1 /* libFLAC - Free Lossless Audio Codec library
2 * Copyright (C) 2000-2009 Josh Coalson
3 * Copyright (C) 2011-2014 Xiph.Org Foundation
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * - Neither the name of the Xiph.org Foundation nor the names of its
17 * contributors may be used to endorse or promote products derived from
18 * this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #ifdef HAVE_CONFIG_H
34 # include <config.h>
35 #endif
36
37 #include <math.h>
38
39 #include "FLAC/assert.h"
40 #include "FLAC/format.h"
41 #include "share/compat.h"
42 #include "private/bitmath.h"
43 #include "private/lpc.h"
44 #include "private/macros.h"
45 #if defined DEBUG || defined FLAC__OVERFLOW_DETECT || defined FLAC__OVERFLOW_DETECT_VERBOSE
46 #include <stdio.h>
47 #endif
48
49 /* OPT: #undef'ing this may improve the speed on some architectures */
50 #define FLAC__LPC_UNROLLED_FILTER_LOOPS
51
52 #ifndef FLAC__INTEGER_ONLY_LIBRARY
53
54 #if !defined(HAVE_LROUND)
55 #if defined(_MSC_VER)
56 #include <float.h>
57 #define copysign _copysign
58 #elif defined(__GNUC__)
59 #define copysign __builtin_copysign
60 #endif
lround(double x)61 static inline long int lround(double x) {
62 return (long)(x + copysign (0.5, x));
63 }
64 /* If this fails, we are in the presence of a mid 90's compiler, move along... */
65 #endif
66
FLAC__lpc_window_data(const FLAC__int32 in[],const FLAC__real window[],FLAC__real out[],unsigned data_len)67 void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], unsigned data_len)
68 {
69 unsigned i;
70 for(i = 0; i < data_len; i++)
71 out[i] = in[i] * window[i];
72 }
73
FLAC__lpc_compute_autocorrelation(const FLAC__real data[],unsigned data_len,unsigned lag,FLAC__real autoc[])74 void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[])
75 {
76 /* a readable, but slower, version */
77 #if 0
78 FLAC__real d;
79 unsigned i;
80
81 FLAC__ASSERT(lag > 0);
82 FLAC__ASSERT(lag <= data_len);
83
84 /*
85 * Technically we should subtract the mean first like so:
86 * for(i = 0; i < data_len; i++)
87 * data[i] -= mean;
88 * but it appears not to make enough of a difference to matter, and
89 * most signals are already closely centered around zero
90 */
91 while(lag--) {
92 for(i = lag, d = 0.0; i < data_len; i++)
93 d += data[i] * data[i - lag];
94 autoc[lag] = d;
95 }
96 #endif
97
98 /*
99 * this version tends to run faster because of better data locality
100 * ('data_len' is usually much larger than 'lag')
101 */
102 FLAC__real d;
103 unsigned sample, coeff;
104 const unsigned limit = data_len - lag;
105
106 FLAC__ASSERT(lag > 0);
107 FLAC__ASSERT(lag <= data_len);
108
109 for(coeff = 0; coeff < lag; coeff++)
110 autoc[coeff] = 0.0;
111 for(sample = 0; sample <= limit; sample++) {
112 d = data[sample];
113 for(coeff = 0; coeff < lag; coeff++)
114 autoc[coeff] += d * data[sample+coeff];
115 }
116 for(; sample < data_len; sample++) {
117 d = data[sample];
118 for(coeff = 0; coeff < data_len - sample; coeff++)
119 autoc[coeff] += d * data[sample+coeff];
120 }
121 }
122
FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[],unsigned * max_order,FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER],FLAC__double error[])123 void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__double error[])
124 {
125 unsigned i, j;
126 FLAC__double r, err, lpc[FLAC__MAX_LPC_ORDER];
127
128 FLAC__ASSERT(0 != max_order);
129 FLAC__ASSERT(0 < *max_order);
130 FLAC__ASSERT(*max_order <= FLAC__MAX_LPC_ORDER);
131 FLAC__ASSERT(autoc[0] != 0.0);
132
133 err = autoc[0];
134
135 for(i = 0; i < *max_order; i++) {
136 /* Sum up this iteration's reflection coefficient. */
137 r = -autoc[i+1];
138 for(j = 0; j < i; j++)
139 r -= lpc[j] * autoc[i-j];
140 r /= err;
141
142 /* Update LPC coefficients and total error. */
143 lpc[i]=r;
144 for(j = 0; j < (i>>1); j++) {
145 FLAC__double tmp = lpc[j];
146 lpc[j] += r * lpc[i-1-j];
147 lpc[i-1-j] += r * tmp;
148 }
149 if(i & 1)
150 lpc[j] += lpc[j] * r;
151
152 err *= (1.0 - r * r);
153
154 /* save this order */
155 for(j = 0; j <= i; j++)
156 lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */
157 error[i] = err;
158
159 /* see SF bug https://sourceforge.net/p/flac/bugs/234/ */
160 if(err == 0.0) {
161 *max_order = i+1;
162 return;
163 }
164 }
165 }
166
FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[],unsigned order,unsigned precision,FLAC__int32 qlp_coeff[],int * shift)167 int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift)
