1 /* mke2fs.c - Create an ext2 filesystem image.
2  *
3  * Copyright 2006, 2007 Rob Landley <rob@landley.net>
4 
5 // Still to go: "E:jJ:L:m:O:"
6 USE_MKE2FS(NEWTOY(mke2fs, "<1>2g:Fnqm#N#i#b#", TOYFLAG_SBIN))
7 
8 config MKE2FS
9   bool "mke2fs"
10   default n
11   help
12     usage: mke2fs [-Fnq] [-b ###] [-N|i ###] [-m ###] device
13 
14     Create an ext2 filesystem on a block device or filesystem image.
15 
16     -F         Force to run on a mounted device
17     -n         Don't write to device
18     -q         Quiet (no output)
19     -b size    Block size (1024, 2048, or 4096)
20     -N inodes  Allocate this many inodes
21     -i bytes   Allocate one inode for every XXX bytes of device
22     -m percent Reserve this percent of filesystem space for root user
23 
24 config MKE2FS_JOURNAL
25   bool "Journaling support (ext3)"
26   default n
27   depends on MKE2FS
28   help
29     usage: mke2fs [-j] [-J size=###,device=XXX]
30 
31     -j         Create journal (ext3)
32     -J         Journal options
33                size: Number of blocks (1024-102400)
34                device: Specify an external journal
35 
36 config MKE2FS_GEN
37   bool "Generate (gene2fs)"
38   default n
39   depends on MKE2FS
40   help
41     usage: gene2fs [options] device filename
42 
43     The [options] are the same as mke2fs.
44 
45 config MKE2FS_LABEL
46   bool "Label support"
47   default n
48   depends on MKE2FS
49   help
50     usage: mke2fs [-L label] [-M path] [-o string]
51 
52     -L         Volume label
53     -M         Path to mount point
54     -o         Created by
55 
56 config MKE2FS_EXTENDED
57   bool "Extended options"
58   default n
59   depends on MKE2FS
60   help
61     usage: mke2fs [-E stride=###] [-O option[,option]]
62 
63     -E stride= Set RAID stripe size (in blocks)
64     -O [opts]  Specify fewer ext2 option flags (for old kernels)
65                All of these are on by default (as appropriate)
66        none         Clear default options (all but journaling)
67        dir_index    Use htree indexes for large directories
68        filetype     Store file type info in directory entry
69        has_journal  Set by -j
70        journal_dev  Set by -J device=XXX
71        sparse_super Don't allocate huge numbers of redundant superblocks
72 */
73 
74 #define FOR_mke2fs
75 #include "toys.h"
76 
GLOBALS(long blocksize;long bytes_per_inode;long inodes;long reserved_percent;char * gendir;struct dirtree * dt;unsigned treeblocks;unsigned treeinodes;unsigned blocks;unsigned freeblocks;unsigned inodespg;unsigned groups;unsigned blockbits;unsigned nextblock;unsigned nextgroup;int fsfd;struct ext2_superblock sb;)77 GLOBALS(
78   // Command line arguments.
79   long blocksize;
80   long bytes_per_inode;
81   long inodes;           // Total inodes in filesystem.
82   long reserved_percent; // Integer precent of space to reserve for root.
83   char *gendir;          // Where to read dirtree from.
84 
85   // Internal data.
86   struct dirtree *dt;    // Tree of files to copy into the new filesystem.
87   unsigned treeblocks;   // Blocks used by dt
88   unsigned treeinodes;   // Inodes used by dt
89 
90   unsigned blocks;       // Total blocks in the filesystem.
91   unsigned freeblocks;   // Free blocks in the filesystem.
92   unsigned inodespg;     // Inodes per group
93   unsigned groups;       // Total number of block groups.
94   unsigned blockbits;    // Bits per block.  (Also blocks per group.)
95 
96   // For gene2fs
97   unsigned nextblock;    // Next data block to allocate
98   unsigned nextgroup;    // Next group we'll be allocating from
99   int fsfd;              // File descriptor of filesystem (to output to).
100 
101   struct ext2_superblock sb;
102 )
103 
104 #define INODES_RESERVED 10
105 
106 static uint32_t div_round_up(uint32_t a, uint32_t b)
107 {
108   uint32_t c = a/b;
109 
110   if (a%b) c++;
111   return c;
112 }
113 
114 // Calculate data blocks plus index blocks needed to hold a file.
