, assertion code is enabled. To allow 310 // asserting that the user of the assembler buffer has ensured the 311 // capacity needed for emitting, we add a dummy method in non-debug mode. HasEnsuredCapacity()312 bool HasEnsuredCapacity() const { return true; } 313 314 #endif 315 316 // Returns the position in the instruction stream. GetPosition()317 int GetPosition() { return cursor_ - contents_; } 318 319 private: 320 // The limit is set to kMinimumGap bytes before the end of the data area. 321 // This leaves enough space for the longest possible instruction and allows 322 // for a single, fast space check per instruction. 323 static const int kMinimumGap = 32; 324 325 uint8_t* contents_; 326 uint8_t* cursor_; 327 uint8_t* limit_; 328 AssemblerFixup* fixup_; 329 #ifndef NDEBUG 330 bool fixups_processed_; 331 #endif 332 333 // Head of linked list of slow paths 334 SlowPath* slow_path_; 335 cursor()336 uint8_t* cursor() const { return cursor_; } limit()337 uint8_t* limit() const { return limit_; } Capacity()338 size_t Capacity() const { 339 CHECK_GE(limit_, contents_); 340 return (limit_ - contents_) + kMinimumGap; 341 } 342 343 // Process the fixup chain starting at the given fixup. The offset is 344 // non-zero for fixups in the body if the preamble is non-empty. 345 void ProcessFixups(const MemoryRegion& region); 346 347 // Compute the limit based on the data area and the capacity. See 348 // description of kMinimumGap for the reasoning behind the value. ComputeLimit(uint8_t * data,size_t capacity)349 static uint8_t* ComputeLimit(uint8_t* data, size_t capacity) { 350 return data + capacity - kMinimumGap; 351 } 352 353 void ExtendCapacity(); 354 355 friend class AssemblerFixup; 356 }; 357 358 // The purpose of this class is to ensure that we do not have to explicitly 359 // call the AdvancePC method (which is good for convenience and correctness). 360 class DebugFrameOpCodeWriterForAssembler FINAL 361 : public dwarf::DebugFrameOpCodeWriter<> { 362 public: 363 // This method is called the by the opcode writers. 364 virtual void ImplicitlyAdvancePC() FINAL; 365 DebugFrameOpCodeWriterForAssembler(Assembler * buffer)366 explicit DebugFrameOpCodeWriterForAssembler(Assembler* buffer) 367 : dwarf::DebugFrameOpCodeWriter<>(), 368 assembler_(buffer) { 369 } 370 371 private: 372 Assembler* assembler_; 373 }; 374 375 class Assembler { 376 public: 377 static Assembler* Create(InstructionSet instruction_set); 378 379 // Emit slow paths queued during assembly EmitSlowPaths()380 virtual void EmitSlowPaths() { buffer_.EmitSlowPaths(this); } 381 382 // Size of generated code CodeSize()383 virtual size_t CodeSize() const { return buffer_.Size(); } 384 385 // Copy instructions out of assembly buffer into the given region of memory FinalizeInstructions(const MemoryRegion & region)386 virtual void FinalizeInstructions(const MemoryRegion& region) { 387 buffer_.FinalizeInstructions(region); 388 } 389 390 // TODO: Implement with disassembler. Comment(const char * format,...)391 virtual void Comment(const char* format, ...) { UNUSED(format); } 392 393 // Emit code that will create an activation on the stack 394 virtual void BuildFrame(size_t frame_size, ManagedRegister method_reg, 395 const std::vector<ManagedRegister>& callee_save_regs, 396 const ManagedRegisterEntrySpills& entry_spills) = 0; 397 398 // Emit code that will remove an activation from the stack 399 virtual void RemoveFrame(size_t frame_size, 400 const std::vector<ManagedRegister>& callee_save_regs) = 0; 401 402 virtual void IncreaseFrameSize(size_t adjust) = 0; 403 virtual void DecreaseFrameSize(size_t adjust) = 0; 404 405 // Store routines 406 virtual void Store(FrameOffset offs, ManagedRegister src, size_t size) = 0; 407 virtual void StoreRef(FrameOffset dest, ManagedRegister src) = 0; 408 virtual void StoreRawPtr(FrameOffset dest, ManagedRegister src) = 0; 409 410 virtual void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, 411 ManagedRegister scratch) = 0; 412 413 virtual void StoreImmediateToThread32(ThreadOffset<4> dest, uint32_t imm, 414 ManagedRegister scratch); 415 virtual void StoreImmediateToThread64(ThreadOffset<8> dest, uint32_t imm, 416 ManagedRegister scratch); 417 418 virtual void StoreStackOffsetToThread32(ThreadOffset<4> thr_offs, 419 FrameOffset fr_offs, 420 ManagedRegister scratch); 421 virtual void StoreStackOffsetToThread64(ThreadOffset<8> thr_offs, 422 FrameOffset fr_offs, 423 ManagedRegister scratch); 424 425 virtual void StoreStackPointerToThread32(ThreadOffset<4> thr_offs); 426 virtual void StoreStackPointerToThread64(ThreadOffset<8> thr_offs); 427 428 virtual void StoreSpanning(FrameOffset dest, ManagedRegister src, 429 FrameOffset in_off, ManagedRegister scratch) = 0; 430 431 // Load routines 432 virtual void Load(ManagedRegister dest, FrameOffset src, size_t size) = 0; 433 434 virtual void LoadFromThread32(ManagedRegister dest, ThreadOffset<4> src, size_t size); 435 virtual void LoadFromThread64(ManagedRegister dest, ThreadOffset<8> src, size_t size); 436 437 virtual void LoadRef(ManagedRegister dest, FrameOffset src) = 0; 438 // If poison_reference is true and kPoisonReference is true, then we negate the read reference. 