168 {
169 unsigned i;
170 FLAC__double cmax;
171 FLAC__int32 qmax, qmin;
172
173 FLAC__ASSERT(precision > 0);
174 FLAC__ASSERT(precision >= FLAC__MIN_QLP_COEFF_PRECISION);
175
176 /* drop one bit for the sign; from here on out we consider only |lp_coeff[i]| */
177 precision--;
178 qmax = 1 << precision;
179 qmin = -qmax;
180 qmax--;
181
182 /* calc cmax = max( |lp_coeff[i]| ) */
183 cmax = 0.0;
184 for(i = 0; i < order; i++) {
185 const FLAC__double d = fabs(lp_coeff[i]);
186 if(d > cmax)
187 cmax = d;
188 }
189
190 if(cmax <= 0.0) {
191 /* => coefficients are all 0, which means our constant-detect didn't work */
192 return 2;
193 }
194 else {
195 const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1;
196 const int min_shiftlimit = -max_shiftlimit - 1;
197 int log2cmax;
198
199 (void)frexp(cmax, &log2cmax);
200 log2cmax--;
201 *shift = (int)precision - log2cmax - 1;
202
203 if(*shift > max_shiftlimit)
204 *shift = max_shiftlimit;
205 else if(*shift < min_shiftlimit)
206 return 1;
207 }
208
209 if(*shift >= 0) {
210 FLAC__double error = 0.0;
211 FLAC__int32 q;
212 for(i = 0; i < order; i++) {
213 error += lp_coeff[i] * (1 << *shift);
214 q = lround(error);
215
216 #ifdef FLAC__OVERFLOW_DETECT
217 if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */
218 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]);
219 else if(q < qmin)
220 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]);
221 #endif
222 if(q > qmax)
223 q = qmax;
224 else if(q < qmin)
225 q = qmin;
226 error -= q;
227 qlp_coeff[i] = q;
228 }
229 }
230 /* negative shift is very rare but due to design flaw, negative shift is
231 * a NOP in the decoder, so it must be handled specially by scaling down
232 * coeffs
233 */
234 else {
235 const int nshift = -(*shift);
236 FLAC__double error = 0.0;
237 FLAC__int32 q;
238 #ifdef DEBUG
239 fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift=%d order=%u cmax=%f\n", *shift, order, cmax);
240 #endif
241 for(i = 0; i < order; i++) {
242 error += lp_coeff[i] / (1 << nshift);
243 q = lround(error);
244 #ifdef FLAC__OVERFLOW_DETECT
245 if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */
246 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]);
247 else if(q < qmin)
248 fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]);
249 #endif
250 if(q > qmax)
251 q = qmax;
252 else if(q < qmin)
253 q = qmin;
254 error -= q;
255 qlp_coeff[i] = q;
256 }
257 *shift = 0;
258 }
259
260 return 0;
261 }
262
263 #if defined(_MSC_VER)
264 // silence MSVC warnings about __restrict modifier
265 #pragma warning ( disable : 4028 )
266 #endif
267
FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 * flac_restrict data,unsigned data_len,const FLAC__int32 * flac_restrict qlp_coeff,unsigned order,int lp_quantization,FLAC__int32 * flac_restrict residual)268 void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 * flac_restrict data, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict residual)
269 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
270 {
271 FLAC__int64 sumo;
272 unsigned i, j;
273 FLAC__int32 sum;
274 const FLAC__int32 *history;
275
276 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
277 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
278 for(i=0;i<order;i++)
279 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
280 fprintf(stderr,"\n");
281 #endif
282 FLAC__ASSERT(order > 0);
283
284 for(i = 0; i < data_len; i++) {
285 sumo = 0;
286 sum = 0;
287 history = data;
288 for(j = 0; j < order; j++) {
289 sum += qlp_coeff[j] * (*(--history));
290 sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
291 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%" PRId64 "\n",i,j,qlp_coeff[j],*history,sumo);
292 }
293 *(residual++) = *(data++) - (sum >> lp_quantization);
294 }
295
296 /* Here's a slower but clearer version:
297 for(i = 0; i < data_len; i++) {
298 sum = 0;
299 for(j = 0; j < order; j++)
300 sum += qlp_coeff[j] * data[i-j-1];
301 residual[i] = data[i] - (sum >> lp_quantization);
302 }
303 */
304 }
305 #else /* fully unrolled version for normal use */
306 {
307 int i;
308 FLAC__int32 sum;
309
310 FLAC__ASSERT(order > 0);
311 FLAC__ASSERT(order <= 32);
312
313 /*
314 * We do unique versions up to 12th order since that's the subset limit.
315 * Also they are roughly ordered to match frequency of occurrence to
316 * minimize branching.