115 
file_blocks_used(uint64_t size,uint32_t * blocklist)116 static uint32_t file_blocks_used(uint64_t size, uint32_t *blocklist)
117 {
118   uint32_t dblocks = (uint32_t)((size+(TT.blocksize-1))/TT.blocksize);
119   uint32_t idx=TT.blocksize/4, iblocks=0, diblocks=0, tiblocks=0;
120 
121   // Fill out index blocks in inode.
122 
123   if (blocklist) {
124     int i;
125 
126     // Direct index blocks
127     for (i=0; i<13 && i<dblocks; i++) blocklist[i] = i;
128     // Singly indirect index blocks
129     if (dblocks > 13+idx) blocklist[13] = 13+idx;
130     // Doubly indirect index blocks
131     idx = 13 + idx + (idx*idx);
132     if (dblocks > idx) blocklist[14] = idx;
133 
134     return 0;
135   }
136 
137   // Account for direct, singly, doubly, and triply indirect index blocks
138 
139   if (dblocks > 12) {
140     iblocks = ((dblocks-13)/idx)+1;
141     if (iblocks > 1) {
142       diblocks = ((iblocks-2)/idx)+1;
143       if (diblocks > 1)
144         tiblocks = ((diblocks-2)/idx)+1;
145     }
146   }
147 
148   return dblocks + iblocks + diblocks + tiblocks;
149 }
150 
151 // Use the parent pointer to iterate through the tree non-recursively.
treenext(struct dirtree * this)152 static struct dirtree *treenext(struct dirtree *this)
153 {
154   while (this && !this->next) this = this->parent;
155   if (this) this = this->next;
156 
157   return this;
158 }
159 
160 // Recursively calculate the number of blocks used by each inode in the tree.
161 // Returns blocks used by this directory, assigns bytes used to *size.
162 // Writes total block count to TT.treeblocks and inode count to TT.treeinodes.
163 
check_treesize(struct dirtree * that,off_t * size)164 static long check_treesize(struct dirtree *that, off_t *size)
165 {
166   long blocks;
167 
168   while (that) {
169     *size += sizeof(struct ext2_dentry) + strlen(that->name);
170 
171     if (that->child)
172       that->st.st_blocks = check_treesize(that->child, &that->st.st_size);
173     else if (S_ISREG(that->st.st_mode)) {
174        that->st.st_blocks = file_blocks_used(that->st.st_size, 0);
175        TT.treeblocks += that->st.st_blocks;
176     }
177     that = that->next;
178   }
179   TT.treeblocks += blocks = file_blocks_used(*size, 0);
180   TT.treeinodes++;
181 
182   return blocks;
183 }
184 
185 // Calculate inode numbers and link counts.
186 //
187 // To do this right I need to copy the tree and sort it, but here's a really
188 // ugly n^2 way of dealing with the problem that doesn't scale well to large
189 // numbers of files (> 100,000) but can be done in very little code.
190 // This rewrites inode numbers to their final values, allocating depth first.
191 
check_treelinks(struct dirtree * tree)192 static void check_treelinks(struct dirtree *tree)
193 {
194   struct dirtree *current=tree, *that;
195   long inode = INODES_RESERVED;
196 
197   while (current) {
198     ++inode;
199     // Since we can't hardlink to directories, we know their link count.
200     if (S_ISDIR(current->st.st_mode)) current->st.st_nlink = 2;
201     else {
202       dev_t new = current->st.st_dev;
203 
204       if (!new) continue;
205 
206       // Look for other copies of current node
207       current->st.st_nlink = 0;
208       for (that = tree; that; that = treenext(that)) {
209         if (current->st.st_ino == that->st.st_ino &&
210           current->st.st_dev == that->st.st_dev)
211         {
212           current->st.st_nlink++;
213           current->st.st_ino = inode;
214         }
215       }
216     }
217     current->st.st_ino = inode;
218     current = treenext(current);
219   }
220 }
221 
222 // According to http://www.opengroup.org/onlinepubs/9629399/apdxa.htm
223 // we should generate a uuid structure by reading a clock with 100 nanosecond
224 // precision, normalizing it to the start of the gregorian calendar in 1582,
225 // and looking up our eth0 mac address.
226 //
227 // On the other hand, we have 128 bits to come up with a unique identifier, of
228 // which 6 have a defined value.  /dev/urandom it is.
