1 /* mke2fs.c - Create an ext2 filesystem image.
2 *
3 * Copyright 2006, 2007 Rob Landley <rob@landley.net>
4
5 // Still to go: "E:jJ:L:m:O:"
6 USE_MKE2FS(NEWTOY(mke2fs, "<1>2g:Fnqm#N#i#b#", TOYFLAG_SBIN))
7
8 config MKE2FS
9 bool "mke2fs"
10 default n
11 help
12 usage: mke2fs [-Fnq] [-b ###] [-N|i ###] [-m ###] device
13
14 Create an ext2 filesystem on a block device or filesystem image.
15
16 -F Force to run on a mounted device
17 -n Don't write to device
18 -q Quiet (no output)
19 -b size Block size (1024, 2048, or 4096)
20 -N inodes Allocate this many inodes
21 -i bytes Allocate one inode for every XXX bytes of device
22 -m percent Reserve this percent of filesystem space for root user
23
24 config MKE2FS_JOURNAL
25 bool "Journaling support (ext3)"
26 default n
27 depends on MKE2FS
28 help
29 usage: mke2fs [-j] [-J size=###,device=XXX]
30
31 -j Create journal (ext3)
32 -J Journal options
33 size: Number of blocks (1024-102400)
34 device: Specify an external journal
35
36 config MKE2FS_GEN
37 bool "Generate (gene2fs)"
38 default n
39 depends on MKE2FS
40 help
41 usage: gene2fs [options] device filename
42
43 The [options] are the same as mke2fs.
44
45 config MKE2FS_LABEL
46 bool "Label support"
47 default n
48 depends on MKE2FS
49 help
50 usage: mke2fs [-L label] [-M path] [-o string]
51
52 -L Volume label
53 -M Path to mount point
54 -o Created by
55
56 config MKE2FS_EXTENDED
57 bool "Extended options"
58 default n
59 depends on MKE2FS
60 help
61 usage: mke2fs [-E stride=###] [-O option[,option]]
62
63 -E stride= Set RAID stripe size (in blocks)
64 -O [opts] Specify fewer ext2 option flags (for old kernels)
65 All of these are on by default (as appropriate)
66 none Clear default options (all but journaling)
67 dir_index Use htree indexes for large directories
68 filetype Store file type info in directory entry
69 has_journal Set by -j
70 journal_dev Set by -J device=XXX
71 sparse_super Don't allocate huge numbers of redundant superblocks
72 */
73
74 #define FOR_mke2fs
75 #include "toys.h"
76
GLOBALS(long blocksize;long bytes_per_inode;long inodes;long reserved_percent;char * gendir;struct dirtree * dt;unsigned treeblocks;unsigned treeinodes;unsigned blocks;unsigned freeblocks;unsigned inodespg;unsigned groups;unsigned blockbits;unsigned nextblock;unsigned nextgroup;int fsfd;struct ext2_superblock sb;)77 GLOBALS(
78 // Command line arguments.
79 long blocksize;
80 long bytes_per_inode;
81 long inodes; // Total inodes in filesystem.
82 long reserved_percent; // Integer precent of space to reserve for root.
83 char *gendir; // Where to read dirtree from.
84
85 // Internal data.
86 struct dirtree *dt; // Tree of files to copy into the new filesystem.
87 unsigned treeblocks; // Blocks used by dt
88 unsigned treeinodes; // Inodes used by dt
89
90 unsigned blocks; // Total blocks in the filesystem.
91 unsigned freeblocks; // Free blocks in the filesystem.
92 unsigned inodespg; // Inodes per group
93 unsigned groups; // Total number of block groups.
94 unsigned blockbits; // Bits per block. (Also blocks per group.)
95
96 // For gene2fs
97 unsigned nextblock; // Next data block to allocate
98 unsigned nextgroup; // Next group we'll be allocating from
99 int fsfd; // File descriptor of filesystem (to output to).
100
101 struct ext2_superblock sb;
102 )
103
104 #define INODES_RESERVED 10
105
106 static uint32_t div_round_up(uint32_t a, uint32_t b)
107 {
108 uint32_t c = a/b;
109
110 if (a%b) c++;
111 return c;
112 }
113
114 // Calculate data blocks plus index blocks needed to hold a file.