317 */
318 if(order <= 12) {
319 if(order > 8) {
320 if(order > 10) {
321 if(order == 12) {
322 for(i = 0; i < (int)data_len; i++) {
323 sum = 0;
324 sum += qlp_coeff[11] * data[i-12];
325 sum += qlp_coeff[10] * data[i-11];
326 sum += qlp_coeff[9] * data[i-10];
327 sum += qlp_coeff[8] * data[i-9];
328 sum += qlp_coeff[7] * data[i-8];
329 sum += qlp_coeff[6] * data[i-7];
330 sum += qlp_coeff[5] * data[i-6];
331 sum += qlp_coeff[4] * data[i-5];
332 sum += qlp_coeff[3] * data[i-4];
333 sum += qlp_coeff[2] * data[i-3];
334 sum += qlp_coeff[1] * data[i-2];
335 sum += qlp_coeff[0] * data[i-1];
336 residual[i] = data[i] - (sum >> lp_quantization);
337 }
338 }
339 else { /* order == 11 */
340 for(i = 0; i < (int)data_len; i++) {
341 sum = 0;
342 sum += qlp_coeff[10] * data[i-11];
343 sum += qlp_coeff[9] * data[i-10];
344 sum += qlp_coeff[8] * data[i-9];
345 sum += qlp_coeff[7] * data[i-8];
346 sum += qlp_coeff[6] * data[i-7];
347 sum += qlp_coeff[5] * data[i-6];
348 sum += qlp_coeff[4] * data[i-5];
349 sum += qlp_coeff[3] * data[i-4];
350 sum += qlp_coeff[2] * data[i-3];
351 sum += qlp_coeff[1] * data[i-2];
352 sum += qlp_coeff[0] * data[i-1];
353 residual[i] = data[i] - (sum >> lp_quantization);
354 }
355 }
356 }
357 else {
358 if(order == 10) {
359 for(i = 0; i < (int)data_len; i++) {
360 sum = 0;
361 sum += qlp_coeff[9] * data[i-10];
362 sum += qlp_coeff[8] * data[i-9];
363 sum += qlp_coeff[7] * data[i-8];
364 sum += qlp_coeff[6] * data[i-7];
365 sum += qlp_coeff[5] * data[i-6];
366 sum += qlp_coeff[4] * data[i-5];
367 sum += qlp_coeff[3] * data[i-4];
368 sum += qlp_coeff[2] * data[i-3];
369 sum += qlp_coeff[1] * data[i-2];
370 sum += qlp_coeff[0] * data[i-1];
371 residual[i] = data[i] - (sum >> lp_quantization);
372 }
373 }
374 else { /* order == 9 */
375 for(i = 0; i < (int)data_len; i++) {
376 sum = 0;
377 sum += qlp_coeff[8] * data[i-9];
378 sum += qlp_coeff[7] * data[i-8];
379 sum += qlp_coeff[6] * data[i-7];
380 sum += qlp_coeff[5] * data[i-6];
381 sum += qlp_coeff[4] * data[i-5];
382 sum += qlp_coeff[3] * data[i-4];
383 sum += qlp_coeff[2] * data[i-3];
384 sum += qlp_coeff[1] * data[i-2];
385 sum += qlp_coeff[0] * data[i-1];
386 residual[i] = data[i] - (sum >> lp_quantization);
387 }
388 }
389 }
390 }
391 else if(order > 4) {
392 if(order > 6) {
393 if(order == 8) {
394 for(i = 0; i < (int)data_len; i++) {
395 sum = 0;
396 sum += qlp_coeff[7] * data[i-8];
397 sum += qlp_coeff[6] * data[i-7];
398 sum += qlp_coeff[5] * data[i-6];
399 sum += qlp_coeff[4] * data[i-5];
400 sum += qlp_coeff[3] * data[i-4];
401 sum += qlp_coeff[2] * data[i-3];
402 sum += qlp_coeff[1] * data[i-2];
403 sum += qlp_coeff[0] * data[i-1];
404 residual[i] = data[i] - (sum >> lp_quantization);
405 }
406 }
407 else { /* order == 7 */
408 for(i = 0; i < (int)data_len; i++) {
409 sum = 0;
410 sum += qlp_coeff[6] * data[i-7];
411 sum += qlp_coeff[5] * data[i-6];
412 sum += qlp_coeff[4] * data[i-5];
413 sum += qlp_coeff[3] * data[i-4];
414 sum += qlp_coeff[2] * data[i-3];
415 sum += qlp_coeff[1] * data[i-2];
416 sum += qlp_coeff[0] * data[i-1];
417 residual[i] = data[i] - (sum >> lp_quantization);
418 }
419 }
420 }
421 else {
422 if(order == 6) {
423 for(i = 0; i < (int)data_len; i++) {
424 sum = 0;
425 sum += qlp_coeff[5] * data[i-6];
426 sum += qlp_coeff[4] * data[i-5];
427 sum += qlp_coeff[3] * data[i-4];
428 sum += qlp_coeff[2] * data[i-3];
429 sum += qlp_coeff[1] * data[i-2];
430 sum += qlp_coeff[0] * data[i-1];
431 residual[i] = data[i] - (sum >> lp_quantization);
432 }
433 }
434 else { /* order == 5 */
435 for(i = 0; i < (int)data_len; i++) {
436 sum = 0;
437 sum += qlp_coeff[4] * data[i-5];
438 sum += qlp_coeff[3] * data[i-4];
439 sum += qlp_coeff[2] * data[i-3];
440 sum += qlp_coeff[1] * data[i-2];
441 sum += qlp_coeff[0] * data[i-1];
442 residual[i] = data[i] - (sum >> lp_quantization);
443 }
444 }
445 }
446 }
447 else {
448 if(order > 2) {
449 if(order == 4) {
450 for(i = 0; i < (int)data_len; i++) {
451 sum = 0;
452 sum += qlp_coeff[3] * data[i-4];
453 sum += qlp_coeff[2] * data[i-3];
454 sum += qlp_coeff[1] * data[i-2];
455 sum += qlp_coeff[0] * data[i-1];
456 residual[i] = data[i] - (sum >> lp_quantization);