229 
create_uuid(char * uuid)230 static void create_uuid(char *uuid)
231 {
232   // Read 128 random bits
233   int fd = xopen("/dev/urandom", O_RDONLY);
234   xreadall(fd, uuid, 16);
235   close(fd);
236 
237   // Claim to be a DCE format UUID.
238   uuid[6] = (uuid[6] & 0x0F) | 0x40;
239   uuid[8] = (uuid[8] & 0x3F) | 0x80;
240 
241   // rfc2518 section 6.4.1 suggests if we're not using a macaddr, we should
242   // set bit 1 of the node ID, which is the mac multicast bit.  This means we
243   // should never collide with anybody actually using a macaddr.
244   uuid[11] = uuid[11] | 128;
245 }
246 
247 // Calculate inodes per group from total inodes.
get_inodespg(uint32_t inodes)248 static uint32_t get_inodespg(uint32_t inodes)
249 {
250   uint32_t temp;
251 
252   // Round up to fill complete inode blocks.
253   temp = (inodes + TT.groups - 1) / TT.groups;
254   inodes = TT.blocksize/sizeof(struct ext2_inode);
255   return ((temp + inodes - 1)/inodes)*inodes;
256 }
257 
258 // Fill out superblock and TT structures.
259 
init_superblock(struct ext2_superblock * sb)260 static void init_superblock(struct ext2_superblock *sb)
261 {
262   uint32_t temp;
263 
264   // Set log_block_size and log_frag_size.
265 
266   for (temp = 0; temp < 4; temp++) if (TT.blocksize == 1024<<temp) break;
267   if (temp==4) error_exit("bad blocksize");
268   sb->log_block_size = sb->log_frag_size = SWAP_LE32(temp);
269 
270   // Fill out blocks_count, r_blocks_count, first_data_block
271 
272   sb->blocks_count = SWAP_LE32(TT.blocks);
273   sb->free_blocks_count = SWAP_LE32(TT.freeblocks);
274   temp = (TT.blocks * (uint64_t)TT.reserved_percent) / 100;
275   sb->r_blocks_count = SWAP_LE32(temp);
276 
277   sb->first_data_block = SWAP_LE32(TT.blocksize == 1024 ? 1 : 0);
278 
279   // Set blocks_per_group and frags_per_group, which is the size of an
280   // allocation bitmap that fits in one block (I.E. how many bits per block)?
281 
282   sb->blocks_per_group = sb->frags_per_group = SWAP_LE32(TT.blockbits);
283 
284   // Set inodes_per_group and total inodes_count
285   sb->inodes_per_group = SWAP_LE32(TT.inodespg);
286   sb->inodes_count = SWAP_LE32(TT.inodespg * TT.groups);
287 
288   // Determine free inodes.
289   temp = TT.inodespg*TT.groups - INODES_RESERVED;
290   if (temp < TT.treeinodes) error_exit("Not enough inodes.\n");
291   sb->free_inodes_count = SWAP_LE32(temp - TT.treeinodes);
292 
293   // Fill out the rest of the superblock.
294   sb->max_mnt_count=0xFFFF;
295   sb->wtime = sb->lastcheck = sb->mkfs_time = SWAP_LE32(time(NULL));
296   sb->magic = SWAP_LE32(0xEF53);
297   sb->state = sb->errors = SWAP_LE16(1);
298 
299   sb->rev_level = SWAP_LE32(1);
300   sb->first_ino = SWAP_LE32(INODES_RESERVED+1);
301   sb->inode_size = SWAP_LE16(sizeof(struct ext2_inode));
302   sb->feature_incompat = SWAP_LE32(EXT2_FEATURE_INCOMPAT_FILETYPE);
303   sb->feature_ro_compat = SWAP_LE32(EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER);
304 
305   create_uuid(sb->uuid);
306 
307   // TODO If we're called as mke3fs or mkfs.ext3, do a journal.
308 
309   //if (strchr(toys.which->name,'3'))
310   //	sb->feature_compat |= SWAP_LE32(EXT3_FEATURE_COMPAT_HAS_JOURNAL);
311 }
312 
313 // Does this group contain a superblock backup (and group descriptor table)?
is_sb_group(uint32_t group)314 static int is_sb_group(uint32_t group)
315 {
316   int i;
317 
318   // Superblock backups are on groups 0, 1, and powers of 3, 5, and 7.