115
file_blocks_used(uint64_t size,uint32_t * blocklist)116 static uint32_t file_blocks_used(uint64_t size, uint32_t *blocklist)
117 {
118 uint32_t dblocks = (uint32_t)((size+(TT.blocksize-1))/TT.blocksize);
119 uint32_t idx=TT.blocksize/4, iblocks=0, diblocks=0, tiblocks=0;
120
121 // Fill out index blocks in inode.
122
123 if (blocklist) {
124 int i;
125
126 // Direct index blocks
127 for (i=0; i<13 && i<dblocks; i++) blocklist[i] = i;
128 // Singly indirect index blocks
129 if (dblocks > 13+idx) blocklist[13] = 13+idx;
130 // Doubly indirect index blocks
131 idx = 13 + idx + (idx*idx);
132 if (dblocks > idx) blocklist[14] = idx;
133
134 return 0;
135 }
136
137 // Account for direct, singly, doubly, and triply indirect index blocks
138
139 if (dblocks > 12) {
140 iblocks = ((dblocks-13)/idx)+1;
141 if (iblocks > 1) {
142 diblocks = ((iblocks-2)/idx)+1;
143 if (diblocks > 1)
144 tiblocks = ((diblocks-2)/idx)+1;
145 }
146 }
147
148 return dblocks + iblocks + diblocks + tiblocks;
149 }
150
151 // Use the parent pointer to iterate through the tree non-recursively.
treenext(struct dirtree * this)152 static struct dirtree *treenext(struct dirtree *this)
153 {
154 while (this && !this->next) this = this->parent;
155 if (this) this = this->next;
156
157 return this;
158 }
159
160 // Recursively calculate the number of blocks used by each inode in the tree.
161 // Returns blocks used by this directory, assigns bytes used to *size.
162 // Writes total block count to TT.treeblocks and inode count to TT.treeinodes.
163
check_treesize(struct dirtree * that,off_t * size)164 static long check_treesize(struct dirtree *that, off_t *size)
165 {
166 long blocks;
167
168 while (that) {
169 *size += sizeof(struct ext2_dentry) + strlen(that->name);
170
171 if (that->child)
172 that->st.st_blocks = check_treesize(that->child, &that->st.st_size);
173 else if (S_ISREG(that->st.st_mode)) {
174 that->st.st_blocks = file_blocks_used(that->st.st_size, 0);
175 TT.treeblocks += that->st.st_blocks;
176 }
177 that = that->next;
178 }
179 TT.treeblocks += blocks = file_blocks_used(*size, 0);
180 TT.treeinodes++;
181
182 return blocks;
183 }
184
185 // Calculate inode numbers and link counts.
186 //
187 // To do this right I need to copy the tree and sort it, but here's a really
188 // ugly n^2 way of dealing with the problem that doesn't scale well to large
189 // numbers of files (> 100,000) but can be done in very little code.
190 // This rewrites inode numbers to their final values, allocating depth first.
191
check_treelinks(struct dirtree * tree)192 static void check_treelinks(struct dirtree *tree)
193 {
194 struct dirtree *current=tree, *that;
195 long inode = INODES_RESERVED;
196
197 while (current) {
198 ++inode;
199 // Since we can't hardlink to directories, we know their link count.
200 if (S_ISDIR(current->st.st_mode)) current->st.st_nlink = 2;
201 else {
202 dev_t new = current->st.st_dev;
203
204 if (!new) continue;
205
206 // Look for other copies of current node
207 current->st.st_nlink = 0;
208 for (that = tree; that; that = treenext(that)) {
209 if (current->st.st_ino == that->st.st_ino &&
210 current->st.st_dev == that->st.st_dev)
211 {
212 current->st.st_nlink++;
213 current->st.st_ino = inode;
214 }
215 }
216 }
217 current->st.st_ino = inode;
218 current = treenext(current);
219 }
220 }
221
222 // According to http://www.opengroup.org/onlinepubs/9629399/apdxa.htm
223 // we should generate a uuid structure by reading a clock with 100 nanosecond
224 // precision, normalizing it to the start of the gregorian calendar in 1582,
225 // and looking up our eth0 mac address.
226 //
227 // On the other hand, we have 128 bits to come up with a unique identifier, of
228 // which 6 have a defined value. /dev/urandom it is.
229
create_uuid(char * uuid)230 static void create_uuid(char *uuid)
231 {
232 // Read 128 random bits
233 int fd = xopen("/dev/urandom", O_RDONLY);
234 xreadall(fd, uuid, 16);
235 close(fd);
236
237 // Claim to be a DCE format UUID.