457 }
458 }
459 else { /* order == 3 */
460 for(i = 0; i < (int)data_len; i++) {
461 sum = 0;
462 sum += qlp_coeff[2] * data[i-3];
463 sum += qlp_coeff[1] * data[i-2];
464 sum += qlp_coeff[0] * data[i-1];
465 residual[i] = data[i] - (sum >> lp_quantization);
466 }
467 }
468 }
469 else {
470 if(order == 2) {
471 for(i = 0; i < (int)data_len; i++) {
472 sum = 0;
473 sum += qlp_coeff[1] * data[i-2];
474 sum += qlp_coeff[0] * data[i-1];
475 residual[i] = data[i] - (sum >> lp_quantization);
476 }
477 }
478 else { /* order == 1 */
479 for(i = 0; i < (int)data_len; i++)
480 residual[i] = data[i] - ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
481 }
482 }
483 }
484 }
485 else { /* order > 12 */
486 for(i = 0; i < (int)data_len; i++) {
487 sum = 0;
488 switch(order) {
489 case 32: sum += qlp_coeff[31] * data[i-32];
490 case 31: sum += qlp_coeff[30] * data[i-31];
491 case 30: sum += qlp_coeff[29] * data[i-30];
492 case 29: sum += qlp_coeff[28] * data[i-29];
493 case 28: sum += qlp_coeff[27] * data[i-28];
494 case 27: sum += qlp_coeff[26] * data[i-27];
495 case 26: sum += qlp_coeff[25] * data[i-26];
496 case 25: sum += qlp_coeff[24] * data[i-25];
497 case 24: sum += qlp_coeff[23] * data[i-24];
498 case 23: sum += qlp_coeff[22] * data[i-23];
499 case 22: sum += qlp_coeff[21] * data[i-22];
500 case 21: sum += qlp_coeff[20] * data[i-21];
501 case 20: sum += qlp_coeff[19] * data[i-20];
502 case 19: sum += qlp_coeff[18] * data[i-19];
503 case 18: sum += qlp_coeff[17] * data[i-18];
504 case 17: sum += qlp_coeff[16] * data[i-17];
505 case 16: sum += qlp_coeff[15] * data[i-16];
506 case 15: sum += qlp_coeff[14] * data[i-15];
507 case 14: sum += qlp_coeff[13] * data[i-14];
508 case 13: sum += qlp_coeff[12] * data[i-13];
509 sum += qlp_coeff[11] * data[i-12];
510 sum += qlp_coeff[10] * data[i-11];
511 sum += qlp_coeff[ 9] * data[i-10];
512 sum += qlp_coeff[ 8] * data[i- 9];
513 sum += qlp_coeff[ 7] * data[i- 8];
514 sum += qlp_coeff[ 6] * data[i- 7];
515 sum += qlp_coeff[ 5] * data[i- 6];
516 sum += qlp_coeff[ 4] * data[i- 5];
517 sum += qlp_coeff[ 3] * data[i- 4];
518 sum += qlp_coeff[ 2] * data[i- 3];
519 sum += qlp_coeff[ 1] * data[i- 2];
520 sum += qlp_coeff[ 0] * data[i- 1];
521 }
522 residual[i] = data[i] - (sum >> lp_quantization);
523 }
524 }
525 }
526 #endif
527
FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 * flac_restrict data,unsigned data_len,const FLAC__int32 * flac_restrict qlp_coeff,unsigned order,int lp_quantization,FLAC__int32 * flac_restrict residual)528 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 * flac_restrict data, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict residual)
529 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
530 {
531 unsigned i, j;
532 FLAC__int64 sum;
533 const FLAC__int32 *history;
534
535 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
536 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
537 for(i=0;i<order;i++)
538 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
539 fprintf(stderr,"\n");
540 #endif
541 FLAC__ASSERT(order > 0);
542
543 for(i = 0; i < data_len; i++) {
544 sum = 0;
545 history = data;
546 for(j = 0; j < order; j++)
547 sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
548 if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {
549 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%" PRId64 "\n", i, (sum >> lp_quantization));
550 break;
551 }
552 if(FLAC__bitmath_silog2_wide((FLAC__int64)(*data) - (sum >> lp_quantization)) > 32) {
553 fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%" PRId64 ", residual=%" PRId64 "\n", i, *data, (int64_t)(sum >> lp_quantization), ((FLAC__int64)(*data) - (sum >> lp_quantization)));
554 break;
555 }
556 *(residual++) = *(data++) - (FLAC__int32)(sum >> lp_quantization);
557 }
558 }
559 #else /* fully unrolled version for normal use */
560 {
561 int i;
562 FLAC__int64 sum;
563
564 FLAC__ASSERT(order > 0);
565 FLAC__ASSERT(order <= 32);
566
567 /*
568 * We do unique versions up to 12th order since that's the subset limit.
569 * Also they are roughly ordered to match frequency of occurrence to
570 * minimize branching.