319   if(!group || group==1) return 1;
320   for (i=3; i<9; i+=2) {
321     int j = i;
322     while (j<group) j*=i;
323     if (j==group) return 1;
324   }
325   return 0;
326 }
327 
328 
329 // Number of blocks used in group by optional superblock/group list backup.
group_superblock_overhead(uint32_t group)330 static int group_superblock_overhead(uint32_t group)
331 {
332   int used;
333 
334   if (!is_sb_group(group)) return 0;
335 
336   // How many blocks does the group descriptor table take up?
337   used = TT.groups * sizeof(struct ext2_group);
338   used += TT.blocksize - 1;
339   used /= TT.blocksize;
340   // Plus the superblock itself.
341   used++;
342   // And a corner case.
343   if (!group && TT.blocksize == 1024) used++;
344 
345   return used;
346 }
347 
348 // Number of blocks used in group to store superblock/group/inode list
group_overhead(uint32_t group)349 static int group_overhead(uint32_t group)
350 {
351   // Return superblock backup overhead (if any), plus block/inode
352   // allocation bitmaps, plus inode tables.
353   return group_superblock_overhead(group) + 2 + get_inodespg(TT.inodespg)
354         / (TT.blocksize/sizeof(struct ext2_inode));
355 }
356 
357 // In bitmap "array" set "len" bits starting at position "start" (from 0).
bits_set(char * array,int start,int len)358 static void bits_set(char *array, int start, int len)
359 {
360   while(len) {
361     if ((start&7) || len<8) {
362       array[start/8]|=(1<<(start&7));
363       start++;
364       len--;
365     } else {
366       array[start/8]=255;
367       start+=8;
368       len-=8;
369     }
370   }
371 }
372 
373 // Seek past len bytes (to maintain sparse file), or write zeroes if output
374 // not seekable
put_zeroes(int len)375 static void put_zeroes(int len)
376 {
377   if(-1 == lseek(TT.fsfd, len, SEEK_SET)) {
378     memset(toybuf, 0, sizeof(toybuf));
379     while (len) {
380       int out = len > sizeof(toybuf) ? sizeof(toybuf) : len;
381       xwrite(TT.fsfd, toybuf, out);
382       len -= out;
383     }
384   }
385 }
386 
387 // Fill out an inode structure from struct stat info in dirtree.
fill_inode(struct ext2_inode * in,struct dirtree * that)388 static void fill_inode(struct ext2_inode *in, struct dirtree *that)
389 {
390   uint32_t fbu[15];
391   int temp;
392 
393   file_blocks_used(that->st.st_size, fbu);
394 
395   // If that inode needs data blocks allocated to it.
396   if (that->st.st_size) {
397     int i, group = TT.nextblock/TT.blockbits;
398 
399     // TODO: teach this about indirect blocks.
400     for (i=0; i<15; i++) {
401       // If we just jumped into a new group, skip group overhead blocks.
402       while (group >= TT.nextgroup)
403         TT.nextblock += group_overhead(TT.nextgroup++);
404     }
405   }
406   // TODO :  S_ISREG/DIR/CHR/BLK/FIFO/LNK/SOCK(m)
407   in->mode = SWAP_LE32(that->st.st_mode);
408 
409   in->uid = SWAP_LE16(that->st.st_uid & 0xFFFF);
410   in->uid_high = SWAP_LE16(that->st.st_uid >> 16);
411   in->gid = SWAP_LE16(that->st.st_gid & 0xFFFF);
412   in->gid_high = SWAP_LE16(that->st.st_gid >> 16);
413   in->size = SWAP_LE32(that->st.st_size & 0xFFFFFFFF);
414 
415   // Contortions to make the compiler not generate a warning for x>>32
416   // when x is 32 bits.  The optimizer should clean this up.
417   if (sizeof(that->st.st_size) > 4) temp = 32;
418   else temp = 0;
419   if (temp) in->dir_acl = SWAP_LE32(that->st.st_size >> temp);
420 
421   in->atime = SWAP_LE32(that->st.st_atime);
422   in->ctime = SWAP_LE32(that->st.st_ctime);
423   in->mtime = SWAP_LE32(that->st.st_mtime);
424 
425   in->links_count = SWAP_LE16(that->st.st_nlink);
426   in->blocks = SWAP_LE32(that->st.st_blocks);
427   // in->faddr
428 }
429 
430 // Works like an archiver.
431 // The first argument is the name of the file to create.  If it already
432 // exists, that size will be used.
433 
mke2fs_main(void)434 void mke2fs_main(void)
435 {
436   int i, temp;
437   off_t length;
438   uint32_t usedblocks, usedinodes, dtiblk, dtbblk;
439   struct dirtree *dti, *dtb;
440 
441   // Handle command line arguments.