238 uuid[6] = (uuid[6] & 0x0F) | 0x40;
239 uuid[8] = (uuid[8] & 0x3F) | 0x80;
240
241 // rfc2518 section 6.4.1 suggests if we're not using a macaddr, we should
242 // set bit 1 of the node ID, which is the mac multicast bit. This means we
243 // should never collide with anybody actually using a macaddr.
244 uuid[11] = uuid[11] | 128;
245 }
246
247 // Calculate inodes per group from total inodes.
get_inodespg(uint32_t inodes)248 static uint32_t get_inodespg(uint32_t inodes)
249 {
250 uint32_t temp;
251
252 // Round up to fill complete inode blocks.
253 temp = (inodes + TT.groups - 1) / TT.groups;
254 inodes = TT.blocksize/sizeof(struct ext2_inode);
255 return ((temp + inodes - 1)/inodes)*inodes;
256 }
257
258 // Fill out superblock and TT structures.
259
init_superblock(struct ext2_superblock * sb)260 static void init_superblock(struct ext2_superblock *sb)
261 {
262 uint32_t temp;
263
264 // Set log_block_size and log_frag_size.
265
266 for (temp = 0; temp < 4; temp++) if (TT.blocksize == 1024<<temp) break;
267 if (temp==4) error_exit("bad blocksize");
268 sb->log_block_size = sb->log_frag_size = SWAP_LE32(temp);
269
270 // Fill out blocks_count, r_blocks_count, first_data_block
271
272 sb->blocks_count = SWAP_LE32(TT.blocks);
273 sb->free_blocks_count = SWAP_LE32(TT.freeblocks);
274 temp = (TT.blocks * (uint64_t)TT.reserved_percent) / 100;
275 sb->r_blocks_count = SWAP_LE32(temp);
276
277 sb->first_data_block = SWAP_LE32(TT.blocksize == 1024 ? 1 : 0);
278
279 // Set blocks_per_group and frags_per_group, which is the size of an
280 // allocation bitmap that fits in one block (I.E. how many bits per block)?
281
282 sb->blocks_per_group = sb->frags_per_group = SWAP_LE32(TT.blockbits);
283
284 // Set inodes_per_group and total inodes_count
285 sb->inodes_per_group = SWAP_LE32(TT.inodespg);
286 sb->inodes_count = SWAP_LE32(TT.inodespg * TT.groups);
287
288 // Determine free inodes.
289 temp = TT.inodespg*TT.groups - INODES_RESERVED;
290 if (temp < TT.treeinodes) error_exit("Not enough inodes.\n");
291 sb->free_inodes_count = SWAP_LE32(temp - TT.treeinodes);
292
293 // Fill out the rest of the superblock.
294 sb->max_mnt_count=0xFFFF;
295 sb->wtime = sb->lastcheck = sb->mkfs_time = SWAP_LE32(time(NULL));
296 sb->magic = SWAP_LE32(0xEF53);
297 sb->state = sb->errors = SWAP_LE16(1);
298
299 sb->rev_level = SWAP_LE32(1);
300 sb->first_ino = SWAP_LE32(INODES_RESERVED+1);
301 sb->inode_size = SWAP_LE16(sizeof(struct ext2_inode));
302 sb->feature_incompat = SWAP_LE32(EXT2_FEATURE_INCOMPAT_FILETYPE);
303 sb->feature_ro_compat = SWAP_LE32(EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER);
304
305 create_uuid(sb->uuid);
306
307 // TODO If we're called as mke3fs or mkfs.ext3, do a journal.
308
309 //if (strchr(toys.which->name,'3'))
310 // sb->feature_compat |= SWAP_LE32(EXT3_FEATURE_COMPAT_HAS_JOURNAL);
311 }
312
313 // Does this group contain a superblock backup (and group descriptor table)?
is_sb_group(uint32_t group)314 static int is_sb_group(uint32_t group)
315 {
316 int i;
317
318 // Superblock backups are on groups 0, 1, and powers of 3, 5, and 7.