571 */
572 if(order <= 12) {
573 if(order > 8) {
574 if(order > 10) {
575 if(order == 12) {
576 for(i = 0; i < (int)data_len; i++) {
577 sum = 0;
578 sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
579 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
580 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
581 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
582 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
583 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
584 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
585 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
586 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
587 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
588 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
589 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
590 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
591 }
592 }
593 else { /* order == 11 */
594 for(i = 0; i < (int)data_len; i++) {
595 sum = 0;
596 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
597 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
598 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
599 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
600 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
601 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
602 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
603 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
604 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
605 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
606 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
607 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
608 }
609 }
610 }
611 else {
612 if(order == 10) {
613 for(i = 0; i < (int)data_len; i++) {
614 sum = 0;
615 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
616 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
617 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
618 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
619 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
620 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
621 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
622 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
623 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
624 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
625 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
626 }
627 }
628 else { /* order == 9 */
629 for(i = 0; i < (int)data_len; i++) {
630 sum = 0;
631 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
632 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
633 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
634 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
635 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
636 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
637 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
638 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
639 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
640 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
641 }
642 }
643 }
644 }
645 else if(order > 4) {
646 if(order > 6) {
647 if(order == 8) {
648 for(i = 0; i < (int)data_len; i++) {
649 sum = 0;
650 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
651 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
652 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
653 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
654 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
655 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
656 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
657 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
658 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
659 }
660 }
661 else { /* order == 7 */
662 for(i = 0; i < (int)data_len; i++) {
663 sum = 0;
664 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
665 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
666 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
667 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
668 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
669 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
670 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
671 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
672 }
673 }
674 }
675 else {
676 if(order == 6) {
677 for(i = 0; i < (int)data_len; i++) {
678 sum = 0;
679 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
680 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
681 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
682 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
683 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
684 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
685 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
686 }
687 }
688 else { /* order == 5 */
689 for(i = 0; i < (int)data_len; i++) {
690 sum = 0;
691 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
692 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
693 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
694 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
695 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
696 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
697 }
698 }
699 }
700 }
701 else {
702 if(order > 2) {
703 if(order == 4) {
704 for(i = 0; i < (int)data_len; i++) {
705 sum = 0;
706 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
707 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
708 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
709 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
710 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
711 }
712 }
713 else { /* order == 3 */
714 for(i = 0; i < (int)data_len; i++) {
715 sum = 0;
716 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
717 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
718 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
719 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
720 }
721 }
722 }
723 else {
724 if(order == 2) {
725 for(i = 0; i < (int)data_len; i++) {
726 sum = 0;
727 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
728 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
729 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
730 }
731 }
732 else { /* order == 1 */
733 for(i = 0; i < (int)data_len; i++)
734 residual[i] = data[i] - (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
735 }
736 }
737 }
738 }
739 else { /* order > 12 */
740 for(i = 0; i < (int)data_len; i++) {
741 sum = 0;
742 switch(order) {
743 case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32];
744 case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31];
745 case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30];
746 case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29];
747 case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28];
748 case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27];
749 case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26];
750 case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25];
751 case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24];
752 case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23];
753 case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22];
754 case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21];
755 case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20];
756 case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19];
757 case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18];
758 case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17];
759 case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16];
760 case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15];
761 case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14];
762 case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
763 sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
764 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
765 sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
766 sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
767 sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
768 sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
769 sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
770 sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
771 sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
772 sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
773 sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
774 sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
775 }
776 residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
777 }
778 }
779 }
780 #endif
781
782 #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
783
FLAC__lpc_restore_signal(const FLAC__int32 * flac_restrict residual,unsigned data_len,const FLAC__int32 * flac_restrict qlp_coeff,unsigned order,int lp_quantization,FLAC__int32 * flac_restrict data)784 void FLAC__lpc_restore_signal(const FLAC__int32 * flac_restrict residual, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict data)
785 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
786 {
787 FLAC__int64 sumo;
788 unsigned i, j;
789 FLAC__int32 sum;
790 const FLAC__int32 *r = residual, *history;
791
792 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
793 fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
794 for(i=0;i<order;i++)
795 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
796 fprintf(stderr,"\n");
797 #endif
798 FLAC__ASSERT(order > 0);
799
800 for(i = 0; i < data_len; i++) {
801 sumo = 0;
802 sum = 0;
803 history = data;
804 for(j = 0; j < order; j++) {
805 sum += qlp_coeff[j] * (*(--history));
806 sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
807 if(sumo > 2147483647ll || sumo < -2147483648ll)
808 fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%" PRId64 "\n",i,j,qlp_coeff[j],*history,sumo);
809 }
810 *(data++) = *(r++) + (sum >> lp_quantization);
811 }
812
813 /* Here's a slower but clearer version:
814 for(i = 0; i < data_len; i++) {
815 sum = 0;
816 for(j = 0; j < order; j++)
817 sum += qlp_coeff[j] * data[i-j-1];
818 data[i] = residual[i] + (sum >> lp_quantization);
819 }
820 */
821 }
822 #else /* fully unrolled version for normal use */
823 {
824 int i;
825 FLAC__int32 sum;
826
827 FLAC__ASSERT(order > 0);
828 FLAC__ASSERT(order <= 32);
829
830 /*
831 * We do unique versions up to 12th order since that's the subset limit.
832 * Also they are roughly ordered to match frequency of occurrence to
833 * minimize branching.