442 
443   if (toys.optargs[1]) {
444     sscanf(toys.optargs[1], "%u", &TT.blocks);
445     temp = O_RDWR|O_CREAT;
446   } else temp = O_RDWR;
447   if (!TT.reserved_percent) TT.reserved_percent = 5;
448 
449   // TODO: Check if filesystem is mounted here
450 
451   // For mke?fs, open file.  For gene?fs, create file.
452   TT.fsfd = xcreate(*toys.optargs, temp, 0777);
453 
454   // Determine appropriate block size and block count from file length.
455   // (If no length, default to 4k.  They can override it on the cmdline.)
456 
457   length = fdlength(TT.fsfd);
458   if (!TT.blocksize) TT.blocksize = (length && length < 1<<29) ? 1024 : 4096;
459   TT.blockbits = 8*TT.blocksize;
460   if (!TT.blocks) TT.blocks = length/TT.blocksize;
461 
462   // Collect gene2fs list or lost+found, calculate requirements.
463 
464   if (TT.gendir) {
465     strncpy(toybuf, TT.gendir, sizeof(toybuf));
466     dti = dirtree_read(toybuf, dirtree_notdotdot);
467   } else {
468     dti = xzalloc(sizeof(struct dirtree)+11);
469     strcpy(dti->name, "lost+found");
470     dti->st.st_mode = S_IFDIR|0755;
471     dti->st.st_ctime = dti->st.st_mtime = time(NULL);
472   }
473 
474   // Add root directory inode.  This is iterated through for when finding
475   // blocks, but not when finding inodes.  The tree's parent pointers don't
476   // point back into this.
477 
478   dtb = xzalloc(sizeof(struct dirtree)+1);
479   dtb->st.st_mode = S_IFDIR|0755;
480   dtb->st.st_ctime = dtb->st.st_mtime = time(NULL);
481   dtb->child = dti;
482 
483   // Figure out how much space is used by preset files
484   length = check_treesize(dtb, &(dtb->st.st_size));
485   check_treelinks(dtb);
486 
487   // Figure out how many total inodes we need.
488 
489   if (!TT.inodes) {
490     if (!TT.bytes_per_inode) TT.bytes_per_inode = 8192;
491     TT.inodes = (TT.blocks * (uint64_t)TT.blocksize) / TT.bytes_per_inode;
492   }
493 
494   // If we're generating a filesystem and have no idea how many blocks it
495   // needs, start with a minimal guess, find the overhead of that many
496   // groups, and loop until this is enough groups to store this many blocks.
497   if (!TT.blocks) TT.groups = (TT.treeblocks/TT.blockbits)+1;
498   else TT.groups = div_round_up(TT.blocks, TT.blockbits);
499 
500   for (;;) {
501     temp = TT.treeblocks;
502 
503     for (i = 0; i<TT.groups; i++) temp += group_overhead(i);
504 
505     if (TT.blocks) {
506       if (TT.blocks < temp) error_exit("Not enough space.\n");
507       break;
508     }
509     if (temp <= TT.groups * TT.blockbits) {
510       TT.blocks = temp;
511       break;
512     }
513     TT.groups++;
514   }
515   TT.freeblocks = TT.blocks - temp;
516 
517   // Now we know all the TT data, initialize superblock structure.
518 
519   init_superblock(&TT.sb);
520 
521   // Start writing.  Skip the first 1k to avoid the boot sector (if any).
522   put_zeroes(1024);
523 
524   // Loop through block groups, write out each one.
525   dtiblk = dtbblk = usedblocks = usedinodes = 0;
526   for (i=0; i<TT.groups; i++) {
527     struct ext2_inode *in = (struct ext2_inode *)toybuf;
528     uint32_t start, itable, used, end;
529     int j, slot;
530 
531     // Where does this group end?
532     end = TT.blockbits;
533     if ((i+1)*TT.blockbits > TT.blocks) end = TT.blocks & (TT.blockbits-1);
534 
535     // Blocks used by inode table
536     itable = (TT.inodespg*sizeof(struct ext2_inode))/TT.blocksize;
537 
538     // If a superblock goes here, write it out.