319 if(!group || group==1) return 1;
320 for (i=3; i<9; i+=2) {
321 int j = i;
322 while (j<group) j*=i;
323 if (j==group) return 1;
324 }
325 return 0;
326 }
327
328
329 // Number of blocks used in group by optional superblock/group list backup.
group_superblock_overhead(uint32_t group)330 static int group_superblock_overhead(uint32_t group)
331 {
332 int used;
333
334 if (!is_sb_group(group)) return 0;
335
336 // How many blocks does the group descriptor table take up?
337 used = TT.groups * sizeof(struct ext2_group);
338 used += TT.blocksize - 1;
339 used /= TT.blocksize;
340 // Plus the superblock itself.
341 used++;
342 // And a corner case.
343 if (!group && TT.blocksize == 1024) used++;
344
345 return used;
346 }
347
348 // Number of blocks used in group to store superblock/group/inode list
group_overhead(uint32_t group)349 static int group_overhead(uint32_t group)
350 {
351 // Return superblock backup overhead (if any), plus block/inode
352 // allocation bitmaps, plus inode tables.
353 return group_superblock_overhead(group) + 2 + get_inodespg(TT.inodespg)
354 / (TT.blocksize/sizeof(struct ext2_inode));
355 }
356
357 // In bitmap "array" set "len" bits starting at position "start" (from 0).
bits_set(char * array,int start,int len)358 static void bits_set(char *array, int start, int len)
359 {
360 while(len) {
361 if ((start&7) || len<8) {
362 array[start/8]|=(1<<(start&7));
363 start++;
364 len--;
365 } else {
366 array[start/8]=255;
367 start+=8;
368 len-=8;
369 }
370 }
371 }
372
373 // Seek past len bytes (to maintain sparse file), or write zeroes if output
374 // not seekable
put_zeroes(int len)375 static void put_zeroes(int len)
376 {
377 if(-1 == lseek(TT.fsfd, len, SEEK_SET)) {
378 memset(toybuf, 0, sizeof(toybuf));
379 while (len) {
380 int out = len > sizeof(toybuf) ? sizeof(toybuf) : len;
381 xwrite(TT.fsfd, toybuf, out);
382 len -= out;
383 }
384 }
385 }
386
387 // Fill out an inode structure from struct stat info in dirtree.
fill_inode(struct ext2_inode * in,struct dirtree * that)388 static void fill_inode(struct ext2_inode *in, struct dirtree *that)
389 {
390 uint32_t fbu[15];
391 int temp;
392
393 file_blocks_used(that->st.st_size, fbu);
394
395 // If that inode needs data blocks allocated to it.
396 if (that->st.st_size) {
397 int i, group = TT.nextblock/TT.blockbits;
398
399 // TODO: teach this about indirect blocks.
400 for (i=0; i<15; i++) {
401 // If we just jumped into a new group, skip group overhead blocks.
402 while (group >= TT.nextgroup)
403 TT.nextblock += group_overhead(TT.nextgroup++);
404 }
405 }
406 // TODO : S_ISREG/DIR/CHR/BLK/FIFO/LNK/SOCK(m)
407 in->mode = SWAP_LE32(that->st.st_mode);
408
409 in->uid = SWAP_LE16(that->st.st_uid & 0xFFFF);
410 in->uid_high = SWAP_LE16(that->st.st_uid >> 16);
411 in->gid = SWAP_LE16(that->st.st_gid & 0xFFFF);
412 in->gid_high = SWAP_LE16(that->st.st_gid >> 16);
413 in->size = SWAP_LE32(that->st.st_size & 0xFFFFFFFF);
414
415 // Contortions to make the compiler not generate a warning for x>>32
416 // when x is 32 bits. The optimizer should clean this up.
417 if (sizeof(that->st.st_size) > 4) temp = 32;
418 else temp = 0;
419 if (temp) in->dir_acl = SWAP_LE32(that->st.st_size >> temp);
420
421 in->atime = SWAP_LE32(that->st.st_atime);
422 in->ctime = SWAP_LE32(that->st.st_ctime);
423 in->mtime = SWAP_LE32(that->st.st_mtime);
424
425 in->links_count = SWAP_LE16(that->st.st_nlink);
426 in->blocks = SWAP_LE32(that->st.st_blocks);
427 // in->faddr
428 }
429
430 // Works like an archiver.
431 // The first argument is the name of the file to create. If it already
432 // exists, that size will be used.
433
mke2fs_main(void)434 void mke2fs_main(void)
435 {
436 int i, temp;
437 off_t length;
438 uint32_t usedblocks, usedinodes, dtiblk, dtbblk;
439 struct dirtree *dti, *dtb;
440
441 // Handle command line arguments.