834 */
835 if(order <= 12) {
836 if(order > 8) {
837 if(order > 10) {
838 if(order == 12) {
839 for(i = 0; i < (int)data_len; i++) {
840 sum = 0;
841 sum += qlp_coeff[11] * data[i-12];
842 sum += qlp_coeff[10] * data[i-11];
843 sum += qlp_coeff[9] * data[i-10];
844 sum += qlp_coeff[8] * data[i-9];
845 sum += qlp_coeff[7] * data[i-8];
846 sum += qlp_coeff[6] * data[i-7];
847 sum += qlp_coeff[5] * data[i-6];
848 sum += qlp_coeff[4] * data[i-5];
849 sum += qlp_coeff[3] * data[i-4];
850 sum += qlp_coeff[2] * data[i-3];
851 sum += qlp_coeff[1] * data[i-2];
852 sum += qlp_coeff[0] * data[i-1];
853 data[i] = residual[i] + (sum >> lp_quantization);
854 }
855 }
856 else { /* order == 11 */
857 for(i = 0; i < (int)data_len; i++) {
858 sum = 0;
859 sum += qlp_coeff[10] * data[i-11];
860 sum += qlp_coeff[9] * data[i-10];
861 sum += qlp_coeff[8] * data[i-9];
862 sum += qlp_coeff[7] * data[i-8];
863 sum += qlp_coeff[6] * data[i-7];
864 sum += qlp_coeff[5] * data[i-6];
865 sum += qlp_coeff[4] * data[i-5];
866 sum += qlp_coeff[3] * data[i-4];
867 sum += qlp_coeff[2] * data[i-3];
868 sum += qlp_coeff[1] * data[i-2];
869 sum += qlp_coeff[0] * data[i-1];
870 data[i] = residual[i] + (sum >> lp_quantization);
871 }
872 }
873 }
874 else {
875 if(order == 10) {
876 for(i = 0; i < (int)data_len; i++) {
877 sum = 0;
878 sum += qlp_coeff[9] * data[i-10];
879 sum += qlp_coeff[8] * data[i-9];
880 sum += qlp_coeff[7] * data[i-8];
881 sum += qlp_coeff[6] * data[i-7];
882 sum += qlp_coeff[5] * data[i-6];
883 sum += qlp_coeff[4] * data[i-5];
884 sum += qlp_coeff[3] * data[i-4];
885 sum += qlp_coeff[2] * data[i-3];
886 sum += qlp_coeff[1] * data[i-2];
887 sum += qlp_coeff[0] * data[i-1];
888 data[i] = residual[i] + (sum >> lp_quantization);
889 }
890 }
891 else { /* order == 9 */
892 for(i = 0; i < (int)data_len; i++) {
893 sum = 0;
894 sum += qlp_coeff[8] * data[i-9];
895 sum += qlp_coeff[7] * data[i-8];
896 sum += qlp_coeff[6] * data[i-7];
897 sum += qlp_coeff[5] * data[i-6];
898 sum += qlp_coeff[4] * data[i-5];
899 sum += qlp_coeff[3] * data[i-4];
900 sum += qlp_coeff[2] * data[i-3];
901 sum += qlp_coeff[1] * data[i-2];
902 sum += qlp_coeff[0] * data[i-1];
903 data[i] = residual[i] + (sum >> lp_quantization);
904 }
905 }
906 }
907 }
908 else if(order > 4) {
909 if(order > 6) {
910 if(order == 8) {
911 for(i = 0; i < (int)data_len; i++) {
912 sum = 0;
913 sum += qlp_coeff[7] * data[i-8];
914 sum += qlp_coeff[6] * data[i-7];
915 sum += qlp_coeff[5] * data[i-6];
916 sum += qlp_coeff[4] * data[i-5];
917 sum += qlp_coeff[3] * data[i-4];
918 sum += qlp_coeff[2] * data[i-3];
919 sum += qlp_coeff[1] * data[i-2];
920 sum += qlp_coeff[0] * data[i-1];
921 data[i] = residual[i] + (sum >> lp_quantization);
922 }
923 }
924 else { /* order == 7 */
925 for(i = 0; i < (int)data_len; i++) {
926 sum = 0;
927 sum += qlp_coeff[6] * data[i-7];
928 sum += qlp_coeff[5] * data[i-6];
929 sum += qlp_coeff[4] * data[i-5];
930 sum += qlp_coeff[3] * data[i-4];
931 sum += qlp_coeff[2] * data[i-3];
932 sum += qlp_coeff[1] * data[i-2];
933 sum += qlp_coeff[0] * data[i-1];
934 data[i] = residual[i] + (sum >> lp_quantization);
935 }
936 }
937 }
938 else {
939 if(order == 6) {
940 for(i = 0; i < (int)data_len; i++) {
941 sum = 0;
942 sum += qlp_coeff[5] * data[i-6];
943 sum += qlp_coeff[4] * data[i-5];
944 sum += qlp_coeff[3] * data[i-4];
945 sum += qlp_coeff[2] * data[i-3];
946 sum += qlp_coeff[1] * data[i-2];
947 sum += qlp_coeff[0] * data[i-1];
948 data[i] = residual[i] + (sum >> lp_quantization);
949 }
950 }
951 else { /* order == 5 */
952 for(i = 0; i < (int)data_len; i++) {
953 sum = 0;
954 sum += qlp_coeff[4] * data[i-5];
955 sum += qlp_coeff[3] * data[i-4];
956 sum += qlp_coeff[2] * data[i-3];
957 sum += qlp_coeff[1] * data[i-2];
958 sum += qlp_coeff[0] * data[i-1];
959 data[i] = residual[i] + (sum >> lp_quantization);
960 }
961 }
962 }
963 }
964 else {
965 if(order > 2) {
966 if(order == 4) {
967 for(i = 0; i < (int)data_len; i++) {
968 sum = 0;
969 sum += qlp_coeff[3] * data[i-4];
970 sum += qlp_coeff[2] * data[i-3];
971 sum += qlp_coeff[1] * data[i-2];
972 sum += qlp_coeff[0] * data[i-1];
973 data[i] = residual[i] + (sum >> lp_quantization);
974 }
975 }
976 else { /* order == 3 */
977 for(i = 0; i < (int)data_len; i++) {