539     start = group_superblock_overhead(i);
540     if (start) {
541       struct ext2_group *bg = (struct ext2_group *)toybuf;
542       int treeblocks = TT.treeblocks, treeinodes = TT.treeinodes;
543 
544       TT.sb.block_group_nr = SWAP_LE16(i);
545 
546       // Write superblock and pad it up to block size
547       xwrite(TT.fsfd, &TT.sb, sizeof(struct ext2_superblock));
548       temp = TT.blocksize - sizeof(struct ext2_superblock);
549       if (!i && TT.blocksize > 1024) temp -= 1024;
550       memset(toybuf, 0, TT.blocksize);
551       xwrite(TT.fsfd, toybuf, temp);
552 
553       // Loop through groups to write group descriptor table.
554       for(j=0; j<TT.groups; j++) {
555 
556         // Figure out what sector this group starts in.
557         used = group_superblock_overhead(j);
558 
559         // Find next array slot in this block (flush block if full).
560         slot = j % (TT.blocksize/sizeof(struct ext2_group));
561         if (!slot) {
562           if (j) xwrite(TT.fsfd, bg, TT.blocksize);
563           memset(bg, 0, TT.blocksize);
564         }
565 
566         // How many free inodes in this group?
567         temp = TT.inodespg;
568         if (!i) temp -= INODES_RESERVED;
569         if (temp > treeinodes) {
570           treeinodes -= temp;
571           temp = 0;
572         } else {
573           temp -= treeinodes;
574           treeinodes = 0;
575         }
576         bg[slot].free_inodes_count = SWAP_LE16(temp);
577 
578         // How many free blocks in this group?
579         temp = TT.inodespg/(TT.blocksize/sizeof(struct ext2_inode)) + 2;
580         temp = end-used-temp;
581         if (temp > treeblocks) {
582           treeblocks -= temp;
583           temp = 0;
584         } else {
585           temp -= treeblocks;
586           treeblocks = 0;
587         }
588         bg[slot].free_blocks_count = SWAP_LE32(temp);
589 
590         // Fill out rest of group structure
591         used += j*TT.blockbits;
592         bg[slot].block_bitmap = SWAP_LE32(used++);
593         bg[slot].inode_bitmap = SWAP_LE32(used++);
594         bg[slot].inode_table = SWAP_LE32(used);
595         bg[slot].used_dirs_count = 0;  // (TODO)
596       }
597       xwrite(TT.fsfd, bg, TT.blocksize);
598     }
599 
600     // Now write out stuff that every block group has.
601 
602     // Write block usage bitmap
603 
604     start += 2 + itable;
605     memset(toybuf, 0, TT.blocksize);
606     bits_set(toybuf, 0, start);
607     bits_set(toybuf, end, TT.blockbits-end);
608     temp = TT.treeblocks - usedblocks;
609     if (temp) {
610       if (end-start > temp) temp = end-start;
611       bits_set(toybuf, start, temp);
612     }
613     xwrite(TT.fsfd, toybuf, TT.blocksize);
614 
615     // Write inode bitmap
616     memset(toybuf, 0, TT.blocksize);
617     j = 0;
618     if (!i) bits_set(toybuf, 0, j = INODES_RESERVED);
619     bits_set(toybuf, TT.inodespg, slot = TT.blockbits-TT.inodespg);
620     temp = TT.treeinodes - usedinodes;
621     if (temp) {
622       if (slot-j > temp) temp = slot-j;
623       bits_set(toybuf, j, temp);
624     }
625     xwrite(TT.fsfd, toybuf, TT.blocksize);
626 
627     // Write inode table for this group (TODO)
628     for (j = 0; j<TT.inodespg; j++) {
629       slot = j % (TT.blocksize/sizeof(struct ext2_inode));
630       if (!slot) {
631         if (j) xwrite(TT.fsfd, in, TT.blocksize);
632         memset(in, 0, TT.blocksize);
633       }
634       if (!i && j<INODES_RESERVED) {
635         // Write root inode
636         if (j == 2) fill_inode(in+slot, dtb);
637       } else if (dti) {
638         fill_inode(in+slot, dti);
639         dti = treenext(dti);
640       }
641     }
642     xwrite(TT.fsfd, in, TT.blocksize);
643 
644     while (dtb) {
645       // TODO write index data block
646       // TODO write root directory data block
647       // TODO write directory data block
648       // TODO write file data block
649       put_zeroes(TT.blocksize);
650       start++;
651       if (start == end) break;
652     }
653     // Write data blocks (TODO)
654     put_zeroes((end-start) * TT.blocksize);
655   }
656 }
657