442
443 if (toys.optargs[1]) {
444 sscanf(toys.optargs[1], "%u", &TT.blocks);
445 temp = O_RDWR|O_CREAT;
446 } else temp = O_RDWR;
447 if (!TT.reserved_percent) TT.reserved_percent = 5;
448
449 // TODO: Check if filesystem is mounted here
450
451 // For mke?fs, open file. For gene?fs, create file.
452 TT.fsfd = xcreate(*toys.optargs, temp, 0777);
453
454 // Determine appropriate block size and block count from file length.
455 // (If no length, default to 4k. They can override it on the cmdline.)
456
457 length = fdlength(TT.fsfd);
458 if (!TT.blocksize) TT.blocksize = (length && length < 1<<29) ? 1024 : 4096;
459 TT.blockbits = 8*TT.blocksize;
460 if (!TT.blocks) TT.blocks = length/TT.blocksize;
461
462 // Collect gene2fs list or lost+found, calculate requirements.
463
464 if (TT.gendir) {
465 strncpy(toybuf, TT.gendir, sizeof(toybuf));
466 dti = dirtree_read(toybuf, dirtree_notdotdot);
467 } else {
468 dti = xzalloc(sizeof(struct dirtree)+11);
469 strcpy(dti->name, "lost+found");
470 dti->st.st_mode = S_IFDIR|0755;
471 dti->st.st_ctime = dti->st.st_mtime = time(NULL);
472 }
473
474 // Add root directory inode. This is iterated through for when finding
475 // blocks, but not when finding inodes. The tree's parent pointers don't
476 // point back into this.
477
478 dtb = xzalloc(sizeof(struct dirtree)+1);
479 dtb->st.st_mode = S_IFDIR|0755;
480 dtb->st.st_ctime = dtb->st.st_mtime = time(NULL);
481 dtb->child = dti;
482
483 // Figure out how much space is used by preset files
484 length = check_treesize(dtb, &(dtb->st.st_size));
485 check_treelinks(dtb);
486
487 // Figure out how many total inodes we need.
488
489 if (!TT.inodes) {
490 if (!TT.bytes_per_inode) TT.bytes_per_inode = 8192;
491 TT.inodes = (TT.blocks * (uint64_t)TT.blocksize) / TT.bytes_per_inode;
492 }
493
494 // If we're generating a filesystem and have no idea how many blocks it
495 // needs, start with a minimal guess, find the overhead of that many
496 // groups, and loop until this is enough groups to store this many blocks.
497 if (!TT.blocks) TT.groups = (TT.treeblocks/TT.blockbits)+1;
498 else TT.groups = div_round_up(TT.blocks, TT.blockbits);
499
500 for (;;) {
501 temp = TT.treeblocks;
502
503 for (i = 0; i<TT.groups; i++) temp += group_overhead(i);
504
505 if (TT.blocks) {
506 if (TT.blocks < temp) error_exit("Not enough space.\n");
507 break;
508 }
509 if (temp <= TT.groups * TT.blockbits) {
510 TT.blocks = temp;
511 break;
512 }
513 TT.groups++;
514 }
515 TT.freeblocks = TT.blocks - temp;
516
517 // Now we know all the TT data, initialize superblock structure.
518
519 init_superblock(&TT.sb);
520
521 // Start writing. Skip the first 1k to avoid the boot sector (if any).
522 put_zeroes(1024);
523
524 // Loop through block groups, write out each one.
525 dtiblk = dtbblk = usedblocks = usedinodes = 0;
526 for (i=0; i<TT.groups; i++) {
527 struct ext2_inode *in = (struct ext2_inode *)toybuf;
528 uint32_t start, itable, used, end;
529 int j, slot;
530
531 // Where does this group end?
532 end = TT.blockbits;
533 if ((i+1)*TT.blockbits > TT.blocks) end = TT.blocks & (TT.blockbits-1);
534
535 // Blocks used by inode table
536 itable = (TT.inodespg*sizeof(struct ext2_inode))/TT.blocksize;
537
538 // If a superblock goes here, write it out.