978 sum = 0;
979 sum += qlp_coeff[2] * data[i-3];
980 sum += qlp_coeff[1] * data[i-2];
981 sum += qlp_coeff[0] * data[i-1];
982 data[i] = residual[i] + (sum >> lp_quantization);
983 }
984 }
985 }
986 else {
987 if(order == 2) {
988 for(i = 0; i < (int)data_len; i++) {
989 sum = 0;
990 sum += qlp_coeff[1] * data[i-2];
991 sum += qlp_coeff[0] * data[i-1];
992 data[i] = residual[i] + (sum >> lp_quantization);
993 }
994 }
995 else { /* order == 1 */
996 for(i = 0; i < (int)data_len; i++)
997 data[i] = residual[i] + ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
998 }
999 }
1000 }
1001 }
1002 else { /* order > 12 */
1003 for(i = 0; i < (int)data_len; i++) {
1004 sum = 0;
1005 switch(order) {
1006 case 32: sum += qlp_coeff[31] * data[i-32];
1007 case 31: sum += qlp_coeff[30] * data[i-31];
1008 case 30: sum += qlp_coeff[29] * data[i-30];
1009 case 29: sum += qlp_coeff[28] * data[i-29];
1010 case 28: sum += qlp_coeff[27] * data[i-28];
1011 case 27: sum += qlp_coeff[26] * data[i-27];
1012 case 26: sum += qlp_coeff[25] * data[i-26];
1013 case 25: sum += qlp_coeff[24] * data[i-25];
1014 case 24: sum += qlp_coeff[23] * data[i-24];
1015 case 23: sum += qlp_coeff[22] * data[i-23];
1016 case 22: sum += qlp_coeff[21] * data[i-22];
1017 case 21: sum += qlp_coeff[20] * data[i-21];
1018 case 20: sum += qlp_coeff[19] * data[i-20];
1019 case 19: sum += qlp_coeff[18] * data[i-19];
1020 case 18: sum += qlp_coeff[17] * data[i-18];
1021 case 17: sum += qlp_coeff[16] * data[i-17];
1022 case 16: sum += qlp_coeff[15] * data[i-16];
1023 case 15: sum += qlp_coeff[14] * data[i-15];
1024 case 14: sum += qlp_coeff[13] * data[i-14];
1025 case 13: sum += qlp_coeff[12] * data[i-13];
1026 sum += qlp_coeff[11] * data[i-12];
1027 sum += qlp_coeff[10] * data[i-11];
1028 sum += qlp_coeff[ 9] * data[i-10];
1029 sum += qlp_coeff[ 8] * data[i- 9];
1030 sum += qlp_coeff[ 7] * data[i- 8];
1031 sum += qlp_coeff[ 6] * data[i- 7];
1032 sum += qlp_coeff[ 5] * data[i- 6];
1033 sum += qlp_coeff[ 4] * data[i- 5];
1034 sum += qlp_coeff[ 3] * data[i- 4];
1035 sum += qlp_coeff[ 2] * data[i- 3];
1036 sum += qlp_coeff[ 1] * data[i- 2];
1037 sum += qlp_coeff[ 0] * data[i- 1];
1038 }
1039 data[i] = residual[i] + (sum >> lp_quantization);
1040 }
1041 }
1042 }
1043 #endif
1044
FLAC__lpc_restore_signal_wide(const FLAC__int32 * flac_restrict residual,unsigned data_len,const FLAC__int32 * flac_restrict qlp_coeff,unsigned order,int lp_quantization,FLAC__int32 * flac_restrict data)1045 void FLAC__lpc_restore_signal_wide(const FLAC__int32 * flac_restrict residual, unsigned data_len, const FLAC__int32 * flac_restrict qlp_coeff, unsigned order, int lp_quantization, FLAC__int32 * flac_restrict data)
1046 #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
1047 {
1048 unsigned i, j;
1049 FLAC__int64 sum;
1050 const FLAC__int32 *r = residual, *history;
1051
1052 #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
1053 fprintf(stderr,"FLAC__lpc_restore_signal_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
1054 for(i=0;i<order;i++)
1055 fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
1056 fprintf(stderr,"\n");
1057 #endif
1058 FLAC__ASSERT(order > 0);
1059
1060 for(i = 0; i < data_len; i++) {
1061 sum = 0;
1062 history = data;
1063 for(j = 0; j < order; j++)
1064 sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
1065 if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {
1066 fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%" PRId64 "\n", i, (sum >> lp_quantization));
1067 break;
1068 }
1069 if(FLAC__bitmath_silog2_wide((FLAC__int64)(*r) + (sum >> lp_quantization)) > 32) {
1070 fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%" PRId64 ", data=%" PRId64 "\n", i, *r, (sum >> lp_quantization), ((FLAC__int64)(*r) + (sum >> lp_quantization)));
1071 break;
1072 }
1073 *(data++) = *(r++) + (FLAC__int32)(sum >> lp_quantization);
1074 }
1075 }
1076 #else /* fully unrolled version for normal use */
1077 {
1078 int i;
1079 FLAC__int64 sum;
1080
1081 FLAC__ASSERT(order > 0);
1082 FLAC__ASSERT(order <= 32);
1083
1084 /*
1085 * We do unique versions up to 12th order since that's the subset limit.
1086 * Also they are roughly ordered to match frequency of occurrence to
1087 * minimize branching.