439 virtual void LoadRef(ManagedRegister dest, ManagedRegister base, MemberOffset offs, 440 bool poison_reference) = 0; 441 442 virtual void LoadRawPtr(ManagedRegister dest, ManagedRegister base, Offset offs) = 0; 443 444 virtual void LoadRawPtrFromThread32(ManagedRegister dest, ThreadOffset<4> offs); 445 virtual void LoadRawPtrFromThread64(ManagedRegister dest, ThreadOffset<8> offs); 446 447 // Copying routines 448 virtual void Move(ManagedRegister dest, ManagedRegister src, size_t size) = 0; 449 450 virtual void CopyRawPtrFromThread32(FrameOffset fr_offs, ThreadOffset<4> thr_offs, 451 ManagedRegister scratch); 452 virtual void CopyRawPtrFromThread64(FrameOffset fr_offs, ThreadOffset<8> thr_offs, 453 ManagedRegister scratch); 454 455 virtual void CopyRawPtrToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs, 456 ManagedRegister scratch); 457 virtual void CopyRawPtrToThread64(ThreadOffset<8> thr_offs, FrameOffset fr_offs, 458 ManagedRegister scratch); 459 460 virtual void CopyRef(FrameOffset dest, FrameOffset src, 461 ManagedRegister scratch) = 0; 462 463 virtual void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, size_t size) = 0; 464 465 virtual void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, 466 ManagedRegister scratch, size_t size) = 0; 467 468 virtual void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, 469 ManagedRegister scratch, size_t size) = 0; 470 471 virtual void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, 472 ManagedRegister scratch, size_t size) = 0; 473 474 virtual void Copy(ManagedRegister dest, Offset dest_offset, 475 ManagedRegister src, Offset src_offset, 476 ManagedRegister scratch, size_t size) = 0; 477 478 virtual void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset, 479 ManagedRegister scratch, size_t size) = 0; 480 481 virtual void MemoryBarrier(ManagedRegister scratch) = 0; 482 483 // Sign extension 484 virtual void SignExtend(ManagedRegister mreg, size_t size) = 0; 485 486 // Zero extension 487 virtual void ZeroExtend(ManagedRegister mreg, size_t size) = 0; 488 489 // Exploit fast access in managed code to Thread::Current() 490 virtual void GetCurrentThread(ManagedRegister tr) = 0; 491 virtual void GetCurrentThread(FrameOffset dest_offset, 492 ManagedRegister scratch) = 0; 493 494 // Set up out_reg to hold a Object** into the handle scope, or to be null if the 495 // value is null and null_allowed. in_reg holds a possibly stale reference 496 // that can be used to avoid loading the handle scope entry to see if the value is 497 // null. 498 virtual void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset, 499 ManagedRegister in_reg, bool null_allowed) = 0; 500 501 // Set up out_off to hold a Object** into the handle scope, or to be null if the 502 // value is null and null_allowed. 503 virtual void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset, 504 ManagedRegister scratch, bool null_allowed) = 0; 505 506 // src holds a handle scope entry (Object**) load this into dst 507 virtual void LoadReferenceFromHandleScope(ManagedRegister dst, 508 ManagedRegister src) = 0; 509 510 // Heap::VerifyObject on src. In some cases (such as a reference to this) we 511 // know that src may not be null. 512 virtual void VerifyObject(ManagedRegister src, bool could_be_null) = 0; 513 virtual void VerifyObject(FrameOffset src, bool could_be_null) = 0; 514 515 // Call to address held at [base+offset] 516 virtual void Call(ManagedRegister base, Offset offset, 517 ManagedRegister scratch) = 0; 518 virtual void Call(FrameOffset base, Offset offset, 519 ManagedRegister scratch) = 0; 520 virtual void CallFromThread32(ThreadOffset<4> offset, ManagedRegister scratch); 521 virtual void CallFromThread64(ThreadOffset<8> offset, ManagedRegister scratch); 522 523 // Generate code to check if Thread::Current()->exception_ is non-null 524 // and branch to a ExceptionSlowPath if it is. 525 virtual void ExceptionPoll(ManagedRegister scratch, size_t stack_adjust) = 0; 526 ~Assembler()527 virtual ~Assembler() {} 528 529 /** 530 * @brief Buffer of DWARF's Call Frame Information opcodes. 531 * @details It is used by debuggers and other tools to unwind the call stack. 532 */ cfi()533 DebugFrameOpCodeWriterForAssembler& cfi() { return cfi_; } 534 535 protected: Assembler()536 Assembler() : buffer_(), cfi_(this) {} 537 538 AssemblerBuffer buffer_; 539 540 DebugFrameOpCodeWriterForAssembler cfi_; 541 }; 542 543 } // namespace art 544 545 #endif // ART_COMPILER_UTILS_ASSEMBLER_H_ 546