539 start = group_superblock_overhead(i);
540 if (start) {
541 struct ext2_group *bg = (struct ext2_group *)toybuf;
542 int treeblocks = TT.treeblocks, treeinodes = TT.treeinodes;
543
544 TT.sb.block_group_nr = SWAP_LE16(i);
545
546 // Write superblock and pad it up to block size
547 xwrite(TT.fsfd, &TT.sb, sizeof(struct ext2_superblock));
548 temp = TT.blocksize - sizeof(struct ext2_superblock);
549 if (!i && TT.blocksize > 1024) temp -= 1024;
550 memset(toybuf, 0, TT.blocksize);
551 xwrite(TT.fsfd, toybuf, temp);
552
553 // Loop through groups to write group descriptor table.
554 for(j=0; j<TT.groups; j++) {
555
556 // Figure out what sector this group starts in.
557 used = group_superblock_overhead(j);
558
559 // Find next array slot in this block (flush block if full).
560 slot = j % (TT.blocksize/sizeof(struct ext2_group));
561 if (!slot) {
562 if (j) xwrite(TT.fsfd, bg, TT.blocksize);
563 memset(bg, 0, TT.blocksize);
564 }
565
566 // How many free inodes in this group?
567 temp = TT.inodespg;
568 if (!i) temp -= INODES_RESERVED;
569 if (temp > treeinodes) {
570 treeinodes -= temp;
571 temp = 0;
572 } else {
573 temp -= treeinodes;
574 treeinodes = 0;
575 }
576 bg[slot].free_inodes_count = SWAP_LE16(temp);
577
578 // How many free blocks in this group?
579 temp = TT.inodespg/(TT.blocksize/sizeof(struct ext2_inode)) + 2;
580 temp = end-used-temp;
581 if (temp > treeblocks) {
582 treeblocks -= temp;
583 temp = 0;
584 } else {
585 temp -= treeblocks;
586 treeblocks = 0;
587 }
588 bg[slot].free_blocks_count = SWAP_LE32(temp);
589
590 // Fill out rest of group structure
591 used += j*TT.blockbits;
592 bg[slot].block_bitmap = SWAP_LE32(used++);
593 bg[slot].inode_bitmap = SWAP_LE32(used++);
594 bg[slot].inode_table = SWAP_LE32(used);
595 bg[slot].used_dirs_count = 0; // (TODO)
596 }
597 xwrite(TT.fsfd, bg, TT.blocksize);
598 }
599
600 // Now write out stuff that every block group has.
601
602 // Write block usage bitmap
603
604 start += 2 + itable;
605 memset(toybuf, 0, TT.blocksize);
606 bits_set(toybuf, 0, start);
607 bits_set(toybuf, end, TT.blockbits-end);
608 temp = TT.treeblocks - usedblocks;
609 if (temp) {
610 if (end-start > temp) temp = end-start;
611 bits_set(toybuf, start, temp);
612 }
613 xwrite(TT.fsfd, toybuf, TT.blocksize);
614
615 // Write inode bitmap
616 memset(toybuf, 0, TT.blocksize);
617 j = 0;
618 if (!i) bits_set(toybuf, 0, j = INODES_RESERVED);
619 bits_set(toybuf, TT.inodespg, slot = TT.blockbits-TT.inodespg);
620 temp = TT.treeinodes - usedinodes;
621 if (temp) {
622 if (slot-j > temp) temp = slot-j;
623 bits_set(toybuf, j, temp);
624 }
625 xwrite(TT.fsfd, toybuf, TT.blocksize);
626
627 // Write inode table for this group (TODO)
628 for (j = 0; j<TT.inodespg; j++) {
629 slot = j % (TT.blocksize/sizeof(struct ext2_inode));
630 if (!slot) {
631 if (j) xwrite(TT.fsfd, in, TT.blocksize);
632 memset(in, 0, TT.blocksize);
633 }
634 if (!i && j<INODES_RESERVED) {
635 // Write root inode
636 if (j == 2) fill_inode(in+slot, dtb);
637 } else if (dti) {
638 fill_inode(in+slot, dti);
639 dti = treenext(dti);
640 }
641 }
642 xwrite(TT.fsfd, in, TT.blocksize);
643
644 while (dtb) {
645 // TODO write index data block
646 // TODO write root directory data block
647 // TODO write directory data block
648 // TODO write file data block
649 put_zeroes(TT.blocksize);
650 start++;
651 if (start == end) break;
652 }
653 // Write data blocks (TODO)
654 put_zeroes((end-start) * TT.blocksize);
655 }
656 }
657