1088 */
1089 if(order <= 12) {
1090 if(order > 8) {
1091 if(order > 10) {
1092 if(order == 12) {
1093 for(i = 0; i < (int)data_len; i++) {
1094 sum = 0;
1095 sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
1096 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
1097 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
1098 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1099 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1100 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1101 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1102 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1103 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1104 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1105 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1106 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1107 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1108 }
1109 }
1110 else { /* order == 11 */
1111 for(i = 0; i < (int)data_len; i++) {
1112 sum = 0;
1113 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
1114 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
1115 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1116 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1117 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1118 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1119 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1120 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1121 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1122 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1123 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1124 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1125 }
1126 }
1127 }
1128 else {
1129 if(order == 10) {
1130 for(i = 0; i < (int)data_len; i++) {
1131 sum = 0;
1132 sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
1133 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1134 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1135 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1136 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1137 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1138 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1139 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1140 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1141 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1142 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1143 }
1144 }
1145 else { /* order == 9 */
1146 for(i = 0; i < (int)data_len; i++) {
1147 sum = 0;
1148 sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1149 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1150 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1151 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1152 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1153 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1154 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1155 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1156 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1157 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1158 }
1159 }
1160 }
1161 }
1162 else if(order > 4) {
1163 if(order > 6) {
1164 if(order == 8) {
1165 for(i = 0; i < (int)data_len; i++) {
1166 sum = 0;
1167 sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1168 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1169 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1170 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1171 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1172 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1173 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1174 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1175 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1176 }
1177 }
1178 else { /* order == 7 */
1179 for(i = 0; i < (int)data_len; i++) {
1180 sum = 0;
1181 sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1182 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1183 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1184 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1185 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1186 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1187 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1188 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1189 }
1190 }
1191 }
1192 else {
1193 if(order == 6) {
1194 for(i = 0; i < (int)data_len; i++) {
1195 sum = 0;
1196 sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1197 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1198 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1199 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1200 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1201 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1202 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1203 }
1204 }
1205 else { /* order == 5 */
1206 for(i = 0; i < (int)data_len; i++) {
1207 sum = 0;
1208 sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1209 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1210 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1211 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1212 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1213 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1214 }
1215 }
1216 }
1217 }
1218 else {
1219 if(order > 2) {
1220 if(order == 4) {
1221 for(i = 0; i < (int)data_len; i++) {
1222 sum = 0;
1223 sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1224 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1225 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1226 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1227 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1228 }
1229 }
1230 else { /* order == 3 */
1231 for(i = 0; i < (int)data_len; i++) {
1232 sum = 0;
1233 sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1234 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1235 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1236 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1237 }
1238 }
1239 }
1240 else {
1241 if(order == 2) {
1242 for(i = 0; i < (int)data_len; i++) {
1243 sum = 0;
1244 sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1245 sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1246 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1247 }
1248 }
1249 else { /* order == 1 */
1250 for(i = 0; i < (int)data_len; i++)
1251 data[i] = residual[i] + (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
1252 }
1253 }
1254 }
1255 }
1256 else { /* order > 12 */
1257 for(i = 0; i < (int)data_len; i++) {
1258 sum = 0;
1259 switch(order) {
1260 case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32];
1261 case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31];
1262 case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30];
1263 case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29];
1264 case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28];
1265 case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27];
1266 case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26];
1267 case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25];
1268 case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24];
1269 case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23];
1270 case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22];
1271 case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21];
1272 case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20];
1273 case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19];
1274 case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18];
1275 case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17];
1276 case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16];
1277 case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15];
1278 case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14];
1279 case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
1280 sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
1281 sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
1282 sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
1283 sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
1284 sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
1285 sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
1286 sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
1287 sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
1288 sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
1289 sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
1290 sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
1291 sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
1292 }
1293 data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1294 }
1295 }
1296 }
1297 #endif
1298
1299 #if defined(_MSC_VER)
1300 #pragma warning ( default : 4028 )
1301 #endif
1302
1303 #ifndef FLAC__INTEGER_ONLY_LIBRARY
1304
FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error,unsigned total_samples)1305 FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error, unsigned total_samples)
1306 {
1307 FLAC__double error_scale;
1308
1309 FLAC__ASSERT(total_samples > 0);
1310
1311 error_scale = 0.5 / (FLAC__double)total_samples;
1312
1313 return FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error, error_scale);
1314 }
1315
FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error,FLAC__double error_scale)1316 FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error, FLAC__double error_scale)
1317 {
1318 if(lpc_error > 0.0) {
1319 FLAC__double bps = (FLAC__double)0.5 * log(error_scale * lpc_error) / M_LN2;
1320 if(bps >= 0.0)
1321 return bps;
1322 else
1323 return 0.0;
1324 }
1325 else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate floating-point resolution */
1326 return 1e32;
1327 }
1328 else {
1329 return 0.0;
1330 }
1331 }
1332
FLAC__lpc_compute_best_order(const FLAC__double lpc_error[],unsigned max_order,unsigned total_samples,unsigned overhead_bits_per_order)1333 unsigned FLAC__lpc_compute_best_order(const FLAC__double lpc_error[], unsigned max_order, unsigned total_samples, unsigned overhead_bits_per_order)
1334 {
1335 unsigned order, indx, best_index; /* 'index' the index into lpc_error; index==order-1 since lpc_error[0] is for order==1, lpc_error[1] is for order==2, etc */
1336 FLAC__double bits, best_bits, error_scale;
1337
1338 FLAC__ASSERT(max_order > 0);
1339 FLAC__ASSERT(total_samples > 0);
1340
1341 error_scale = 0.5 / (FLAC__double)total_samples;
1342
1343 best_index = 0;
1344 best_bits = (unsigned)(-1);
1345
1346 for(indx = 0, order = 1; indx < max_order; indx++, order++) {
1347 bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[indx], error_scale) * (FLAC__double)(total_samples - order) + (FLAC__double)(order * overhead_bits_per_order);
1348 if(bits < best_bits) {
1349 best_index = indx;
1350 best_bits = bits;
1351 }
1352 }
1353
1354 return best_index+1; /* +1 since indx of lpc_error[] is order-1 */
1355 }
1356
1357 #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
1358